ArticlePDF Available

Assessing gene action and heterosis for quantitative traits in rice (Oryza sativa L.) using North Carolina III mating design

Authors:

Abstract and Figures

Introduction Due to the future demand for rice, as a food required by humans, it is necessary to produce new cultivars whose yield exceeds the existing cultivars. Success in any breeding program depends on selecting appropriate genotypes as parents in the crossing program. Estimating genetic parameters such as heritability, gene effect, and the relationship between traits is fundamental to developing the most beneficial breeding method. Various mating designs such as the North Carolina I, II, and III designs are used to estimate genetic diversity and variance components. This study was performed to evaluate heterosis, genetic parameters, gene effect, and heritability of important quantitative traits in rice using the North Carolina III mating design. materials and methods In this study, two cultivars, Deylamani and Gilaneh, were used for the North Carolina III mating design according to the results of a study using microsatellite markers. After the crosses were performed, the progenies from the North Carolina III mating design were planted with their parents in a randomized complete block design with three replications. Prior to evaluation, off-type plants were removed, and then the mean of observations per plot was used for statistical analysis. SPSS and Excel softwares were used to analyze variance and estimate NCIII genetic parameters. Results Estimation of additive and dominance variances indicated the presence of additive and non-additive effects in genetic control of grain yield, 100-grain weight, plant height, number of panicles per plant, number of spikelet per panicle, panicle length, and number of filled grains per panicle. Non-additive effects played an essential role in plant height, the number of panicles per plant, and the number of filled grains per panicle. The overdominance phenomenon was observed in grain yield, 100-grain weight, plant height, number of panicles per plant, number of spikelet per panicle, panicle length, and number of filled grains per panicle. In grain yield, the range of heterosis was -12.64% for the cross of F2 No. 1 × Gilaneh up to 38.5% for the cross of F2 No. 11 × Deylamani. For plant height, the highest relative heterosis based on the average parent to reduce plant height was seen at the cross of F2 No. 9 × Deylamani (-11.4%). Conclusion The results of this study indicate the existence of additive and non-additive effects in genetic control of grain yield, 100-seed weight, plant height, number of panicles per plant, number of spikelets, panicle length, and filled grain number per panicle. On the other hand, in genetic control of grain yield, 100-grain weight, number of spikelets per panicle, and panicle length, additive effects had a greater role. However, in addition to additive effects, non-additive effects were also involved in genetic control of grain yield, 100-grain weight, number of panicles, and panicle length. The study of heterosis also showed the existence of superior offspring in the studied traits and the possibility of using them in breeding programs.
Content may be subject to copyright.
Assessing gene action and heterosis for quantitative traits in rice (Oryza sativa
L.) using North Carolina III mating design
Mehrzad Allahgholipour1, Alireza Haghighi Hasanalideh*2
1 Associate Professor of Rice Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Rasht,
Iran.
*2 Corresponding Author, Assistant Professor of Rice Research Institute, Agricultural Research, Education and Extension
Organization (AREEO), Rasht, Iran. E-mail: haghighi.ag@gmail.com
ABSTRACT
Introduction: Due to the future demand for rice, as a food required by humans, it is necessary to produce new cultivars whose yield exceeds the
existing cultivars. Success in any breeding program depends on selecting appropriate genotypes as parents in the crossing program. Estimating
genetic parameters such as heritability, gene effect, and the relationship between traits is fundamental to developing the most beneficial breeding
method. Various mating designs such as the North Carolina I, II, and III designs are used to estimate genetic diversity and variance components.
This study was performed to evaluate heterosis, genetic parameters, gene effect, and heritability of important quantitative traits in rice using the
North Carolina III mating design.
Materials and methods: In this study, two cultivars, Deylamani and Gilaneh, were used for the North Carolina III mating design according to
the results of a study using microsatellite markers. After the crosses were performed, the progenies from the North Carolina III mating design
were planted with their parents in a randomized complete block design with three replications. Prior to evaluation, off-type plants were removed,
and then the mean of observations per plot was used for statistical analysis. SPSS and Excel softwares were used to analyze variance and estimate
NCIII genetic parameters.
Results: Estimation of additive and dominance variances indicated the presence of additive and non-additive effects in genetic control of grain
yield, 100-grain weight, plant height, number of panicles per plant, number of spikelet per panicle, panicle length, and number of filled grains per
panicle. Non-additive effects played an essential role in plant height, the number of panicles per plant, and the number of filled grains per panicle.
The overdominance phenomenon was observed in grain yield, 100-grain weight, plant height, number of panicles per plant, number of spikelet
per panicle, panicle length, and number of filled grains per panicle. In grain yield, the range of heterosis was -12.64% for the cross of F2 No. 1 ×
Gilaneh up to 38.5% for the cross of F2 No. 11 × Deylamani. For plant height, the highest relative heterosis based on the average parent to reduce
plant height was seen at the cross of F2 No. 9 × Deylamani (-11.4%).
Conclusion: The results of this study indicate the existence of additive and non-additive effects in genetic control of grain yield, 100-seed
weight, plant height, number of panicles per plant, number of spikelets, panicle length, and filled grain number per panicle. On the other hand, in
genetic control of grain yield, 100-grain weight, number of spikelets per panicle, and panicle length, additive effects had a greater role. However,
in addition to additive effects, non-additive effects were also involved in genetic control of grain yield, 100-grain weight, number of panicles, and
panicle length. The study of heterosis also showed the existence of superior offspring in the studied traits and the possibility of using them in
breeding programs.
Keywords: Genetic effect, Heritability, Heterosis.
Article Type: Research Article
Article history: Received: 13/07/2021, Revised: 23/12/2021, Accepted: 26/12/2022
Cite this article: Allahgholipour, M., Haghighi Hasanalideh, A. (2022). Assessing gene action and heterosis for quantitative traits in rice
(Oryza sativa L.) using North Carolina III mating design. Cereal Biotechnology and Biochemistry, 1 (1), 50-65 pages. DOI:
© The Author(s). Publisher: Razi University
DOI:
.Oryza sativa L
III




