ArticlePDF Available

Abstract and Figures

Large lagoons usually show a salinity gradient due to fresh water tributaries with inner areas characterized by lower mean values and higher fluctuation of salinity than seawater-dominated areas. In the Venice Lagoon, this ecotonal environment, characterized in the past by oligo-mesohaline waters and large intertidal areas vegetated by reedbeds, was greatly reduced by historical human environmental modifications, including the diversion of main rivers outside the Venice Lagoon. The reduction of the fresh water inputs caused a marinization of the lagoon, with an increase in salinity and the loss of the related habitats, biodiversity, and ecosystem services. To counteract this issue, conservation actions, such as the construction of hydraulic infrastructures for the introduction and the regulation of a fresh water flow, can be implemented. The effectiveness of these actions can be preliminarily investigated and then verified through the combined implementation of environmental monitoring and numerical modeling. Through the results of the monitoring activity carried out in Venice Lagoon in the framework of the Life Lagoon Refresh (LIFE16NAT/IT/000663) project, the study of salinity is shown to be a successful and robust combination of different types of monitoring techniques. In particular, the characterization of salinity is obtained by the acquisition of continuous data, field campaigns, and numerical modeling.
Content may be subject to copyright.
Environments2022,9,31.https://doi.org/10.3390/environments9030031www.mdpi.com/journal/environments
Article
AnIntegratedApproachforEvaluatingtheRestorationofthe
SalinityGradientinTransitionalWaters:Monitoringand
NumericalModelingintheLifeLagoonRefreshCaseStudy
AlessandraFeola
1,
*,EmanuelePonis
1
,MicheleCornello
1
,RossellaBoscoloBrusà
1
,FedericaCacciatore
1
,
FedericaOselladore
1
,BrunoMatticchio
2
,DevisCanesso
2
,SimoneSponga
2
,PaoloPeretti
2
,MatteoLizier
3
,
LuigiManiero
4
,ValerioVolpe
4
,AdrianoSfriso
5
,MaurizioFerla
1
andAndreaBonometto
1
1
ISPRA,ItalianNationalInstituteforEnvironmentalProtectionandResearch,LocalitàBrondolo,
530015Chioggia,Italy;emanuele.ponis@isprambiente.it(E.P.);michele.cornello@isprambiente.it(M.C.);
rossella.boscolo@isprambiente.it(R.B.B.);federica.cacciatore@isprambiente.it(F.C.);
federica.oselladore@isprambiente.it(F.O.);maurizio.ferla@isprambiente.it(M.F.);
andrea.bonometto@isprambiente.it(A.B.)
2
IPROSIngegneriaAmbientaleS.r.l.,CorsodelPopolo,35131Padua,Italy;matticchio@ipros.it(B.M.);
canesso@ipros.it(D.C.);sponga@ipros.it(S.S.);peretti@ipros.it(P.P.)
3
DirectionforSpecialProjectsforVeniceVenetoRegion,CallePriuli—Cannaregio,9930121Venice,Italy;
matteo.lizier@regione.veneto.it
4
InterregionalSuperintendencyforPublicWorksinVeneto—TrentinoAltoAdige—FriuliVeneziaGiulia,
SanPolo,1930125Venice,Italy;luigi.maniero@mit.gov.it(L.M.);valerio.volpe@mit.gov.it(V.V.)
5
DepartmentofEnvironmentalSciences,InformaticsandStatistics,UniversityCa’FoscariVenice,ViaTorino
155,30172Mestre,Italy;sfrisoad@unive.it
*Correspondence:alessandra.feola@isprambiente.it;Tel.:+393471814149
Abstract:Largelagoonsusuallyshowasalinitygradientduetofreshwatertributarieswithinner
areascharacterizedbylowermeanvaluesandhigherfluctuationofsalinitythanseawater
dominatedareas.IntheVeniceLagoon,thisecotonalenvironment,characterizedinthepastby
oligomesohalinewatersandlargeintertidalareasvegetatedbyreedbeds,wasgreatlyreducedby
historicalhumanenvironmentalmodifications,includingthediversionofmainriversoutsidethe
VeniceLagoon.Thereductionofthefreshwaterinputscausedamarinizationofthelagoon,with
anincreaseinsalinityandthelossoftherelatedhabitats,biodiversity,andecosystemservices.To
counteractthisissue,conservationactions,suchastheconstructionofhydraulicinfrastructuresfor
theintroductionandtheregulationofafreshwaterflow,canbeimplemented.Theeffectivenessof
theseactionscanbepreliminarilyinvestigatedandthenverifiedthroughthecombined
implementationofenvironmentalmonitoringandnumericalmodeling.Throughtheresultsofthe
monitoringactivitycarriedoutinVeniceLagoonintheframeworkoftheLifeLagoonRefresh
(LIFE16NAT/IT/000663)project,thestudyofsalinityisshowntobeasuccessfulandrobust
combinationofdifferenttypesofmonitoringtechniques.Inparticular,thecharacterizationof
salinityisobtainedbytheacquisitionofcontinuousdata,fieldcampaigns,andnumericalmodeling.
Keywords:transitionalwaters;integratedapproach;numericalmodeling;restoration;monitoring;
salinitygradient;freshwater;lifeproject
1.Introduction
Coastallagoonsareecotonesbetweenmarineandterrestrialenvironments,receiving
variableamountsoffreshwater.AlongtheMediterraneancoastline,therearemorethan
400coastallagoons,coveringawiderangeofhydrologicalandbiologicalcharacteristics
[1,2].Mediterraneanlagoonsareusuallyshallowwaterbodies,and,duetotheirgeo
morphologicalandhydrologicalcharacteristics,environmentalconditionsinthem
Citation:Feola,A.;Ponis,E.;
Cornello,M.;BoscoloBrusà,R.;
Cacciatore,F.;Oselladore,F.;
Matticchio,B.;Canesso,D.;
Sponga,S.;Peretti,P.;etal.An
IntegratedApproachforEvaluating
theRestorationoftheSalinity
GradientinTransitionalWaters:
MonitoringandNumerical
ModelingintheLifeLagoonRefresh
CaseStudy.Environments2022,9,31.
https://doi.org/10.3390/environments
9030031
AcademicEditor:PaulC.Sutton
Received:27January2022
Accepted:25February2022
Published:1March2022
Publisher’sNote:MDPIstays
neutralwithregardtojurisdictional
claimsinpublishedmapsand
institutionalaffiliations.
Copyright:©2022bytheauthors.
LicenseeMDPI,Basel,Switzerland.
Thisarticleisanopenaccessarticle
distributedunderthetermsand
conditionsoftheCreativeCommons
Attribution(CCBY)license
(https://creativecommons.org/license
s/by/4.0/).
