Article

The Prebiotic Molecular Inventory of Serpens SMM1: II. The Building Blocks of Peptide Chains

Authors:
To read the full-text of this research, you can request a copy directly from the authors.

No full-text available

Request Full-text Paper PDF

To read the full-text of this research,
you can request a copy directly from the authors.

... This peptide-type bond is present in several interstellar complex organic molecules (iCOMs see Colzi et al. 2021 and also McGuire 2018 for a census), such as formamide (HC(O)NH 2 ; Halfen et al. 2015;Cernicharo et al. 2016;Ligterink et al. 2017;Martín-Doménech et al. 2017;Ligterink et al. 2017;Csengeri et al. 2019;Gorai et al. 2020;Manigand et al. 2020;Colzi et al. 2021;Ligterink et al. 2021), acetamide (CH 3 C(O)NH 2 ; Hollis et al. 2006, Halfen et al. 2015, Cernicharo et al. 2016Belloche et al. 2017;Ligterink et al. 2020Ligterink et al. , 2022Colzi et al. 2021), N-methylformamide (CH 3 NHCHO; Belloche et al. 2017Belloche et al. , 2019Ligterink et al. 2020;Colzi et al. 2021) and urea (NH 2 C(O)NH2; Belloche et al. 2019;Jiménez-Serra et al. 2020). Nevertheless, among all iCOMs, only four species contain the so-called isocyanate (-N=C=O) functional group. ...
Article
Full-text available
The investigation of metal-containing interstellar molecules stands as a prolific field for current astrochemical research. However, the search for many of these systems in the interstellar medium has remained inaccessible to date due to the lack of preliminary spectroscopic data. In this context, pioneering theoretical studies have inspired quantum chemists to study new appealing candidates to enable their subsequent search in space. The aim of this study is to provide high-level theoretical spectroscopic signatures of the tetratomic system [Na, N, C, O]. We have performed a thorough exploration of its potential energy surface employing different state-of-the-art quantum chemical methods and nine different species have been characterized. Moreover, we have evaluated the stability of the most stable isomers against dissociation and explored their main isomerization processes. We therefore suggest sodium isocyanate (NaNCO,1Σ) and sodium cyanate, (NaOCN, 1Σ) as the most relevant candidates for laboratory and interstellar detection. To aid in their eventual spectral search by means of rotational spectroscopy, we report a complete set of the required spectroscopic parameters including the nuclear quadrupole coupling constants, which are needed to interpret their complex hyperfine structure. NaNCO and NaOCN present exceptionally high values of the electric dipole moment (11.4 and 13.6 Debyes, respectively at the CCSD(T,rw)/aug-cc-pVTZ level), which strongly support to perform an eventual radio astronomical search. Furthermore, both isomers exhibit rather small vibrational frequencies, which indicates that these species are certainly floppy molecules.
... Because of the large range of physical scales that encompass the star formation process and the complex physical and chemical processes involved, ALMA users have conducted a vast array of observations including detailed observations of individual cores and protostars (e.g., Jensen et al. 2019;Ligterink et al. 2022;Ginsburg et al. 2019), comprehensive surveys of ensembles of sources (e.g., the Large Programs FAUST and IMF: Codella et al. 2021;Motte et al. 2022), and extensive mosaics of individual clouds and filaments in a variety of molecular species (e.g., Barnes et al. 2021;Lu et al. 2021;Yang et al. 2021). These observations have leveraged ALMA's unprecedented access to the full range of relevant Figure 17. ...
Preprint
Full-text available
The Wideband Sensitivity Upgrade (WSU) is the top priority initiative for the ALMA2030 Development Roadmap. The WSU will initially double, and eventually quadruple, ALMA's system bandwidth and will deliver improved sensitivity by upgrading the receivers, digital electronics and correlator. The WSU will afford significant improvements for every future ALMA observation, whether it is for continuum or spectral line science. The continuum imaging speed will increase by a factor of 3 for the 2x bandwidth upgrade, plus any gains from improved receiver temperatures. The spectral line imaging speed will improve by a factor of 2-3. The improvements provided by the WSU will be most dramatic for high spectral resolution observations, where the instantaneous bandwidth correlated at 0.1-0.2 km/s resolution will increase by 1-2 orders of magnitude in most receiver bands. The improved sensitivity and spectral tuning grasp will open new avenues of exploration and enable more efficient observations. The impact will span the vast array of topics that embodies ALMA's motto "In Search of our Cosmic Origins". The WSU will greatly expand the chemical inventory of protoplanetary disks, which will have profound implications for how and when planets form. Observations of the interstellar medium will measure a variety of molecular species to build large samples of clouds, cores and protostars. The WSU will also enable efficient surveys of galaxies at high redshift. The first elements of the WSU will be available later this decade, including a wideband Band 2 receiver, a wideband upgrade to Band 6, new digitizers and digital transmission system, and a new correlator. Other upgrades are under study, including the newly developed ACA spectrometer and upgrades to Bands 9 and 10. The gains enabled by the WSU will further enhance ALMA as the world leading facility for millimeter/submillimeter astronomy. [Abridged]
... The peptide bond, -C(O)NH -, found in amides connects amino acids to peptides -of paramount importance to present day life on Earth. Unsurprisingly, how, when and where peptide bond formation arose is of immediate interest in prebiotic astrochemistry, tackling that challenging question: the origins of life [1,2]. ...
Article
Full-text available
Abstract A recent suggestion that acetamide, CH3C(O)NH2, could be readily formed on water-ice grains by the acid induced addition of water across the CN bond is now shown to be valid. Computational modelling of the reaction between R–CN (R = H, CH3) and a cluster of 32 molecules of water and one H3O+ proceeds auto-catalytically to form firstly a hydroxy imine R–C(OH)–NH and secondly an amide R–C(O)NH2. Quantum mechanical tunnelling, computed from small-curvature esti- mates, plays a key role in the rates of these reactions. This work represents the first credible effort to show how amides can be formed from abundant substrates, namely nitriles and water, reacting on a water- ice cluster containing catalytic amounts of hydrons in the interstellar medium with consequential implications towards the origins of life.
... The peptide bond, -C(O)NH -, found in amides connects amino acids to peptides -of paramount importance to present day life on Earth. Unsurprisingly, how, when and where peptide bond formation arose is of immediate interest in prebiotic astrochemistry, tackling that challenging question: the origins of life [1,2]. ...
Preprint
Full-text available
A recent suggestion that acetamide, \ce{CH3C(O)NH2}, could be readily formed on water-ice grains by the acid induced addition of water across the \ce{CN} bond is now shown to be valid. Computational modelling of the reaction between \ce{R-CN} (R = H, \ce{CH3}) and a cluster of 32 molecules of water and one \ce{H3O+} proceeds auto-catalytically to form firstly a hydroxy imine \ce{R-C(OH)=NH} and secondly an amide \ce{R-C(O)NH2}. Quantum mechanical tunnelling, computed from small-curvature estimates, plays a key role in the rates of these reactions. This work represents the first credible effort to show how amides can be formed from abundant substrates, namely nitriles and water, reacting on a water-ice cluster containing catalytic amounts of hydrons in the interstellar medium with consequential implications towards the origins of life.
Article
Full-text available
Aims. In this work, we aim to achieve the first laboratory detection of acetohydroxamic acid (CH 3 CONHOH), a relevant glycine isomer, to enable its eventual identification in the ISM. Methods. We employed a battery of state-of-the-art rotational spectroscopic techniques in the time domain to measure the microwave spectrum of acetohydroxamic acid. We then used the spectral GOTHAM survey performed with the Green Bank Telescope (GBT) to search for the lowest-energy Z -conformer toward the cold and quiescent molecular cloud TMC-1. We also employed a sensitive spectral survey of the chemically rich Galactic Center molecular cloud G+0.693-0.027, based on IRAM 30 m and Yebes 40 m observations. Results. We report direct experimental frequencies of the ground state of acetohydroxamic acid (up to 40 GHz). The ¹⁴ N nuclear quadrupole hyperfine structure and the A-E splittings due to the internal rotation were observed and analyzed. Hence, a precise set of the rotational spectroscopic parameters were determined for the two distinct conformers, Z - and E -acetohydroxamic acid, which is the initial and prerequisite step of their radio astronomical search in the ISM using low-frequency surveys. We report the nondetection of acetohydroxamic acid toward both astronomical sources. We derive an upper limit to the column density of this molecule very similar to that obtained for glycine. Its corresponding molecular abundance with respect to molecular hydrogen is found to be ≤1 × 10 ⁻⁹ and 2 × 10 ⁻¹⁰ in TMC-1 and G+0.693-0.027, respectively, which further constrain the abundance of this glycine isomer in the ISM.
Article
Full-text available
Context . The deuteration of molecules forming in the ices such as methanol (CH 3 OH) is sensitive to the physical conditions during their formation in dense cold clouds and can be probed through observations of deuterated methanol in hot cores. Aims . The aim is to determine the D/H ratio of methanol for a large sample of 99 high-mass protostars and to link this to the physical conditions during the formation of methanol in the prestellar phases. Methods . Observations with the Atacama Large Millimeter/submillimeter Array (ALMA) containing transitions of CH 3 OH, CH 2 DOH, CHD 2 OH, ¹³ CH 3 OH, and CH 3 ¹⁸ OH are investigated. The column densities of CH 2 DOH, CHD 2 OH, and CH 3 OH are determined for all sources, where the column density of CH 3 OH is derived from optically thin ¹³ C and ¹⁸ O isotopologues. Consequently, the D/H ratio of methanol is derived taking statistical effects into account. Results . Singly deuterated methanol (CH 2 DOH) is detected at the 3σ level toward 25 of the 99 sources in our sample of the high-mass protostars. Including upper limits, the (D/H) CH 3 OH ratio inferred from N CH 2 DOH / N CH 3 OH was derived for 38 of the 99 sources and varies between ~10−3-10−2. Including other high-mass hot cores from the literature, the mean methanol D/H ratio is 1.1 ± 0.7 × 10−3. This is more than one order of magnitude lower than what is seen for low-mass protostellar systems (2.2 ± 1.2 × 10−2). Doubly deuterated methanol (CHD 2 OH) is detected at the 3σ level toward 11 of the 99 sources. Including upper limits for 15 sources, the (D/H) CH 2 DOH ratios derived from N CHD 2 OH / N CH 2 DOH are more than two orders of magnitude higher than (D/H) CH 3 OH with an average of 2.0 ± 0.8 × 10−1 which is similar to what is found for low-mass sources. Comparison with literature GRAINOBLE models suggests that the high-mass prestellar phases are either warm (>20 K) or live shorter than the free-fall timescale. In contrast, for low-mass protostars, both a low temperature of <15 K and a prestellar phase timescale longer than the free-fall timescale are necessary. Conclusions . The (D/H) CH 3 OH ratio drops by more than an order of magnitude between low-mass and high-mass protostars due to either a higher temperature during the prestellar phases or shorter prestellar phases. However, successive deuteration toward CHD 2 OH seems equally effective between low-mass and high-mass systems.