@yahoo.comhaghighi.ag




I IIIII
III



NCIIISPSSExcel




No. 1
2
FNo. 11
2
F
No. 9
2
F








Oryza sativa L
IIIDOI:
©



Oryza sativa L




Rahaman,
2016


Tejaswini et al.,
2016

Makwana et al., 2018



Rahaman,
2016


Nayak et al., 2016 




Kumar et al., 2017 





Soni
et al., 2017 




Zhou et al., 2017


Khush, 2013

F1


Fonseca & Patterson, 1968 

-




Nuruzzaman et
al., 2002 

Rahaman, 2016


Makwana et al.,
2018


Nugraha et al., 2016 


Haghighi Hasanalideh et
al.. 2017






Bainade et al., 2014








Hadini et al., 2015

I IIIII
INCI




I


II





II



III
F2F2

Wen et al., 2015II




Acquaah, 2009 Zhou et al.,
2017







De Morais et al.,
2017

Li et al., 2015








 
          
          
     
    Allahgholipour et
al., 2014

2
F
  

2
F
 
        
       
       
 

-

   
    
          
       

         
        

   
       


 Hallauer et al., 2010

      

m
2
σ

mp
2
σ
F 
      
   
Comstock & Robinson, 1952 
      




 p = q = 1/2
2
F







   


     


       
MPH




  
NCIIISPSS Excel






F2





F2


III
Table 1. Analysis of variance for design III progenies.

SOV

df

MS

variance component

Replications
r-1a

Parents (p)
1
M4

Males (m)
m-1
M3
×
m × p
m-1
M2

Error
(r-1)(2m-1)
M1
rm
r and m refer to number of replications and male plants, respectively.
     


     
       
          
      
    
-

      
       

AD
        
   
  
       
Shabbir et al., 2017 
 Raju et al., 2017  
Gahtyari et al., 2017
        
Sharma & Mani, 2008 


      


    (Pradhan &
Singh, 2008) Patil et al.,
2012
   
           
      
 DD    
   Li et al.,
2015

       
    
 
Ray et al.,
2014
     
Shen et al., 2014    
   
He et al., 2010


    

    
No. 1
2
FNo. 11
2
F

       
       
Zhou et al., 2017



 Shobhana et al., 2018   
Makwana et al., 2018Priyanka
and Jaiswal, 2017  Devi, 2017 
Dan et al., 2015

Kumar et al., 2017
      


Table 2. Analysis of variance for quantitative traits in rice using NCIII.