Environments2022,9,312of25
undergofrequentfluctuationsonaspatialandseasonalbasis[3].Theseareheterogeneous
andcomplexsystems,characterizedbydifferentphysicalandenvironmentalgradients,
involvingsalinity,marinewaterrenewal(e.g.,residencetime),nutrients,turbidityand
sedimentstructure,whosemagnitudeanddirectiondependmainlyonriverortidal
energy[4].Thedistributionofbiologicalcommunitiesintransitionalwatersisdrivenby
multipleenvironmentalfactors,includingsalinity[5],whichaffectsthecompositionand
abundanceoffishfauna[6],benthicfloraandfauna[7]andsaltmarshvegetation[8].
Salinityconditionsarerelatedtoacomplexinteractionbetweendifferent
hydrologicalprocessesthatinvolvedischargeoffreshwater,tidalregimeandthe
exchangeswiththesea,precipitation,interactionwiththeatmosphere(e.g.,heatflux,
evaporationrates)andwinddrivenforces,whichvaryoverawiderangeoftimescales
andthatbecomerelevantforreallyshallowwaters,resultinginstrongdailyandseasonal
variability[9,10].Allthesedriverscontributetothehighdiversityintermsofsalinity
conditionsbetweenMediterraneanlagoons,rangingfromoligohalinetohyperhaline
waters[11].
Despitethishighdiversity,itispossibletoidentifysomecommonpatterns.In
particular,largelagoonsusuallyshowasalinitygradientduetofreshwatertributaries
thatexhibitestuarinefeaturesintheproximityoftheirlagoonalmouths[12],
characterizedbylowermeanvaluesandhigherfluctuationofsalinitythanseawater
dominatedareas[13–15].
IntheVeniceLagoon,thisecotonalenvironmenttypicaloftheinnerareas,
characterizedinthepastbyoligomesohalinewatersandlargeintertidalareasvegetated
byreedbeds,hasbeengreatlyreducedbyhistoricalhumanenvironmentalmodifications,
amongwhichthediversionoutsidetheVeniceLagoonofmainriverssuchasBrenta,
Bacchiglione,SileandPiave(Figure1;[16]).
Thereductionofthefreshwaterinputsandtherelatedsedimentsupply,together
withotherconcurrentfactorssuchastheconstructionofinletjettiesandthedeepening
thelagooninlets(19th–20thcentury),theexcavationoflargenavigationcanals(20th
century),increasingofthelagoondepthduetothecombinedeffectofsubsidenceand
eustatism,causedamarinizationofthelagoon,withaprogressivelyincreaseinsalinity
fromaveragevaluesof10–14documentedin1926–1928tothecurrentvaluescloseto30
[16–18].
Theproblemofmanagingthehydraulicaspectsforlagoonshasbeenstudiedfora
longtimeworldwide.Thesestudiesincludethedescriptionoflagoonphysics,how
hydraulicsarelinkedtolagoonecologyandproductivity,howlagoonsmightbeexpected
torespondtohydraulicalterationsandprotocolforphysicalinvestigations[19].
Therestorationofbothabioticandbioticcomponentsoftransitionalwater
ecosystemsisrecognizedasastrategicapproachtobothenhancetheecologicalstatusof
degradedecosystemsandtacklethelossofbiodiversity.EcologicalEngineeringis
increasinglyusedtorecreateandrestoreecosystemsdegradedbyprevioushuman
activities.Inthiscontext,thesocalledEcohydrologicalapproach[20]aimsatrestoring
naturalprocesses,especiallyregardingwaterandsedimentflows,byrecoveringthe
suitableconditionsforhabitatsandspecies.
TheLifeLagoonRefreshproject,startedinSeptember2017andlastingforfiveyears,
plannedthereintroductionofafreshwaterflowintothelagoon,topartiallyrecoverthe
oligomesohalineconditionssuitableforthereedbedcolonization[21].Thislowsalinity
habitat,typicalofthebufferareasbetweenlagoonandmainland,providesvaluableand
diversifiedecosystemservices(see[22]andreferencestherein),includingwater
purification,nurseryfunctionsandbreeding,feedingorrefugehabitatforseveralfishand
birdspeciesofcommercialandconservationinterest.
Thecoreactionoftheprojectwasthediversionofafreshwaterflowofapproximately
1000ls1fromtheSileRiverintotheVeniceLagoon.Othermeasuresincludedthe
implementationofstructuresmadebybiodegradablegeotextile,properlyarrangedto
slowdownthefreshwaterdispersion,andpermittingtheplantingofclumpsand
Environments2022,9,313of25
rhizomesofPhragmitesaustralis(Cav.)Trin.exSteud,toacceleratethedevelopmentofthe
reedbeds.
Theobjectiveofsalinegradientrecoverywasquantifiedinanexpectedchangefrom
asalinityvalueof30tolessthan5inatleast5ha,lessthan15inatleast25haandless
than25inatleast70ha.
Weappliedanadaptivemanagementby:
1. quantitativedefinitionoftheprojectobjectivesthroughnumericalmodeling,design
ofthehydraulicworksandidentificationoftheproperfreshwaterdischarge
necessarytoachievetheobjectives;
2. implementationoftheintegratedanalysisapproachthroughmonitoringand
validatednumericalmodeling;
3. assessmentofresultsandverificationofcomplianceofmanagementobjectives;
4. completionofconservationactionswithastepbystepapproachsupportedby
monitoringandmodelingresults.
Duringthedifferentphasesofthisadaptivemanagementapproach,anintensive
monitoringandmodelingactivitywascarriedouttosupporttheassessmentofthesuccess
oftheimplementedmeasuresandoftheidentifiedmitigationactions.Inmicrotidal
lagoons,thismonitoringactivityneedstointegratedifferentstrategiesabletocapture,
withthebestresolutionintimeandspace,variationsofwaterlevels,flowsandsalinity
thatareoftenencountered[11].
Inthiscontext,toolssuchasnumericalmodelscanusefullyintegrateobservations
andmeasurements,tomanagethevariabilityintimeandspaceofdescriptors[15],
providingamoreholisticdescriptionofthephysical,chemicalandbiologicaldynamics
[13].
ThroughtheresultsofthemonitoringactivitycarriedoutinVeniceLagooninthe
frameworkoftheLifeLagoonRefreshproject,thispaperillustrateshowthestudyof
salinityinestuarineenvironmentcanbecomesuccessfulandrobustcombiningdifferent
typesofmonitoringtechniques.
Inparticular,thecharacterizationintimeandspaceofsalinityvariations,performed
beforeandaftertheconservationactions,wasobtainedbytheintegrationofthree
differenttools:mooredsalinityprobesthatallowtheacquisition,infixedpositions,of
continuousmeasureddata;fieldcampaignswithCTDprofilersthatallowtheacquisition
ofinstantaneous/spatiallydistributedmeasureddata;theimplementationofnumerical
modelingthatallowsthesimulationofvariationsinspaceandtime.Argumentsforand
againsttheuseofthedifferenttoolsandmeasuresandtheimportanceofanintegrated
approach,thateffectivelycombinesmeasuredandmodeleddata,arediscussed.
