Conference Paper

A Multi-Aspect Agent-Based Model of COVID-19: Disease Dynamics, Contact Tracing Interventions and Shared Space-Driven Contagions

Authors:
To read the full-text of this research, you can request a copy directly from the authors.

No full-text available

Request Full-text Paper PDF

To read the full-text of this research,
you can request a copy directly from the authors.

ResearchGate has not been able to resolve any citations for this publication.
Article
Full-text available
Goal: The COVID-19 pandemic has emerged as the most severe public health crisis in over a century. As of January 2021, there are more than 100 million cases and 2.1 million deaths. For informed decision making, reliable statistical data and capable simulation tools are needed. Our goal is to develop an epidemic simulator that can model the effects of random population testing and contact tracing. Methods: Our simulator models individuals as particles with the position, velocity, and epidemic status states on a 2D map and runs an SEIR epidemic model with contact tracing and testing modules. The simulator is available on GitHub under the MIT license. Results: The results show that the synergistic use of contact tracing and massive testing is effective in suppressing the epidemic (the number of deaths was reduced by 72%). Conclusions: The Particle-based COVID-19 simulator enables the modeling of intervention measures, random testing, and contact tracing, for epidemic mitigation and suppression.
Article
Full-text available
Asymptomatic cases of SARS-CoV-2 can be unknown carriers magnifying the transmission of COVID-19. This study appraised the frequency of asymptomatic individuals and estimated occurrence by age group and gender by reviewing the existing published data on asymptomatic people with COVID-19. Three electronic databases, PubMed, Embase, and Web of Science (WoS), were used to search the literature following the guidelines of Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA). The study population for this review included asymptomatic individuals infected with SARS-CoV-2 reported in original articles published up to 30 April 2020. A random effects model was applied to analyze pooled data on the prevalence of asymptomatic cases among all COVID-19 patients and also by age and gender. From the meta-analysis of 16 studies, comprising 2,788 SARS-CoV-2 infected patients, the pooled prevalence according to the random effect size of asymptomatic cases was 48.2% (95% CI, 30–67%). Of the asymptomatic cases, 55.5% (95% CI, 43.6–66.8%) were female and 49.6% (95% CI, 20.5–79.1%) were children. Children and females were more likely to present as asymptomatic COVID-19 cases and could act as unknown carriers of SARS-CoV-2. Symptom-based screening might fail to identify all SARS-CoV-2 infections escalating the threat of global spread and impeding containment. Therefore, a mass surveillance system to track asymptomatic cases is critical, with special attention to females and children.
Article
Full-text available
This paper is designed to study the area of the role of Government. They play a meaningful role in the socio-economic transformation of the society from the implication of the coronavirus pandemic. For the study, an online questionnaire was conducted using a semi-structured questionnaire using a non-probability snowball sampling technique; the researcher has collected responses from- 100respondents. The study covers different aspects concerning socio-economic status, barriers in improving the income level, GDP level, consumption level, and Investment level of the people and whether the Government is significant in improving the standards of the people post the pandemic. All categories of people who are affected by this pandemic were surveyed by using Google forms and the extent of improvement after the pandemic in their social and economic status is studied. A small endeavor has been made to understand the stress and anxiety of the people during this pandemic and also how the Government will help in the transformation of society.
Article
Full-text available
Background: The first outbreak of coronavirus disease 2019 (COVID-19) was successfully restrained in many countries around the world by means of a severe lockdown. Now, we are entering the second phase of the pandemics in which the spread of the virus needs to be contained within the limits that national health systems can cope with. This second phase of the epidemics is expected to last until a vaccination is available or herd immunity is reached. Long-term management strategies thus need to be developed. Methods: In this paper we present a new agent-based simulation model "COVID-19 ABM" with which we simulate 4 alternative scenarios for the second "new normality" phase that can help decision-makers to take adequate control and intervention measures. Results: The scenarios resulted in distinctly different outcomes. A continued lockdown could regionally eradicate the virus within a few months, whereas a relaxation back to 80% of former activity-levels was followed by a second outbreak. Contact-tracing as well as adaptive response strategies could keep COVID-19 within limits. Conclusion: The main insights are that low-level voluntary use of tracing apps shows no relevant effects on containing the virus, whereas medium or high-level tracing allows maintaining a considerably higher level of social activity. Adaptive control strategies help in finding the level of least restrictions. A regional approach to adaptive management can further help in fine-tuning the response to regional dynamics and thus minimise negative economic effects.
