Article

Age-associated impairment of T cell immunity is linked to sex-dimorphic elevation of N-glycan branching

Authors:
To read the full-text of this research, you can request a copy directly from the authors.

Abstract

Impaired T cell immunity with aging increases mortality from infectious disease. The branching of asparagine-linked glycans is a critical negative regulator of T cell immunity. Here we show that branching increases with age in females more than in males, in naive T cells (TN) more than in memory T cells, and in CD4+ more than in CD8+ T cells. Female sex hormones and thymic output of TN cells decrease with age; however, neither thymectomy nor ovariectomy altered branching. Interleukin-7 (IL-7) signaling was increased in old female more than male mouse TN cells, and triggered increased branching. N-acetylglucosamine, a rate-limiting metabolite for branching, increased with age in humans and synergized with IL-7 to raise branching. Reversing elevated branching rejuvenated T cell function and reduced severity of Salmonella infection in old female mice. These data suggest sex-dimorphic antagonistic pleiotropy, where IL-7 initially benefits immunity through TN maintenance but inhibits TN function by raising branching synergistically with age-dependent increases in N-acetylglucosamine. Immune function decreases with age, leading to increased risk of infectious disease. The authors show that N-glycan branching increases with age in females more than in males as a result of a sex-dimorphic increase in N-acetylglucosamine and interleukin-7 signaling. Reversing elevated branching reduced infection severity in aged female mice.

No full-text available

Request Full-text Paper PDF

To read the full-text of this research,
you can request a copy directly from the authors.

... Recent research has shed light on the significant role of sex in immune aging, revealing distinct differences between males and females in the context of aging-associated immune alterations (Mkhikian et al., 2022;McGill and Benayoun, 2022). A comprehensive study investigated age-related changes in naive T (Tn) cells and found notable sex-dimorphic variations in Tn function, with older females exhibiting diminished Tn function compared to males across both mice and humans (Mkhikian et al., 2022). ...
... Recent research has shed light on the significant role of sex in immune aging, revealing distinct differences between males and females in the context of aging-associated immune alterations (Mkhikian et al., 2022;McGill and Benayoun, 2022). A comprehensive study investigated age-related changes in naive T (Tn) cells and found notable sex-dimorphic variations in Tn function, with older females exhibiting diminished Tn function compared to males across both mice and humans (Mkhikian et al., 2022). This study underscores the need to consider sexspecific factors in understanding immune aging and highlights the importance of tailored therapeutic approaches. ...
... This study underscores the need to consider sexspecific factors in understanding immune aging and highlights the importance of tailored therapeutic approaches. Moreover, the study elucidates the potential influence of extrinsic factors, such as IL-7 signaling, on the observed sex differences in immune aging, offering valuable insights into the intricate interplay between biological sex and aging-related immune dysfunction (Mkhikian et al., 2022). One study found a correlation between higher innate immune cytokines and disease progression in females and poorer T cell responses with disease progression in males (Takahashi et al., 2020). ...
Article
Full-text available
As we age, our immune system’s ability to effectively respond to pathogens declines, a phenomenon known as immunosenescence. This age-related deterioration affects both innate and adaptive immunity, compromising immune function and leading to chronic inflammation that accelerates aging. Immunosenescence is characterized by alterations in immune cell populations and impaired functionality, resulting in increased susceptibility to infections, diminished vaccine efficacy, and higher prevalence of age-related diseases. Chronic low-grade inflammation further exacerbates these issues, contributing to a decline in overall health and resilience. This review delves into the characteristics of immunosenescence and examines the various intrinsic and extrinsic factors contributing to immune aging and how the hallmarks of aging and cell fates can play a crucial role in this process. Additionally, it discusses the impact of sex, age, social determinants, and gut microbiota health on immune aging, illustrating the complex interplay of these factors in altering immune function. Furthermore, the concept of immune resilience is explored, focusing on the metrics for assessing immune health and identifying strategies to enhance immune function. These strategies include lifestyle interventions such as diet, regular physical activity, stress management, and the use of gerotherapeutics and other approaches. Understanding and mitigating the effects of immunosenescence are crucial for developing interventions that support robust immune responses in aged individuals.
... Modification of cell surface receptors and transporters with branched N-glycans coordinates cell growth and differentiation by controlling glycoprotein clustering/signaling/endocytosis in a synchronized manner via dynamic interactions with galectins [22,[24][25][26][27][28]. Human and mouse studies have demonstrated that N-glycan branching negatively regulates T cell activity via the T cell receptor (TCR) and B cell antigen presenting cell function via Toll-Like Receptor-2/4 (TLR2/4), thereby suppressing pro-inflammatory T-helper-1 (T H 1) and T H 17 while enhancing anti-autoimmune T regulatory cell (Treg) responses to inhibit inflammatory demyelination [25][26][27][28][29][30][31][32][33][34][35]. The ligand for N-glycan branching (galectins) also negatively regulates microglial activity in animal models of MS to reduce neurodegeneration [36]. ...
... GlcNAc readily crosses the BBB and supplementing mice with oral GlcNAc promotes N-glycan branching in both the periphery and the brain, suppresses proinflammatory T cell responses, inhibits inflammatory demyelination, promotes primary myelination and triggers myelin repair to suppress axonal damage [23,28,32,37,42,45]. Consistent with this, an observational clinical study of MS patients found an inverse correlation between a marker of endogenous serum GlcNAc with clinical disability and neuroimaging measures of both myelination [37] and neurodegeneration [46]. ...
... Consistent with this, an observational clinical study of MS patients found an inverse correlation between a marker of endogenous serum GlcNAc with clinical disability and neuroimaging measures of both myelination [37] and neurodegeneration [46]. Moreover, in a separate clinical study we observed that older healthy humans have elevated serum GlcNAc levels, which combines with age-associated increases in IL-7 signaling to raise N-glycan branching in T cells and suppress their function [32]. Here, we report an FDA approved openlabel dose-escalation mechanistic clinical trial of oral GlcNAc in MS patients to assess safety and potential bioactivity as well as provide clinical data to support a future randomized double blind placebo-controlled trial. ...
Article
Full-text available
Background In the demyelinating disease multiple sclerosis (MS), chronic-active brain inflammation, remyelination failure and neurodegeneration remain major issues despite immunotherapy. While B cell depletion and blockade/sequestration of T and B cells potently reduces episodic relapses, they act peripherally to allow persistence of chronic-active brain inflammation and progressive neurological dysfunction. N-acetyglucosamine (GlcNAc) is a triple modulator of inflammation, myelination and neurodegeneration. GlcNAc promotes biosynthesis of Asn (N)-linked-glycans, which interact with galectins to co-regulate the clustering/signaling/endocytosis of multiple glycoproteins simultaneously. In mice, GlcNAc crosses the blood brain barrier to raise N-glycan branching, suppress inflammatory demyelination by T and B cells and trigger stem/progenitor cell mediated myelin repair. MS clinical severity, demyelination lesion size and neurodegeneration inversely associate with a marker of endogenous GlcNAc, while in healthy humans, age-associated increases in endogenous GlcNAc promote T cell senescence. Objectives and methods An open label dose-escalation mechanistic trial of oral GlcNAc at 6 g ( n = 18) and 12 g ( n = 16) for 4 weeks was performed in MS patients on glatiramer acetate and not in relapse from March 2016 to December 2019 to assess changes in serum GlcNAc, lymphocyte N-glycosylation and inflammatory markers. Post-hoc analysis examined changes in serum neurofilament light chain (sNfL) as well as neurological disability via the Expanded Disability Status Scale (EDSS). Results Prior to GlcNAc therapy, high serum levels of the inflammatory cytokines IFNγ, IL-17 and IL-6 associated with reduced baseline levels of a marker of endogenous serum GlcNAc. Oral GlcNAc therapy was safe, raised serum levels and modulated N-glycan branching in lymphocytes. Glatiramer acetate reduces T H 1, T H 17 and B cell activity as well as sNfL, yet the addition of oral GlcNAc dose-dependently lowered serum IFNγ, IL-17, IL-6 and NfL. Oral GlcANc also dose-dependently reduced serum levels of the anti-inflammatory cytokine IL-10, which is increased in the brain of MS patients. 30% of treated patients displayed confirmed improvement in neurological disability, with an average EDSS score decrease of 0.52 points. Conclusions Oral GlcNAc inhibits inflammation and neurodegeneration markers in MS patients despite concurrent immunomodulation by glatiramer acetate. Blinded studies are required to investigate GlcNAc’s potential to control residual brain inflammation, myelin repair and neurodegeneration in MS.
... This impairment can be due to a defect or deficiency in a membrane-organizing protein but can also be due to defective binding to binding partners. For example, dysfunctional glycosylation leading to impaired galectin binding has been shown to greatly impact lymphocyte function 106,[164][165][166] . Galectins and tetraspanins are involved in all hallmarks of tumour progression and participate in inflammatory processes and autoimmune diseases through their vast repertoire of binding partners 21 . ...
... Similarly, injection of recombinant Gal-9 can inhibit collageninduced arthritis 158 by interacting with TIM3 and decreasing the numbers of T H 1 and T H 17 cells, and other galectins, such as Gal-1 and Gal-3, can impact autoimmune diseases through binding to specific T cell subsets 188 . It should be noted that galectin binding to N-glycosylated proteins has also been reported to modulate antitumour immunity, autoimmunity and immune senescence, mainly due to their effect on T cells, which has been reviewed in detail elsewhere 16,166,186 . ...