2.MaterialsandMethods
2.1.StudyAreaandProjectDetails
TheVeniceLagoonisoneofthelargestcoastallagoonsintheMediterraneanSea
(approximately550km2).ItisconnectedtotheNorthernAdriaticSeabythreeinlets,and
experiencesmicrotidalconditionswithatidalrangeof±0.50mduringspringtides[23].
Thelagoonbasinismainlycomposedbyshallowwaterareas(averagedepthof1.2m)
intersectedbyanetworkofdeeperchannelsleadinginwardsfromtheinletsand
branchinginsideeachsubbasin[6,24–26].
Thelagoonisalsocharacterizedbyseveralfreshwaterinputsfromthedrainage
basin,themostconsistentofwhicharelocatedinthenorthernsubbasin[15].Thecurrent
supplyoffreshwaterfromthecatchmentareaisabout30m3/sfortheentirelagoonand
about17m3/sfortheNorthernLagoon[17].Mostofthefreshwatersthatoriginallyflowed
intheNorthernLagoon,throughtheSileRiverandotherminorrivers,weredivertedinto
theabandonedriverbedofPiaveRiverwiththeconstruction,onthenortheasternedgeof
thelagoon,ofthe“TagliodelSilecanal(1683).
Environments2022,9,314of25
AlongtheSileriverembankment,closetotheareaoftheproject,aspillwaywasbuilt
aftertheextremeeventof1966toprotectthetownofJesolo,locateddownstream,from
theriskofflooding.InadditiontothenewfreshwaterinputimplementedbytheProject,
duringsignificantoverflowevents,aconsiderablevolumeoffreshwaterentersthelagoon
throughthisspillway,withpeaksofflowratesoftensofm3/s.Between2002and2017,
aboutninesignificantoverfloweventswererecordedperyear,withanaveragevolume
ofwaterspilledintothelagoonofabout460,000m3perevent.
TheLifeLagoonRefreshprojectforeseesdifferentconservationactionsthatconsist
offreshwaterdiversionintheSileriverembankment,morphologicalreconstructionand
reedbedtransplantationinthelagoonalareaof70halocatedinfrontofthehydraulic
opera(Interventionarea)andaquaticangiospermtransplantationinabout1900ha(Pro
jectSite),asreportedinFigure1.
Theinterventionareaisashallow,innerportionofthenorthernsubbasin,charac
terizedbyanaveragedepthof60cm,bythepresenceofresiduesofsaltmarshes,mainly
erodedbythewindactionandtherelatedwaveaction,andbythealmostcompleteab
senceofchannelsthatmakesthenavigationintheareaparticularlydifficult.
Itischaracterizedbyhighwaterresidencetimes(>20days[24])andeuhalinecondi
tions,withsalinitylevelsoftenhigherthan30[15,27].Fromatechnicalpointofview,the
areawaschosenbecauseitwasclosetothecourseoftheSileRiver,withflowratesand
waterqualityadequatetoallowthedeviationofapartoftheflowintothelagoon.
ThefreshwaterinflowfromtheSileRivertothelagoonispermittedbyahydraulic
infrastructure,realizedbetween08/2019and02/2020withintheproject,consistingina
canalforintakefromSileRiver,acrossingsectionoftheembankmentmadebytwopar
allelpipes(diameterof0.8m)equippedwithsluicegatestoregulatetheflowrateanda
returncanalinthelagoon.Thefreshwateroccursbygravity,accordingtothedifference
betweentheriverlevelandthetidallevelinthelagoon.
Thestructurewasequippedwithtwoflowmetersprovidingremotelyaccessibledata
inrealtime.Afterthecompletionoftheinfrastructure(postoperamphase),thefreshwa
terinflowwasgraduallyincreasedstartingfromapprox.300ls1inMay2020upto1000
ls1inFebruary2021.
Themorphologicalworkswerecarriedoutusingmodularbiodegradableselements,
positionedontheshallowlagoonbottomtoslowdownthedispersionoffreshwaterin
troducedintothelagoonandtoallowtheestablishmentofasuitablesubstrateforthe
developmentofreedbeds.
Figure1.(a)AmapoftheVeniceLagoonwithmainrivers(BacchiglioneandBrentainthesouth,
SileandPiaveinthenorth)divertedduringhistoricalhumanenvironmentalmodifications[16];(b)
projectsiteandthenewfreshwaterinputrealizedbytheLifeLagoonRefreshproject.
Environments2022,9,315of25
2.2.MooredProbes
Toinvestigatethevariabilityintimeofsalinityinfixedpositions,threemoored
probeswereinstalled.Inparticular,continuousmeasureswereacquiredusinginstru
mentedbuoys(IJINUS,ClaireGroup,Mellac,France)equippedwithconductivity(graph
iteandplatinumelectrodes)andtemperaturesensors.Salinitywascalculatedautomati
callybytheprobeusingtheUNESCOalgorithm[28].Theinstrumentedbuoyisabout50
cmlong(withouttheantenna)anditisadequateforthemonitoringofshallowwaters
subjectedtomicrotidalcycle.Theinstrumentedbuoyswereanchoredusingaballastand
themeasureswereacquiredataconstantdepthofapprox.25–30cmfromthewatersur
face.Datawerecontinuouslyacquiredwithafrequencyof10min.Aninternaldatalogger
storedthedataandaGSM/GPRSsystemwasusedfortheirdailytransmission.Thein
stalledprobeswereregularlymaintainedandcleanedinsitutoensurethequalityofthe
collecteddata,withafrequencyof15–30days,accordingtotheseasonalconditions.
Thestrategyofsalinitymonitoringwasmodulatedaccordingtotheprogressofthe
operativestateoftheproject.Inparticular,twophaseswereidentified:onebefore(ante
operam)andoneafter(postoperam)thestartofthefreshwaterinflowbythehydraulic
infrastructure.Thethreebuoysarelocatedalongatransectatincreasingdistancesfrom
theinflowlocation:P1closetothehydraulicinfrastructure,P3outsidethemorphological
structure,consideredtobeareferencelocation,andP2locatedinanintermediateposition.
P3bisanadditionalpositionusedinashortperiodtoinvestigatesuitableconditionfor
reedbedintermofmeansalinity.ThelocalizationofthemooredstationsisshowninFig
ure2.
Duringtheanteoperamphase,salinitywasmonitoredoveraperiodofoneyear
(May2019–April2020)usingP2andP3probes.Duringthepostoperamphase,starting
fromMay2020withfreshwaterof300ls1andgraduallyincreasedupto1000ls1,salinity
wasmonitoredalsoinP1.
AlldatatransmittedbythebuoyswerecollectedinanFTPserveranddailyincorpo
ratedinaspecificdatabase,whichcontainsmeteomarinedataimplementedbyISPRA
including,amongothers,anestimationofthetidallevelindifferentpartsofVeniceLa
goon.