Article
Full-text available
Background In countries with declining numbers of confirmed cases of COVID-19, lockdown measures are gradually being lifted. However, even if most physical distancing measures are continued, other public health measures will be needed to control the epidemic. Contact tracing via conventional methods or mobile app technology is central to control strategies during de-escalation of physical distancing. We aimed to identify key factors for a contact tracing strategy to be successful. Methods We evaluated the impact of timeliness and completeness in various steps of a contact tracing strategy using a stochastic mathematical model with explicit time delays between time of infection and symptom onset, and between symptom onset, diagnosis by testing, and isolation (testing delay). The model also includes tracing of close contacts (eg, household members) and casual contacts, followed by testing regardless of symptoms and isolation if testing positive, with different tracing delays and coverages. We computed effective reproduction numbers of a contact tracing strategy (RCTS) for a population with physical distancing measures and various scenarios for isolation of index cases and tracing and quarantine of their contacts. Findings For the most optimistic scenario (testing and tracing delays of 0 days and tracing coverage of 100%), and assuming that around 40% of transmissions occur before symptom onset, the model predicts that the estimated effective reproduction number of 1·2 (with physical distancing only) will be reduced to 0·8 (95% CI 0·7–0·9) by adding contact tracing. The model also shows that a similar reduction can be achieved when testing and tracing coverage is reduced to 80% (RCTS 0·8, 95% CI 0·7–1·0). A testing delay of more than 1 day requires the tracing delay to be at most 1 day or tracing coverage to be at least 80% to keep RCTS below 1. With a testing delay of 3 days or longer, even the most efficient strategy cannot reach RCTS values below 1. The effect of minimising tracing delay (eg, with app-based technology) declines with decreasing coverage of app use, but app-based tracing alone remains more effective than conventional tracing alone even with 20% coverage, reducing the reproduction number by 17·6% compared with 2·5%. The proportion of onward transmissions per index case that can be prevented depends on testing and tracing delays, and given a 0-day tracing delay, ranges from up to 79·9% with a 0-day testing delay to 41·8% with a 3-day testing delay and 4·9% with a 7-day testing delay. Interpretation In our model, minimising testing delay had the largest impact on reducing onward transmissions. Optimising testing and tracing coverage and minimising tracing delays, for instance with app-based technology, further enhanced contact tracing effectiveness, with the potential to prevent up to 80% of all transmissions. Access to testing should therefore be optimised, and mobile app technology might reduce delays in the contact tracing process and optimise contact tracing coverage. Funding ZonMw, Fundação para a Ciência e a Tecnologia, and EU Horizon 2020 RECOVER.
Article
Full-text available
Since the emergence of coronavirus disease 2019 (COVID-19), unprecedented movement restrictions and social distancing measures have been implemented worldwide. The socioeconomic repercussions have fueled calls to lift these measures. In the absence of population-wide restrictions, isolation of infected individuals is key to curtailing transmission. However, the effectiveness of symptom-based isolation in preventing a resurgence depends on the extent of presymptomatic and asymptomatic transmission. We evaluate the contribution of presymptomatic and asymptomatic transmission based on recent individual-level data regarding infectiousness prior to symptom onset and the asymptomatic proportion among all infections. We found that the majority of incidences may be attributable to silent transmission from a combination of the presymptomatic stage and asymptomatic infections. Consequently, even if all symptomatic cases are isolated, a vast outbreak may nonetheless unfold. We further quantified the effect of isolating silent infections in addition to symptomatic cases, finding that over one-third of silent infections must be isolated to suppress a future outbreak below 1% of the population. Our results indicate that symptom-based isolation must be supplemented by rapid contact tracing and testing that identifies asymptomatic and presymptomatic cases, in order to safely lift current restrictions and minimize the risk of resurgence.