Article
Full-text available
Quantifying the composition of the material in protoplanetary disks is essential to determining the potential for exoplanetary systems to produce and support habitable environments. When considering potential habitability, complex organic molecules are relevant, key among which is methanol (CH3OH). Methanol primarily forms at low temperatures via the hydrogenation of CO ice on the surface of icy dust grains and is a necessary basis for the formation of more complex species such as amino acids and proteins. We report the detection of CH3OH in a disk around a young, luminous A-type star, HD 100546. This disk is warm and therefore does not host an abundant reservoir of CO ice. We argue that the CH3OH cannot form in situ, and hence that this disk has probably inherited complex-organic-molecule-rich ice from an earlier cold dark cloud phase. This is strong evidence that at least some interstellar organic material survives the disk-formation process and can then be incorporated into forming planets, moons and comets. Therefore, crucial pre-biotic chemical evolution already takes place in dark star-forming clouds. The detection of methanol—a molecule that primarily forms on the cold, icy surfaces of dust grains—in a warm protoplanetary disk is an indication that complex organic molecules are inherited from the interstellar medium and transported intact to planet-forming regions.
Article
Full-text available
To date, about two dozen low-mass embedded protostars exhibit rich spectra with lines of complex organic molecules (COMs). These protostars seem to possess a different enrichment in COMs. However, the statistics of COM abundance in low-mass protostars are limited by the scarcity of observations. This study introduces the Perseus ALMA Chemistry Survey (PEACHES), which aims at unbiasedly characterizing the chemistry of COMs toward the embedded (Class 0/I) protostars in the Perseus molecular cloud. Of the 50 embedded protostars surveyed, 58% of them have emission from COMs. 56%, 32%, and 40% of the protostars have CH3OH, CH3OCHO, and N-bearing COMs, respectively. The detectability of COMs depends neither on the averaged continuum brightness temperature, a proxy of the H2 column density, nor on the bolometric luminosity and the bolometric temperature. For the protostars with detected COMs, CH3OH has a tight correlation with CH3CN, spanning more than two orders of magnitude in column densities normalized by the continuum brightness temperature, suggesting a chemical relation between CH3OH and CH3CN and a large chemical diversity in the PEACHES samples at the same time. A similar trend with more scatter is also found between all identified COMs, which hints at a common chemistry for the sources with COMs. The correlation between COMs is insensitive to the protostellar properties, such as the bolometric luminosity and the bolometric temperature. The abundance of larger COMs (CH3OCHO and CH3OCH3) relative to that of smaller COMs (CH3OH and CH3CN) increases with the inferred gas column density, hinting at an efficient production of complex species in denser envelopes. © 2021. The Author(s). Published by the American Astronomical Society.
Article
Full-text available
We present the results of a molecular survey of comet 46P/Wirtanen undertaken with the IRAM 30-m and NOEMA radio telescopes in December 2018. Observations at IRAM 30-m during the 12–18 December period comprise a 2 mm spectral survey covering 25 GHz and a 1 mm survey covering 62 GHz. The gas outflow velocity and kinetic temperature have been accurately constrained by the observations. We derive abundances of 11 molecules, some being identified remotely for the first time in a Jupiter-family comet, including complex organic molecules such as formamide, ethylene glycol, acetaldehyde, or ethanol. Sensitive upper limits on the abundances of 24 other molecules are obtained. The comet is found to be relatively rich in methanol (3.4% relative to water), but relatively depleted in CO, CS, HNC, HNCO, and HCOOH.
Article
Full-text available
Background: Peptide bonds are among the fundamental building blocks of life, polymerizing amino acids to form proteins that make up the structural components of living cells and regulate biochemical processes. The detection of glycine by NASA in comet Wild 2 in 2009 suggests the possibility of the formation of biomolecules in extra-terrestrial environments through the interstellar medium. Detected in the dense molecular cloud Sagittarius B2, acetamide is the largest molecule containing a peptide bond and is hypothesized to be the precursor to all amino acids; as such, viability of its formation is of important biological relevance. Methods: Under a proposed mechanism of ammonia and ketene reactants, which have also been detected in dense molecular clouds in the ISM, the reaction pathway for the formation of acetamide was modelled using quantum chemical calculations in Gaussian16, using Austin-Frisch-Petersson functional with dispersion density functional theory at a 6-31G(d) basis set level of theory to optimize geometries and determine the thermodynamic properties for the reaction. Stability of the reactants, transition states, and products were examined to establish a reasonable mechanism. Conclusion: Product formation of acetamide was found to be highly exergonic and exothermic with a low energy barrier, suggesting a mechanism that is viable in the extreme density and temperature conditions found in ISM.
Article
Full-text available
For the last four decades space exploration missions have searched for molecular life on planetary surfaces beyond Earth. Often pyrolysis gas chromatography mass spectrometry has been used as payload on such space exploration missions. These instruments have relatively low detection sensitivity and their measurements are often undermined by the presence of chloride salts and minerals. Currently, ocean worlds in the outer Solar System, such as the icy moons Europa and Enceladus, represent potentially habitable environments and are therefore prime targets for the search for biosignatures. For future space exploration missions, novel measurement concepts, capable of detecting low concentrations of biomolecules with significantly improved sensitivity and specificity are required. Here we report on a novel analytical technique for the detection of extremely low concentrations of amino acids using ORIGIN, a compact and lightweight laser desorption ionization – mass spectrometer designed and developed for in situ space exploration missions. The identified unique mass fragmentation patterns of amino acids coupled to a multi-position laser scan, allows for a robust identification and quantification of amino acids. With a detection limit of a few fmol mm−2, and the possibility for sub-fmol detection sensitivity, this measurement technique excels current space exploration systems by three orders of magnitude. Moreover, our detection method is not affected by chemical alterations through surface minerals and/or salts, such as NaCl that is expected to be present at the percent level on ocean worlds. Our results demonstrate that ORIGIN is a promising instrument for the detection of signatures of life and ready for upcoming space missions, such as the Europa Lander.
Article
Full-text available
Context. Glycolamide is a glycine isomer and also one of the simplest derivatives of acetamide (e.g., one hydrogen atom is replaced with a hydroxyl group), which is a known interstellar molecule. Aims. In this context, the aim of our work is to provide direct experimental frequencies of the ground vibrational state of glycolamide in the centimeter-, millimeter- and submillimeter-wavelength regions in order to enable its identification in the interstellar medium. Methods. We employed a battery of state-of-the-art rotational spectroscopic techniques in the frequency and time domain to measure the frequencies of glycolamide. We used the spectral line survey named Exploring Molecular Complexity with ALMA (EMoCA), which was performed toward the star forming region Sgr B2(N) with ALMA to search for glycolamide in space. We also searched for glycolamide toward Sgr B2(N) with the Effelsberg radio telescope. The astronomical spectra were analyzed under the local thermodynamic equilibrium approximation. We used the gas-grain chemical kinetics model MAGICKAL to interpret the results of the astronomical observations. Results. About 1500 transitions have been newly assigned up to 460 GHz to the most stable conformer, and a precise set of spectroscopic constants was determined. Spectral features of glycolamide were then searched for in the prominent hot molecular core Sgr B2(N2). We report the nondetection of glycolamide toward this source with an abundance at least six and five times lower than that of acetamide and glycolaldehyde, respectively. Our astrochemical model suggests that glycolamide may be present in this source at a level just below the upper limit, which was derived from the EMoCA survey. We could also not detect the molecule in the region’s extended molecular envelope, which was probed with the Effelsberg telescope. We find an upper limit to its column density that is similar to the column densities obtained earlier for acetamide and glycolaldehyde with the Green Bank Telescope.
Article
Full-text available
In the past decade, astrochemistry has witnessed an impressive increase in the number of detections of complex organic molecules. Some of these species are of prebiotic interest such as glycolaldehyde, the simplest sugar, or aminoacetonitrile, a possible precursor of glycine. Recently, we have reported the detection of two new nitrogen-bearing complex organics, glycolonitrile and Z-cyanomethanimine, known to be intermediate species in the formation process of ribonucleotides within theories of a primordial RNA-world for the origin of life. In this study, we present deep and high-sensitivity observations toward two of the most chemically rich sources in the galaxy: a giant molecular cloud in the center of the Milky Way (G + 0.693-0.027) and a proto-Sun (IRAS16293-2422 B). Our aim is to explore whether the key precursors considered to drive the primordial RNA-world chemistry are also found in space. Our high-sensitivity observations reveal that urea is present in G + 0.693-0.027 with an abundance of ∼5 × 10-11. This is the first detection of this prebiotic species outside a star-forming region. Urea remains undetected toward the proto-Sun IRAS16293-2422 B (upper limit to its abundance of ≤2 × 10-11). Other precursors of the RNA-world chemical scheme such as glycolaldehyde or cyanamide are abundant in space, but key prebiotic species such as 2-amino-oxazole, glyceraldehyde, or dihydroxyacetone are not detected in either source. Future more sensitive observations targeting the brightest transitions of these species will be needed to disentangle whether these large prebiotic organics are certainly present in space.
