PreprintPDF Available
Preprints and early-stage research may not have been peer reviewed yet.

Abstract and Figures

There are many methods for projecting spherical maps onto the plane. Interactive versions of these projections allow the user to centre the region of interest. However, the effects of such interaction have not previously been evaluated. In a study with 120 participants we find interaction provides significantly more accurate area, direction and distance estimation in such projections. The surface of 3D sphere and torus topologies provides a continuous surface for uninterrupted network layout. But how best to project spherical network layouts to 2D screens has not been studied, nor have such spherical network projections been compared to torus projections. Using the most successful interactive sphere projections from our first study, we compare spherical, standard and toroidal layouts of networks for cluster and path following tasks with 96 participants, finding benefits for both spherical and toroidal layouts over standard network layouts in terms of accuracy for cluster understanding tasks.
Content may be subject to copyright.
A preview of the PDF is not available
ResearchGate has not been able to resolve any citations for this publication.
Article
Full-text available
In this paper, we report on a study of visual representations for cyclical data and the effect of interactively wrapping a bar chart 'around its boundaries'. Compared to linear bar chart, polar (or radial) visualisations have the advantage that cyclical data can be presented continuously without mentally bridging the visual 'cut' across the left-and-right boundaries. To investigate this hypothesis and to assess the effect the cut has on analysis performance, this paper presents results from a crowdsourced, controlled experiment with 72 participants comparing new continuous panning technique to linear bar charts (interactive wrapping). Our results show that bar charts with interactive wrapping lead to less errors compared to standard bar charts or polar charts. Inspired by these results, we generalise the concept of interactive wrapping to other visualisations for cyclical or relational data. We describe a design space based on the concept of one-dimensional wrapping and two-dimensional wrapping, linked to two common 3D topologies; cylinder and torus that can be used to metaphorically explain one- and two-dimensional wrapping. This design space suggests that interactive wrapping is widely applicable to many different data types.
Article
Full-text available
Node-link diagrams are widely used to visualise networks. However, even the best network layout algorithms ultimately result in ’hairball’ visualisations when the graph reaches a certain degree of complexity, requiring simplification through aggregation or interaction (such as filtering) to remain usable. Until now, there has been little data to indicate at what level of complexity node-link diagrams become ineffective or how visual complexity affects cognitive load. To this end, we conducted a controlled study to understand workload limits for a task that requires a detailed understanding of the network topology—finding the shortest path between two nodes.We tested performance on graphs with 25 to 175 nodes with varying density. We collected performance measures (accuracy and response time), subjective feedback, and physiological measures (EEG, pupil dilation, and heart rate variability). To the best of our knowledge this is the first network visualisation study to include physiological measures. Our results show that people have significant difficulty finding the shortest path in high density node-link diagrams with more than 50 nodes and even low density graphs with more than 100 nodes. From our collected EEG data we observe functional differences in brain activity between hard and easy tasks. We found that cognitive load increased up to certain level of difficulty after which it decreased, likely because participants had given up. We also explored the effects of global network layout features such as size or number of crossings, and features of the shortest path such as length or straightness on task difficulty. We found that global features generally had a greater impact than those of the shortest path.
Article
Full-text available
Many areas of computer science research (e.g., performance analysis, software engineering, artificial intelligence, and human-computer interaction) validate research claims by using statistical significance as the standard of evidence. A loss of confidence in statistically significant findings is plaguing other empirical disciplines, yet there has been relatively little debate of this issue and its associated 'replication crisis' in computer science. We review factors that have contributed to the crisis in other disciplines, with a focus on problems stemming from an over-reliance on-and misuse of-null hypothesis significance testing. Computer science research can be greatly improved by following the steps taken by other disciplines, such as using more sophisticated evidentiary criteria, and showing greater openness and transparency through experimental preregistration and data/artifact repositories. Full text: https://hal.inria.fr/hal-02907143/document
Conference Paper
Full-text available
We investigate visualisations of networks on a 2-dimensional torus topology, like an opened-up and flattened doughnut. That is, the network is drawn on a rectangular area while “wrapping” specific links around the border. Previous work on torus drawings of networks has been mostly theoretical, limited to certain classes of networks, and not evaluated by human readability studies. We offer a simple interactive layout approach applicable to general graphs. We use this to find layouts affording better aesthetics in terms of conventional measures like more equal edge length and fewer crossings. In two controlled user studies we find that torus layout with either additional context or interactive panning provided significant performance improvement (in terms of error and time) over torus layout without either of these improvements, to the point that it is comparable to standard non-torus layout.
Article
Full-text available
Effect sizes are the currency of psychological research. They quantify the results of a study to answer the research question and are used to calculate statistical power. The interpretation of effect sizes—when is an effect small, medium, or large?—has been guided by the recommendations Jacob Cohen gave in his pioneering writings starting in 1962: Either compare an effect with the effects found in past research or use certain conventional benchmarks. The present analysis shows that neither of these recommendations is currently applicable. From past publications without pre-registration, 900 effects were randomly drawn and compared with 93 effects from publications with pre-registration, revealing a large difference: Effects from the former (median r = 0.36) were much larger than effects from the latter (median r = 0.16). That is, certain biases, such as publication bias or questionable research practices, have caused a dramatic inflation in published effects, making it difficult to compare an actual effect with the real population effects (as these are unknown). In addition, there were very large differences in the mean effects between psychological sub-disciplines and between different study designs, making it impossible to apply any global benchmarks. Many more pre-registered studies are needed in the future to derive a reliable picture of real population effects.
Article
Full-text available
Interactive 3D visualizations of geospatial data are currently available and popular through various applications such as Google EarthTM and others. Several studies have focused on user performance with 3D maps, but static 3D maps were mostly used as stimuli. The main objective of this paper was to identify differences between interactive and static 3D maps. We also explored the role of different tasks and inter-individual differences of map users. In the experimental study, we analyzed effectiveness, efficiency, and subjective preferences, when working with static and interactive 3D maps. The study included 76 participants and used a within-subjects design. Experimental testing was performed using our own testing tool 3DmoveR 2.0, which was based on a user logging method and open web technologies. We demonstrated statistically significant differences between interactive and static 3D maps in effectiveness, efficiency, and subjective preferences. Interactivity influenced the results mainly in ‘spatial understanding’ and ‘combined’ tasks. From the identified differences, we concluded that the results of the user studies with static 3D maps as stimuli could not be transferred to interactive 3D visualizations or virtual reality.