Figure2.Mooredprobes:locationalongatransectwithintheareainfrontofHydraulicandMor
phologicalstructures.P1:closetothehydraulicinfrastructure;P2:locatedinanintermediateposi
tion;andP3:inathirdsiteoutsidethemorphologicalstructure,consideredtobeareferencelocation.
P3bposition,toinvestigatesuitableconditionforreedbed,isalsoreported.
Environments2022,9,316of25
Datawereprocessedtoeliminatespuriousvaluesduetomomentaryairexposition
ofthesensorsduringverylowtidesaswellastoinstrumentalissues.Atwostepprocess
waschosen.Firstsalinityvaluesbelow0.1andover41wereeliminated.Thesecondstep
wastocalculatetheZscorevalueintoamobilewindowof6h(halfofthetidecycle,37
values):
Z
xμ
σ(1)
withμmeanvalueandσstandarddeviationwithinthemobilewindow.Valueswithas
sociatedZscorebiggerthan1.96orsmallerthan−1.96,correspondingtothe97.5percen
tilepointofastandardnormaldistribution,wereeliminated.
Afterthecleaningprocess,datawereelaboratedtogetmaindailystatisticsasmean,
median,quartiles.Thepercentageoftimewithsalinityvaluesbelow51525,chosenas
quantitativeobjectivesforprojectgoals,wascalculated.Inparticular,thevalueof15is
consideredathresholdforreedbedsuitability[29].
Timeserieswerealsoevaluatedinrelationtotidallevel,freshwaterdischargeand
riveroverflow.
2.3.CTDProfiles
DifferentfieldcampaignsperformedtoacquireCTD(Conductivity,Temperature,
Depth)profileswereplanned,toinvestigatetheinstantaneous/spatiallydistributedchar
acterizationofsalinitywithintheareaofinterest.
Acombinedstrategywithtwoboatsandrespectiveequipmentallowedtoacquire
datasimultaneouslyatalocalandlargescale.Inparticular,atthelocalscaleadetailed
gridof25verticalprofilesofmeasureswasusedtoevaluatelocaleffectsclosetotheinter
ventionarea(about1.3km2),whilefourtransectswereinvestigatedwithverticalprofile
collectionataregulardistanceof350mtoevaluatethesalinityatalargerscale(Figure3).
ThemultiparameterprobeusedforthelargescalesamplingisanOceanSeven
316PlusmodelbyIdronautSrl(Brugherio(MB),Italy),equippedwiththefollowingsen
sors:pressure,conductivityandtemperature.Pressuresensoraccuracyandresolutionare
0.02dbar,and0.008dbar,respectively;conductivitysensoraccuracyandresolutionare
0.003mS/cmand0.00025mS/cm,respectively;temperaturesensoraccuracyandresolu
tionare0.003°Cand0.0002°C,respectively.Timeacquisitionwassetat20Hzanddata
arestoredinaninternalnonvolatilememory.DatawereformerlyprocessedwithIdro
nautsoftwareREDAS5.
ASonTekCastAwayCTDmultiparameterprobeequippedwithpressure,conduc
tivityandtemperaturesensorswasusedforthelocalscalesampling.Italsohadaninter
nalGPSreceiver,usedtoassociatethefieldpositionwitheachcast.Theacquisitionsam
pleratewassetat5Hz,pressuresensoraccuracyis±0.25%andresolutionwas0.01dbar
andconductivitysensoraccuracyis0.25%±0.005mS/cmandresolutionwas0.001mS/cm.
Temperaturesensoraccuracyandresolutionwere±0.05°Cand0.001C,respectively.
Duringtheanteoperamphase,salinitywasmonitoredin2018overtwoseasonal
campaigns(spring,autumn)atdifferenttidalconditions(springneaptide).
Duringthepostoperamphase,thefreshwaterwasgraduallyincreasedstartingfrom
300ls1inMay2020upto1000ls1inFebruary2021,andthedistributionoffreshwater
wasmonitoredondifferentoccasions.DetailsaresummarizedinTable1.
Inthispaper,onlyspringtidalconditionsareevaluatedandcomparedbeforeand
aftertherealizationoftheconservationactions.
Ineachcampaign,thedistributionofsalinitywaspossiblyinvestigatedintwodiffer
enttidalconditionstoevaluatetheminimumandmaximumdiffusionasafunctionof
tidalphase(flood/ebb).
Theverticalprofiles,acquiredwithacentimetricprecisionandpostprocessedwith
averticalresolutionof5cm,wereinterpolatedusingaKrigingmethodgivinganinstan
taneouscharacterizationofthespatial(planimetricandvertical)distributionofsalinityin
Environments2022,9,317of25
termsofmeanvaluewithinasurfacelayerofabout30cmandmeanvaluealongtheentire
watercolumn.
ThespatialinterpolationusingtheKrigingmethodwascarriedoutwithEsriArcMap
10.3.1andresultedinageotiffrastermapperdatasetwithacellresolutionof2m.
Frommapsofthespatialdistributionofsalinity,obtainedforeachcampaignand
eachinvestigatedtidalcondition,twotransectswereextractedtoverifythegradientof
salinitybetweenthelagoonsideandthelandside.
Figure3.CTDcampaigns:localandlargescalestrategies.Pointswithinformationrelativetothe
completeverticalprofilearealsoindicated.
Table1.CTDcampaignsbeforeandaftertheopeningofthefreshwaterflow.Meantidevaluesare
evaluatedaccordingtothenearestISPRA’smeteomareographicstationlocatedinGrassabòarea.
Valuesoftidallevelarereferredtoma.s.l.andtheyareaveragedvalueswithineachtimewindow.
(*)Campaignsconsideredforthisstudy.
PhaseCTDCampaignInvestigatedTidalConditionDischarge
Ante
operam—no
flow
16April2018(*)
Springtide
(floodtidewithameanvalueof0.05ma.s.l.between8:25–12:00summertime,
ebbtidewithameanvalueof0.25between14:10–16:15summertime)
0ls1
18November2018
(localscale)
31October2018(large
scale)
Neaptide
(Localscale:lowtideuniquephasewithameanvalueof0.15ma.s.l.between
10:00–16:30summertime.Largescale:hightideuniquephasewithamean
valueof0.44ma.s.l.between12:00–16:30standardtime)
0ls1
Post
operam—
freshwater
flow
23June2020(*)
Springtide
(beginninghightidewithameanvalueof−0.15ma.s.l.between9:20–12:10
summertime,hightidewithavalueof0.30ma.s.l.between14:40–17:00
summertime)
300ls1
28January2021
Springtide
(beginninglowtidewithameanvalueof0.65ma.s.l.between11:00–13:30
standardtime,endinglowtidewithavalueof0.15ma.s.l.between14:40–
17:00standardtime)
500ls1
26February2021(*)
Springtide
Localscale:uniquephasewithflowtide,meanvalueof0.16ma.s.l.between
9:30–12:30standardtime
1000ls1
10
J
une2021(*)Spingtide1000ls1
Environments2022,9,318of25
(uniquephasewithebbtide,meanvalueof0.20ma.s.l.between14:00–16:00
summertime)
15November2021
Neaptide
(Localscale:lowtideuniquephasewithameanvalueof0.23ma.s.l.between
15:00–16:10summertime)
1000ls1
2.4.NumericalModeling
Anumericalhydrodynamicmodelwasimplementedtocharacterizesalinityvaria
tionsintimeandspace.Thenumericalsimulationswerecarriedoutusingthefiniteele
mentnumericalmodel2DEF[30–32],whichwasdevelopedattheDepartmentICEAof
UniversityofPadovaandwidelyappliedandvalidatedintheVeniceLagoon[33–37].The
modelsolvesthetwodimensionalshallowwaterequationsinasuitableformtodealwith
floodinganddryingprocessesinveryirregulardomains[31].Theintegrationinspace
usesasemiimplicitstaggeredfiniteelementmethod[38]whereastheintegrationintime
ismadethroughasemiimplicitscheme.Thehorizontaldiscretizationofthedomainis
obtainedusinganunstructuredtriangularmesh.Waterlevelsarecomputedatthenodes
ofthegrid,whiledepthintegratedvelocitiesarecomputedatthecenterofeachtriangular
element[39].
