ArticlePublisher preview availableLiterature Review

Long Non-Coding RNAs in Retinal Ganglion Cell Apoptosis

Authors:
To read the full-text of this research, you can request a copy directly from the authors.

Abstract and Figures

Traumatic optic neuropathy or other neurodegenerative diseases, including optic nerve transection, glaucoma, and diabetic retinopathy, can lead to progressive and irreversible visual damage. Long non-coding RNAs (lncRNAs), which belong to the family of non-protein-coding transcripts, have been linked to the pathogenesis, progression, and prognosis of these lesions. Retinal ganglion cells (RGCs) are critical for the transmission of visual information to the brain, damage to which results in visual loss. Apoptosis has been identified as one of the most essential modes of RGC death. Emerging evidence suggests that lncRNAs can regulate RGC degeneration by directly or indirectly modulating apoptosis-associated signaling pathways. This review presents a comprehensive overview of the role of lncRNAs in RGC apoptosis at transcriptional, post-transcriptional, translational, and post-translational levels, emphasizing on the potential mechanisms of action. The current limitations and future perspectives of exploring the connection between lncRNAs and RGC apoptosis have been summarized. Understanding the intricate molecular interaction network of lncRNAs and RGC apoptosis will open new avenues for the identification of novel diagnostic biomarkers, therapeutic targets, and molecules for prognostic evaluation of diseases related to RGC injury. Graphical Abstract
This content is subject to copyright. Terms and conditions apply.
Vol.:(0123456789)
1 3
Cellular and Molecular Neurobiology
https://doi.org/10.1007/s10571-022-01210-x
REVIEW PAPER
Long Non‑Coding RNAs inRetinal Ganglion Cell Apoptosis
NingzhiZhang1 · WenyeCao1 · XuejunHe1 · YiqiaoXing1 · NingYang1
Received: 5 December 2021 / Accepted: 17 February 2022
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022
Abstract
Traumatic optic neuropathy or other neurodegenerative diseases, including optic nerve transection, glaucoma, and diabetic
retinopathy, can lead to progressive and irreversible visual damage. Long non-coding RNAs (lncRNAs), which belong to the
family of non-protein-coding transcripts, have been linked to the pathogenesis, progression, and prognosis of these lesions.
Retinal ganglion cells (RGCs) are critical for the transmission of visual information to the brain, damage to which results in
visual loss. Apoptosis has been identified as one of the most essential modes of RGC death. Emerging evidence suggests that
lncRNAs can regulate RGC degeneration by directly or indirectly modulating apoptosis-associated signaling pathways. This
review presents a comprehensive overview of the role of lncRNAs in RGC apoptosis at transcriptional, post-transcriptional,
translational, and post-translational levels, emphasizing on the potential mechanisms of action. The current limitations and
future perspectives of exploring the connection between lncRNAs and RGC apoptosis have been summarized. Understanding
the intricate molecular interaction network of lncRNAs and RGC apoptosis will open new avenues for theidentification of
novel diagnostic biomarkers, therapeutic targets, and molecules for prognostic evaluation of diseases related to RGC injury.
* Ning Yang
rootyangning@whu.edu.cn
1 Department ofOphthalmology, Renmin Hospital ofWuhan
University, #238 Jiefang Road, Wuhan430060, China
Content courtesy of Springer Nature, terms of use apply. Rights reserved.
... In the cytoplasm, lncRNAs play a role in the post-transcriptional processes, affecting localized protein expression and subsequent signal regulation. The mechanisms mainly include (1) competitive binding to microRNAs (miRNAs) to control their post-transcriptional regulatory functions [11][12][13]; (2) regulation of mRNA stability by interacting with proteins that bind to the 3′-untranslated region (3′-UTR) [14], (3) association with the ribosome to regulate protein or micropeptide synthesis [15], (4) regulation of the stability of proteins [16], (5) modulation of cytoplasmic signaling pathways [17], and (6) control over cell cycle and apoptosis [18,19]. Although lncRNAs generally do not encode proteins, the micropeptide myoregulin is thought to be encoded by a skeletal muscle-specific lncRNA [20]. ...