Article
Full-text available
Context. Complex organic molecules (COMs) have been detected in a few Class 0 protostars but their origin is not well understood. While the usual picture of a hot corino explains their presence as resulting from the heating of the inner envelope by the nascent protostar, shocks in the outflow, disk wind, the presence of a flared disk, or the interaction region between envelope and disk at the centrifugal barrier have also been claimed to enhance the abundance of COMs. Aims. Going beyond studies of individual objects, we want to investigate the origin of COMs in young protostars on a statistical basis. Methods. We use the CALYPSO survey performed with the Plateau de Bure Interferometer of the Institut de Radioastronomie Millimétrique to search for COMs at high angular resolution in a sample of 26 solar-type protostars, including 22 Class 0 and four Class I objects. We derive the column densities of the detected molecules under the local thermodynamic equilibrium approximation and search for correlations between their abundances and with various source properties. Results. Methanol is detected in 12 sources and tentatively in one source, which represents half of the sample. Eight sources (30%) have detections of at least three COMs. We find a strong chemical differentiation in multiple systems with five systems having one component with at least three COMs detected but the other component devoid of COM emission. All sources with a luminosity higher than 4 L⊙ have at least one detected COM whereas no COM emission is detected in sources with internal luminosity lower than 2 L⊙ , likely because of a lack of sensitivity. Internal luminosity is found to be the source parameter impacting the COM chemical composition of the sources the most, while there is no obvious correlation between the detection of COM emission and that of a disk-like structure. A canonical hot-corino origin may explain the COM emission in four sources, an accretion-shock origin in two or possibly three sources, and an outflow origin in three sources. The CALYPSO sources with COM detections can be classified into three groups on the basis of the abundances of oxygen-bearing molecules, cyanides, and CHO-bearing molecules. These chemical groups correlate neither with the COM origin scenarios, nor with the evolutionary status of the sources if we take the ratio of envelope mass to internal luminosity as an evolutionary tracer. We find strong correlations between molecules that are a priori not related chemically (for instance methanol and methyl cyanide), implying that the existence of a correlation does not imply a chemical link. Conclusions. The CALYPSO survey has revealed a chemical differentiation in multiple systems that is markedly different from the case of the prototypical binary IRAS 16293-2422. This raises the question of whether all low-mass protostars go through a phase showing COM emission. A larger sample of young protostars and a more accurate determination of their internal luminosity will be necessary to make further progress. Searching for correlations between the COM emission and the jet/outflow properties of the sources may also be promising.
Article
Full-text available
Context. Classical hot cores are rich in molecular emission, and they show a high abundance of complex organic molecules (COMs). The emergence of molecular complexity that is represented by COMs, in particular, is poorly constrained in the early evolution of hot cores. Aims. We put observational constraints on the physical location of COMs in a resolved high-mass protostellar envelope associated with the G328.2551−0.5321 clump. The protostar is single down to ~400 au scales and we resolved the envelope structure down to this scale. Methods. High angular resolution observations using the Atacama Large Millimeter Array allowed us to resolve the structure of the inner envelope and pin down the emission region of COMs. We use local thermodynamic equilibrium modelling of the available 7.5 GHz bandwidth around ~345 GHz to identify the COMs towards two accretion shocks and a selected position representing the bulk emission of the inner envelope. We quantitatively discuss the derived molecular column densities and abundances towards these positions, and use our line identification to qualitatively compare this to the emission of COMs seen towards the central position, corresponding to the protostar and its accretion disk. Results. We detect emission from 10 COMs, and identify a line of deuterated water (HDO). In addition to methanol (CH 3 OH), methyl formate (CH 3 OCHO) and formamide (HC(O)NH 2 ) have the most extended emission. Together with HDO, these molecules are found to be associated with both the accretion shocks and the inner envelope, which has a moderate temperature of Tkin ~ 110 K. We find a significant difference in the distribution of COMs. O-bearing COMs, such as ethanol, acetone, and ethylene glycol are almost exclusively found and show a higher abundance towards the accretion shocks with Tkin ~ 180 K. Whereas N-bearing COMs with a CN group, such as vinyl and ethyl cyanide peak on the central position, thus the protostar and the accretion disk. The molecular composition is similar towards the two shock positions, while it is significantly different towards the inner envelope, suggesting an increase in abundance of O-bearing COMs towards the accretion shocks. Conclusions. We present the first observational evidence for a large column density of COMs seen towards accretion shocks at the centrifugal barrier at the inner envelope. The overall molecular emission shows increased molecular abundances of COMs towards the accretion shocks compared to the inner envelope. The bulk of the gas from the inner envelope is still at a moderate temperature of Tkin ~ 110 K, and we find that the radiatively heated inner region is very compact (<1000 au). Since the molecular composition is dominated by that of the accretion shocks and the radiatively heated hot inner region is very compact, we propose this source to be a precursor to a classical, radiatively heated hot core. By imaging the physical location of HDO, we find that it is consistent with an origin within the moderately heated inner envelope, suggesting that it originates from sublimation of ice from the grain surface and its destruction in the vicinity of the heating source has not been efficient yet.
Article
Full-text available
Context. Urea, NH 2 C(O)NH 2 , is a molecule of great importance in organic chemistry and biology. Two searches for urea in the interstellar medium have been reported in the past, but neither were conclusive. Aims. We want to take advantage of the increased sensitivity and angular resolution provided by the Atacama Large Millimeter/submillimeter Array (ALMA) to search for urea toward the hot molecular cores embedded in the high-mass-star-forming region Sgr B2(N). Methods. We used the new spectral line survey named ReMoCA (Re-exploring Molecular Complexity with ALMA) that was performed toward Sgr B2(N) with ALMA in its observing cycle 4 between 84 and 114 GHz. The spectra were analyzed under the local thermodynamic equilibrium approximation. We constructed a full synthetic spectrum that includes all the molecules identified so far. We used new spectroscopic predictions for urea in its vibrational ground state and first vibrationally excited state to search for this complex organic molecule in the ReMoCA data set. We employed the gas-grain chemical kinetics model MAGICKAL to interpret the astronomical observations. Results. We report the secure detection of urea toward the hot core Sgr B2(N1) at a position called N1S slightly offset from the continuum peak, which avoids obscuration by the dust. The identification of urea relies on nine clearly detected transitions. We derive a column density of 2.7 × 10 ¹⁶ cm ⁻² for urea, two orders of magnitude lower than the column density of formamide, and one order of magnitude below that of methyl isocyanate, acetamide, and N-methylformamide. The latter molecule is reliably identified toward N1S with 60 clearly detected lines, confirming an earlier claim of its tentative interstellar detection. We report the first interstellar detections of NH 2 CH ¹⁸ O and ¹⁵ NH 2 CHO. We also report the nondetection of urea toward the secondary hot core Sgr B2(N2) with an abundance relative to the other four species at least one order of magnitude lower than toward the main hot core. Our chemical model roughly reproduces the relative abundances of formamide, methyl isocyanate, acetamide, and N-methylformamide, but it overproduces urea by at least one order of magnitude. Conclusions. Urea is clearly detected in one of the hot cores. Comparing the full chemical composition of Sgr B2(N1S) and Sgr B2(N2) may help understand why urea is at least one order of magnitude less abundant in the latter source.
Article
Full-text available
We present observations of the C-band $1_{10}-1_{11}$ (4.8 GHz) and Ku-band $2_{11}-2_{12}$ (14.5 GHz) K-doublet lines of H$_2$CO and the C-band $1_{10}-1_{11}$ (4.6 GHz) line of H$_2$$^{13}$CO toward a large sample of Galactic molecular clouds, through the Shanghai Tianma 65-m radio telescope (TMRT). Our sample with 112 sources includes strong H$_2$CO sources from the TMRT molecular line survey at C-band and other known H$_2$CO sources. All three lines are detected toward 38 objects (43 radial velocity components) yielding a detection rate of 34\%. Complementary observations of their continuum emission at both C- and Ku-bands were performed. Combining spectral line parameters and continuum data, we calculate the column densities, the optical depths and the isotope ratio H$_2$$^{12}$CO/H$_2$$^{13}$CO for each source. To evaluate photon trapping caused by sometimes significant opacities in the main isotopologue's rotational mm-wave lines connecting our measured K-doublets, and to obtain $^{12}$C/$^{13}$C abundance ratios, we used the RADEX non-LTE model accounting for radiative transfer effects. This implied the use of the new collision rates from \citet{Wiesenfeld2013}. Also implementing distance values from trigonometric parallax measurements for our sources, we obtain a linear fit of $^{12}$C/$^{13}$C = (5.08$\pm$1.10)D$_{GC}$ + (11.86$\pm$6.60), with a correlation coefficient of 0.58. D$_{GC}$ refers to Galactocentric distances. Our $^{12}$C/$^{13}$C ratios agree very well with the ones deduced from CN and C$^{18}$O but are lower than those previously reported on the basis of H$_2$CO, tending to suggest that the bulk of the H$_2$CO in our sources was formed on dust grain mantles and not in the gas phase.
Article
Full-text available
Context. The fragmentation mode of high-mass molecular clumps and the properties of the central rotating structures surrounding the most luminous objects have yet to be comprehensively characterised. Aims. We study the fragmentation and kinematics of the high-mass star-forming region W3(H 2 O), as part of the IRAM NOrthern Extended Millimeter Array (NOEMA) large programme CORE. Methods. Using the IRAM NOEMA and the IRAM 30 m telescope, the CORE survey has obtained high-resolution observations of 20 well-known highly luminous star-forming regions in the 1.37 mm wavelength regime in both line and dust continuum emission. Results. We present the spectral line setup of the CORE survey and a case study for W3(H 2 O). At ~0.′′35 (700 AU at 2.0 kpc) resolution, the W3(H 2 O) clump fragments into two cores (west and east), separated by ~2300 AU. Velocity shifts of a few km s ⁻¹ are observed in the dense-gas tracer, CH 3 CN, across both cores, consistent with rotation and perpendicular to the directions of two bipolar outflows, one emanating from each core. The kinematics of the rotating structure about W3(H 2 O) W shows signs of differential rotation of material, possibly in a disk-like object. The observed rotational signature around W3(H 2 O) E may be due to a disk-like object, an unresolved binary (or multiple) system, or a combination of both. We fit the emission of CH 3 CN (12 K −11 K ), K = 4−6 and derive a gas temperature map with a median temperature of ~165 K across W3(H 2 O). We create a Toomre Q map to study thestability of the rotating structures against gravitational instability. The rotating structures appear to be Toomre unstable close to their outer boundaries, with a possibility of further fragmentation in the differentially rotating core, W3(H 2 O) W. Rapid cooling in the Toomre unstable regions supports the fragmentation scenario. Conclusions. Combining millimetre dust continuum and spectral line data toward the famous high-mass star-forming region W3(H 2 O), we identify core fragmentation on large scales, and indications for possible disk fragmentation on smaller spatial scales.