Article
Immune receptors are not randomly distributed at the plasma membrane of lymphocytes but are segregated into specialized domains that function as platforms to initiate signalling, as exemplified by the B cell or T cell receptor complex and the immunological synapse. 'Membrane-organizing proteins' and, in particular, tetraspanins and galectins, are crucial for controlling the spatiotemporal organization of immune receptors and other signalling proteins. Deficiencies in specific tetraspanins and galectins result in impaired immune synapse formation, lymphocyte proliferation, antibody production and migration, which can lead to impaired immunity, tumour development and autoimmunity. In contrast to conventional ligand-receptor interactions, membrane organizers interact in cis (on the same cell) and modulate receptor clustering, receptor dynamics and intracellular signalling. New findings have uncovered their complex and dynamic nature, revealing shared binding partners and collaborative activity in determining the composition of membrane domains. Therefore, immune receptors should not be envisaged as independent entities and instead should be studied in the context of their spatial organization in the lymphocyte membrane. We advocate for a novel approach to study lymphocyte function by globally analysing the role of membrane organizers in the assembly of different membrane complexes and discuss opportunities to develop therapeutic approaches that act via the modulation of membrane organization.
... Surprisingly, while it could be expected that the gradual age-associated decline in estrogen levels could lead to a reduction of sex-specific differences in the immune system, it was reported that aging is accompanied by a further increase in the sexual dimorphism of immune cells (Marquez et al., 2020), an observation that deserves further mechanistic investigations. In this regard, an interesting cell-extrinsic mechanism of antagonistic pleiotropy involving IL-7 signaling has been recently described to explain the age-associated sexual dimorphism in T cell function (Mkhikian et al., 2022). While IL-7 is crucial to maintain the function of naïve T cells throughout childhood and adulthood, its activation during aging was linked with increased N-glycan branching and reduced T naïve function, which was particularly evident in old females. ...
... While IL-7 is crucial to maintain the function of naïve T cells throughout childhood and adulthood, its activation during aging was linked with increased N-glycan branching and reduced T naïve function, which was particularly evident in old females. (Mkhikian et al., 2022). This mechanism may explain some of the effects of age-related diseases characterized by increased circulating levels of N-glycans on the immune system, as well as the sex-dependent differences in the response of older individuals to specific vaccines, and may offer a potential therapeutic target to counteract T cell aging (McGill and Benayoun, 2022). ...
Article
Geroscience puts mechanisms of aging as a driver of the most common age-related diseases and dysfunctions. Under this perspective, addressing the basic mechanisms of aging will produce a better understanding than addressing each disease pathophysiology individually. Worldwide, despite greater functional impairment, life expectancy is higher in women than in men. Gender differences in the prevalence of multimorbidity lead mandatory to understand the mechanisms underlying gender-related differences in multimorbidity patterns and disability-free life expectancy. Extensive literature suggested that inflammaging is at the crossroad of aging and age-related diseases. In this review, we highlight the main evidence on sex/gender differences in the mechanisms that foster inflammaging, i.e. the age-dependent triggering of innate immunity, modifications of adaptive immunity, and accrual of senescent cells, underpinning some biomarkers of inflammaging that show sex-related differences. In the framework of the "gender medicine perspective", we will also discuss how sex/gender differences in inflammaging can affect sex differences in COVID-19 severe outcomes.
... Different patterns of glycosylation for the IgG subclasses have been described in humans after meningococcal, pneumococcal, and influenza vaccination [132]. Interestingly, with ageing, the reduction in sex hormones in women promotes antibody galactosylation [133], resulting in less inflammatory antibodies, as well as N-glycan-branching in T cells, with the consequence of a negative regulation of T cell activity [134]. ...
Article
Full-text available
The development of preventive and therapeutic vaccines has played a crucial role in preventing infections and treating chronic and non-communicable diseases, respectively. For a long time, the influence of sex differences on modifying health and disease has not been addressed in clinical and preclinical studies. The interaction of genetic, epigenetic, and hormonal factors plays a role in the sex-related differences in the epidemiology of diseases, clinical manifestations, and the response to treatment. Moreover, sex is one of the leading factors influencing the gut microbiota composition, which could further explain the different predisposition to diseases in men and women. In the same way, differences between sexes occur also in the immune response to vaccines. This narrative review aims to highlight these differences, focusing on the immune response to vaccines. Comparative data about immune responses, vaccine effectiveness, and side effects are reviewed. Hence, the intricate interplay between sex, immunity, and the gut microbiota will be discussed for its potential role in the response to vaccination. Embracing a sex-oriented perspective in research may improve the efficacy of the immune response and allow the design of tailored vaccine schedules.
... Whereas the above findings suggest that enhancing flux through the salvage HBP may mitigate autoimmunity, its benefit may be limited in other cases. For example, naïve T cells of aging mice have particularly increased N-glycan branching, which is associated with impaired immunity [237]. Furthermore, the levels of serum GlcNAc increase with age, and serum GlcNAc synergizes with IL-7 signaling to elevate N-glycan branching in human T cells. ...
Article
Full-text available
The hexosamine biosynthesis pathway (HBP) produces uridine diphosphate-N-acetyl glucosamine, UDP-GlcNAc, which is a key metabolite that is used for N- or O-linked glycosylation, a co- or post-translational modification, respectively, that modulates protein activity and expression. The production of hexosamines can occur via de novo or salvage mechanisms that are catalyzed by metabolic enzymes. Nutrients including glutamine, glucose, acetyl-CoA, and UTP are utilized by the HBP. Together with availability of these nutrients, signaling molecules that respond to environmental signals, such as mTOR, AMPK, and stress-regulated transcription factors, modulate the HBP. This review discusses the regulation of GFAT, the key enzyme of the de novo HBP, as well as other metabolic enzymes that catalyze the reactions to produce UDP-GlcNAc. We also examine the contribution of the salvage mechanisms in the HBP and how dietary supplementation of the salvage metabolites glucosamine and N-acetylglucosamine could reprogram metabolism and have therapeutic potential. We elaborate on how UDP-GlcNAc is utilized for N-glycosylation of membrane and secretory proteins and how the HBP is reprogrammed during nutrient fluctuations to maintain proteostasis. We also consider how O-GlcNAcylation is coupled to nutrient availability and how this modification modulates cell signaling. We summarize how deregulation of protein N-glycosylation and O-GlcNAcylation can lead to diseases including cancer, diabetes, immunodeficiencies, and congenital disorders of glycosylation. We review the current pharmacological strategies to inhibit GFAT and other enzymes involved in the HBP or glycosylation and how engineered prodrugs could have better therapeutic efficacy for the treatment of diseases related to HBP deregulation.
... While several defects are thought to contribute to immune-senescence, the molecular mechanisms involved remain poorly understood. In recent work we discovered that altered glycosylation in T cells contribute to T cell aging [1]. In particular, the level of N-acetylglucosamine (GlcNAc) branching on cellsurface N-glycans was increased in T cells, most prominently in naïve CD4 + T (TN) cells, from old mice and humans. ...
... For analysis of CD73 and CD39 expression in young and healthy C57Bl/6 mice, raw-count RNA sequencing gene expression data of bulk CD19+ thymic B cells (GEO: GSE107110) [15], purified CD4+ naive T cells (CD3+CD4+CD25-CD62L+CD44−), and effector memory (CD3+CD4+CD25-CD62L-CD44+) T cells (GEO: GSE184496) [16] were retrieved from the Gene Expression Omnibus (GEO) portal. Gene expression was computed using the log2-transformed TPM (transcripts per million) method. ...
Article
Full-text available
The ecto-nucleotidase CD73 is an important immune checkpoint in tumor immunity that cooperates with CD39 to hydrolyze pro-inflammatory extracellular ATP into immunosuppressive adenosine. While the role of CD73 in immune evasion of solid cancers is well established, its role in leukemia remains unclear. To investigate the role of CD73 in the pathogenesis of chronic lymphocytic leukemia (CLL), Eµ-TCL1 transgenic mice that spontaneously develop CLL were crossed with CD73−/− mice. Disease progression in peripheral blood and spleen, and CLL markers were evaluated by flow cytometry and survival was compared to CD73-proficient Eµ-TCL1 transgenic mice. We observed that CD73 deficiency significantly delayed CLL progression and prolonged survival in Eµ-TCL1 transgenic mice, and was associated with increased accumulation of IFN-γ+ T cells and effector-memory CD8+ T cells. Neutralizing IFN-γ abrogated the survival advantage of CD73-deficient Eµ-TCL1 mice. Intriguingly, the beneficial effects of CD73 deletion were restricted to male mice. In females, CD73 deficiency was uniquely associated with the upregulation of CD39 in normal lymphocytes and sustained high PD-L1 expression on CLL cells. In vitro studies revealed that adenosine signaling via the A2a receptor enhanced PD-L1 expression on Eµ-TCL1-derived CLL cells, and a genomic analysis of human CLL samples found that PD-L1 correlated with adenosine signaling. Our study, thus, identified CD73 as a pro-leukemic immune checkpoint in CLL and uncovered a previously unknown sex bias for the CD73-adenosine pathway.
Article
N-glycan branching is a potent and multifaceted negative regulator of proinflammatory T cell and B cell function. By promoting multivalent galectin–glycoprotein lattice formation at the cell surface, branching regulates clustering and/or endocytosis of the TCR complex (TCR+CD4/CD8), CD45, CD25, BCR, TLR2 and TLR4 to inhibit T cell and B cell activation/proliferation and proinflammatory TH1 and TH17 over TH2 and induced T regulatory cell responses. In addition, branching promotes cell surface retention of the growth inhibitory receptor CTLA-4. However, the role of N-glycan branching in regulating cell surface levels of other checkpoint receptors such as BTLA (B and T lymphocyte attenuator) and PD-1 (programmed cell death protein 1) is unknown. In this study, we report that whereas branching significantly enhances PD-1 cell surface expression by reducing loss from endocytosis, the opposite occurs with BTLA in both T cells and B cells. T cell hyperactivity induced by branching deficiency was opposed by BTLA ligation proportional to increased BTLA expression. Other members of the BTLA/HVEM (herpesvirus entry mediator) signaling axis in T cells, including HVEM, LIGHT, and CD160, are largely unaltered by branching. Thus, branching-mediated endocytosis of BTLA is opposite of branching-induced inhibition of PD-1 endocytosis. In this manner, branching deficiency–induced upregulation of BTLA appears to serve as a checkpoint to limit extreme T cell hyperactivity and proinflammatory outcomes in T cells with low branching.