Themodelcanbealsoappliedin3Dbaroclinicmode(3DEFmodel),i.e.,usingthe
samehorizontalgridofthe2Dmodel,withthewatercolumndiscretizedinlayersofvar
iablethickness[40,41].Watertemperatureandsalinityaretransportedsolvingthe3Dad
vectiondiffusionequation[42].Theformulationofthe3DEFmodelisparticularlysuita
bleforsimulatinghydrodynamics,salinitytransportandmixinginveryshallowtidalen
vironments.Allowingtheuseofverythinlayersnearthesurface,suitableresolutioncan
beachievedaroundthepycnocline,evenincasesofstrongverticaldensitygradients.
The2DEFand3DEFnumericalmodelswereusedinsequencetosimulatetidalhy
drodynamicsandsalinitydisplacementsintheprojectsite.For2DEFsimulations,amesh
withabout83,600gridpoints(nodes)and160,600triangularelementswasused,including
thewholeVenicelagoonandaportionoftheNorthernAdriaticSea(Figure4).Thereso
lutionofthegridwasgreatlyvariable,anditwasveryrefinedintheprojectsitewhere
sidesoftrianglesare<10m.Lagoonbathymetrydatawerethesameusedinprevious
studies[35,43],exceptfortheareaoftheprojectsitewheremoredetaileddataacquired
withintheLagoonRefreshprojectwereavailable,whilethe2DEFsimulationswereforced
byimposingthetidalsignalattheseaboundaryandthetimevaryingwindblowingon
thewholelagoon.Thewindshearstresscoefficientwasthesameasinpreviousvalidation
studies[33,34].
The3DEFmodelwasappliedtoasubdomainofthe2DEF(Figure4),anditwas
forcedbytidallevelsobtainedby2DEFsimulationalongthesouthernboundaryofthe
domain(thebluelineinFigure4)andbywind.Boundaryconditionsincludeddischarges
ofthesmallriversenteringthelagoonandinflowsfromtheSileRiverthroughthewater
intakestructurewhichwasbuiltwithintheLagoonRefreshproject.
Environments2022,9,319of25
Figure4.Unstructuredtriangularmeshesusedformodelsimulations;(a)domainofthewholeVen
icelagoonusedwiththe2DEFmodel(83,586nodesand160,650triangularcells);(b)subdomainof
thenorthernlagoonusedwiththe3DEFmodel(34,826nodesand67,272triangularcells,14layers).
Tidalgaugelocations(LeTrezzeLT,GrassabòGB,CanalAncoraCAeLeSalineLSstations)are
depicted.
Correctdefinitionofsalinityinitialconditionsinthemodeldomainiscriticalforthe
3DEFdensitydrivensimulations.Eachsimulationstartedfromasalinityinitialdistribu
tionderivedfromtheavailablefieldmeasurementsinthelagoon,andthemodelwasrun
forasuitablestartuptimeinterval(about5days)beforetheanalysisperiod.Thecalibra
tionofthemodelconsistsofthetuningoftheparametersandcoefficientsinvolvedinthe
simulatedprocessesuntilthebestpossibleagreementbetweenmeasuredandmodeled
dataisobtained.
Differentscenarioswereperformed(Table2):foraperiodincludingtheCTDcam
paignof16April2018inanteoperamconditionsofabsenceofflow;foraperiodincluding
theCTDcampaignof23June2020withaflowrateof300ls1.Duringbothcampaigns,
waterlevelandcurrentdatawerealsoacquired,bymeansofexistingtidalgaugesbelong
ingtotheISPRARealTimeTidalGaugeNetworkoftheLagoonofVenice(GrassabòGB,
CanalAncoraCAeLeSalineLSstations)andbytemporarytidalgaugeplacedinthe
studysite(LeTrezzeLT)(Figure4);moreover,ADCPmeasurementswerecollectedwith
aboatrepeatedlynavigatingthroughfourtransectsduringthewholetidalcycle(ebband
flood).Withanaccuraterepresentationofthemorphologyoftheseabed,theonlycalibra
tionparameterwasthecoefficientofroughness(theStricklercoefficient)thatwasat
tributedtotheelementsofthecomputationalmeshwithaconstantvalueof40m1/3s1.
Withthisassumption,themodelaccuratelyreproducesboththewaterlevelsandtheflow
dischargesmeasuredduringthecampaigns.
Asimulationscenariowasthencarriedoutwiththecalibratedmodeltovalidate
modeledresultswiththemeasurementsobtainedintheCTDcampaignof26February
2021(flowrateof1000ls1).
Table2.Scenariosofnumericalmodelingsimulation.
TypeofScenarioPeriodDischarge
ConditionCTDCampaign
Calibration3April–18April20180ls116April2018
Calibration20
J
une–5
J
uly2020300ls123
J
une2020
Environments2022,9,3110of25
Validation23February–10March
20211000ls126February2021
2.5.DataEvaluation
2.5.1.MooredProbesData
Toobtainacharacterizationovertimeofmeanvaluesofsalinityintheareaofinter
ventionatincreasingdistancefromthefreshwater,datacollectedbythemooredprobes
duringperiodsof14daysatthethreedifferentfreshwaterregimes(Table3)wereana
lyzed.Theseperiodswereconsideredlongenoughtoincludevariationsoftidalcondi
tionsduringspringandneaptide.TemporalseriesofdailymeansalinityandBoxand
Whiskerplotstocompareresultsarealsopresented.
Table3.Periodsoftwoweekswithdifferentregimesoffreshwaterdischarge,duringwhichmoored
probesdatawerecomparativelyevaluated.