Article
Full-text available
We report temporal patterns of viral shedding in 94 patients with laboratory-confirmed COVID-19 and modeled COVID-19 infectiousness profiles from a separate sample of 77 infector–infectee transmission pairs. We observed the highest viral load in throat swabs at the time of symptom onset, and inferred that infectiousness peaked on or before symptom onset. We estimated that 44% (95% confidence interval, 25–69%) of secondary cases were infected during the index cases’ presymptomatic stage, in settings with substantial household clustering, active case finding and quarantine outside the home. Disease control measures should be adjusted to account for probable substantial presymptomatic transmission. Presymptomatic transmission of SARS-CoV-2 is estimated to account for a substantial proportion of COVID-19 cases.
Article
Full-text available
Previous studies have showed clinical characteristics of patients with the 2019 novel coronavirus disease (COVID-19) and the evidence of person-to-person transmission. Limited data are available for asymptomatic infections. This study aims to present the clinical characteristics of 24 cases with asymptomatic infection screened from close contacts and to show the transmission potential of asymptomatic COVID-19 virus carriers. Epidemiological investigations were conducted among all close contacts of COVID-19 patients (or suspected patients) in Nanjing, Jiangsu Province, China, from Jan 28 to Feb 9, 2020, both in clinic and in community. Asymptomatic carriers were laboratory-confirmed positive for the COVID-19 virus by testing the nucleic acid of the pharyngeal swab samples. Their clinical records, laboratory assessments, and chest CT scans were reviewed. As a result, none of the 24 asymptomatic cases presented any obvious symptoms while nucleic acid screening. Five cases (20.8%) developed symptoms (fever, cough, fatigue, etc.) during hospitalization. Twelve (50.0%) cases showed typical CT images of ground-glass chest and 5 (20.8%) presented stripe shadowing in the lungs. The remaining 7 (29.2%) cases showed normal CT image and had no symptoms during hospitalization. These 7 cases were younger (median age: 14.0 years; P=0.012) than the rest. None of the 24 cases developed severe COVID-19 pneumonia or died. The median communicable period, defined as the interval from the first day of positive nucleic acid tests to the first day of continuous negative tests, was 9.5 days (up to 21 days among the 24 asymptomatic cases). Through epidemiological investigation, we observed a typical asymptomatic transmission to the cohabiting family members, which even caused severe COVID-19 pneumonia. Overall, the asymptomatic carriers identified from close contacts were prone to be mildly ill during hospitalization. However, the communicable period could be up to three weeks and the communicated patients could develop severe illness. These results highlighted the importance of close contact tracing and longitudinally surveillance via virus nucleic acid tests. Further isolation recommendation and continuous nucleic acid tests may also be recommended to the patients discharged.
Article
Full-text available
Background Isolation of cases and contact tracing is used to control outbreaks of infectious diseases, and has been used for coronavirus disease 2019 (COVID-19). Whether this strategy will achieve control depends on characteristics of both the pathogen and the response. Here we use a mathematical model to assess if isolation and contact tracing are able to control onwards transmission from imported cases of COVID-19. Methods We developed a stochastic transmission model, parameterised to the COVID-19 outbreak. We used the model to quantify the potential effectiveness of contact tracing and isolation of cases at controlling a severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-like pathogen. We considered scenarios that varied in the number of initial cases, the basic reproduction number (R0), the delay from symptom onset to isolation, the probability that contacts were traced, the proportion of transmission that occurred before symptom onset, and the proportion of subclinical infections. We assumed isolation prevented all further transmission in the model. Outbreaks were deemed controlled if transmission ended within 12 weeks or before 5000 cases in total. We measured the success of controlling outbreaks using isolation and contact tracing, and quantified the weekly maximum number of cases traced to measure feasibility of public health effort. Findings Simulated outbreaks starting with five initial cases, an R0 of 1·5, and 0% transmission before symptom onset could be controlled even with low contact tracing probability; however, the probability of controlling an outbreak decreased with the number of initial cases, when R0 was 2·5 or 3·5 and with more transmission before symptom onset. Across different initial numbers of cases, the majority of scenarios with an R0 of 1·5 were controllable with less than 50% of contacts successfully traced. To control the majority of outbreaks, for R0 of 2·5 more than 70% of contacts had to be traced, and for an R0 of 3·5 more than 90% of contacts had to be traced. The delay between symptom onset and isolation had the largest role in determining whether an outbreak was controllable when R0 was 1·5. For R0 values of 2·5 or 3·5, if there were 40 initial cases, contact tracing and isolation were only potentially feasible when less than 1% of transmission occurred before symptom onset. Interpretation In most scenarios, highly effective contact tracing and case isolation is enough to control a new outbreak of COVID-19 within 3 months. The probability of control decreases with long delays from symptom onset to isolation, fewer cases ascertained by contact tracing, and increasing transmission before symptoms. This model can be modified to reflect updated transmission characteristics and more specific definitions of outbreak control to assess the potential success of local response efforts. Funding Wellcome Trust, Global Challenges Research Fund, and Health Data Research UK.