Article
Glycosylation of proteins and lipids in mammals is essential for embryogenesis and the development of all tissues. Analyses of glycosylation mutants in cultured mammalian cells and model organisms have been key to defining glycosylation pathways and the biological functions of glycans. More recently, applications of genome sequencing have revealed the breadth of rare congenital disorders of glycosylation in humans and the influence of genetics on the synthesis of glycans relevant to infectious diseases, cancer progression and diseases of the immune system. This improved understanding of glycan synthesis and functions is paving the way for advances in the diagnosis and treatment of glycosylation-related diseases, including the development of glycoprotein therapeutics through glycosylation engineering.
Article
N-linked glycosylation is a post-translational modification that results in the decoration of newly synthesized proteins with diverse types of oligosaccharides that originate from the amide group of the amino acid asparagine. The sequential and collective action of multiple glycosidases and glycosyltransferases are responsible for determining the overall size, composition, and location of N-linked glycans that become covalently linked to an asparagine during and after protein translation. A growing body of evidence supports the critical role of N-linked glycan synthesis in regulating many features of T cell biology, including thymocyte development and tolerance, as well as T cell activation and differentiation. Here, we provide an overview of how specific glycosidases and glycosyltransferases contribute to the generation of different types of N-linked glycans and how these post-translational modifications ultimately regulate multiple facets of T cell biology.
Article
The extracellular matrix (ECM), composed of interlinked proteins outside of cells, is an important component of the human body that helps maintain tissue architecture and cellular homeostasis. As people age, the ECM undergoes changes that can lead to age-related morbidity and mortality. Despite its importance, ECM aging remains understudied in the field of geroscience. In this review, we discuss the core concepts of ECM integrity, outline the age-related challenges and subsequent pathologies and diseases, summarize diagnostic methods detecting a faulty ECM, and provide strategies targeting ECM homeostasis. To conceptualize this, we built a technology research tree to hierarchically visualize possible research sequences for studying ECM aging. This strategic framework will hopefully facilitate the development of future research on interventions to restore ECM integrity, which could potentially lead to the development of new drugs or therapeutic interventions promoting health during aging.
Article
Glycobiology as a field holds enormous potential for understanding human health and disease. However, few glycobiology studies adequately address the issue of sex differences in biology, which severely limits the conclusions that can be drawn. Numerous CAZymes, lectins, and other carbohydrate-associated molecules have the potential to be differentially expressed and regulated with sex, leading to differences in O-GlcNAc, N-glycan branching, fucosylation, sialylation, and proteoglycan structure, among others. Expression of proteins involved in glycosylation is influenced through hormones, miRNA, and gene dosage effects. In this review, we discuss the benefits of incorporating sex-based analysis in glycobiology research and the potential drivers of sex differences. We highlight examples of where incorporation of sex-based analysis has led to insights into glycobiology. Finally, we offer suggestions for how to proceed moving forward, even if the experiments are already complete. Properly incorporating sex based analyses into projects will substantially improve the accuracy and reproducibility of studies as well as accelerate the rate of discovery in the glycosciences.
Article
Background Immunosenescence, the aging of the immune system, leads to a decline in the body's adaptability to the environment and plays an important role in various diseases. Immunosenescence has been widely studied in recent years. However, to date, no relevant bibliometric analyses have been conducted. This study aimed to analyze the foundation and frontiers of immunosenescence research through bibliometric analysis. Methods Articles and reviews on immunosenescence from 1970 to 2021 were obtained from the Web of Science Core Collection. Countries, institutions, authors, journals, references, and keywords were analyzed and visualized using VOSviewer and CiteSpace. The R language and Microsoft Excel 365 were used for statistical analyses. Results In total, 3763 publications were included in the study. The global literature on immunosenescence research has increased from 1970 to 2021. The United States was the most productive country with 1409 papers and the highest H-index. Italy had the highest average number of citations per article (58.50). Among the top 10 institutions, 50 % were in the United States. The University of California was the most productive institution, with 159 articles. Kroemer G, Franceschi C, Goronzy JJ, Solana R, and Fulop T were among the top 10 most productive and co-cited authors. Experimental Gerontology (n = 170) published the most papers on immunosenescence. The analysis of keywords found that current research focuses on “inflammaging”, “gut microbiota”, “cellular senescence”, and “COVID-19”. Conclusions Immunosenescence research has increased over the years, and future cooperation and interaction between countries and institutions must be expanded. The connection between inflammaging, gut microbiota, age-related diseases, and immunosenescence is a current research priority. Individualized treatment of immunosenescence, reducing its negative effects, and promoting healthy longevity will become an emerging research direction.
Article
While investigating sex differences in T cell aging, Mkhikian et al. identified a role for excessive IL-7 signaling and N-glycan branching in age-related T cell dysfunction in women and female mice. These findings point to the increasingly recognized importance of the effects of biological sex on immune aging, and delineate new targetable pathways in age-related immune dysfunction.
Article
Full-text available
Importance N-glycan branching modulates cell surface receptor availability, and its deficiency in mice promotes inflammatory demyelination, reduced myelination, and neurodegeneration. N-acetylglucosamine (GlcNAc) is a rate-limiting substrate for N-glycan branching, but, to our knowledge, endogenous serum levels in patients with multiple sclerosis (MS) are unknown. Objective To investigate a marker of endogenous serum GlcNAc levels in patients with MS. Design, Setting, and Participants A cross-sectional discovery study and cross-sectional confirmatory study were conducted at 2 academic MS centers in the US and Germany. The discovery study recruited 54 patients with MS from an outpatient clinic as well as 66 healthy controls between April 20, 2010, and June 21, 2013. The confirmatory study recruited 180 patients with MS from screening visits at an academic MS study center between April 9, 2007, and February 29, 2016. Serum samples were analyzed from December 2, 2013, to March 2, 2015. Statistical analysis was performed from February 23, 2020, to March 18, 2021. Main Outcomes and Measures Serum levels of GlcNAc plus its stereoisomers, termed N-acetylhexosamine (HexNAc), were assessed using targeted tandem mass spectroscopy. Secondary outcomes (confirmatory study) comprised imaging and clinical disease markers. Results The discovery cohort included 66 healthy controls (38 women; mean [SD] age, 42 [20] years), 33 patients with relapsing-remitting MS (RRMS; 25 women; mean [SD] age, 50 [11] years), and 21 patients with progressive MS (PMS; 14 women; mean [SD] age, 55 [7] years). The confirmatory cohort included 125 patients with RRMS (83 women; mean [SD] age, 40 [9] years) and 55 patients with PMS (22 women; mean [SD] age, 49 [80] years). In the discovery cohort, the mean (SD) serum level of GlcNAc plus its stereoisomers (HexNAc) was 710 (174) nM in healthy controls and marginally reduced in patients with RRMS (mean [SD] level, 682 [173] nM; P = .04), whereas patients with PMS displayed markedly reduced levels compared with healthy controls (mean [SD] level, 548 [101] nM; P = 9.55 × 10⁻⁹) and patients with RRMS (P = 1.83 × 10⁻⁴). The difference between patients with RRMS (mean [SD] level, 709 [193] nM) and those with PMS (mean [SD] level, 405 [161] nM; P = 7.6 × 10⁻¹⁸) was confirmed in the independent confirmatory cohort. Lower HexNAc serum levels correlated with worse expanded disability status scale scores (ρ = –0.485; P = 4.73 × 10⁻¹²), lower thalamic volume (t = 1.7; P = .04), and thinner retinal nerve fiber layer (B = 0.012 [SE = 7.5 × 10⁻¹¹]; P = .008). Low baseline serum HexNAc levels correlated with a greater percentage of brain volume loss at 18 months (t = 1.8; P = .04). Conclusions and Relevance This study suggests that deficiency of GlcNAc plus its stereoisomers (HexNAc) may be a biomarker for PMS. Previous preclinical, human genetic, and ex vivo human mechanistic studies revealed that N-glycan branching and/or GlcNAc may reduce proinflammatory responses, promote myelin repair, and decrease neurodegeneration. Combined, the data suggest that GlcNAc deficiency may be associated with progressive disease and neurodegeneration in patients with MS.
Article
Full-text available
Anecdotal evidence suggests that Coronavirus disease 2019 (COVID-19), caused by the coronavirus SARS-CoV-2, exhibits differences in morbidity and mortality between sexes. Here, we present a meta-analysis of 3,111,714 reported global cases to demonstrate that, whilst there is no difference in the proportion of males and females with confirmed COVID-19, male patients have almost three times the odds of requiring intensive treatment unit (ITU) admission (OR = 2.84; 95% CI = 2.06, 3.92) and higher odds of death (OR = 1.39; 95% CI = 1.31, 1.47) compared to females. With few exceptions, the sex bias observed in COVID-19 is a worldwide phenomenon. An appreciation of how sex is influencing COVID-19 outcomes will have important implications for clinical management and mitigation strategies for this disease.
Article
Full-text available
Myelination plays an important role in cognitive development and in demyelinating diseases like multiple sclerosis (MS), where failure of re-myelination promotes permanent neuro-axonal damage. Modification of cell surface receptors with branched N-glycans coordinates cell growth and differentiation by controlling glycoprotein clustering, signaling and endocytosis. N-acetylglucosamine (GlcNAc) is a rate-limiting metabolite for N-glycan branching. Here we report that GlcNAc and N-glycan branching trigger oligodendrogenesis from precursor cells by inhibiting PDGF receptor-α cell endocytosis. Supplying oral GlcNAc to lactating mice drives primary myelination in newborn pups via secretion in breast milk, while genetically blocking N-glycan branching markedly inhibits primary myelination. In adult mice with toxin (cuprizone) induced demyelination, oral GlcNAc prevents neuro-axonal damage by driving myelin repair. In MS patients, endogenous serum GlcNAc levels inversely correlated with imaging measures of demyelination and microstructural damage. Our data identifies N-glycan branching and GlcNAc as critical regulators of primary myelination and myelin repair and suggests oral GlcNAc may be neuro-protective in demyelinating diseases like MS.