df

Mean Square

GY


HGW

PH


PN


SP

PL


FGN
2
0.33ns
0.04ns
1.25ns
4.09ns
0.1ns
0.01ns
27.45ns
1
13.15**
2.24**
318.06**
0.54ns
35.66**
16.19**
3293.62**
14
1.18**
0.48**
119.39**
8.25**
2.21**
6.6**
839.31**
14
1.06**
0.45**
187.78**
13.1**
1.67**
6.35**
940.02**
58
0.17
0.03
5.08
1.73
0.09
1.72
10.34
ns
***
ns, * and **: non-significant, significant at 5% and 1% probability levels, respectively.
GY: Grain Yield, HGW: Hundred Grain Weight, PH: Plant Height, PN: Panicle Number (per plant), SP: Spikelet Number (per
panicle), PL: Panicle Length, FGN: Filled Grain Number (per panicle).
        
    
2
F
No. 10No. 13
2
F
    
         
 

  Kader et al., 2015  
-

         

Table 3. Genetic parameters estimation of quantitative rice traits in NCIII.

genetic
parameters

GY

HGW

PH


PN



SP

PL


FGN
mp
0.3**
0.14**
60.9**
3.79**
0.53**
1.54**
309.89**
m
0.17**
0.07**
19.05**
1.09**
0.35**
0.81**
138.16**
A
0.67**
0.3**
76.21**
4.34**
1.41**
3.25**
552.64**
D
0.59**
0.28**
121.8**
7.58**
1.05**
3.08**
619.78**
DD
1.33*
1.37*
1.79ns
1.87ns
1.22ns
1.38ns
1.5ns
h2b
0.88
0.95
0.97
0.87
0.96
0.79
0.99
h2n
0.47
0.49
0.38
0.32
0.55
0.40
0.47
mp  m  A D DD  
b
2
h 

n
2
h
ns
***
mp= m × p variance, m= male variance, A= Additive variance, D= Dominance variance, DD= Average degree of dominance, h2b
= Broad sense heritability and h2n = Narrow sense heritability.
ns, * and **: non-significant, significant at 5% and 1% probability levels, respectively.
Priyanka & Jaiswal, 2017
 Zhou et al., 2017   

    Kumar et al., 2017
     
  

       
    No. 9
2
F
      
No.
2
F
7Devi, 2017
 Makwana et al., 2018
     
 
        

No. 4
2
F
No. 8
2
F



   No. 7
2
F
  No. 13
2
F   

         
No. 6
2
F
  No. 10
2
F

.
Table 4. Heterosis (%) over mid-parent (MPH) for quantitative traits in the rice progenies of the NCIII.

Crosses

GY

HGW

PH


PN



SP

PL


FGN
DeylamaniNo. 1 ×
2
F
13.96ns
-7.53**
10.79**
4.32ns
8.72*
-2.33ns
18.79**
F2 No. 2 × Deylamani
20.11ns
0.34ns
4.93**
19.43**
1.54**
8.53*
20.92**
F2 No. 3 × Deylamani
10.06*
2.7**
-0.39ns
1.44ns
-0.51ns
-5.74ns
-0.21ns
F2 No. 4 × Deylamani
18.99*
13.75**
13.33**
2.16ns
-8.72*
-2.33ns
7.91**
F2 No. 5 × Deylamani
-3.91ns
9.74**
-5.93*
3.6ns
-15.9**
-0.77ns
-12.88**
F2 No. 6 × Deylamani
13.97ns
30.61**
5.39**
2.88ns
-2.56ns
-7.91**
0.73ns
F2 No. 7 × Deylamani
18.44*
20.11**
0.92ns
9.35*
-18.97**
7.29ns
-5.69*
F2 No. 8 × Deylamani
16.2**
-4.9ns
13.16**
8.16**
13.72**
1.31ns
20.39**
F2 No. 9 × Deylamani
-10.61**
0.9ns
-11.4**
25.9**
2.57ns
0.16ns
40.27**
F2 No. 10 × Deylamani
18.99*
1.73ns
11.43**
8.89*
16.64**
-0.46ns
18.82**
F2 No. 11× Deylamani
38.55**
8.91ns
5.54**
18.96**
2.28ns
12.14**
20.57**
F2 No. 12 × Deylamani
5.03*
10.16ns
-1.58ns
6.23ns
8.35**
-5.55ns
-0.18ns
F2 No. 13 × Deylamani
27.37**
-5.87ns
15.23**
6.46**
-6.38*
-0.16ns
8.94**
F2 No. 14 × Deylamani
6.14ns
-6.84ns
-5.29*
10.28**
-7.36ns
1.52ns
-11.87**
F2 No. 15 × Deylamani
17.32**
44.44**
6.03**
-3.56ns
3.01ns
-5.23**
1.19*
GilanehNo. 1 ×
2
F
-12.64**
31.84**
3.14ns
-6.36*
3.42ns
-0.79ns
-19.32**
-

.
Continue the Table 4. Heterosis (%) over mid-parent (MPH) for quantitative traits in the rice progenies
of the NCIII.