Article
Full-text available
The emergence and reemergence of coronavirus epidemics sparked renewed concerns from global epidemiology researchers and public health administrators. Mathematical models that represented how contact tracing and follow-up may control Severe Acute Respiratory Syndrome (SARS) and Middle East Respiratory Syndrome (MERS) transmissions were developed for evaluating different infection control interventions, estimating likely number of infections as well as facilitating understanding of their likely epidemiology. We reviewed mathematical models for contact tracing and follow-up control measures of SARS and MERS transmission. Model characteristics, epidemiological parameters and intervention parameters used in the mathematical models from seven studies were summarized. A major concern identified in future epidemics is whether public health administrators can collect all the required data for building epidemiological models in a short period of time during the early phase of an outbreak. Also, currently available models do not explicitly model constrained resources. We urge for closed-loop communication between public health administrators and modelling researchers to come up with guidelines to delineate the collection of the required data in the midst of an outbreak and the inclusion of additional logistical details in future similar models.
Article
Full-text available
The aim of this study is to identify general properties of emerging infectious agents that determine the likely success of two simple public health measures in controlling outbreaks, namely (i) isolating symptomatic individuals and (ii) tracing and quarantining their contacts. Because these measures depend on the recognition of specific disease symptoms, we investigate the relative timing of infectiousness and the appearance of symptoms by using a mathematical model. We show that the success of these control measures is determined as much by the proportion of transmission occurring prior to the onset of overt clinical symptoms (or via asymptomatic infection) as the inherent transmissibility of the etiological agent (measured by the reproductive number R 0). From published studies, we estimate these quantities for two moderately transmissible viruses, severe acute respiratory syndrome coronavirus and HIV, and for two highly transmissible viruses, smallpox and pandemic influenza. We conclude that severe acute respiratory syndrome and smallpox are easier to control using these simple public health measures. Direct estimation of the proportion of asymptomatic and presymptomatic infections is achievable by contact tracing and should be a priority during an outbreak of a novel infectious agent. • epidemiology • severe acute respiratory syndrome • HIV • smallpox • influenza
Article
This work presents retQSS, a novel methodology for efficient modeling and simulation of particle systems in reticulated meshed geometries. On the simulation side, retQSS profits from the discrete-event nature of Quantized State System (QSS) methods, which enable efficient particle tracking algorithms that are agnostic of the application domain. On the modeling side, retQSS relies on the standardized Modelica modeling language, yielding compact and elegant specifications of hybrid (continuous/discrete) dynamic systems. Combined together, these features offer a sound, general-purpose framework for modeling and simulation of particle systems. We show how the handling of state-events that arise when particles interact with a reticulated mesh are seamlessly translated into easily tractable time-events. The latter can substantially improve simulation performance in scenarios where discontinuities dominate the computational demand. We showcase the flexibility of our approach by addressing four case studies arising from different application domains. Performance studies revealed that retQSS can perform similarly to, and even outperform, well-known domain-specific particle simulation toolkits while offering a clear and sound accuracy control interface.
Article
Background: Knowing the prevalence of true asymptomatic coronavirus disease 2019 (COVID-19) cases is critical for designing mitigation measures against the pandemic. We aimed to synthesize all available research on asymptomatic cases and transmission rates. Methods: We searched PubMed, Embase, Cochrane COVID-19 trials, and Europe PMC for primary studies on asymptomatic prevalence in which (1) the sample frame includes at-risk populations and (2) follow-up was sufficient to identify pre-symptomatic cases. Meta-analysis used fixed-effects and random-effects models. We assessed risk of bias by combination of questions adapted from risk of bias tools for prevalence and diagnostic accuracy studies. Results: We screened 2,454 articles and included 13 low risk-of-bias studies from seven countries that tested 21,708 at-risk people, of which 663 were positive and 111 asymptomatic. Diagnosis in all studies was confirmed using a real-time reverse transcriptase-polymerase chain reaction test. The asymptomatic proportion ranged from 4% to 41%. Meta-analysis (fixed effects) found that the proportion of asymptomatic cases was 17% (95% CI 14% to 20%) overall and higher in aged care (20%; 95% CI 14% to 27%) than in non-aged care (16%; 95% CI 13% to 20%). The relative risk (RR) of asymptomatic transmission was 42% lower than that for symptomatic transmission (combined RR 0.58; 95% CI 0.34 to 0.99, p = 0.047). Conclusions: Our one-in-six estimate of the prevalence of asymptomatic COVID-19 cases and asymptomatic transmission rates is lower than those of many highly publicized studies but still sufficient to warrant policy attention. Further robust epidemiological evidence is urgently needed, including in subpopulations such as children, to better understand how asymptomatic cases contribute to the pandemic.