Article
Full-text available
A growing body of evidence indicates sex differences in the clinical outcomes of coronavirus disease 2019 (COVID-19)1–5. However, whether immune responses against SARS-CoV-2 differ between sexes, and whether such differences explain male susceptibility to COVID-19, is currently unknown. In this study, we examined sex differences in viral loads, SARS-CoV-2-specific antibody titers, plasma cytokines, as well as blood cell phenotyping in COVID-19 patients. By focusing our analysis on patients with moderate disease who had not received immunomodulatory medications, our results revealed that male patients had higher plasma levels of innate immune cytokines such as IL-8 and IL-18 along with more robust induction of non-classical monocytes. In contrast, female patients mounted significantly more robust T cell activation than male patients during SARS-CoV-2 infection, which was sustained in old age. Importantly, we found that a poor T cell response negatively correlated with patients’ age and was associated with worse disease outcome in male patients, but not in female patients. Conversely, higher innate immune cytokines in female patients associated with worse disease progression, but not in male patients. These findings reveal a possible explanation underlying observed sex biases in COVID-19, and provide an important basis for the development of a sex-based approach to the treatment and care of men and women with COVID-19.
Article
Full-text available
B cell depletion potently reduces episodes of inflammatory demyelination in multiple sclerosis (MS), predominantly through loss of innate rather than adaptive immunity. However, molecular mechanisms controlling innate versus adaptive B cell function are poorly understood. N-glycan branching, via interactions with galectins, controls endocytosis and signaling of cell surface receptors to control cell function. Here we report that N-glycan branching in B cells dose-dependently reduces pro-inflammatory innate responses by titrating decreases in Toll Like Receptor-4 (TLR4) and TLR2 surface expression via endocytosis. In contrast, a minimal level of N-glycan branching maximizes surface retention of the B cell receptor (BCR) and the CD19 co-receptor to promote adaptive immunity. Branched N-glycans inhibit antigen presentation by B cells to reduce T-helper cell-17 (TH17)/TH1 differentiation and inflammatory demyelination in mice. Thus, N-glycan branching negatively regulates B cell innate function while promoting/maintaining adaptive immunity via BCR, providing an attractive therapeutic target for MS.
Article
Full-text available
Importance The coronavirus disease 2019 (COVID-19) pandemic, due to the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has caused a worldwide sudden and substantial increase in hospitalizations for pneumonia with multiorgan disease. This review discusses current evidence regarding the pathophysiology, transmission, diagnosis, and management of COVID-19. Observations SARS-CoV-2 is spread primarily via respiratory droplets during close face-to-face contact. Infection can be spread by asymptomatic, presymptomatic, and symptomatic carriers. The average time from exposure to symptom onset is 5 days, and 97.5% of people who develop symptoms do so within 11.5 days. The most common symptoms are fever, dry cough, and shortness of breath. Radiographic and laboratory abnormalities, such as lymphopenia and elevated lactate dehydrogenase, are common, but nonspecific. Diagnosis is made by detection of SARS-CoV-2 via reverse transcription polymerase chain reaction testing, although false-negative test results may occur in up to 20% to 67% of patients; however, this is dependent on the quality and timing of testing. Manifestations of COVID-19 include asymptomatic carriers and fulminant disease characterized by sepsis and acute respiratory failure. Approximately 5% of patients with COVID-19, and 20% of those hospitalized, experience severe symptoms necessitating intensive care. More than 75% of patients hospitalized with COVID-19 require supplemental oxygen. Treatment for individuals with COVID-19 includes best practices for supportive management of acute hypoxic respiratory failure. Emerging data indicate that dexamethasone therapy reduces 28-day mortality in patients requiring supplemental oxygen compared with usual care (21.6% vs 24.6%; age-adjusted rate ratio, 0.83 [95% CI, 0.74-0.92]) and that remdesivir improves time to recovery (hospital discharge or no supplemental oxygen requirement) from 15 to 11 days. In a randomized trial of 103 patients with COVID-19, convalescent plasma did not shorten time to recovery. Ongoing trials are testing antiviral therapies, immune modulators, and anticoagulants. The case-fatality rate for COVID-19 varies markedly by age, ranging from 0.3 deaths per 1000 cases among patients aged 5 to 17 years to 304.9 deaths per 1000 cases among patients aged 85 years or older in the US. Among patients hospitalized in the intensive care unit, the case fatality is up to 40%. At least 120 SARS-CoV-2 vaccines are under development. Until an effective vaccine is available, the primary methods to reduce spread are face masks, social distancing, and contact tracing. Monoclonal antibodies and hyperimmune globulin may provide additional preventive strategies. Conclusions and Relevance As of July 1, 2020, more than 10 million people worldwide had been infected with SARS-CoV-2. Many aspects of transmission, infection, and treatment remain unclear. Advances in prevention and effective management of COVID-19 will require basic and clinical investigation and public health and clinical interventions.
Article
Full-text available
N-acetylglucosamine (GlcNAc) branching of Asn (N)–linked glycans inhibits pro-inflammatory T cell responses and models of autoimmune diseases such as Multiple Sclerosis (MS). Metabolism controls N-glycan branching in T cells by regulating de novo hexosamine pathway biosynthesis of UDP-GlcNAc, the donor substrate for the Golgi branching enzymes. Activated T cells switch metabolism from oxidative phosphorylation to aerobic glycolysis and glutaminolysis. This reduces flux of glucose and glutamine into the hexosamine pathway, thereby inhibiting de novo UDP-GlcNAc synthesis and N-glycan branching. Salvage of GlcNAc into the hexosamine pathway overcomes this metabolic suppression to restore UDP-GlcNAc synthesis and N-glycan branching, thereby promoting anti-inflammatory T regulatory (Treg) over pro-inflammatory T helper (TH) 17 and TH1 differentiation to suppress autoimmunity. However, GlcNAc activity is limited by the lack of a cell surface transporter and requires high doses to enter cells via macropinocytosis. Here we report that GlcNAc-6-acetate is a superior pro-drug form of GlcNAc. Acetylation of amino-sugars improves cell membrane permeability, with subsequent de-acetylation by cytoplasmic esterases allowing salvage into the hexosamine pathway. Per- and bi-acetylation of GlcNAc led to toxicity in T cells, whereas mono-acetylation at only the 6 > 3 position raised N-glycan branching greater than GlcNAc without inducing significant toxicity. GlcNAc-6-acetate inhibited T cell activation/proliferation, TH1/TH17 responses and disease progression in Experimental Autoimmune Encephalomyelitis (EAE), a mouse model of MS. Thus, GlcNAc-6-Acetate may provide an improved therapeutic approach to raise N-glycan branching, inhibit pro-inflammatory T cell responses and treat autoimmune diseases such as MS.
Article
Full-text available
The immune systems of post-pubescent males and females differ significantly with profound consequences to health and disease. In many cases, sex-specific differences in the immune responses of young adults are also apparent in aged men and women. Moreover, as in young adults, aged women develop several late-adult onset autoimmune conditions more frequently than do men, while aged men continue to develop many cancers to a greater extent than aged women. However, sex differences in the immune systems of aged individuals have not been extensively investigated and data addressing the effectiveness of vaccinations and immunotherapies in aged men and women are scarce. In this review, we evaluate age- and sex hormone-related changes to innate and adaptive immunity, with consideration about how this impacts age- and sex-associated changes in the incidence and pathogenesis of autoimmunity and cancer as well as the efficacy of vaccination and cancer immunotherapy. We conclude that future preclinical and clinical studies should consider age and sex to better understand the ways in which these characteristics intersect with immune function and the resulting consequences for autoimmunity, cancer, and therapeutic interventions.
Article
Full-text available
Aging is linked to deficiencies in immune responses and increased systemic inflammation. To unravel the regulatory programs behind these changes, we applied systems immunology approaches and profiled chromatin accessibility and the transcriptome in PBMCs and purified monocytes, B cells, and T cells. Analysis of samples from 77 young and elderly donors revealed a novel and robust aging signature in PBMCs, with simultaneous systematic chromatin closing at promoters and enhancers associated with T cell signaling and a potentially stochastic chromatin opening mostly found at quiescent and repressed sites. Combined analyses of chromatin accessibility and the transcriptome uncovered immune molecules activated/inactivated with aging and identified the silencing of the IL7R gene and the IL-7 signaling pathway genes as potential biomarkers. This signature is borne by memory CD8 ⁺ T cells, which exhibited an aging-related loss in binding of NF-κB and STAT factors. Thus, our study provides a unique and comprehensive approach to identifying candidate biomarkers and provides mechanistic insights into aging-associated immunodeficiency.