PhaseDischargePeriod
Postoperam—freshwaterflow
300ls112–25
J
une2020
500ls129January–11February
2021
1000ls112–25February2021
2.5.2.CTDProfileData
CTDprofiles,obtainedduringthedifferentcampaignswithdifferentdischargere
gimes,wereanalyzedtoevaluate,forspecificinstantaneousconditionscorrespondingto
theacquisitionduringfieldcampaigns,thedistributioninspaceandthethicknessofthe
freshwaterlenstransportedbytheinteractionofthefreshwaterflowandthetideinside
thelagoonalwaterbody.
Verticalprofilesacquiredfordifferentpositions(Table4)chosenintheCTDlocal
scalegrid(Figure3)atincreasingdistancefromtheinputarecompared.
Table4.SpecificpositionschosenintheCTDlocalscalegrid(Figure3)toevaluateverticalprofiles
atincreasingdistancefromthefreshwaterinput.
PositionDistancefromInput
GRD3120monwestdirection
GRD29105monsouthdirection
GRD23500monsouthdirection
GRD101400monsouthdirection
ParticularattentionwasfocusedtoevaluatethesurfacelayertocompareCTD
measureswithcontinuousmeasuresacquiredbythemooredprobesanddataproduced
bynumericalmodelingsimulations.
2.5.3.NumericalModelData
Inparticular,frommodelresults,timeseriesofsalinitywereanalyzedwithauto
matedDrEAMtools[44],originallyimplementedforthequantitativecharacterizationof
dredgingplumedynamicsandhereadaptedtoevaluatesalinitytemporalandspatialvar
iations.Foreachnodeandateachverticallayerorcombinationoftheminthedomain,
timeseriesofsalinitycanbeextracted.
Duetotheshallownessofthearea,indifferentpositionsofthedomainasafunction
ofthelocalbathymetry,thedifferentverticallayersalongthewatercolumnmayexperi
encedryconditionsdependingonthetidallevel(H,blackdashedlineinFigure5),with
deeperlayersdryingearlier.ArealisticmeanvalueofsalinityforaSurfaceLayer(bold
Environments2022,9,3111of25
bluecontinuouslineinFigure5)canbeobtainedbyevaluatingthemeantimeseriesfor
Layers11–14(verticalpartofthewatercolumnbetweenthesurfaceand−0.42m).
Statisticalparameters(i.e.,mean,standarddeviation,standarderror,etc.)usefulfor
thequantitativecharacterizationofthesalinityvariationinspacecanbederivedintegrat
inginformationovertime.Inparticular,mapsofmeansalinityduringtheentireduration
ofsimulationforthesurfacelayerwerecalculatedbyevaluatingforeachpointinthedo
mainthemeanvalueovertime(bluedashedlineinFigure5)ofthespecifictimeseries,
andcomparingittothethresholds(i.e.,51525),establishedasreferencevaluestobe
achievedbytheproject.Theextractedtimeseriescanbeeasilycomparedwiththresholds,
byidentifyingevents(duration,ti,Figure5)whensalinityconditionislowerthanspecific
values(e.g.,15,thresholdofinteresttoevaluatereedbedsuitabilityconditions).
Mapsofthepercentageoftimewhensalinityislowerthanathresholdcanshow
areaswithmoreorlessstableconditionsintermofmeansalinity.
Figure5.Numericalmodeledtimeseriesofsalinityfordifferentverticallayers(11–14,wetordry
asafunctionoflocalbathymetryandtidallevel)andtheirmeansalinityvalues(SurfaceLayer).
Identificationofevents(duration,ti)withsalinitylowerthanadefinedthreshold(15).Evaluationof
meansalinityvaluesovertime.
3.Results
3.1.MooredProbes
Thevalueofsalinitychangesduringthedaybecauseofthetidallevelanditsinter
actionwithfreshwaterflows(Figure6).Inanteoperamconditions,withnofreshwater
flow(Figure6a),thesalinityfluctuatesduringthedayinarangeof5,while,inpost
operamconditionwithafreshwaterinflowof300ls1establishedafterMay2020(Figure
6b),salinitycanexperiencesharperdailyvariability(uptoadailyrangeof30).Overall,
thedailyminimumsalinityoccursduringthelowtideattheendoftheebbphase.
Moreover,duringfloodconditions,correspondingtohigherleveloftheSileRiver
(Figure6b,boldgreyline,7–10June2020)andstrongerdifferencebetweenSileRiverlevel
Environments2022,9,3112of25
andlagoonmeanlevel,salinityundergoeslonglastingdropsduetotheoverflowofthe
freshwaterfromtheriver(spillwaypresentclosetotheProjectopera)intothelagoon.
Despitetheminordailyfluctuations,intheanteoperam,monthlyaveragedsalinity
showedaclearseasonalpattern,withhighervaluesinsummer(closeto30)andlower
salinityinlateautumn/earlywinter(Table5).Thelowsalinityvalues,intheanteoperam,
wererelatedtotheseveraloverfloweventsoccurredinthatperiod.
AfterMay2020,afreshwaterflowwasestablishedandprogressivelyincreasedfrom
300ls1upto1000ls1reachedinFebruary2021.
Lookingattheresultsrelativetoeachprobe,themeanvaluesofsalinityisdecreasing
withtheincreasingofdischarge.Intheanalyzedperiods(Table3),datafromtheprobe
closertothefreshwaterinput(P1)decreasedfromameanvaluehigherthan20(discharge
300ls1)tomeansalinitylowerthan5(1000ls1).Similarly,attheprobeP2,salinityde
creasedapproximatelyfrom25to15.MinorvariationsoccurredintheprobeP3,located
atamajordistancefromthefreshwaterinput.
(a)
(b)
Figure6.Dataofsalinity(10minoffrequency)registeredin10/2019((a),anteoperamcondition)
andJune2020((b),postoperamcondition)inP2mooredprobe.Comparisonwithlagoontidallevel
andSileRiverleveldataisreportedtoshowthecomplextrendofsalinityasafunctionofthetidal
levelanditsinteractionwithfreshwaterflows.
Environments2022,9,3113of25
Table5.Statisticsofmonthlymeanvaluesofsalinitybeforetheestablishmentofaregularfresh
waterflow(May2020)acquiredbyP2mooredprobeinstalledinthemiddleoftheareaofinterest.
PeriodMeanSalinity StandardDeviation
May201921.963.95
June201931.295.78
J
uly201933.693.79
August201929.431.58
September201932.344.03
October201931.462.01
November201921.575.60
December201916.723.35
January202017.162.15
February202021.452.97
March202024.493.08
April202032.854.40
Thedifferencesamongtheprobesconstantlyincreasedwiththeincreasingofthe
freshwaterinputrate(Figure7).With300ls1regime,allsiteshavecomparablevariation
aroundthemedianvalueandtheinfluenceoffreshwaterislimitedattheP1andP2sites.