Article
Full-text available
Formation of alanine and glycine oligomers in films produced by drying aqueous mixtures of lactic acid and silica nanoparticles have been studied under plausible prebiotic conditions. The addition of silica results in alanine or glycine enrichment in the polymers. Oligomerization proceeds via ester‐mediated peptide bond formation in an acidic and evaporative environment at temperatures as low as 85 °C. For both amino acids, the dominant species produced in the presence of silica and lactic acid are rich in amide bonds and ester deficient. At higher temperatures, glycine and alanine oligomers contain only a single hydroxy acid residue conjugated to the N‐terminus. Similar product distributions occurs with silica particles pre‐reacted with lactic acid, suggesting a catalytic role of a functionalized surface. This work highlights the role minerals may have served in transitioning from oligomers with both ester and amide linkages (depsipeptides) to peptides in a prebiotic context.
Article
Full-text available
We present an unbiased spectral line survey toward the Galactic Centre (GC) quiescent giant molecular cloud (QGMC), G+0.693 using the GBT and IRAM 30 telescopes. Our study highlights an extremely rich organic inventory of abundant amounts of nitrogen (N)-bearing species in a source without signatures of star formation. We report the detection of 17 N-bearing species in this source, of which 8 are complex organic molecules (COMs). A comparison of the derived abundances relative to H2 is made across various galactic and extragalactic environments. We conclude that the unique chemistry in this source is likely to be dominated by low-velocity shocks with X-rays/cosmic rays also playing an important role in the chemistry. Like previous findings obtained for O-bearing molecules, our results for N-bearing species suggest a more efficient hydrogenation of these species on dust grains in G+0.693 than in hot cores in the Galactic disk, as a consequence of the low dust temperatures coupled with energetic processing by X-ray/cosmic ray radiation in the GC.
Article
Full-text available
Context. The Class 0 protostellar binary IRAS 16293–2422 is an interesting target for (sub)millimeter observations due to, both, the rich chemistry toward the two main components of the binary and its complex morphology. Its proximity to Earth allows the study of its physical and chemical structure on solar system scales using high angular resolution observations. Such data reveal a complex morphology that cannot be accounted for in traditional, spherical 1D models of the envelope. Aims. The purpose of this paper is to study the environment of the two components of the binary through 3D radiative transfer modeling and to compare with data from the Atacama Large Millimeter/submillimeter Array. Such comparisons can be used to constrain the protoplanetary disk structures, the luminosities of the two components of the binary and the chemistry of simple species. Methods. We present ¹³ CO, C ¹⁷ O and C ¹⁸ O J = 3 – 2 observations from the ALMA Protostellar Interferometric Line Survey (PILS), together with a qualitative study of the dust and gas density distribution of IRAS 16293–2422. A 3D dust and gas model including disks and a dust filament between the two protostars is constructed which qualitatively reproduces the dust continuum and gas line emission. Results. Radiative transfer modeling in our sampled parameter space suggests that, while the disk around source A could not be constrained, the disk around source B has to be vertically extended. This puffed-up structure can be obtained with both a protoplanetary disk model with an unexpectedly high scale-height and with the density solution from an infalling, rotating collapse. Combined constraints on our 3D model, from observed dust continuum and CO isotopologue emission between the sources, corroborate that source A should be at least six times more luminous than source B. We also demonstrate that the volume of high-temperature regions where complex organic molecules arise is sensitive to whether or not the total luminosity is in a single radiation source or distributed into two sources, affecting the interpretation of earlier chemical modeling efforts of the IRAS 16293–2422 hot corino which used a single-source approximation. Conclusions. Radiative transfer modeling of source A and B, with the density solution of an infalling, rotating collapse or a protoplanetary disk model, can match the constraints for the disk-like emission around source A and B from the observed dust continuum and CO isotopologue gas emission. If a protoplanetary disk model is used around source B, it has to have an unusually high scale-height in order to reach the dust continuum peak emission value, while fulfilling the other observational constraints. Our 3D model requires source A to be much more luminous than source B; L A ~ 18 L ⊙ and L B ~ 3 L ⊙ .
Article
Full-text available
Context: Modern versions of the Miller-Urey experiment claim that formamide (NH$_2$CHO) could be the starting point for the formation of metabolic and genetic macromolecules. Intriguingly, formamide is indeed observed in regions forming Solar-type stars as well as in external galaxies. Aims: How NH$_2$CHO is formed has been a puzzle for decades: our goal is to contribute to the hotly debated question of whether formamide is mostly formed via gas-phase or grain surface chemistry. Methods: We used the NOEMA interferometer to image NH$_2$CHO towards the L1157-B1 blue-shifted shock, a well known interstellar laboratory, to study how the components of dust mantles and cores released into the gas phase triggers the formation of formamide. Results: We report the first spatially resolved image (size $\sim$ 9", $\sim$ 2300 AU) of formamide emission in a shocked region around a Sun-like protostar: the line profiles are blueshifted and have a FWHM $\simeq$ 5 km s$^{-1}$. A column density of $N_{\rm NH_2CHO}$ = 8 $\times$ 10$^{12}$ cm$^{-1}$, and an abundance (with respect to H-nuclei) of 4 $\times$ 10$^{-9}$ are derived. We show a spatial segregation of formamide with respect to other organic species. Our observations, coupled with a chemical modelling analysis, indicate that the formamide observed in L1157-B1 is formed by gas-phase chemical process, and not on grain surfaces as previously suggested. Conclusions: The SOLIS interferometric observations of formamide provide direct evidence that this potentially crucial brick of life is efficiently formed in the gas-phase around Sun-like protostars.
Article
Full-text available
The laboratory work presented here simulates the chemistry on icy dust grains as typical for the ‘CO freeze-out stage’ in dark molecular clouds. It differs from previous studies in that solid-state hydrogenation and vacuum UV photoprocessing are applied simultaneously to co-depositing molecules. In parallel, the reactions at play are described for fully characterized laboratory conditions. The focus is on the formation of molecules containing both carbon and nitrogen atoms, starting with NO in CO-, H2CO-, and CH3OH-rich ices at 13 K. The experiments yield three important conclusions. (1) Without UV processing hydroxylamine (NH2OH) is formed, as reported previously. (2) With UV processing (energetic) NH2 is formed through photodissociation of NH2OH. This radical is key in the formation of species with an N–C bond. (3) The formation of three N–C bearing species, HNCO, OCN−, and NH2CHO, is observed. The experiments put a clear chemical link between these species; OCN− is found to be a direct derivative of HNCO and the latter is shown to have the same precursor as formamide (NH2CHO). Moreover, the addition of VUV competing channels decreases the amount of NO molecules converted into NH2OH by at least one order of magnitude. Consequently, this decrease in NH2OH formation yield directly influences the amount of NO molecules that can be converted into HNCO, OCN−, and NH2CHO.
Article
Full-text available
Formamide (NH2CHO) has previously been detected in several star-forming regions and is thought to be a precursor for different prebiotic molecules. Its formation mechanism is still debated, however. Observations of formamide, related species, and their isopotologues may provide useful clues to the chemical pathways leading to their formation. The Protostellar Interferometric Line Survey (PILS) represents an unbiased, high angular resolution and sensitivity spectral survey of the low-mass protostellar binary IRAS 16293–2422 with the Atacama Large Millimeter/submillimeter Array (ALMA). For the first time, we detect the three singly deuterated forms of NH2CHO (NH2CDO, cis- and trans-NHDCHO), as well as DNCO towards the component B of this binary source. The images reveal that the different isotopologues are all present in the same region. Based on observations of the 13C isotopologues of formamide and a standard 12C/ 13C ratio, the deuterium fractionation is found to be similar for the three different forms with a value of about 2%. The DNCO/HNCO ratio is also comparable to the D/H ratio of formamide (∼1%). These results are in agreement with the hypothesis that NH2CHO and HNCO are chemically related through grain-surface formation.
Article
Full-text available
Comets harbor the most pristine material in our solar system in the form of ice, dust, silicates, and refractory organic material with some interstellar heritage. The evolved gas analyzer Cometary Sampling and Composition (COSAC) experiment aboard Rosetta's Philae lander was designed for in situ analysis of organic molecules on comet 67P/Churyumov-Gerasimenko. Twenty-five minutes after Philae's initial comet touchdown, the COSAC mass spectrometer took a spectrum in sniffing mode, which displayed a suite of 16 organic compounds, including many nitrogen-bearing species but no sulfur-bearing species, and four compounds-methyl isocyanate, acetone, propionaldehyde, and acetamide-that had not previously been reported in comets. Copyright © 2015, American Association for the Advancement of Science.
Article
Full-text available
As discovery of complex molecules and ions in our solar system and the interstellar medium has proliferated, several groups have turned to laboratory experiments in an effort to simulate and understand these chemical processes. So far only infrared (IR) and ultraviolet (UV) spectroscopy has been able to directly probe these reactions in ices in their native, low-temperature states. Here we report for the first time results using a complementary technique that harnesses two-step two-color laser ablation and ionization to measure mass spectra of energetically processed astrophysical and cometary ice analogs directly without warming the ices—a method for hands-off in situ ice analysis. Electron bombardment and UV irradiation of H2O, CH3OH, and NH3 ices at 5 K and 70 K led to complex irradiation products, including HCO, CH3CO, formamide, acetamide, methyl formate, and HCN. Many of these species, whose assignment was also strengthened by isotope labeling studies and correlate with IR-based spectroscopic studies of similar irradiated ices, are important ingredients for the building blocks of life. Some of them have been detected previously via astronomical observations in the interstellar medium and in cometary comae. Other species such as CH3CO (acetyl) are yet to be detected in astrophysical ices or interstellar medium. Our studies suggest that electron and UV photon processing of astrophysical ice analogs leads to extensive chemistry even in the coldest reaches of space, and lend support to the theory of comet-impact-induced delivery of complex organics to the inner solar system.