Article
Full-text available
Purpose Retinal neovascularization (RNV) is an intractable pathological hallmark of numerous ocular blinding diseases, including diabetic retinopathy, retinal vein occlusion, and retinopathy of prematurity. However, current therapeutic methods have potential side effects and limited efficacy. Thus, further studies on the pathogenesis of RNV-related disorders and novel therapeutic targets are critically required. Long non-coding RNAs (lncRNAs) have various functions and participate in almost all biological processes in living cells, such as translation, transcription, signal transduction, and cell cycle control. In addition, recent research has demonstrated critical modulatory roles of various lncRNAs in RNV. In this review, we summarize current knowledge about the expression and regulatory functions of lncRNAs related to the progression of pathological RNV. Methods We searched databases such as PubMed and Web of Science to gather and review information from the published literature. Conclusions In general, lncRNA MEG3 attenuates RNV, thus protecting the retina from excessive and dysregulated angiogenesis under high glucose stress. In contrast, lncRNAs MALAT1, MIAT, ANRIL, HOTAIR, HOTTIP, and SNHG16, have been identified as causative molecules in the pathological progression of RNV. Comprehensive and in-depth studies of the roles of lncRNAs in RNV indicate that targeting lncRNAs may be an alternative therapeutic approach in the near future, enabling new options for attenuating RNV progression and treating RNV-related retinal diseases.
... Figure 1 shows the main features of the course of apoptosis in glioblastoma. Recently, special attention has been paid to the relationship between the development of apoptosis and the epigenetic regulation of gene expression (methylation and histone modifications), post-transcriptional regulation (RNA modifications) and post-translation modification of proteins [131][132][133][134]. ...
Article
Full-text available
This review is devoted to changes in the post-transcriptional maturation of RNA in human glioblastoma cells, which leads to disruption of the normal course of apoptosis in them. The review thoroughly highlights the latest information on both post-transcriptional modifications of certain regulatory RNAs, associated with the process of apoptosis, presents data on the features of apoptosis in glioblastoma cells, and shows the relationship between regulatory RNAs and the apoptosis in tumor cells. In conclusion, potential target candidates are presented that are necessary for the development of new drugs for the treatment of glioblastoma.
Article
Full-text available
Background Emerging evidence indicates that long noncoding RNAs (lncRNAs) are important regulators of various biological processes, and their expression can be altered following certain pathological conditions, including central nervous system injury. Retinal ganglion cells (RGCs), whose axons form the optic nerve, are a heterogeneous population of neurons with more than 40 molecularly distinct subtypes in mouse. While most RGCs, including the ON-OFF direction-selective RGCs (ooDSGCs), are vulnerable to axonal injury, a small population of RGCs, including the intrinsically photosensitive RGCs (ipRGCs), are more resilient. Results By performing systematic analyses on RNA-sequencing data, here we identify lncRNAs that are expressed in ooDSGCs and ipRGCs with and without axonal injury. Our results reveal a repertoire of different classes of lncRNAs, including long intergenic noncoding RNAs and antisense ncRNAs that are differentially expressed between these RGC types. Strikingly, we also found dozens of lncRNAs whose expressions are altered markedly in response to axonal injury, some of which are expressed exclusively in either one of the types. Moreover, analyses into these lncRNAs unraveled their neighboring coding genes, many of which encode transcription factors and signaling molecules, suggesting that these lncRNAs may act in cis to regulate important biological processes in these neurons. Lastly, guilt-by-association analysis showed that lncRNAs are correlated with apoptosis associated genes, suggesting potential roles for these lncRNAs in RGC survival. Conclusions Overall, the results of this study reveal RGC type-specific expression of lncRNAs and provide a foundation for future investigation of the function of lncRNAs in regulating neuronal type specification and survival.