Article
During the 2020 COVID-19 pandemic, an outbreak occurred following attendance of a symptomatic index case at a weekly rehearsal on 10 March of the Skagit Valley Chorale (SVC). After that rehearsal, 53 members of the SVC among 61 in attendance were confirmed or strongly suspected to have contracted COVID-19 and two died. Transmission by the aerosol route is likely; it appears unlikely that either fomite or ballistic droplet transmission could explain a substantial fraction of the cases. It is vital to identify features of cases such as this to better understand the factors that promote superspreading events. Based on a conditional assumption that transmission during this outbreak was dominated by inhalation of respiratory aerosol generated by one index case, we use the available evidence to infer the emission rate of aerosol infectious quanta. We explore how the risk of infection would vary with several influential factors: ventilation rate, duration of event, and deposition onto surfaces. The results indicate a best-estimate emission rate of 970 ± 390 quanta h-1 . Infection risk would be reduced by a factor of two by increasing the aerosol loss rate to 5 h-1 and shortening the event duration from 2.5 to 1 h.
Article
Background: Increasing numbers of coronavirus disease 2019 (COVID-19) cases in Canada may create substantial demand for hospital admission and critical care. We evaluated the extent to which self-isolation of mildly ill people delays the peak of outbreaks and reduces the need for this care in each Canadian province. Methods: We developed a computational model and simulated scenarios for COVID-19 outbreaks within each province. Using estimates of COVID-19 characteristics, we projected the hospital and intensive care unit (ICU) bed requirements without self-isolation, assuming an average number of 2.5 secondary cases, and compared scenarios in which different proportions of mildly ill people practised self-isolation 24 hours after symptom onset. Results: Without self-isolation, the peak of outbreaks would occur in the first half of June, and an average of 569 ICU bed days per 10 000 population would be needed. When 20% of cases practised self-isolation, the peak was delayed by 2-4 weeks, and ICU bed requirement was reduced by 23.5% compared with no self-isolation. Increasing self-isolation to 40% reduced ICU use by 53.6% and delayed the peak of infection by an additional 2-4 weeks. Assuming current ICU bed occupancy rates above 80% and self-isolation of 40%, demand would still exceed available (unoccupied) ICU bed capacity. Interpretation: At the peak of COVID-19 outbreaks, the need for ICU beds will exceed the total number of ICU beds even with self-isolation at 40%. Our results show the coming challenge for the health care system in Canada and the potential role of self-isolation in reducing demand for hospital-based and ICU care.
Article
A model of commumcations protocols based on finite-state machines is investigated. The problem addressed is how to ensure certain generally desirable properties, which make protocols "well- formed," that is, specify a response to those and only those events that can actually occur. It is determined to what extent the problem is solvable, and one approach to solving it ts described.
Comparative dynamic aerosol efficiencies of three emergent coronaviruses and the unusual persistence of SARS-CoV-2 in aerosol suspensions
  • fears
Global uncertainty related to Coronavirus at Record High
  • ahir
Comparative dynamic aerosol efficiencies of three emergent coronaviruses and the unusual persistence of SARS-CoV-2 in aerosol suspensions
  • A C Fears
  • W B Klimstra
  • P Duprex
  • A Hartman
  • S C Weaver
  • K Plante
  • D Mirchandani
  • J Plante
  • P V Aguilar
  • D Fernandez
Global uncertainty related to Coronavirus at Record High
  • H Ahir
  • N Bloom
  • D Furceri