Article
Full-text available
A theoretical study of the reactions of with formaldehyde and with formamide is carried out. The viability of these gas-phase ion-molecule reactions as possible sources of formamide and acetamide under the conditions of interstellar medium is evaluated. We report a theoretical estimation of the reaction enthalpies and an analysis of their potential energy surfaces. Formation of protonated formamide from the reaction between ammonium cation and formaldehyde is an exothermic process, but all the channels located on the potential energy surface leading to this product present net activation energies. For the reaction between methanium and formamide, different products are possible from a thermodynamic point of view. An analysis of its potential energy surface showed that formation of protonated acetamide and amino acetaldehyde takes place through barrier-free paths. Therefore, this reaction could be a feasible source of acetamide and amino acetaldehyde in space.
Article
Full-text available
We present the results of a line identification analysis using data from the IRAM Plateau de Bure Plateau de Bure Interferometer, focusing on six massive star-forming hot cores: G31.41+0.31, G29.96−0.02, G19.61−0.23, G10.62−0.38, G24.78+0.08A1 and G24.78+0.08A2. We identify several transitions of vibrationally excited methyl formate (HCOOCH3) for the first time in these objects as well as transitions of other complex molecules, including ethyl cyanide (C2H5CN), and isocyanic acid (HNCO). We also postulate a detection of one transition of glycolaldehyde (CH2(OH)CHO) in two new hot cores. We find G29.96−0.02, G19.61−0.23, G24.78+0.08A1 and G24.78+0.08A2 to be chemically very similar. G31.41+0.31, however, is chemically different: it manifests a larger chemical inventory and has significantly larger column densities. We suggest that it may represent a different evolutionary stage to the other hot cores in the sample, or it may surround a star with a higher mass. We derive column densities for methyl formate in G31.41+0.31, using the rotation diagram method, of 4 × 1017 cm−2 and a Trot of ∼170 K. For G29.96−0.02, G24.78+0.08A1 and G24.78+0.08A2, glycolaldehyde, methyl formate and methyl cyanide, all seem to trace the same material and peak at roughly the same position towards the dust emission peak. For G31.41+0.31, however, glycolaldehyde shows a different distribution to methyl formate and methyl cyanide and seems to trace the densest, most compact inner part of hot cores.
Article
Context. The physical and chemical conditions in Class 0/I protostars are fundamental in unlocking the protostellar accretion process and its impact on planet formation. Aims. The aim is to determine which physical components are traced by different molecules at subarcsecond scales (<100–400 au). Methods. We used a suite of Atacama Large Millimeter/submillimeter Array (ALMA) datasets in band 6 (1 mm), band 5 (1.8 mm), and band 3 (3 mm) at spatial resolutions 0.″5–3″ for 16 protostellar sources. For a subset of sources, Atacama Compact Array (ACA) data at band 6 with a spatial resolution of 6″ were added. The availability of low- and high-excitation lines and data on small and larger scales, is important to understand the full picture. Results. The protostellar envelope is well traced by C ¹⁸ O, DCO ⁺ , and N 2 D ⁺ , which stems from the freeze-out of CO governing the chemistry at envelope scales. Molecular outflows are seen in classical shock tracers such as SiO and SO, but ice-mantle products such as CH 3 OH and HNCO that are released with the shock are also observed. The molecular jet is a key component of the system. It is only present at the very early stages, and it is prominent not only in SiO and SO, but occasionally also in H 2 CO. The cavity walls show tracers of UV-irradiation such as C 2 H, c-C 3 H 2 and CN. In addition to showing emission from complex organic molecules (COMs), the hot inner envelope also presents compact emission from small molecules such as H 2 S, SO, OCS, and H ¹³ CN, which most likely are related to ice sublimation and high-temperature chemistry. Conclusions. Subarcsecond millimeter-wave observations allow us to identify these (simple) molecules that best trace each of the physical components of a protostellar system. COMs are found both in the hot inner envelope (high-excitation lines) and in the outflows (lower-excitation lines) with comparable abundances. COMs can coexist with hydrocarbons in the same protostellar sources, but they trace different components. In the near future, mid-infrared observations with JWST–MIRI will provide complementary information about the hottest gas and the ice-mantle content, at unprecedented sensitivity and at resolutions comparable to ALMA for the same sources.
Article
Context. The chemical inventory of planets is determined by the physical and chemical processes that govern the early phases of star formation. Nitrogen-bearing species are of interest as many provide crucial precursors in the formation of life-related matter. Aims. The aim is to investigate nitrogen-bearing complex organic molecules towards two deeply embedded Class 0 low-mass protostars (Perseus B1-c and Serpens S68N) at millimetre wavelengths with the Atacama Large Millimeter/submillimeter Array (ALMA). Next, the results of the detected nitrogen-bearing species are compared with those of oxygen-bearing species for the same and other sources. The similarities and differences are used as further input to investigate the underlying formation pathways. Methods. ALMA observations of B1-c and S68N in Band 6 (~1 mm) and Band 5 (~2 mm) are studied at ~0.5′′ resolution, complemented by Band 3 (~3 mm) data in a ~2.5′′ beam. The spectra are analysed for nitrogen-bearing species using the CASSIS spectral analysis tool, and the column densities and excitation temperatures are determined. A toy model is developed to investigate the effect of source structure on the molecular emission. Results. Formamide (NH 2 CHO), ethyl cyanide (C 2 H 5 CN), isocyanic acid (HNCO, HN ¹³ CO, DNCO), and methyl cyanide (CH 3 CN, CH 2 DCN, and CHD 2 CN) are identified towards the investigated sources. Their abundances relative to CH 3 OH and HNCO are similar for the two sources, with column densities that are typically an order of magnitude lower than those of oxygen-bearing species. The largest variations, of an order of magnitude, are seen for NH 2 CHO abundance ratios with respect to HNCO and CH 3 OH and do not correlate with the protostellar luminosity. In addition, within uncertainties, the nitrogen-bearing species have similar excitation temperatures to those of oxygen-bearing species (~100–300 K). The measured excitation temperatures are larger than the sublimation temperatures for the respective species. Conclusions. The similarity of most abundances with respect to HNCO for the investigated sources, including those of CH 2 DCN and CHD 2 CN, hints at a shared chemical history, especially the high D-to-H ratio in cold regions prior to star formation. However, some of the variations in abundances may reflect the sensitivity of the chemistry to local conditions such as temperature (e.g. NH 2 CHO), while others may arise from differences in the emitting areas of the molecules linked to their different binding energies in the ice. The excitation temperatures likely reflect the mass-weighted kinetic temperature of a gas that follows a power law structure. The two sources discussed in this work add to the small number of sources that have been subjected to such a detailed chemical analysis on Solar System scales. Future data from the James Webb Space Telescope will allow a direct comparison between the ice and gas abundances of both smaller and larger nitrogen-bearing species.
Article
Massive star-forming regions exhibit an extremely rich and diverse chemistry, which in principle provides a wealth of molecular probes, as well as laboratories for interstellar prebiotic chemistry. Since the chemical structure of these sources displays substantial spatial variation among species on small scales (≲10 ⁴ au), high-angular-resolution observations are needed to connect chemical structures to local environments and inform astrochemical models of massive star formation. To address this, we present ALMA 1.3 mm observations toward OB cluster-forming region G10.6-0.4 (hereafter “G10.6”) at a resolution of 014 (700 au). We find highly structured emission from complex organic molecules (COMs) throughout the central 20,000 au, including two hot molecular cores and several shells or filaments. We present spatially resolved maps of rotational temperature and column density for a large sample of COMs and warm gas tracers. These maps reveal a range of gas substructure in both O- and N-bearing species. We identify several spatial correlations that can be explained by existing models for the formation of COMs, including NH 2 CHO/HNCO and CH 3 OCHO/CH 3 OCH 3 , but also observe unexpected distributions and correlations that suggest that our current understanding of COM formation is far from complete. Importantly, complex chemistry is observed throughout G10.6, rather than being confined to hot cores. The COM composition appears to be different in the cores compared to the more extended structures, which illustrates the importance of high-spatial-resolution observations of molecular gas in elucidating the physical and chemical processes associated with massive star formation.
Article
Context. Many C-, O-, and H-containing complex organic molecules (COMs) have been observed in the interstellar medium (ISM) and their formation has been investigated in laboratory experiments. An increasing number of recent detections of large N-bearing COMs motivates our experimental investigation of their chemical origin. Aims. We investigate the potential role of acetonitrile (CH 3 CN) as a parent molecule to N-bearing COMs, motivated by its omnipresence in the ISM and structural similarity to another well-known precursor species, CH 3 OH. The aim of the present work is to characterize the chemical complexity that can result from vacuum UV photolysis of a pure CH 3 CN ice and a more realistic mixture of H 2 O:CH 3 CN. Methods. The CH 3 CN ice and H 2 O:CH 3 CN ice mixtures were UV irradiated at 20 K. Laser desorption post ionization time-of-flight mass spectrometry was used to detect the newly formed COMs in situ. We examined the role of water in the chemistry of interstellar ices through an analysis of two different ratios of H 2 O:CH 3 CN (1:1 and 20:1). Results. We find that CH 3 CN is an excellent precursor to the formation of larger nitrogen-containing COMs, including CH 3 CH 2 CN, NCCN/CNCN, and NCCH 2 CH 2 CN. During the UV photolysis of H 2 O:CH 3 CN ice, the water derivatives play a key role in the formation of molecules with functional groups of: imines, amines, amides, large nitriles, carboxylic acids, and alcohols. We discuss possible formation pathways for molecules recently detected in the ISM.