Article
Full-text available
Objectives This study aimed to determine the prevalence of ultrasound-detected tendon abnormalities in healthy subjects (HS) across the age range. Methods Adult HS (age 18–80 years) were recruited in 23 international Outcome Measures in Rheumatology ultrasound centres and were clinically assessed to exclude inflammatory diseases or overt osteoarthritis before undergoing a bilateral ultrasound examination of digit flexors (DFs) 1–5 and extensor carpi ulnaris (ECU) tendons to detect the presence of tenosynovial hypertrophy (TSH), tenosynovial power Doppler (TPD) and tenosynovial effusion (TEF), usually considered ultrasound signs of inflammatory diseases. A comparison cohort of patients with rheumatoid arthritis (RA) was taken from the Birmingham Early Arthritis early arthritis inception cohort. Results 939 HS and 144 patients with RA were included. The majority of HS (85%) had grade 0 for TSH, TPD and TEF in all DF and ECU tendons examined. There was a statistically significant difference in the proportion of TSH and TPD involvement between HS and subjects with RA (HS vs RA p<0.001). In HS, there was no difference in the presence of ultrasound abnormalities between age groups. Conclusions Ultrasound-detected TSH and TPD abnormalities are rare in HS and can be regarded as markers of active inflammatory disease, especially in newly presenting RA.
Article
Full-text available
Purpose To identify the potential genes in human trabecular meshwork (TM) related to primary open-angle glaucoma (POAG). Methods First, long noncoding RNA (LncRNA) and mRNA expression profiles in TM samples from 4 control subjects and 4 POAG patients were accessed by microarray analyses. Then, twenty lncRNAs were validated by real-time quantitative PCR in the same samples from microarray analyses. Finally, eight highly expressed lncRNAs were further tested by real-time quantitative PCR in TM from 8 normal controls and 19 POAG patients. Expression data were normalized and analyzed using the R software. Pathway analyses were performed by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. Results A total of 2179 lncRNAs and 923 mRNAs in the TM of POAG patients were significantly upregulated, and 3111 lncRNAs and 887 mRNAs were significantly downregulated. ENST00000552367, ENST00000582505, ENST00000609130, NR_029395, NR_038379, and ENST00000586949 expression levels were significantly higher in the TM from a different cohort of POAG patient than normal controls. Conclusion ENST00000552367, ENST00000582505, ENST000006091- 30, NR_029395, NR_038379, and ENST00000586949 may play essential roles in the development of POAG.
Article
Full-text available
Glaucoma is a multifactorial disease that is conventionally managed with treatments to lower intraocular pressure (IOP). Despite these efforts, many patients continue to lose their vision. The degeneration of retinal ganglion cells (RGCs) and their axons in the optic tract that characterizes glaucoma is similar to neurodegeneration in other age-related disorders of the central nervous system (CNS). Identifying the different molecular signaling pathways that contribute to early neuronal dysfunction can be utilized for neuroprotective strategies that prevent degeneration. The discovery of insulin and its receptor in the CNS and retina led to exploration of the role of insulin signaling in the CNS. Historically, insulin was considered a peripherally secreted hormone that regulated glucose homeostasis, with no obvious roles in the CNS. However, a growing number of pre-clinical and clinical studies have demonstrated the potential of modulating insulin signaling in the treatment of neurodegenerative diseases. This review will highlight the role that insulin signaling plays in RGC neurodegeneration. We will focus on how this pathway can be therapeutically targeted to promote RGC axon survival and preserve vision.
Article
Full-text available
Purpose: Apoptosis of the retinal ganglion cells (RGCs) can cause irreversible damage to visual function after retinal ischemia reperfusion injury (RIR). Using a lncRNA chip assay, we selected lncRNA Ttc-209 and characterized its role in RGCs during ischemia reperfusion (I/R)-induced apoptosis. Methods: We created an ischemic model of RGCs by applying Hank's balanced salt solution containing 10 µM antimycin A and 2 µM calcium ionophore for 2 hours. RIR was induced in mice by elevating the intraocular pressure to 120 mm Hg for 1 hour by cannulation of the cornea; this was followed by reperfusion. Real-time quantitative PCR was used to detect the expression levels of long noncoding RNA (lncRNA), microRNA (miRNA), and target gene mRNA. Western blotting, flow cytometry, immunofluorescent staining, and TUNEL assays were performed to detect cell apoptosis. Dual-luciferase reporter assays and FISH were used to identify endogenous competitive RNA (ceRNA) mechanisms that link lncRNAs, miRNAs, and target genes. We also used scotopic electroretinography examinations to evaluate visual function in treated mice. Results: lncRNA Ttc3-209 was significantly upregulated after I/R injury and played a proapoptotic role in RGCs during I/R-induced apoptosis. Mechanistically, lncRNA Ttc3-209 is a ceRNA that competitively binds to miR-484 and upregulates the translation of its target (Wnt8a mRNA), thus promoting apoptosis in RGCs. Conclusions: Reducing the expression of lncRNA Ttc3-209 had a protective effect against apoptosis in RGCs. This may provide a new therapeutic option for the prevention of RGC apoptosis in response to RIR injury.