Increasingthedischarge,theinfluenceofthefreshwaterincreasesasexpected:measures
atP1andP2sitesshowanincreaseinlowersalinityvalues.Finally,with1000ls1regime,
thedecreaseinsalinityandamarkedgradientbecomesaconsolidatedresult:P1isalmost
alwaysbelow5,P2showsaverylargevariationinsalinity,whileP3hasalowvariation
aroundthemedianvalue(25.6).Theabovementionedpatternsareconfirmedbythetime
series,acquiredfromthethreemooredprobes,ofdailymeansalinityfortheperiodbe
tween12–25/02/2021withdischargeoffreshwaterof1000ls1(Figure8).
Figure7.BoxandWhiskerplotsrelativetothreeperiodsoftwoweekswithdifferentregimesof
freshwaterdischargearecompared.Datarelativetothethreepositions(P1P2P3)arereported.
Environments2022,9,3114of25
Figure8.Dailymeansalinityacquiredfrommooredprobesfortheperiod12–25February2021with
dischargeoffreshwaterof1000ls1.
Differencesofmeansalinitybetweenthedifferentlocationsalongthetransectwith
increasingdistancefromthefreshwaterinputareclearlyreported.Valueslowerthan5
areregisteredclosetotheinput(P1probe),valuesaround15areregisteredinthemiddle
ofthearea(P2probe)andvaluesaround25areregisteredoutsidethestructures(P3
probe).
3.2.CTDProfiles
Thespatialdistributionofsalinity,capturedduringtheCTDcampaignof16/04/2018
beforethefreshwaterinput,showsthealmostcompleteabsenceofagradientofsalinity,
withvaluesbetween26.7and31.5(Figure9a).
(a)(b)
Figure9.MapofKriginginterpolationperformedonresultsofCTDcampaigns:(a)campaignof16
April2018withnofreshwaterinput;(b)campaignof10June2021withadischargeof1000ls1.In
bothmaps,thesurfacelayer(0–30cm)isreported.
Environments2022,9,3115of25
Theestablishedgradientwithintheareaofinterest,withdischargeof1000ls1canbe
verifiedanalyzingtheresultsoftheCTDcampaignof10June2021(Figure9b).
Comparingtheconditionbeforefreshwaterflow(CTDcampaignof16April2018)
andaftertheconsolidateddischargeof1000ls1(10June2021),theresultsshowastrong
reductionofsurfacesalinitywithinadistanceof500mfromthefreshwaterinputalong
transect2,withsalinitylowerthan5within200mandsalinitylowerthan15within400
m(Figure10).
Toinvestigatethechangesinverticaldistributionofsalinitywithincreasingdis
chargesasafunctionofthedistancefromtheinputoffreshwater,verticalprofileswere
collectedduringtheCTDcampaignsrespectivelyinanteoperamconditions(16April
2018,AC)andpostoperamconditions(10June2021,PC)atincreasingdistancefromthe
input(GRD3,GRD29,GRD23,GRD10)(Figure3andTable4).
Beforefreshwaterinput,theverticalprofileishomogeneous,withconstantvalues
around28–30foreachposition.Duringthepostoperamphasewithdischargeof1000ls1,
inpositionsclosertothefreshwaterinput(around100–120m,GRD3andGRD29)astrong
verticalstratificationcanbefoundwithasharpreductionofsalinityfordepthbetween20
and30cmthatcorrespondstoafreshwaterlensfloatingonheaviersaltwater(Figure11).
Homogeneousverticalprofilecanbefoundonlyatdistancesgreaterthan500m
(GRD23GRD10),butmeansalinityvalueisdefinitelylower(withvaluesof22andaround
25).
Figure10.Variationofmeansurfacesalinityalongspatialtransect1and2comparingthetwoCTD
campaignswithoutflow(16April2018,blacklines)andwithadischargeof1000ls1(10June2021,
bluelines).
Environments2022,9,3116of25
Figure11.VerticalprofilesofsalinitiesatfourdifferentstationscollectedduringtwoCTDcam
paignsinanteoperamcondition(opensquaresymbols,16April2018)andpostoperamcondition
(closedcirclesymbols,10June2021),respectively.ThecolorcodedstationsGRD3,GRD29,GRD23
andGRD10arelocatedatincreasingdistancefromthefreshwaterinputs,seeTable4andFigure3.
3.3.NumericalModeling
Thenumericalstudywascarriedoutforevaluatingmodelperformances,bycompar
ingcomputedsalinityandobservationsbythemooredprobesanddatacollectedduring
theCTDsurveys,andforinvestigatingindetailthehorizontalandverticaldisplacement
ofthefreshwaterinthestudyarea,duringthedifferentphasesofthetidalcycle(flood
tideandebbtide).Forthispurpose,a15daysimulationwasruntoreproducetheperiod
23February2021–10March2021,whentheaveragefreshwaterdischargeintroducedin
thelagoonfromtheSileriverwasmaintainedat1000ls1.
3.3.1.ModelPerformance
Thecomparisonofmodeledandmeasuredsalinityissatisfactorybothforthemoored
probesdataandtheCTDsamples.Despitethecomplexityoftheflowfield,whichis
drivenbytide,windanddensitydifferencesandisstronglyinfluencedbythecomplicated
morphologyofthearea,modelresultscomparefavorablywiththemeasures.Dailyaver
agedsalinitytrendatthemooredprobesisveryclosetomeasuresandwellrepresentsthe
persistenceofthestronghorizontalsalinitygradientthatisestablishedbetweenthepoint
wherethefreshwaterisintroducedandtheopenpartofthelagoon(Figure12a).Com
parisonwiththeCTDsamplesalsodemonstratesthatmodelresultscanreproducethe
actualflowpathsandcangivearealisticrepresentationofthefreshwaterspreadinginall
thestudyarea(Figure12b).
Environments2022,9,3117of25
(a)
(b)
Figure12.23February–9March2021simulation.(a)Comparisonofdailyaveragedsalinitycom
putedandmeasuredatmooredprobes;(b)mapofdepthaveragedsalinityobtainedbymodelre
sultsandbyCTDmeasurementsof26February2021.
Thevariabilityofthesalinityinspace,thatisatdifferentdistancesfromthefresh
watersource,andintime,thatisatdifferenttimesduringthetidalcycle,iswellillustrated
Environments2022,9,3118of25
bytheplotsinFigure13,representingcalculatedsalinityattheP1P2P3mooredprobes.
Plotsrefertothelastfourlayersoftheverticalmodeldiscretization(layers11–14),which
approximatelyrepresentsthe40cmsurfacelayerofthewatercolumn(seeFigure4).It
canbeobservedthatinthepointclosertothefreshwatersource(P1)theaveragesalinity
remainsaroundzero,whereasatthefarthestpoint(P3)itvariesaround20÷25.Inthein
termediatepoint(P2),thesalinityassumesintermediatevaluesasexpected.However,it
isevidentthatinP2thefluctuationsinsalinityduetotidalvariationsaremuchmore
pronouncedthanintheothertwopoints,sincesalinityapproximatelyvariesbetween0
and20ateachtidaloscillation.Basically,aswillbebetterexplainedlater,theareaslocated
halfwaybetweenthestationsP1andP3showthegreatestvariationsofsalinityintime.