Article
Aims. Methyl isocyanate (CH 3 NCO) and glycolonitrile (HOCH 2 CN) are isomers and prebiotic molecules that are involved in the formation of peptide structures and the nucleobase adenine, respectively. These two species are investigated to study the interstellar chemistry of cyanides (CN) and isocyanates (NCO) and to gain insight into the reservoir of interstellar prebiotic molecules. Methods. ALMA observations of the intermediate-mass Class 0 protostar Serpens SMM1-a and ALMA-PILS data of the low-mass Class 0 protostar IRAS 16293B are used. Spectra are analysed with the CASSIS line analysis software package in order to identify and characterise molecules. Results. CH 3 NCO, HOCH 2 CN, and various other molecules are detected towards SMM1-a. HOCH 2 CN is identified in the PILS data towards IRAS 16293B in a spectrum extracted at a half-beam offset position from the peak continuum. CH 3 NCO and HOCH 2 CN are equally abundant in SMM1-a at [X]/[CH 3 OH] of 5.3 × 10 ⁻⁴ and 6.2 × 10 ⁻⁴ , respectively. A comparison between SMM1-a and IRAS 16293B shows that HOCH 2 CN and HNCO are more abundant in the former source, but CH 3 NCO abundances do not differ significantly. Data from other sources are used to show that the [CH 3 NCO]/[HNCO] ratio is similar in all these sources within ~10%. Conclusions. The new detections of CH 3 NCO and HOCH 2 CN are additional evidence for a large interstellar reservoir of prebiotic molecules that can contribute to the formation of biomolecules on planets. The equal abundances of these molecules in SMM1-a indicate that their formation is driven by kinetic processes instead of thermodynamic equilibrium, which would drive the chemistry to one product. HOCH 2 CN is found to be much more abundant in SMM1-a than in IRAS 16293B. From the observational data, it is difficult to indicate a formation pathway for HOCH 2 CN, but the thermal Strecker-like reaction of CN ⁻ with H 2 CO is a possibility. The similar [CH 3 NCO]/[HNCO] ratios found in the available sample of studied interstellar sources indicate that these two species are either chemically related or their formation is affected by physical conditions in the same way. Both species likely form early during star formation, presumably via ice mantle reactions taking place in the dark cloud or when ice mantles are being heated in the hot core. The relatively high abundances of HOCH 2 CN and HNCO in SMM1-a may be explained by a prolonged stage of relatively warm ice mantles, where thermal and energetic processing of HCN in the ice results in the efficient formation of both species.
Article
Amide molecules produced in space could play a key role in the formation of biomolecules on a young planetary object. However, the formation and chemical network of amide molecules in space is not well understood. In this work, Atacama Large Millimeter/submillimeter Array observations are used to study a number of amide(-like) molecules toward the high-mass star-forming region NGC 6334I. The first detections of cyanamide (NH2CN), acetamide (CH3C(O)NH2), and N-methylformamide (CH3NHCHO) are presented for this source. These are combined with analyses of isocyanic acid (HNCO) and formamide (NH2CHO), and a tentative detection of urea (carbamide; NH2C(O)NH2). Abundance correlations show that most amides are likely formed in related reactions occurring in ices on interstellar dust grains in NGC 6334I. However, in an expanded sample of sources, large abundance variations are seen for NH2CN that seem to depend on the source type, which suggests that the physical conditions within the source heavily influence the production of this species. The rich amide inventory of NGC 6334I strengthens the case that interstellar molecules can contribute to the emergence of biomolecules on planets.
Article
G+0.693-0.03 is a quiescent molecular cloud located within the Sagittarius B2 (Sgr B2) star-forming complex. Recent spectral surveys have shown that it represents one of the most prolific repositories of complex organic species in the Galaxy. The origin of such chemical complexity, along with the small-scale physical structure and properties of G+0.693-0.03, remains a mystery. In this paper, we report the study of multiple molecules with interferometric observations in combination with single-dish data in G+0.693-0.03. Despite the lack of detection of continuum source, we find small-scale (0.2 pc) structures within this cloud. The analysis of the molecular emission of typical shock tracers such as SiO, HNCO, and CH3OH unveiled two molecular components, peaking at velocities of 57 and 75 km s−1. They are found to be interconnected in both space and velocity. The position–velocity diagrams show features that match with the observational signatures of a cloud–cloud collision. Additionally, we detect three series of class I methanol masers known to appear in shocked gas, supporting the cloud–cloud collision scenario. From the maser emission we provide constraints on the gas kinetic temperatures (∼30–150 K) and H2 densities (104–105 cm−2). These properties are similar to those found for the starburst galaxy NGC 253 also using class I methanol masers, suggested to be associated with a cloud–cloud collision. We conclude that shocks driven by the possible cloud–cloud collision is likely the most important mechanism responsible for the high level of chemical complexity observed in G+0.693-0.03.
Article
Our modern day Solar System has 4.6 × 109 yr of evolution behind it with just a few relics of its birth conditions remaining. Comets are thought to be some of the most pristine tracers of the initial ingredients that were combined to produce the Earth and the other planets. Other low-mass protostars may be analogous to our proto-Sun and hence, could be used to study the building blocks necessary to form Solar-like systems. This study tests this idea on the basis of new high sensitivity, high spatial resolution ALMA data on the protoplanetary disc-scales (∼70 au) of IRAS 16293-2422 and the bulk composition of comet 67P/Churyumov-Gerasimenko, as determined for the first time with the unique in situ monitoring carried out by Rosetta. The comparative analysis of the observations from the Protostellar Interferometric Line Survey (PILS) and the measurements made with Rosetta Orbiter Spectrometer for Ion and Neutral Analysis (ROSINA) shows that the relative abundances of CHO-, N-, and S-bearing molecules correlate, with some scatter, between protostellar and cometary data. A tentative correlation is seen for the first time for P- and Cl-bearing compounds. The results imply that the volatile composition of cometesimals and planetesimals is partially inherited from the pre- and protostellar phases of evolution.
Article
Context. Complex organic molecules (COMs) are thought to form on icy dust grains in the earliest phase of star formation. The evolution of these COMs from the youngest Class 0/I protostellar phases toward the more evolved Class II phase is still not fully understood. Since planet formation seems to start early, and mature disks are too cold for characteristic COM emission lines, studying the inventory of COMs on Solar- System scales in the Class 0/I stage is relevant. Aims. Our aim is to determine the abundance ratios of oxygen-bearing COMs in Class 0 protostellar systems on scales of ~100 AU radius. We aim to compare these abundances with one another, and to the abundances of other low-mass protostars such as IRAS 16293-2422B and HH 212. Additionally, using both cold and hot COM lines, the gas-phase abundances can be tracked from a cold to a hot component, and ultimately be compared with those in ices to be measured with the James Webb Space Telescope (JWST). The abundance of deuterated methanol allows us to probe the ambient temperature during the formation of this species. Methods. ALMA Band 3 (3 mm) and Band 6 (1 mm) observations are obtained for seven Class 0 protostars in the Perseus and Serpens star-forming regions. By modeling the inner protostellar region using local thermodynamic equilibrium models, the excitation temperature and column densities are determined for several O-bearing COMs including methanol (CH 3 OH), acetaldehyde (CH 3 CHO), methyl formate (CH 3 OCHO), and dimethyl ether (CH 3 OCH 3 ). Abundance ratios are taken with respect to CH 3 OH. Results. Three out of the seven of the observed sources, B1-c, B1-bS (both Perseus), and Serpens S68N (Serpens), show COM emission. No clear correlation seems to exist between the occurrence of COMs and source luminosity. The abundances of several COMs such as CH 3 OCHO, CH 3 OCH 3 , acetone (CH 3 COCH 3 ), and ethylene glycol ((CH 2 OH) 2 ) are remarkably similar for the three COM-rich sources; this similarity also extends to IRAS 16293-2422B and HH 212, even though collectively these sources originate from four different star-forming regions (i.e., Perseus, Serpens, Ophiuchus, and Orion). For other COMs like CH 3 CHO, ethanol (CH 3 CH 2 OH), and glycolaldehyde (CH 2 OHCHO), the abundances differ by up to an order of magnitude, indicating that local source conditions become important. B1-c hosts a cold ( T ex ≈ 60 K), more extended component of COM emission with a column density of typically a few percent of the warm/hot ( T ex ~ 200 K) central component. A D/H ratio of 1–3% is derived for B1-c, S68N, and B1-bS based on the CH 2 DOH/CH 3 OH ratio (taking into account statistical weighting) suggesting a temperature of ~15 K during the formation of methanol. This ratio is consistent with other low-mass protostars, but is lower than for high-mass star-forming regions. Conclusions. The abundance ratios of most O-bearing COMs are roughly fixed between different star-forming regions, and are presumably set at an earlier cold prestellar phase. For several COMs, local source properties become important. Future mid-infrared facilities such as JWST/MIRI will be essential for the direct observation of COM ices. Combining this with a larger sample of COM-rich sources with ALMA will allow ice and gas-phase abundances to be directly linked in order to constrain the routes that produce and maintain chemical complexity during the star formation process.
Article
Acetamide (CH3CONH2) is the largest molecule containing an amide bond that has been detected in an interstellar medium; it is considered to be a precursor for complex organic molecules (COM). We utilized the advantages of a para-hydrogen (p-H2) quantum-solid matrix host to perform efficient reactions of hydrogen atoms with CH3CONH2. The H-abstraction reaction from the methyl group of CH3CONH2 to produce the 2-amino-2-oxoethyl radical, •CH2CONH2, was observed as the sole reaction channel in solid p-H2 at 3.3 K, consistent with theoretical predictions that this reaction has the smallest barrier among all possible channels. Our results show that the amide bond of acetamide is unaffected by hydrogen exposure, but the hydrogen abstraction activates this molecule to react with other species on its methyl site to extend its size or to include other functional groups as a first step to form COM under prebiotic or abiotic conditions. This previously neglected path should be considered in the astrochemical modeling. The photolysis of •CH2CONH2 at wavelengths 380−450 nm produces ketene; this step might provide a plausible mechanism to explain the anti-correlated abundance of ketene and acetamide in some astronomical observations.