Article
Full-text available
Background CD4+ T cells can be broadly divided into naïve and memory subsets, each of which are differentially impaired by the aging process. It is unclear if and how these differences are reflected at the transcriptomic level. We performed microarray profiling on RNA derived from naïve (CD44low) and memory (CD44high) CD4+ T cells derived from young (2–3 month) and old (28 month) mice, in order to better understand the mechanisms of age-related functional alterations in both subsets. We also performed follow-up bioinformatic analyses in order to determine the functional consequences of gene expression changes in both of these subsets, and identify regulatory factors potentially responsible for these changes. Results We found 185 and 328 genes differentially expressed (FDR ≤ 0.05) in young vs. old naïve and memory cells, respectively, with 50 genes differentially expressed in both subsets. Functional annotation analyses highlighted an increase in genes involved in apoptosis specific to aged naïve cells. Both subsets shared age-related increases in inflammatory signaling genes, along with a decrease in oxidative phosphorylation genes. Cis-regulatory analyses revealed enrichment of multiple transcription factor binding sites near genes with age-associated expression, in particular NF-κB and several forkhead box transcription factors. Enhancer associated histone modifications were enriched near genes down-regulated in naïve cells. Comparison of our results with previous mouse and human datasets indicates few overlapping genes overall, but suggest consistent up-regulation of Casp1 and Il1r2, and down-regulation of Foxp1 in both mouse and human CD4+ T cells. Conclusions The transcriptomes of naïve and memory CD4+ T cells are distinctly affected by the aging process. However, both subsets exhibit a common increase inflammatory genes and decrease in oxidative phosphorylation genes. NF-κB, forkhead box, and Myc transcription factors are implicated as upstream regulators of these gene expression changes in both subsets, with enhancer histone modifications potentially driving unique changes unique to naïve cells. Finally we conclude that there is little overlap in age-related gene expression changes between humans and mice; however, age-related alterations in a small subset of genes may be conserved. Electronic supplementary material The online version of this article (doi:10.1186/s12979-017-0092-5) contains supplementary material, which is available to authorized users.
Article
Full-text available
Aging is associated with a gradual loss of naïve T cells and a reciprocal increase in the proportion of memory T cells. While reduced thymic output is important, age-dependent changes in factors supporting naïve T cells homeostasis may also be involved. Indeed, we noted a dramatic decrease in the ability of aged mice to support survival and homeostatic proliferation of naïve T cells. The defect was not due to a reduction in IL-7 expression, but from a combination of changes in the secondary lymphoid environment that impaired naïve T cell entry and access to key survival factors. We observed an age-related shift in the expression of homing chemokines and structural deterioration of the stromal network in T cell zones. Treatment with IL-7/mAb complexes can restore naïve T cell homeostatic proliferation in aged mice. Our data suggests that homeostatic mechanisms that support the naïve T cell pool deteriorate with age.
Article
Full-text available
Background The level of expression of the interleukin 7 receptor (IL7R) gene in blood has recently been found to be associated with familial longevity and healthy ageing. IL7R is crucial for T cell development and important for immune competence. To further investigate the IL7R pathway in ageing, we identified the closest interacting genes to construct an IL7R gene network that consisted of IL7R and six interacting genes: IL2RG, IL7, TSLP, CRLF2, JAK1 and JAK3. This network was explored for association with chronological age, familial longevity and immune-related diseases (type 2 diabetes, chronic obstructive pulmonary disease and rheumatoid arthritis) in 87 nonagenarians, 337 of their middle-aged offspring and 321 middle-aged controls from the Leiden Longevity Study (LLS). Results We observed that expression levels within the IL7R gene network were significantly different between the nonagenarians and middle-aged controls (P = 4.6 × 10−4), being driven by significantly lower levels of expression in the elderly of IL7, IL2RG and IL7R. After adjustment for multiple testing and white blood cell composition and in comparison with similarly aged controls, middle-aged offspring of nonagenarian siblings exhibit a lower expression level of IL7R only (P = 0.006). Higher IL7R gene expression in the combined group of middle-aged offspring and controls is associated with a higher prevalence of immune-related disease (P = 0.001). On the one hand, our results indicate that lower IL7R expression levels, as exhibited by the members of long-lived families that can be considered as ‘healthy agers’, are beneficial in middle age. This is augmented by the observation that higher IL7R gene expression associates with immune-related disease. On the other hand, IL7R gene expression in blood is lower in older individuals, indicating that low IL7R gene expression might associate with reduced health. Interestingly, this contradictory result is supported by the observation that a higher IL7R gene expression level is associated with better prospective survival, both in the nonagenarians (Hazard ratio (HR) = 0.63, P = 0.037) and the middle-aged individuals (HR = 0.33, P = 1.9 × 10–4). Conclusions Overall, we conclude that the IL7R network reflected by gene expression levels in blood may be involved in the rate of ageing and health status of elderly individuals. Electronic supplementary material The online version of this article (doi:10.1186/s12979-015-0048-6) contains supplementary material, which is available to authorized users.
Article
Full-text available
Significance A decline in the diversity of the T-cell receptor repertoire owing to thymic involution has been implicated as causing defective immune responses in the elderly. By applying next-generation sequencing of replicate TCRB libraries from highly purified T-cell subsets, and using nonparametric statistical analysis, we obtain estimates of repertoire richness in the young adult that are higher than previously reported. Although contracting with age, the repertoire remains highly diverse. These data challenge the paradigm that thymic rejuvenation is needed to maintain diversity and prevent immune incompetence in the elderly. However, we observe an increasing inequality of clonal sizes with age even among naïve T cells. This clonal selection could result in biased and possibly autoreactive immune responses.
Article
Full-text available
Key Points IL-7/antibody complexes are potent because they prolong IL-7 availability in vivo by decreasing specific and nonspecific consumption.
Article
Full-text available
Background The clinical significance of bacteraemia secondary to non-typhoidal Salmonella (NTS) gastroenteritis in hospitalised adults is uncertain. Methods Adults admitted to a hospital in Liverpool, UK, with NTS gastroenteritis were identified using hospital discharge data and laboratory records. Patients with known HIV infection were excluded. Risk factors for a complicated or fatal course were determined. Results Between 1982 and 2006 inclusive, 633 adults were identified. Serovars causing infection included Enteritidis (46.6%), Typhimurium (27.6%) and Virchow (4.9%). A blood culture was taken in 364 (57.5%) patients who were generally sicker than those who were not cultured. Bacteraemia was detected in 63 (17.3%) patients who had blood cultures taken (63/633 (10.0%) of all patients). Bacteraemia was more common in those aged ≥ 65 years (p < 0.001) and in those aged < 65 years who had an underlying chronic disease. A complicated course occurred in 91 (25.0%) patients who had had a blood culture taken (148/633 (23.4%) of all patients). Independent factors associated with a complicated or fatal course among the patients investigated with a blood culture were bacteraemia (Adjusted Odds Ratio 5.34, 95% CI 2.86–9.95); new onset confusion or coma (AOR 4.80, 95% CI 1.91–12.07); prolonged symptoms prior to admission (AOR 2.48, 95% CI 1.44–4.27); dehydration (AOR1.90, 95% CI 1.07–3.38); and absence of fever (AOR 0.56, 95% CI 0.32–0.95). The 30 day attributable case fatality for all patients was 1.5%. Conclusions In this study secondary bacteraemia, as well as other clinical factors, was independently associated with a complicated or fatal course in non-HIV infected adults admitted to hospital with NTS gastroenteritis.
Article
Full-text available
Multiple sclerosis (MS) is characterized by inflammatory demyelination of axons and neurodegeneration, the latter inadequately modeled in experimental autoimmune encephalomyelitis (EAE). Susceptibility of inbred mouse strains to EAE is in part determined by major histocompatibility complex haplotype; however, other molecular mechanisms remain elusive. Galectins bind GlcNAc-branched N-glycans attached to surface glycoproteins, forming a molecular lattice that restricts lateral movement and endocytosis of glycoproteins. GlcNAc branching negatively regulates T cell activity and autoimmunity, and when absent in neurons, induces apoptosis in vivo in young adult mice. We find that EAE susceptible mouse strains PL/J, SJL, and NOD have reduced GlcNAc branching. PL/J mice display the lowest levels, partial deficiencies in N-acetylglucosaminyltransferase I, II, and V (i.e. Mgat1, -2, and -5), T cell hyperactivity and spontaneous late onset inflammatory demyelination and neurodegeneration; phenotypes markedly enhanced by Mgat5+/- and Mgat5-/- backgrounds in a gene dose-dependent manner. Spontaneous disease is transferable and characterized by progressive paralysis, tremor, dystonia, neuronophagia, and axonal damage in both demyelinated lesions and normal white matter, phenocopying progressive MS. Our data identify hypomorphic Golgi processing as an inherited trait that determines susceptibility to EAE, provides a unique spontaneous model of MS, and suggests GlcNAc-branching deficiency may promote T cell-mediated demyelination and neurodegeneration in MS.
Article
Full-text available
The ability of the human immune system to respond to vaccination declines with age. We identified an age-associated defect in T cell receptor (TCR)-induced extracellular signal-regulated kinase (ERK) phosphorylation in naive CD4(+) T cells, whereas other signals, such as ζ chain-associated protein kinase 70 (ZAP70) and phospholipase C-γ1 phosphorylation, were not impaired. The defective ERK signaling was caused by the dual specific phosphatase 6 (DUSP6), whose protein expression increased with age due to a decline in repression by miR-181a. Reconstitution of miR-181a lowered DUSP6 expression in naive CD4(+) T cells in elderly individuals. DUSP6 repression using miR-181a or specific siRNA and DUSP6 inhibition by the allosteric inhibitor (E)-2-benzylidene-3-(cyclohexylamino)-2,3-dihydro-1H-inden-1-one improved CD4(+) T cell responses, as seen by increased expression of activation markers, improved proliferation and supported preferential T helper type 1 cell differentiation. DUSP6 is a potential intervention target for restoring T cell responses in the elderly, which may augment the effectiveness of vaccination.
Article
Full-text available
In postmenopausal women, the ovaries produce significant amounts of androgens for many years after the menopause. Bilateral oophorectomy markedly reduces circulating testosterone (T) in both pre- and postmenopausal women. Oral estrogen therapy in postmenopausal women increases sex hormone-binding globulin and decreases T bioavailablity. Circulating androgens decrease with increasing age. The occurrence of an androgen deficiency syndrome associated with loss of libido and sense of well-being is disputed, but in several randomized controlled trials, transdermal T patches produced a significant improvement in hypoactive sexual desire disorder in postmenopausal women who had bilateral oophorectomy and in some women who had a natural menopause. T therapy is legitimate and is clinically indicated in such women. T therapy may have other benefits in postmenopausal women including an increase in lean body mass and bone mineral density. T therapy should become an integral part of hormone therapy in selected postmenopausal women in the future.