Crosses

GY

HGW

PH


PN



SP

PL


FGN
F2 No. 2 × Gilaneh
2.2ns
14.51**
4.59*
3.01ns
31.61**
9.03ns
28.62**
F2 No. 3 × Gilaneh
-4.95**
5.41**
-1.21ns
1ns
11.92**
-0.16ns
5.92**
F2 No. 4 × Gilaneh
7.69*
28.81**
8.86*
-8.36**
18.13**
0.16ns
-12.91**
F2 No. 5 × Gilaneh
-3.85*
34.44*
6.28**
1.67*
7.77*
7.76ns
14.25ns
F2 No. 6 × Gilaneh
-7.14ns
22.6**
9.83**
7.69ns
24.35**
4.6*
5.77ns
F2 No. 7 × Gilaneh
4.95ns
38.92**
15.47**
1.67ns
3.63*
7.45ns
-6.44ns
F2 No. 8 × Gilaneh
-10.99*
26.64**
4.92*
-3.68ns
20.21**
15.05**
-3.46ns
F2 No. 9 × Gilaneh
2.75ns
21.01**
-7.03**
20.24**
6.82ns
0.14ns
26.43**
F2 No. 10 × Gilaneh
-6.6ns
-9.03**
4.89**
-6.9**
22.61**
15.6**
-0.34ns
F2 No. 11 × Gilaneh
-9.34ns
50.47*
2.86ns
-4.36*
5.95ns
-0.5ns
-17.99**
F2 No. 12 × Gilaneh
10.44ns
46.57*
5.34**
1.48ns
26.88**
6.84*
29.16**
F2 No. 13 × Gilaneh
6.59ns
60.58**
5.7**
10.42*
32.56**
9.17*
29.42**
F2 No. 14 × Gilaneh
12.64**
4.55ns
10.18**
-6.14**
16.39**
1.54*
-13.59**
F2 No. 15 × Gilaneh
1.65ns
18.41**
5.56**
8.35*
14.49**
6.23ns
12.24**
ns
***
ns, * and **: non-significant, significant at 5% and 1% probability levels, respectively.
GY: Grain Yield, HGW: Hundred Grain Weight, PH: Plant Height, PN: Panicle Number (per plant), SP: Spikelet Number (per panicle),
PL: Panicle Length, FGN: Filled Grain Number (per panicle).



   
2
F
No. 1 No. 8
2
F
      Devi,
2017



      
   
   

 
       
          
  
  







References
Acquaah, G. 2009. Principles of plant genetics and breeding. John Wiley & Sons.
Allahgholipour, M., Farshadfar, E., & Rabiei, B. 2014. Molecular characterization and genetic diversity
analysis of different rice cultivars by microsatellite markers. Genetika, 46 (1), 187-198.
https://doi.org/10.2298/GENSR1401187A
Bainade, P. S., Manjare, M. R., Deshmukh, S. G., & Kumbhar, S. D. 2014. Genetic analysis in green
gram (Vigna radiata (L.) Wilczek) subjected to North Carolina mating design-I. The Bioscan, 9 (2),
875-878.
Comstock, R. E., & Robinson, H. F. 1952. Estimation of average dominance of genes. Heterosis, 2, 494-
516.
Dan, Z., Hu, J., Zhou, W., Yao, G., Zhu, R., Huang, W., & Zhu, Y. 2015. Hierarchical additive effects on
heterosis in rice (Oryza sativa L.). Frontiers in plant science, 6, 738.
https://doi.org/10.3389/fpls.2015.00738
de Morais, O. P., Pereira, J. A., Melo, P. G. S., Guimarães, P. H. R., & de Morais, O. P. 2017. Gene
action and combining ability for certain agronomic traits in red rice lines and commercial cultivars.
Crop Science, 57 (3), 1295-1307. https://doi.org/10.2135/cropsci2015.11.0687
Devi, B. 2017. Magnitude of heterosis in some inter-Varietal crosses of Rice (Oryza sativa L.). Journal of
Pharmacognosy and Phytochemistry, 6 (2), 327-330.
Fonseca, S., & Patterson, F. L. 1968. Hybrid vigor in a sevenparent diallel cross in common winter
wheat (Triticum aestivum L.). Crop Science, 8 (1), 85-88.
https://doi.org/10.2135/cropsci1968.0011183X000800010025x
-