Article
Formamide (NH2CHO) has been identified as a potential precursor of a wide variety of organic compounds essential to life, and many biochemical studies propose it likely played a crucial role in the context of the origin of life on our planet. The detection of formamide in comets, which are believed to have --at least partially-- inherited their current chemical composition during the birth of the Solar System, raises the question whether a non-negligible amount of formamide may have been exogenously delivered onto a very young Earth about four billion years ago. A crucial part of the effort to answer this question involves searching for formamide in regions where stars and planets are forming today in our Galaxy, as this can shed light on its formation, survival, and chemical re-processing along the different evolutionary phases leading to a star and planetary system like our own. The present review primarily addresses the chemistry of formamide in the interstellar medium, from the point of view of (i) astronomical observations, (ii) experiments, and (iii) theoretical calculations. While focusing on just one molecule, this review also more generally reflects the importance of joining efforts across multiple scientific disciplines in order to make progress in the highly interdisciplinary science of astrochemistry.
Article
Context. The chemical composition of high-mass protostars reflects the physical evolution associated with different stages of star formation. In addition, the spatial distribution and velocity structure of different molecular species provide valuable information on the physical structure of these embedded objects. Despite an increasing number of interferometric studies, there is still a high demand for high angular resolution data to study chemical compositions and velocity structures for these objects. Aims. The molecular inventory of the forming high-mass star AFGL 4176, located at a distance of ~3.7 kpc, is studied in detail at a high angular resolution of ~0.35′′, equivalent to ~1285 au at the distance of AFGL 4176. This high resolution makes it possible to separate the emission associated with the inner hot envelope and disc around the forming star from that of its cool outer envelope. The composition of AFGL 4176 is compared with other high- and low-mass sources, and placed in the broader context of star formation. Methods. Using the Atacama Large Millimeter/submillimeter Array (ALMA) the chemical inventory of AFGL 4176 has been characterised. The high sensitivity of ALMA made it possible to identify weak and optically thin lines and allowed for many isotopologues to be detected, providing a more complete and accurate inventory of the source. For the detected species, excitation temperatures in the range 120–320 K were determined and column densities were derived assuming local thermodynamic equilibrium and using optically thin lines. The spatial distribution of a number of species was studied. Results. A total of 23 different molecular species and their isotopologues are detected in the spectrum towards AFGL 4176. The most abundant species is methanol (CH 3 OH) with a column density of 5.5 × 10 ¹⁸ cm ⁻² in a beam of ~0.3′′, derived from its ¹³ C-isotopologue. The remaining species are present at levels between 0.003 and 15% with respect to methanol. Hints that N-bearing species peak slightly closer to the location of the peak continuum emission than the O-bearing species are seen. A single species, propyne (CH 3 C 2 H), displays a double-peaked distribution. Conclusions. AFGL 4176 comprises a rich chemical inventory including many complex species present on disc scales. On average, the derived column density ratios, with respect to methanol, of O-bearing species are higher than those derived for N-bearing species by a factor of three. This may indicate that AFGL 4176 is a relatively young source since nitrogen chemistry generally takes longer to evolve in the gas phase. Taking methanol as a reference, the composition of AFGL 4176 more closely resembles that of the low-mass protostar IRAS 16293–2422B than that of high-mass, star-forming regions located near the Galactic centre. This similarity hints that the chemical composition of complex species is already set in the cold cloud stage and implies that AFGL 4176 is a young source whose chemical composition has not yet been strongly processed by the central protostar.
Article
Formamide (H2NCHO) is the smallest molecule possessing the biologically important amide bond. Recent interstellar observations have shown a strong correlation between the abundance of formamide and isocyanic acid (HNCO), indicating that they are likely to be chemically related, but no experiment or theory explains this correlation satisfactorily. We performed H + H2NCHO reactions in a para-hydrogen quantum-solid matrix host and identified production of H2NCO and HNCO from hydrogen-abstraction reactions. We identified also D2NCO, DNCO, HDNCO, and HDNCHO from the reaction H + D2NCHO, indicating the presence of hydrogen-addition reactions of DNCO and HDNCO. From the observed temporal profiles of H2NCHO, H2NCO, HNCO, and their deuterium isotopologues, we showed that a dual-cycle consisting of hydrogen abstraction and hydrogen addition can satisfactorily explain the quasi-equilibrium between H2NCHO and HNCO and explain other previous experimental results. Furthermore, this mechanism also indicates that the catalytic formation of H2 from H atoms might occur in interstellar ice grains.
Article
Molecules with an amide functional group resemble peptide bonds, the molecular bridges that connect amino acids, and may thus be relevant in processes that lead to the formation of life. In this study, the solid state formation of some of the smallest amides is investigated in the laboratory. To this end, CH4:HNCO ice mixtures at 20 K are irradiated with far-UV photons, where the radiation is used as a tool to produce the radicals required for the formation of the amides. Products are identified and investigated with infrared spectroscopy and temperature-programmed desorption mass spectrometry. The laboratory data show that NH2CHO, CH3NCO, NH2C(O)NH2, CH3 C(O)NH2, and CH3NH2 can simultaneously be formed. The NH2CO radical is found to be key in the formation of larger amides. In parallel, ALMA observations towards the low-mass protostar IRAS 16293-2422B are analysed in search of CH3NHCHO (N-methylformamide) and CH3C(O)NH2 (acetamide). CH3C(O)NH2 is tentatively detected towards IRAS 16293-2422B at an abundance comparable with those found towards high-mass sources. The combined laboratory and observational data indicate that NH2CHO and CH3C(O)NH2 are chemically linked and form in the ice mantles of interstellar dust grains. A solid-state reaction network for the formation of these amides is proposed.
Article
Acetamide (C2H5NO) is the largest molecule containing a peptide bond, which is an amine (-NH2) group bonded to a carbonyl (C = O) group, that has yet been detected in interstellar medium (ISM). It is also considered to be a precursor for amino acids (the building blocks of proteins). Formation of acetamide in ISM is believed to occur due based on evidence for the existence of the molecule itself and its component smaller species in ISM. A case study of acetamide is presented here, to introduce a new method to determine its possible formation reaction pathways in ISM based on the molecular formula of a species. All possible species with the same molecular formula as acetamide (C2H5NO) but with different connectivity, the so-called constitutional isomers of the molecule (198 structures, 91 unique species), were created and studied under the extreme conditions of dense molecular clouds. Acetamide was found to be the most stable of the C2H5NO isomer family. Based on the stability of the uni- and bimolecular species, eight reactions were proposed which could led to the formation of acetamide in ISM.
Article
As one of the simplest molecules containing a peptide bond, N-methyl formamide (HCONHCH3) represents a potential key molecule involved in the peptide bond polymerization in extraterrestrial ices. Detected tentatively toward the star-forming region Sgr B2(N2), the synthetic pathways have previously been elusive. By exploiting isomer-selective detection of the reaction products via photoionization, coupled with reflectron time-of-flight mass spectrometry (PI-ReTOF-MS), we present compelling evidence for the formation of N-methyl formamide (HCONHCH3) in astrochemically relevant ice mixtures of methylamine (CH3NH2) and carbon monoxide (CO), upon irradiation with energetic electrons as generated in the track of galactic cosmic ray particles (GCRs) penetrating interstellar ices. As one of the simplest molecules containing a peptide bond (-CO-NH-), N-methyl formamide could represent a benchmark involved in radiation-induced peptide bond polymerization in extraterrestrial ices, and thus bring us closer to revealing where in the Universe the molecular precursors linked to the origins of life might have been synthesized. © 2018. The American Astronomical Society. All rights reserved.
Article
Interstellar formamide (NH2CHO) has recently attracted significant attention due to its potential role as a molecular building block in the formation of precursor biomolecules relevant for the origin of life. Its formation, whether on the surfaces of the interstellar grains or in the gas phase, is currently debated. The present article presents new theoretical quantum chemical computations on possible NH2CHO formation routes in water-rich amorphous ices, simulated by a 33-H2O-molecule cluster. We have considered three possible routes. The first one refers to a scenario used in several current astrochemical models, that is, the radical-radical association reaction between NH2 and HCO. Our calculations show that formamide can indeed be formed, but in competition with formation of NH3 and CO through a direct H transfer process. The final outcome of the NH2 + HCO reactivity depends on the relative orientation of the two radicals on the ice surface. We then analyzed two other possibilities, suggested here for the first time: reaction of either HCN or CN with water molecules of the ice mantle. The reaction with HCN has been found to be characterized by large energy barriers and, therefore, cannot occur under the interstellar ice conditions. On the contrary, the reaction with the CN radical can occur, possibly leading through multiple steps to the formation of NH2CHO. For this reaction, water molecules of the ice act as catalytic active sites since they help the H transfers involved in the process, thus reducing the energy barriers (compared to the gas-phase analogous reaction). Additionally, we apply a statistical model to estimate the reaction rate coefficient when considering the cluster of 33-H2O-molecules as an isolated moiety with respect to the surrounding environment, i.e., the rest of the ice.
Article
Peptide bonds (N-C=O) play a key role in metabolic processes since they link amino acids into peptide chains or proteins. Recently, several molecules containing peptide-like bonds have been detected across multiple environments in the interstellar medium (ISM), growing the need to fully understand their chemistry and their role in forming larger pre-biotic molecules. We present a comprehensive study of the chemistry of three molecules containing peptide-like bonds: HNCO, NH$_2$CHO, and CH$_3$NCO. We also included other CHNO isomers (HCNO, HOCN), and C$_2$H$_3$NO isomers (CH$_3$OCN, CH$_3$CNO) to the study. We have used the \uclchem gas-grain chemical code and included in our chemical network all possible formation/destruction pathways of these peptide-like molecules recently investigated either by theoretical calculations or in laboratory experiments. Our predictions are compared to observations obtained toward the proto-star IRAS16293$-$2422 and the L1544 pre-stellar core. Our results show that some key reactions involving the CHNO and C$_2$H$_3$NO isomers need to be modified to match the observations. Consistently with recent laboratory findings, hydrogenation is unlikely to produce NH$_2$CHO on grain surfaces, while a combination of radical-radical surface reactions and gas-phase reactions is a better alternative. In addition, better results are obtained for NH$_2$CHO when a slightly higher activation energy of 25$\,$K is considered for the gas-phase reaction $\rm NH_2 + H_2CO \rightarrow NH_2CHO + H$. Finally, our modelling shows that the observed correlation between NH$_2$CHO and HNCO in star-forming regions may come from the fact that HNCO and NH$_2$CHO react to temperature in the same manner rather than from a direct chemical link between the two species.