Article
Full-text available
Multiple sclerosis (MS) is an inflammatory demyelinating and neurodegenerative disease initiated by autoreactive T cells. Mgat5, a gene in the Asn (N-) linked protein glycosylation pathway, associates with MS severity and negatively regulates experimental autoimmune encephalomyelitis (EAE) and spontaneous inflammatory demyelination in mice. N-glycan branching by Mgat5 regulates interaction of surface glycoproteins with galectins, forming a molecular lattice that differentially controls the concentration of surface glycoproteins. T-cell receptor signaling, T-cell proliferation, T(H)1 differentiation, and CTLA-4 endocytosis are inhibited by Mgat5 branching. Non-T cells also contribute to MS pathogenesis and express abundant Mgat5 branched N-glycans. Here we explore whether Mgat5 deficiency in myelin-reactive T cells is sufficient to promote demyelinating disease. Adoptive transfer of myelin-reactive Mgat5(-/-) T cells into Mgat5(+/+) versus Mgat5(-/-) recipients revealed more severe EAE in the latter, suggesting that Mgat5 branching deficiency in recipient naive T cells and/or non-T cells contribute to disease pathogenesis.
Article
Full-text available
Current treatments and emerging oral therapies for multiple sclerosis (MS) are limited by effectiveness, cost, and/or toxicity. Genetic and environmental factors that alter the branching of Asn (N)-linked glycans result in T cell hyperactivity, promote spontaneous inflammatory demyelination and neurodegeneration in mice, and converge to regulate the risk of MS. The sugar N-acetylglucosamine (GlcNAc) enhances N-glycan branching and inhibits T cell activity and adoptive transfer experimental autoimmune encephalomyelitis (EAE). Here, we report that oral GlcNAc inhibits T-helper 1 (Th1) and T-helper 17 (Th17) responses and attenuates the clinical severity of myelin oligodendrocyte glycoprotein (MOG)-induced EAE when administered after disease onset. Oral GlcNAc increased expression of branched N-glycans in T cells in vivo as shown by high pH anion exchange chromatography, MALDI-TOF mass spectroscopy and FACS analysis with the plant lectin l-phytohemagglutinin. Initiating oral GlcNAc treatment on the second day of clinical disease inhibited MOG-induced EAE as well as secretion of interferon-γ, tumor necrosis factor-α, interleukin-17, and interleukin-22. In the more severe 2D2 T cell receptor transgenic EAE model, oral GlcNAc initiated after disease onset also inhibits clinical disease, except for those with rapid lethal progression. These data suggest that oral GlcNAc may provide an inexpensive and nontoxic oral therapeutic agent for MS that directly targets an underlying molecular mechanism causal of disease.
Article
Full-text available
Allergic airway inflammation, including asthma, is usually characterized by the predominant recruitment of eosinophils. However, neutrophilia is also prominent during severe exacerbations. Cell surface-expressed glycans play a role in leukocyte trafficking and recruitment during inflammation. Here, the involvement of UDP-N-acetylglucosamine:α-6-d-mannoside β1,6-N-acetylglucosaminyltransferase V (MGAT5)-modified N-glycans in eosinophil and neutrophil recruitment during allergic airway inflammation was investigated. Allergen-challenged Mgat5-deficient (Mgat5−/−) mice exhibited significantly attenuated airway eosinophilia and inflammation (decreased Th2 cytokines, mucus production) compared with WT counterparts, attributable to decreased rolling, adhesion, and survival of Mgat5−/− eosinophils. Interestingly, allergen-challenged Mgat5−/− mice developed airway neutrophilia and increased airway reactivity with persistent elevated levels of proinflammatory cytokines (IL-17A, TNFα, IFNγ)). This increased neutrophil recruitment was also observed in LPS- and thioglycollate (TG)-induced inflammation in Mgat5−/− mice. Furthermore, there was significantly increased recruitment of infused Mgat5−/− neutrophils compared with WT neutrophils in the peritoneal cavity of TG-exposed WT mice. Mgat5−/− neutrophils demonstrated enhanced adhesion to P-selectin as well as increased migration toward keratinocyte-derived chemokine compared with WT neutrophils in vitro along with increased calcium mobilization upon activation and expression of elevated levels of CXCR2, which may contribute to the increased neutrophil recruitment. These data indicate an important role for MGAT5-modified N-glycans in differential regulation of eosinophil and neutrophil recruitment during allergic airway inflammation.
Article
Full-text available
Interleukin 17 (IL-17) is a central cytokine implicated in inflammation and antimicrobial defense. After infection, both innate and adaptive IL-17 responses have been reported, but the type of cells involved in innate IL-17 induction, as well as their contribution to in vivo responses, are poorly understood. Here we found that Citrobacter and Salmonella infection triggered early IL-17 production, which was crucial for host defense and was mediated by CD4(+) T helper cells. Enteric innate T helper type 17 (iT(H)17) responses occurred principally in the cecum, were dependent on the Nod-like receptors Nod1 and Nod2, required IL-6 induction and were associated with a decrease in mucosal CD103(+) dendritic cells. Moreover, imprinting by the intestinal microbiota was fully required for the generation of iT(H)17 responses. Together, these results identify the Nod-iT(H)17 axis as a central element in controlling enteric pathogens, which may implicate Nod-driven iT(H)17 responses in the development of inflammatory bowel diseases.
Article
Full-text available
How environmental factors combine with genetic risk at the molecular level to promote complex trait diseases such as multiple sclerosis (MS) is largely unknown. In mice, N-glycan branching by the Golgi enzymes Mgat1 and/or Mgat5 prevents T cell hyperactivity, cytotoxic T-lymphocyte antigen 4 (CTLA-4) endocytosis, spontaneous inflammatory demyelination and neurodegeneration, the latter pathologies characteristic of MS. Here we show that MS risk modulators converge to alter N-glycosylation and/or CTLA-4 surface retention conditional on metabolism and vitamin D(3), including genetic variants in interleukin-7 receptor-α (IL7RA*C), interleukin-2 receptor-α (IL2RA*T), MGAT1 (IV(A)V(T-T)) and CTLA-4 (Thr17Ala). Downregulation of Mgat1 by IL7RA*C and IL2RA*T is opposed by MGAT1 (IV(A)V(T-T)) and vitamin D(3), optimizing branching and mitigating MS risk when combined with enhanced CTLA-4 N-glycosylation by CTLA-4 Thr17. Our data suggest a molecular mechanism in MS whereby multiple environmental and genetic inputs lead to dysregulation of a final common pathway, namely N-glycosylation.
Article
Full-text available
Local immune responses serve to contain infections by pathogens to the gut while preventing pathogen dissemination to systemic sites. Several subsets of T cells in the gut (T-helper 17 cells, gammadelta T cells, natural killer (NK), and NK-T cells) contribute to the mucosal response to pathogens by secreting a subset of cytokines including interleukin (IL)-17A, IL-17F, IL-22, and IL-26. These cytokines induce the secretion of chemokines and antimicrobial proteins, thereby orchestrating the mucosal barrier against gastrointestinal pathogens. While the mucosal barrier prevents bacterial dissemination from the gut, it also promotes colonization by pathogens that are resistant to some of the inducible antimicrobial responses. In this review, we describe the contribution of Th17 cytokines to the gut mucosal barrier during bacterial infections.
Article
Full-text available
Ageing is associated with a decline in immune function, which predisposes the elderly to a higher incidence of infections. Information on the mechanism of the age-related increase in susceptibility to Salmonella enterica serovar Typhimurium (S. Typhimurium) is limited. In particular, little is known regarding the involvement of the immune response in this age-related change. We employed streptomycin (Sm)-pretreated C57BL/6 mice to develop a mouse model that would demonstrate age-related differences in susceptibility and immune response to S. Typhimurium. In this model, old mice inoculated orally with doses of 3 x 10(8) or 1 x 10(6) c.f.u. S. Typhimurium had significantly greater S. Typhimurium colonization in the ileum, colon, Peyer's patches, spleen and liver than young mice. Old mice had significantly higher weight loss than young mice on days 1 and 2 post-infection. In response to S. Typhimurium infection, old mice failed to increase ex vivo production of IFN-gamma and TNF-alpha in the spleen and mesenteric lymph node cells to the same degree as observed in young mice; this was associated with their inability to maintain the presence of neutrophils and macrophages at a 'youthful' level. These results indicate that Sm-pretreated C57BL/6 old mice are more susceptible to S. Typhimurium infection than young mice, which might be due to impaired IFN-gamma and TNF-alpha production as well as a corresponding change in the number of neutrophils and macrophages in response to S. Typhimurium infection compared to young mice.
Article
Full-text available
The effects of interleukin 7 (IL-7) on the growth and differentiation of murine B cell progenitors has been well characterized using in vitro culture methods. We have investigated the role of IL-7 in vivo using a monoclonal antibody that neutralizes IL-7. We find that treatment of mice with this antibody completely inhibits the development of B cell progenitors from the pro-B cell stage forward. We also provide evidence that all peripheral B cells, including those of the B-1 and conventional lineages, are derived from IL-7-dependent precursors. The results are consistent with the rapid turnover of B cell progenitors in the marrow, but a slow turnover of mature B cells in the periphery. In addition to effects on B cell development, anti-IL-7 treatment substantially reduced thymus cellularity, affecting all major thymic subpopulations.
Article
Full-text available
Postmenopausal bone loss stems from the inability of osteoblastic activity to match the increase in osteoclastic bone resorption induced by estrogen deficiency. However, the mechanism that uncouples osteoblast from osteoclast activities remains unexplained. We show that ovariectomy enhances the production of the osteoclastogenic cytokine IL-7, and that its neutralization in vivo prevents ovariectomy-induced bone loss. Surprisingly, serum osteocalcin levels, a biochemical marker of bone formation, suggested that the bone-sparing effects of IL-7 neutralization were due not only to inhibition of bone resorption, but also to stimulation of bone formation. Consistent with these data, addition of IL-7 to neonatal calvarial organ cultures blocked new bone formation, and injection of IL-7 into mice in vivo inhibited bone formation as measured by calcein incorporation into long bones. The antianabolic effects of IL-7 were consistent with an observed downregulation of the osteoblast-specific transcription factor core-binding factor alpha1/Runx2. Thus, because it targets both the osteoclast and the osteoblast pathways, IL-7 is central to the altered bone turnover characteristic of estrogen deficiency.