Gahtyari, N. C., Patel, P. I., Choudhary, R., Kumar, S., Kumar, N., & Jaiswal, J. P. 2017. Combining
ability studies for yield, associated traits and quality attributes in rice for South Gujarat (Oryza sativa
L.). Journal of Applied and Natural Science, 9 (1), 60-67. https://doi.org/10.31018/jans.v9i1.1151
Hadini, H., Nasrullah, N., Taryono, T., & Basunanda, P. 2015. Estimates of genetic variance component
of an equilibrium population of corn. AGRIVITA, Journal of Agricultural Science, 37 (1), 45-50.
https://doi.org/10.17503/Agrivita-2015-37-1-p045-050
Haghighi Hasanalideh, A., Farshadfar, E., & Allahgholipour, M. 2017. Genetic parameters and combining
ability of some important traits in rice (Oryza sativa L.). Genetika, 49 (3), 1001-1014.
https://doi.org/10.2298/GENSR1703001H
Hallauer, A. R., Carena, M. J., & Miranda Filho, J. D. 2010. Quantitative genetics in maize breeding
(Vol. 6). Springer Science & Business Media.
He, Q., Zhang, K., Xu, C., & Xing, Y. 2010. Additive and additive× additive interaction make important
contributions to spikelets per panicle in rice near isogenic (Oryza sativa L.) lines. Journal of Genetics
and Genomics, 37 (12), 795-803. https://doi.org/10.1016/S1673-8527(09)60097-7
Kader, M. A., Patwary, A. K., Hossain, M. M., & Majumder, R. R. 2015. Study on heterosis of some
experimental hybrids in rice. Scientia Agriculturae, 12 (3), 135-143.
https://doi.org/10.15192/PSCP.SA.2015.12.3.135143
Khush, G. S. 2013. Strategies for increasing the yield potential of cereals: case of rice as an example.
Plant Breeding, 132 (5), 433-436. https://doi.org/10.1111/pbr.1991
Kumar, S., Singh, N. K., Kumar, R., Singh, S. K., Nilanjaya, C. K., & Kumar, A. 2017. Heterosis studies
for various morphological traits of rice under drought conditions. International Journal of Current
Microbiology and Applied Sciences, 6 (10), 507-521. DOI:
https://doi.org/10.20546/ijcmas.2017.610.062
Li, L., He, X., Zhang, H., Wang, Z., Sun, C., Mou, T., Li, X., Zhang, Y., & Hu, Z. 2015. Genomewide
mapping reveals a combination of different genetic effects causing the genetic basis of heterosis in two
elite rice hybrids. Journal of genetics, 94 (2), 261-270. https://doi.org/10.1007/s12041-015-0527-8
Makwana, R., Patel, V., Pandya, M., & Chaudhari, B. 2018. Inferences on magnitude and nature of gene
effects for morpho-physiological traits in rice (Oryza sativa L.). International Journal of Pure and
Applied Bioscience, 6, 1488-1493. http://dx.doi.org/10.18782/2320-7051.5530
Nayak, P., Sreedhar, M., SurenderRaju, C., & Vanisree, S. 2016. Heterosis and gene action studies
involving aromatic lines for grain quality traits in rice. International Journal of Life Sciences, 4 (4),
517-528.
Nugraha, Y., Ardie, S. W., Ghulamahdi, M., Suwarno, S., & Aswidinnoor, H. 2016. Implication of gene
action and heritability under stress and control conditions for selection iron toxicity tolerant in rice.
AGRIVITA, Journal of Agricultural Science, 38 (3), 282-295.
https://doi.org/10.17503/agrivita.v38i3.740
Nuruzzaman, M., Alam, M. F., Ahmed, M. G., Shohael, A. M., Biswas, M. K., Amin, M. R., & Hossain,
M. M. 2002. Studies on parental variability and heterosis in rice. Pakistan Journal of Biological
Sciences, 5, 1006-1009. https://doi.org/10.3923/pjbs.2002.1006.1009
Patil, P. P, Vashi, R. D., Lodam, V. A, Patil, S. R., & Patil, S. S. 2012. Combining ability for yield and
component characters in rice (Oryza sativa L.). Agricultural Science Digest, 32 (1), 28-32.
Pradhan, S. K., & Singh, S. 2008. Combining ability and gene action analysis for morphological and
quality traits in basmati rice. ORYZA-An International Journal on Rice, 45 (3), 193-197.
Priyanka, K., & Jaiswal, H. K. 2017. Heterosis studies for yield and yield related traits over seasons in
boro rice. International Journal of Pure and Applied Bioscience, 5 (6), 1000-1009.
http://dx.doi.org/10.18782/2320- 7051.5154
Rahaman, A. 2016. Study of nature and magnitude of gene action in hybrid rice (Oryza sativa L.) through
experiment of line x tester mating design. International Journal of Applied Research, 2 (2), 405-410.
Raju, N. S., Senguttuvel, P., Prasad, A. H., Beulah, P., Naganna, P., Ali, S., & Rao, K. 2017. Combining
ability and heterosis prediction for grain yield of parental lines and hybrids for heat tolerance in rice
(Oryza sativa L.). Agriculture update, 12, 1213-1221.
https://doi.org/10.15740/HAS/AU/12.TECHSEAR(5)2017/1213-1221
Ray, B. P., Sarker, M. & Saha, S. 2014. Combining ability and heterosis in inter-ecotypic classes of rice
(Oryza sativa L.). Bulletin of the Institute of Tropical Agriculture, Kyushu University, 37 (1), 27-39.
Shabbir, G., Husnain, S., Mehdi, S. M., & Ehsan, M. 2017. Combining ability studies in rice through 6 ×
6 diallel cross analysis. Journal of Agricultural Research, 55 (4), 591-600.