Article
Full-text available
SIRT1 prevents retinal ganglion cell (RGC) loss in models of optic neuropathy following pharmacologic activation or genetic overexpression. The exact mechanism of loss is not known, prior evidence suggests this is through oxidative stress to either neighboring cells or RGC specifically. We investigated the neuroprotective potential of RGC-selective SIRT1 gene therapy in the optic nerve crush (ONC) model. We hypothesized that AAV-mediated overexpression of SIRT1 in RGCs reduces RGC loss, thereby preserving visual function. Cohorts of C57Bl/6J mice received intravitreal injection of experimental or control AAVs using either a ganglion cell promoter or a constitutive promoter and ONC was performed. Visual function was examined by optokinetic response (OKR) for 7 days following ONC. Retina and optic nerves were harvested to investigate RGC survival by immunolabeling. The AAV7m8-SNCG.SIRT1 vector showed 44% transduction efficiency for RGCs compared with 25% (P > 0.05) by AAV2-CAG.SIRT1, and AAV7m8-SNCG.SIRT1 drives expression selectively in RGCs in vivo. Animals modeling ONC demonstrated reduced visual acuity compared to controls. Intravitreal delivery of AAV7m8-SNCG.SIRT1 mediated significant preservation of the OKR and RGC survival compared to AAV7m8-SNCG.eGFP controls, an effect not seen with the AAV2 vector. RGC-selective expression of SIRT1 offers a targeted therapy for an animal model with significant ganglion cell loss. Over-expression of SIRT1 through AAV-mediated gene transduction suggests a RGC selective component of neuro-protection using the ONC model. This study expands our understanding of SIRT1 mediated neuroprotection in the context of compressive or traumatic optic neuropathy, making it a strong therapeutic candidate for testing in all optic neuropathies.
Article
Retinal ganglion cell (RGC) injury is a critical pathological feature of several optic neurodegenerative diseases. The regulatory mechanisms underlying RGC injury remain poorly understood. Recent evidence highlighted the important roles of long noncoding RNAs (lncRNAs) in degenerative neuropathy but few studies have focused on lncRNAs associated with RGC injury. In this study, we analyzed dysregulated lncRNAs associated with RGC injury, their potential regulatory functions, and the molecular mechanisms underlying the regulation of lncRNAs and transcription factors (TFs). We analyzed lncRNA and mRNA profiles in the GSE142881 dataset associated with RGC injury and identified 1049 differentially expressed genes (DEGs), with 18 differentially expressed (DE) TFs among 883 DE mRNAs and 312 DE lncRNAs. The predicted DE lncRNAs and DE mRNAs were used to construct a lncRNA-mRNA co-expression network. Functional enrichment analysis was performed to explore the functions of the lncRNAs and mRNAs. The co-expression network between DE lncRNAs and DE mRNAs was highly enriched in inflammatory and immune-related pathways, indicating that they play role in the process of RGC injury. Among the DE mRNAs, we screened 18 DE TFs, including activating transcription factor 3 (ATF3), associated with RGC injury. Co-expression analysis predicted that 13 lncRNAs were potential binding targets of ATF3. The screening of the potential targets of these 13 lncRNAs showed that they were also significantly enriched in functional pathways associated with inflammation and apoptosis. After analysis, we constructed the mRNA-ATF3-lncRNA regulatory network after RGCs injury. In summary, we identified the gene module associated with immune and inflammatory responses after optic nerve injury and constructed a regulatory network of lncRNA-TF-mRNA. The results indicate that lncRNAs, by binding to TFs, can regulate downstream genes and function during RGC injury. The results provide a foundation for further studies of the mechanism of RGC injury and provide insight into the clinical diagnosis and investigation direction of neurodegenerative diseases such as traumatic optic neuropathy and glaucoma.