Article
Galectins have been implicated in inhibiting BCR signaling in mature B cells but promoting pre-BCR signaling during early development. Galectins bind to branched N-glycans attached to cell surface glycoproteins to control the distribution, clustering, endocytosis, and signaling of surface glycoproteins. During T cell development, N-glycan branching is required for positive selection of thymocytes, inhibiting both death by neglect and negative selection via enhanced surface retention of the CD4/CD8 coreceptors and limiting TCR clustering/signaling, respectively. The role of N-glycan branching in B cell development is unknown. In this study, we report that N-glycan branching is absolutely required for development of mature B cells in mice. Elimination of branched N-glycans in developing B cells via targeted deletion of N-acetylglucosaminyl transferase I (Mgat1) markedly reduced cellularity in the bone marrow and/or spleen and inhibited maturation of pre-, immature, and transitional stage 2 B cells. Branching deficiency markedly reduced surface expression of the pre-BCR/BCR coreceptor CD19 and promoted spontaneous death of pre-B cells and immature B cells in vitro. Death was rescued by low-dose pre-BCR/BCR stimulation but exacerbated by high-dose pre-BCR/BCR stimulation as well as antiapoptotic BclxL overexpression in pre-B cells. Branching deficiency also enhanced Nur77 induction, a marker of negative selection. Together, these data suggest that, as in T cells, N-glycan branching promotes positive selection of B cells by augmenting pre-BCR/BCR signaling via CD19 surface retention, whereas limiting negative selection from excessive BCR engagement.
Article
T cell ageing has a pivotal role in rendering older individuals vulnerable to infections and cancer and in impairing the response to vaccination. Easy accessibility to peripheral human T cells as well as an expanding array of tools to examine T cell biology have provided opportunities to examine major ageing pathways and their consequences for T cell function. Here, we review emerging concepts of how the body attempts to maintain a functional T cell compartment with advancing age, focusing on three fundamental domains of the ageing process, namely self-renewal, control of cellular quiescence and cellular senescence. Understanding these critical elements in successful T cell ageing will allow the design of interventions to prevent or reverse ageing-related T cell failure. This Review describes how the body attempts to maintain a functional T cell compartment with advancing age. It explores whether T cell ageing reflects cellular senescence or the failure to maintain quiescence and instead undergo differentiation.
Article
Immunosenescence is a series of age-related changes that affect the immune system and, with time, lead to increased vulnerability to infectious diseases. This Review addresses recent developments in the understanding of age-related changes that affect key components of immunity, including the effect of aging on cells of the (mostly adaptive) immune system, on soluble molecules that guide the maintenance and function of the immune system and on lymphoid organs that coordinate both the maintenance of lymphocytes and the initiation of immune responses. I further address the effect of the metagenome and exposome as key modifiers of immune-system aging and discuss a conceptual framework in which age-related changes in immunity might also affect the basic rules by which the immune system operates.
Article
Interleukin-7 (IL-7) availability determines the size and proliferative state of the resting T cell pool. However, the mechanisms that regulate steady-state IL-7 amounts are unclear. Using experimental lymphopenic mouse models and IL-7-induced homeostatic proliferation to measure IL-7 availability in vivo, we found that radioresistant cells were the source of IL-7 for both CD4⁺ and CD8⁺ T cells. Hematopoietic lineage cells, although irrelevant as a source of IL-7, were primarily responsible for limiting IL-7 availability via their expression of IL-7R. Unexpectedly, innate lymphoid cells were found to have a potent influence on IL-7 amounts in the primary and secondary lymphoid tissues. These results demonstrate that IL-7 homeostasis is achieved through consumption by multiple subsets of innate and adaptive immune cells.
Article
Males and females differ in their immunological responses to foreign and self-antigens and show distinctions in innate and adaptive immune responses. Certain immunological sex differences are present throughout life, whereas others are only apparent after puberty and before reproductive senescence, suggesting that both genes and hormones are involved. Furthermore, early environmental exposures influence the microbiome and have sex-dependent effects on immune function. Importantly, these sex-based immunological differences contribute to variations in the incidence of autoimmune diseases and malignancies, susceptibility to infectious diseases and responses to vaccines in males and females. Here, we discuss these differences and emphasize that sex is a biological variable that should be considered in immunological studies.
Article
In response to the recommended vaccines in older-aged individuals, sex differences occur in response to those that protect against influenza, tetanus, pertussis, shingles, and pneumococcal infections. The efficacy of vaccines recommended for older-aged adults is consistently greater for females than for males. Gender differences as well as biological sex differences can influence vaccine uptake, responses, and outcome in older-aged individuals, which should influence guidelines, formulations, and dosage recommendations for vaccines in the elderly.
Article
The effects of interleukin 7 (IL-7) on the growth and differentiation of murine B cell progenitors has been well characterized using in vitro culture methods. We have investigated the role of IL-7 in vivo using a monoclonal antibody that neutralizes IL-7. We find that treatment of mice with this antibody completely inhibits the development of B cell progenitors from the pro-B cell stage forward. We also provide evidence that all peripheral B cells, including those of the B-1 and conventional lineages, are derived from IL-7-dependent precursors. The results are consistent with the rapid turnover of B cell progenitors in the marrow, but a slow turnover of mature B cells in the periphery. In addition to effects on B cell development, anti-IL-7 treatment substantially reduced thymus cellularity, affecting all major thymic subpopulations.
Article
Positive selection of diverse yet self-tolerant thymocytes is vital to immunity and requires a limited degree of T cell antigen receptor (TCR) signaling in response to self peptide-major histocompatibility complexes (self peptide-MHCs). Affinity of newly generated TCR for peptide-MHC primarily sets the boundaries for positive selection. We report that N-glycan branching of TCR and the CD4 and CD8 coreceptors separately altered the upper and lower affinity boundaries from which interactions between peptide-MHC and TCR positively select T cells. During thymocyte development, N-glycan branching varied approximately 15-fold. N-glycan branching was required for positive selection and decoupled Lck signaling from TCR-driven Ca(2+) flux to simultaneously promote low-affinity peptide-MHC responses while inhibiting high-affinity ones. Therefore, N-glycan branching imposes a sliding scale on interactions between peptide-MHC and TCR that bidirectionally expands the affinity range for positive selection.
Article
Cancer progression is accompanied by increases in glucose and glutamine metabolism, providing the carbon and nitrogen required in downstream anabolic pathways. Fructose-6P, glutamine, and acetyl-CoA are central metabolites and substrates of the hexosamine biosynthesis pathway (HBP) to UDP-N-acetylglucosamine (UDP-GlcNAc), an essential high-energy donor for protein glycosylation. Golgi and cytosolic glycosylation pathways are sensitive to UDP-GlcNAc levels, which in turn regulates metabolic homeostasis in a poorly understood manner. To study the hexosamine biosynthesis pathway in cancer cells, we developed a targeted approach for cellular metabolomics profiling by liquid chromatography–tandem mass spectrometry. Human cervical (HeLa) and prostate cancer (PC-3) cell lines were cultured in medium with increasing concentrations of glucose, glutamine, or GlcNAc to perturb the metabolic network. Principal component analysis indicated trends that were further analyzed as individual metabolites and pathways. HeLa cell metabolism was predominantly glycolytic, while PC-3 cells showed a greater dependency on extracellular glutamine. In both cell lines, UDP-GlcNAc levels declined with glucose but not glutamine starvation, whereas glutamine abundance increased UDP-GlcNAc levels 2–3-fold. GlcNAc supplementation increased UDP-GlcNAc 4–8-fold in both HeLa and PC-3 cells. GlcNAc supplementation in HeLa cells induced nonmonotonic changes in NADH/NAD+, NADPH/NADP+, reactive oxygen species, and reduced/oxidized glutathione. In PC-3 cells, GlcNAc supplementation also increased glucose and glutamine uptake and catabolism. Our results suggest that stimulation of the HBP in cancer cells regulates metabolism and redox potential, which might be exploited to target cancer cells.
Article
Deficiency of the Golgi N-glycan branching enzyme Mgat5 in mice promotes T cell hyperactivity, endocytosis of CTLA-4 and autoimmunity, including a spontaneous multiple sclerosis (MS)-like disease. Multiple genetic and environmental MS risk factors lower N-glycan branching in T cells. These include variants in interleukin-2 receptor-α (IL2RA), interleukin-7 receptor-α (IL7RA), and MGAT1, a Golgi branching enzyme upstream of MGAT5, as well as vitamin D3 deficiency and Golgi substrate metabolism. Here we describe linked intronic variants of MGAT5 that are associated with reduced N-glycan branching, CTLA-4 surface expression and MS (p=5.79×10(-9), n=7,741), the latter additive with the MGAT1, IL2RA and IL7RA MS risk variants (p=1.76×10(-9), OR=0.67-1.83, n=3,518).
Article
After their development in the thymus, mature T cells are maintained in the periphery by two sets of survival signals, namely TCR signals from contact with self-peptide/MHC ligands and the cytokine receptor signals from binding IL-7 and IL-15. These signals cooperate to maximize the utility of finite resources to support a diverse pool of mature T cells. It is becoming increasingly clear that multiple mechanisms exist to regulate expression of IL-7R at the transcriptional and post-translational levels. The interplay between TCR signals and IL-7R signals are also important in regulation of IL-7R expression. This review will focus on regulation of T cell homeostasis by IL-7R signaling, with an emphasis on the cross talk between signals from TCR and IL-7R.