Figure13.23February–9March2021simulation.SalinityinthepositionofP1P3mooredprobes
calculatedbythemodelforthesurfacelayers(11–14).
Environments2022,9,3119of25
3.3.2.DrEAMTool
ApplyingtheDrEAMtool,amapofmeansalinityduringtheentiredurationofsim
ulation(23February–10March2021)wascalculatedfortheSurfaceLayerevaluatingfor
eachpointinthedomainthemeanvalueovertimeofthespecifictimeseries(Figure14).
Thismapwasproducedbyidentifyingdiscreteclassesofvaluesofsalinity(0–5,5–15,15–
25,>25)andclearlyshowstheextensionofareaswiththenewestablishedconditionasa
consequenceoftheinteractionbetweenthefreshwaterflowandthetidaloscillation.In
particular,anareaofabout8hahasameansalinityvaluelowerthan5,anareaofabout
34hahasameansalinityvaluelowerthan15andanareaofabout96hahasamean
salinityvaluelowerthan25.
Figure14.Mapsofsalinitydistribution,evaluatedasthemeanvaluecomputedbythemodelwithin
theverticallayers11–14ineachnodeofthedomain,fortheperiod23February–10March2021,with
adischargeof1000ls1.
Comparingthemeanvalues(respectivelyaround5forP1,15forP2and25forP3,
Figure8)fordailytimeseriesandthevaluesofmeansalinityintheirpositionsinthemap
ofsynthesisofnumericalmodeleddatareportedinFigure14,itcanbestatedthatthese
probeswellrepresenttheirsurroundings.
Amapofthestandarderrorofmeansalinityduringtheentiredurationofsimulation
(23February–10March2021)wascalculatedforthesurfacelayer,byevaluatingforeach
pointinthedomaintheratiobetweenthestandarddeviationandtherootofthenumber
ofelementsinthespecifictimeseries(Figure15).Witha1000ls1discharge,theareacloser
tothefreshwaterinlet(nearP1sitewithmeansalinityfrom0to5)andthefarthestone
(nearP3sitewithmeansalinityfrom15to25)arelessvariableintermsofsalinity,while,
inthetransitionalarea,wherefreshwaterandmarinewatermixthemselvesaccordingto
tidalcyclesandtheSileriverlevel,themaximummeanvariabilityisdetected.Themodel
simulatesadetailedspatialdistributedpictureofwhatwasalreadyreported,bymeans
ofBoxandWhiskerplotsforthethreepositions(P1P2P3)inFigure7,intermofvaria
tionsofsalinityinspace.Meanvariabilityattherightsideofthehydraulicstructureis
higherthanattheleftsidealsobecausebathymetryisveryshallow(presenceoftidalflats
aroundsaltmarshes).Standarderror,insteadofstandarddeviation,wasadoptedasa
Environments2022,9,3120of25
measureofvariabilitytoconsiderinthecalculationofthedifferentamountsofavailable
datarelatedtowaterdepthandthenumberofverticallayers.
Amapofthepercentageoftimewithconditionofmeansalinitylowerthan15,com
putedusingtheDrEAMtoolwithintheverticallayers11–14ineachnodeofthedomain,
wasproduced(Figure16).
Figure15.Mapsofstandarderrorofsalinityvaluescomputedbythemodelwithinthevertical
layers11–14ineachnodeofthedomain,fortheperiod23February–10March2021,withadischarge
of1000ls1.
Figure16.Mapsofpercentageoftimewithconditionofsalinity,evaluatedasthemeanvaluecom
putedbythemodelwithintheverticallayers11–14ineachnodeofthedomain,<15(conditionfor
reedbedsuitability).
Environments2022,9,3121of25
Intheareainfrontofthefreshwaterinflowanddelimitedbythemorphological
structure,about8ha,theconditionofmeansalinitylowerthan15canbeconsideredtobe
stable,beinginplacefor75%–100%oftime.Correspondingly,anareaofabout15haun
dergoesameansalinitylowerthan15foratleast50%oftime.
4.Discussion
Dependingonthenature(hydraulicworks,naturalconnection)andthecharacteris
ticsoftheirconnectionswiththesea,theirwatershedsorsurroundingrivers,shallow
coastallagoonscanexhibitverysignificantspatialandtemporalheterogeneityinboth
salinityandwaterlevel.Theimportanceofimplementingdifferentmonitoringstrategies
tounderstandthehydrosalinefunctioningoftheselagoonsisreportedintherecentliter
ature[11].
Intheplanningphaseofrestorationprojects,theobjectivesshouldbeidentified,
alongwithspecificindicatorstomeasureprojectprogress[21].Consideringtheobjectives
oftheLifeLagoonRefreshproject,torestorethetypicalsalinitygradientonatransitional
environmentwithintheNorthernVeniceLagoon,andthespatialandtemporalcomplex
variabilityofthesalinitytobeinvestigated,amonitoringstrategyofsalinitywithdifferent
toolswasdeveloped.
Theeffectivenessoftheconservationactionswaspreliminarilyinvestigatedandthen
verifiedthroughthecombinedimplementationofenvironmentalmonitoringandnumer
icalmodeling.Inparticular,inthiscasestudy,despitethesmallsizeofthearea,avery
higheffortofinvestigationwasadopted,consideringthat:
therestorationofthesalinegradient,mainobjectiveoftheproject,requiredaprecise
quantitativeanalysis;
thehighspatialvariability,inducedbytherealizationoftheinterventionwiththe
introductionofafreshwaterflow,andtemporalvariabilityonashortandmedium
scale,duetotheinteractionofthetideandtheseasonalvariabilityoftheboundary
conditions,requiredadetaileddescriptionwithadequateresolutionintimeand
space;
eachtoolhasdifferentfeaturesandonlyanintegratedapproachcanidentifypros
andconsanddefineacombined,effectiveandefficientstrategy;
theconsolidatedsmallscaleapproachshouldberobustandapplicabletoallscales.
Lookingatmooredprobes,therecordingofcontinuousdataisparticularlyimportant
inthepresenceofhighvariabilityintime.Continuousprobesallowtodetectfluctuations
relatedtothetidallevelandphase.Ingeneral,minimumsalinityvaluesareobservedin
conditionsofebbtide,inwhichthefreshwaterflowencountersadecreasingobstacleto
propagationandadecreasingamountofwater,whileinflowtidecondition,salinityis
higherduetotheincreasingtidallevelthatholdsthefreshwaterfrontneartheinput.
Continuousdataareimportantnotonlytoanalyzeshorttermfluctuations,butalso
tohaveareliableaveragevalueonalongtimescale(monthly/annual),freefromtheran
domnessofthesamplingmomentorfromthesystematicselectionofcertainbiasedsam