Article
Spectral line surveys are an indispensable tool for exploring the physical and chemical evolution of astrophysical environments due to the vast amount of data that can be obtained in a relatively short amount of time. We present deep, broadband spectral line surveys of 30 interstellar clouds using two broadband λ = 1.3 mm receivers at the Caltech Submillimeter Observatory. This information can be used to probe the influence of physical environment on molecular complexity. We observed a wide variety of sources to examine the relative abundances of organic molecules as they relate to the physical properties of the source (i.e., temperature, density, dynamics, etc.). The spectra are highly sensitive, with noise levels ≤25 mK at a velocity resolution of ~0.35 km s⁻¹. In the initial analysis presented here, column densities and rotational temperatures have been determined for the molecular species that contribute significantly to the spectral line density in this wavelength regime. We present these results and discuss their implications for complex molecule formation in the interstellar medium.
Article
Based on recent work, formamide might be a potentially very important molecule in the emergence of terrestrial life. Although detected in the interstellar medium for decades, its formation route is still debated, whether in the gas phase or on the dust grain surfaces. Molecular deuteration has proven to be, in other cases, an efficient way to identify how a molecule is synthesised. For formamide, new published observations towards the IRAS16293-2422 B hot corino show that its three deuterated forms have all the same deuteration ratio, 2--5%, and that this is a factor 3--8 smaller than that measured for H2CO towards the IRAS16293-2422 protostar. Following a previous work on the gas-phase formamide formation via the reaction NH2 + H2CO -> HCONH2 + H, we present here new calculations of the rate coefficients for the production of monodeuterated formamide through the same reaction, starting from monodeuterated NH2 or H2CO. Some misconceptions regarding our previous treatment of the reaction are also cleared up. The results of the new computations show that, at the 100 K temperature of the hot corino, the rate of deuteration of the three forms is the same, within 20%. On the contrary, the reaction between non-deuterated species proceeds three times faster than that with deuterated ones. These results confirm that a gas-phase route for the formation of formamide is perfectly in agreement with the available observations.
Article
N-methylformamide, CH3NHCHO, may be an important molecule for interstellar pre-biotic chemistry because it contains a peptide bond. The rotational spectrum of the most stable trans conformer of CH3NHCHO is complicated by strong torsion-rotation interaction due to the low barrier of the methyl torsion. We use two absorption spectrometers in Kharkiv and Lille to measure the rotational spectra over 45--630 GHz. The analysis is carried out using the Rho-axis method and the RAM36 code. We search for N-methylformamide toward the hot molecular core Sgr B2(N2) using a spectral line survey carried out with ALMA. The astronomical results are put into a broader astrochemical context with the help of a gas-grain chemical kinetics model. The laboratory data set for the trans conformer of CH3NHCHO consists of 9469 line frequencies with J <= 62, including the first assignment of the rotational spectra of the first and second excited torsional states. All these lines are fitted within experimental accuracy. We report the tentative detection of CH3NHCHO towards Sgr B2(N2). We find CH3NHCHO to be more than one order of magnitude less abundant than NH2CHO, a factor of two less abundant than CH3NCO, but only slightly less abundant than CH3CONH2. The chemical models indicate that the efficient formation of HNCO via NH + CO on grains is a necessary step in the achievement of the observed gas-phase abundance of CH3NCO. Production of CH3NHCHO may plausibly occur on grains either through the direct addition of functional-group radicals or through the hydrogenation of CH3NCO. Provided the detection of CH3NHCHO is confirmed, the only slight underabundance of this molecule compared to its more stable structural isomer acetamide and the sensitivity of the model abundances to the chemical kinetics parameters suggest that the formation of these two molecules is controlled by kinetics rather than thermal equilibrium.
Article
One of the open questions in astrochemistry is how complex organic and prebiotic molecules are formed. Aims. Our aim is to start the process of compiling an inventory of oxygen-bearing complex organic molecules toward the solar-type Class 0 protostellar binary IRAS16293-2422 from an unbiased spectral survey with ALMA (PILS). Here we focus on the new detections of ethylene oxide (c-C$_2$H$_4$O), acetone (CH$_3$COCH$_3$), and propanal (C$_2$H$_5$CHO). Methods. With ALMA, we surveyed the spectral range from 329 to 363 GHz at 0.5$"$ (60 AU diameter) resolution. Using a simple model for the molecular emission in LTE, the excitation temperatures and column densities of each species were constrained. Results. We successfully detect propanal (44 lines), ethylene oxide (20 lines) and acetone (186 lines) toward one component of the protostellar binary, IRAS16293B. The high resolution maps demonstrate that the emission for all investigated species originates from the compact central region close to the protostar. This, along with a derived common excitation temperature of $\sim$ 125 K, is consistent with a coexistence of these molecules in the same gas. Conclusions. The observations mark the first detections of acetone, propanal and ethylene oxide toward a low-mass protostar. The relative abundance ratios of the two sets of isomers (CH$_3$COCH$_3$/C$_2$H$_5$CHO $\sim$ 8 and CH$_3$CHO/c-C$_2$H$_4$O $\sim$ 12) are comparable to previous observations toward high-mass protostars. The majority of observed abundance ratios from these results as well as those measured toward high-mass protostars are up to an order of magnitude above the predictions from chemical models. This may reflect either missing reactions or uncertain rates in the chemical networks. The physical conditions, such as temperatures or densities, used in the models, may not be applicable to solar-type protostars either.
Article
We report on new distances and proper motions to seven stars across the Serpens/Aquila complex. The observations were obtained as part of the Gould's Belt Distances Survey (GOBELINS) project between September 2013 and April 2016 with the Very Long Baseline Array (VLBA). One of our targets is the proto-Herbig AeBe object EC 95, which is a binary system embedded in the Serpens Core. For this system, we combined the GOBELINS observations with previous VLBA data to cover a total period of ~8 years, and derive the orbital elements and an updated source distance. The individual distances to sources in the complex are fully consistent with each other, and the mean value corresponds to a distance of $436.0\pm9.2$~pc for the Serpens/W40 complex. Given this new evidence, we argue that Serpens Main, W40 and Serpens South are physically associated and form a single cloud structure.
Article
We report ALMA observations of a one-sided, high-velocity ($\sim$80 km s$^{-1}$) CO($J = 2 \rightarrow 1$) jet powered by the intermediate-mass protostellar source Serpens SMM1-a. The highly collimated molecular jet is flanked at the base by a wide-angle cavity; the walls of the cavity can be seen in both 4 cm free-free emission detected by the VLA and 1.3 mm thermal dust emission detected by ALMA. This is the first time that ionization of an outflow cavity has been directly detected via free-free emission in a very young, embedded Class 0 protostellar source that is still powering a molecular jet. The cavity walls are ionized either by UV photons escaping from the accreting protostellar source, or by the precessing molecular jet impacting the walls. These observations suggest that ionized outflow cavities may be common in Class 0 protostellar sources, shedding further light on the radiation, outflow, and jet environments in the youngest, most embedded forming stars.
Article
The recent analysis of the composition of the frozen surface of comet 67P/Churyumov-Gerasimenko has revealed a significant number of complex organic molecules. Methyl isocyanate (CH3NCO) is one of the more abundant species detected on the comet surface. In this work we report extensive characterization of its rotational spectrum resulting in a list of 1269 confidently assigned laboratory lines and its detection in space towards the Orion clouds where 399 lines of the molecule have been unambiguously identified. We find that the limited mm-wave laboratory data reported prior to our work require some revision. The abundance of CH3NCO in Orion is only a factor of ten below those of HNCO and CH3CN. Unlike the molecular abundances in the coma of comets, which correlate with those of warm molecular clouds, molecular abundances in the gas phase in Orion are only weakly correlated with those measured on the comet surface. We also compare our abundances with those derived recently for this molecule towards Sgr B2 (Halfen et al. 2015, ApJ, 812, L5). A more accurate abundance of CH3NCO is provided for this cloud based on our extensive laboratory work.
Article
The Cologne Database for Molecular Spectroscopy, CDMS, was founded 1998 to provide in its catalog section line lists of mostly molecular species which are or may be observed in various astronomical sources by means of (usually) radio astronomical means. The line lists contain transition frequencies with qualified accuracies, intensities, quantum numbers, as well as further auxilary information. They have been generated from critically evaluated experimental line lists, mostly from laboratory experiments, employing established Hamiltonian models. Seperate entries exist for different isotopic species and usually also for different vibrational states. As of December 2015, the number of entries is 792. They are available online as ascii tables with additional files documenting information on the entries.
Article
Aromatic hydrocarbons (AHs) and their derivatives have been suggested as the building blocks of interstellar dust grains and are responsible for the evolution of astrobiological molecules via surface reactions in space. Gas-phase studies of molecules and ions known to exist in space are crucial to understand relevant ion-molecule reactions and the generation of new species. Reactions catalyzed by large species such as AHs remain relatively unexplored. Our computational studies focus on the energetics and reaction mechanisms of the formation of representative molecules (i.e., hydrogen peroxide, acetamide, and amino acetonitrile) that are critical for the origin of water and amino acids in the universe. Calculations have been carried out using Gaussian 09 to obtain the structures, energetics, and reaction mechanisms to investigate the formation of hydrogen peroxide (H2O2), acetamide (CH3C(O)NH2), and amino acetonitrile (NH2CH2CN). Our results suggest that there are energetically accessible reaction pathways leading to the formation of these molecules through species which have been discovered in the interstellar medium (ISM). Ionized benzene and polycyclic aromatic hydrocarbons (PAHs) can act as catalysts to facilitate the formation of astromolecules. The theoretical studies can enhance our understanding of ion-molecule reactions that are relevant to the formation of important astromolecules in the gas phase, and provide a new way to investigate the formation of polyatomic molecules on surfaces of dust grains such as large PAHs.