Article
We aimed to examine the incidence and disease course of late-onset multiple sclerosis (LOMS) compared with adult-onset MS (AOMS) in our clinic cohort, stratified based on gender and race, since both have been reported as important modifiers of disease outcomes in MS. Patients with LOMS and AOMS were compared in terms of demographic characteristics and disease course characteristics. Combined effects were investigated with a logistic regression model. Time from disease onset to sustained Expanded Disability Status Scale (EDSS) score of 6 was investigated using an extension of log-rank test appropriate for interval-censored data. Some 7.96% of 4273 patients studied had an onset of MS after the age of 50 years (LOMS), and 1.33% experienced an onset after age 60. Progressive onset was more common in LOMS relative to AOMS. The proportion of women with progressive-onset disease was similar in AOMS and LOMS. Time to EDSS 6 was delayed in AOMS females compared with males; however, it was similar between males and females in the LOMS group. Women with LOMS have a different trajectory in terms of disease progression than women with AOMS. The effect of menopause combined with race/ethnicity on the MS disease course requires further investigation.
Article
Parallels between T cell kinetics in mice and men have fueled the idea that a young mouse is a good model system for a young human, and an old mouse, for an elderly human. By combining in vivo kinetic labeling using deuterated water, thymectomy experiments, analysis of T cell receptor excision circles and CD31 expression, and mathematical modeling, we have quantified the contribution of thymus output and peripheral naive T cell division to the maintenance of T cells in mice and men. Aging affected naive T cell maintenance fundamentally differently in mice and men. Whereas the naive T cell pool in mice was almost exclusively sustained by thymus output throughout their lifetime, the maintenance of the adult human naive T cell pool occurred almost exclusively through peripheral T cell division. These findings put constraints on the extrapolation of insights into T cell dynamics from mouse to man and vice versa.
Article
SUMMARY Non-typhoidal Salmonella (NTS) is a common pathogen causing foodborne infections, bacteraemia, and extra-intestinal focal infections (EFIs) in humans. The study compares the clinical characteristics of elderly patients with NTS bacteraemia with those of young adults. Of 272 adults with NTS bacteraemia identified in this study, 162 (59·6%) were aged ⩾55 years. EFIs were observed in 36% of the 162 patients. The most common EFIs in the elderly patients (⩾55 years) was mycotic aneurysm, followed by pulmonary infections and bone/joint infections. Elderly patients more often had chronic heart, lung, renal and malignant diseases, had more EFIs, and a higher 30-day mortality rate. Independent factors of 30-day mortality in elderly patients were solid-organ tumour [adjusted odds ratio (aOR) 4·4, P=0·003], mycotic aneurysm (aOR 3·7, P=0·023) and shock (aOR 12·1, P<0·0001). HIV infection, autoimmune diseases, and receipt of immunosuppressive therapy were more often observed in young patients.
Article
The interaction of cell surface receptors and transporters with cognate ligands depends on their concentration, distribution, and organization at the cellular surface. The majority of cell surface receptors and transporters are co- and/or post-translationally modified with asparagine (N)-linked oligosaccharides (glycans). N-Glycan number and structure combine to control the concentration of glycoproteins at the cell surface through interactions with endogenous lectins such as galectins. ER/Golgi enzyme activity and hexosamine pathway supply of Golgi metabolites co-dependently regulate N-glycan biosynthesis and combine to provide adaptive control over cell growth and differentiation. Studies in mice and humans have revealed metabolic and genetic dysregulation of N-glycosylation in T-cell-mediated autoimmunity. In this chapter, we describe methods used to analyze N-glycan-galectin interactions in controlling the distribution and organization of cell surface receptors and transporters.
Article
Genetic information flows from DNA to macromolecular structures-the dominant force in the molecular organization of life. However, recent work suggests that metabolite availability to the hexosamine and Golgi N-glycosylation pathways exerts control over the assembly of macromolecular complexes on the cell surface and, in this capacity, acts upstream of signaling and gene expression. The structure and number of N-glycans per protein molecule cooperate to regulate lectin binding and thereby the distribution of glycoproteins at the cell surface. Congenital disorders of glycosylation provide insight as extreme hypomorphisms, whereas milder deficiencies may encompass many common chronic conditions, including autoimmunity, metabolic syndrome, and aging.
Article
The mucosal surfaces are often the first site of interaction between pathogenic microorganisms and the host. Activation of the mucosal immune response has the important function of containing an infection and preventing dissemination of pathogens to systemic sites (barrier function). Numerous lines of evidence suggest that the barrier function is orchestrated by a subset of cytokines (interleukin (IL-)17 and IL-22), which belong to the Th17 family. IL-17 and IL-22 induce expression of antimicrobial peptides and neutrophil chemoattractants at mucosal sites, and thus play an important role in controlling mucosal infections. However, there is increasing evidence that mucosal pathogens achieve greater colonization during inflammation because they are resistant to a subset of these antimicrobial responses. In this review we compare the antimicrobial responses elicited by Th17 cytokines during mucosal infections with four different pathogens: Klebsiella pneumoniae, Citrobacter rodentium, Candida albicans and Salmonella typhimurium. We will then discuss which responses may constitute the mucosal barrier, thus providing a benefit to the host, and which ones may promote the colonization of pathogens, thereby providing a benefit to the microbes.
Article
The indolizidine alkaloid swainsonine, a potent inhibitor of Golgi alpha-mannosidase II, has been shown to reduce tumor cell metastasis, enhance cellular immune responses, and reduce solid tumor growth in mice. In our previous Phase I study, swainsonine administered by 5-day continuous infusion inhibited L-phytohemagglutinin-reactive N-linked oligosaccharide expression on peripheral blood lymphocytes. Significant toxicities included edema and elevated serum aspartate aminotransferase (AST). One patient with head and neck cancer had objective (>50%) tumor remission. Two patients showed symptomatic improvement. The objectives of this Phase IB trial were to examine the pharmacokinetics, toxicities, and biochemical effects of bi-weekly oral swainsonine at escalating dose levels (50-600 microgram/kg) in 16 patients with advanced malignancies and 2 HIV-positive patients unsuitable for conventional therapy. Eastern Cooperative Oncology Group performance status was </=2. The maximum tolerated dose was defined as 300 microgram/kg/day due primarily to serum AST abnormalities and dyspnea. Other adverse events present in >20% of patients included increase in serum AST (all patients), fatigue (n = 9), anorexia (n = 6), dyspnea (n = 6), and abdominal pain (n = 4). Inhibition of Golgi alpha-mannosidase II occurred in a dose-dependent manner. Examination of immunological parameters revealed a transient decrease in CD25(+) peripheral blood lymphocytes and, in seven of eight patients, an increase in CD4(+):CD8(+) ratios at 2 weeks. Serum drug levels peaked 3-4 h following a single oral dose in most patients and were proportional to dose at levels >/=150 microgram/kg. We conclude that oral swainsonine is tolerated by chronic intermittent administration at doses up to 150 microgram/kg/day. Adverse events considered drug related were similar to those observed in the infusional study but with fatigue and neurological effects also noted. Investigations of alternative dosing schedules with low starting doses are suggested for further clinical testing.
Article
T-cell activation requires clustering of a threshold number of T-cell receptors (TCRs) at the site of antigen presentation, a number that is reduced by CD28 co-receptor recruitment of signalling proteins to TCRs. Here we demonstrate that a deficiency in beta1,6 N-acetylglucosaminyltransferase V (Mgat5), an enzyme in the N-glycosylation pathway, lowers T-cell activation thresholds by directly enhancing TCR clustering. Mgat5-deficient mice showed kidney autoimmune disease, enhanced delayed-type hypersensitivity, and increased susceptibility to experimental autoimmune encephalomyelitis. Recruitment of TCRs to agonist-coated beads, TCR signalling, actin microfilament re-organization, and agonist-induced proliferation were all enhanced in Mgat5-/- T cells. Mgat5 initiates GlcNAc beta1,6 branching on N-glycans, thereby increasing N-acetyllactosamine, the ligand for galectins, which are proteins known to modulate T-cell proliferation and apoptosis. Indeed, galectin-3 was associated with the TCR complex at the cell surface, an interaction dependent on Mgat5. Pre-treatment of wild-type T cells with lactose to compete for galectin binding produced a phenocopy of Mgat5-/- TCR clustering. These data indicate that a galectin-glycoprotein lattice strengthened by Mgat5-modified glycans restricts TCR recruitment to the site of antigen presentation. Dysregulation of Mgat5 in humans may increase susceptibility to autoimmune diseases, such as multiple sclerosis.
Article
Glycoproteins in mammalian cells are modified with complex-type aspargine-linked glycans of variable chain lengths and composition. Observations of mice carrying mutations in glycosyltransferase genes imply that N-glycan structures regulate T-cell receptor clustering and hence sensitivity to agonists. We argue that the heterogeneity inherent in N-glycosylation contributes to cellular diversity and, thereby, to adaptability in the immune system.
Article
Survival of naive T cells is dependent upon IL-7, which is present in vivo in limiting amounts with the result that naive T cells must compete for IL-7-mediated survival signals. It would seem imperative during T cell homeostasis that limiting IL-7 be shared by the greatest possible number of T cells. We now describe a novel regulatory mechanism that specifically suppresses IL7Ralpha transcription in response to IL-7 and other prosurvival cytokines (IL-2, IL-4, IL-6, and IL-15). Consequently, IL7R expression is reduced on T cells that have received cytokine-mediated survival signals so they do not compete with unsignaled T cells for remaining IL-7. Interestingly, cytokine-mediated suppression of IL7Ralpha transcription involves different molecular mechanisms in CD4+ and CD8+ T cells, as CD8+ T cells utilize the transcriptional repressor GFI1 while CD4+ T cells do not. We suggest that this homeostatic regulatory mechanism promotes survival of the maximum possible number of T cells for the amount of IL-7 available.