Article
Neurodegenerative diseases are gradually becoming the main burden of society. The morbidity and mortality caused by neurodegenerative diseases remain significant health-care concerns. For most neurodegenerative diseases, there are no effective treatments. Over the past few decades, in a quest to exploit efficacious disease-modifying therapies for the treatment of neurodegenerative diseases, disease mechanisms, reliable biomarkers and therapeutic targets have become a research priority. At present, lncRNA is an area with potential research value. In this article, we first summarize some of the existing results of research into lncRNAs, including origin, molecular characteristics, location types, and functional types. We then introduce the possible functions of lncRNAs in different neurodegenerative diseases. Furthermore, some lncRNAs which show promise as biomarkers or potential therapeutic targets are systematically summarized.
Article
Oxidative stress is an important factor affecting retinal ganglion cell (RGC) apoptosis. RGC apoptosis is the main pathophysiological feature of visual impairment as a result of glaucoma. Recently, it has been found that long noncoding RNA (lncRNA) and microRNAs are involved in RGC apoptosis. Here, the function of lncRNA maternally expressed gene 3 (MEG3) and miR-30b in H 2 O 2 -induced RGC proliferation, apoptosis, and oxidative stress was investigated. The expression levels of MEG3 and miR-30b were detected by RT-PCR; the effects of MEG3 and miR-30b on the proliferation and apoptosis of RGCs were observed by flow cytometry; the levels of apoptosis-related proteins and AKT/PI3K signal pathway proteins were detected by protein immunoassay; and the regulation of miR-34a by pvt1 was verified by in vivo and in vitro experiments. The expression of MEG3 and miR-30b increased and decreased significantly in RGCs treated by H 2 O 2 . MEG3 expression decreased, apoptosis level-related proteins decreased, the apoptosis rate reduced, and the activity of MDA and SOD decreased. When the expression of miR-34a was inhibited, the proliferation rate of RGCs increased, the apoptosis rate decreased, and the level of apoptosis-related proteins decreased, which reversed MEG3’s effect on RGC apoptosis and proliferation. Furthermore, pvt1 could bind the miR-30b promoter and regulate it with in vitro expression and in vivo expression. Besides, we found that miR-30b can regulate the AKT/PI3K signaling pathway and participate in cell apoptosis and hyperplasia in stress response. LncRNA MEG3 targets miR-30b and regulates the AKT/PI3K signaling pathway on H 2 O 2 -induced cell apoptosis, hyperplasia, and oxidative stress of RGCs.
Article
Background Glaucoma is an advanced nerve disorder described by the deterioration of axon and RGCs. CMCS has been previously used as an anti-apoptotic and anti-oxidant agent.Objective The current study aimed to explore the protective impact of CMCS against H2O2-induced injury in glaucoma in vitro.Methods The relative expression of lncRNA THOR and the protein expression of IGF2BP1 in H2O2-induced RGC-5 cells were detected by RT-PCR and western blot methods respectively. The cell viability was measured using MTT assay while apoptosis rate was measured by flow cytometry. Moreover, ROS level was measured using ROS assay kit. Furthermore, the relations between THOR and IGF2BP1 were determined by using RNA pull-down.ResultsThe expression of THOR was reduced in H2O2-induced RGCs. Also, RGCs viability was inhibited while the level of ROS and cell apoptosis were enhanced. CMCS treatment considerably enhanced the expression of THOR and IGF2BP1 protein and cell viability but reduced ROS level and cell apoptosis. Moreover, IGF2BP1 protein was positively regulated by lncRNA THOR. CMCS protected the RGCs from oxidative stress via regulating lncRNA THOR/IGF2BP1.ConclusionCMCS enhanced the cell viability and reduced the cell apoptosis and ROS level and protected RGCs from oxidative stress via lncRNATHOR/IGF2BP1 pathway, potentially suggesting a new therapeutic strategy for the treatment of glaucoma.