Sharma, R. K., & Mani, S. C. 2008. Analysis of gene action and combining ability for yield and its
component characters in rice. ORYZA-An International Journal on Rice, 45 (2), 94-97.
Shen, G., Zhan, W., Chen, H., & Xing, Y. 2014. Dominance and epistasis are the main contributors to
heterosis for plant height in rice. Plant Science, 215, 11-18.
https://doi.org/10.1016/j.plantsci.2013.10.004
Shobhana, V. G., Ashokkumar, K., Karthikeyan, A., Kumar, R. N., Sheeba, A., & Vivekanandan, P.
2018. Heterosis analysis for yield in hybrids involving new plant type and indica lines of rice (Oryza
sativa L.). International Journal of Chemical Studies, 6 (3), 3043-3049.
Soni, S. K., Yadav, V. K., Bhadana, V. P., Yadav, M. C., & Sundaram, R. M. 2017. Prediction of
heterosis using hypervariable microsatellite markers in tropical japonica× indica rice hybrids.
International Journal of Current Microbiology and Applied Sciences, 6 (10), 1419-1427.
Tejaswini, K. L. Y., Kumar, B. R., Mohammad, L. A., Raju, S. K., Srinivas, M., & Rao, P. R. 2016.
Study of genetic parameters in F5 families of rice (Oryza sativa L.). International Journal of
Environment, Agriculture and Biotechnology, 1 (4), 238592. https://doi.org/10.22161/ijeab/1.4.17
Wen, J., Zhao, X., Wu, G., Xiang, D., Liu, Q., Bu, S. H., Yi, C., Song, Q., Dunwell, J. M., Tu, J., Zhang,
T., & Zhang, Y. M. 2015. Genetic dissection of heterosis using epistatic association mapping in a
partial NCII mating design. Scientific Reports, 5 (1), 18376. https://doi.org/10.1038/srep18376
Zhou, H., Xia, D., Zeng, J., Jiang, G., & He, Y. 2017. Dissecting combining ability effect in a rice NCII-
III population provides insights into heterosis in indica-japonica cross. Rice, 10 (1), 39.
https://doi.org/10.1186/s12284-017-0179-9
ResearchGate has not been able to resolve any citations for this publication.
Article
Full-text available
Heterosis in rice was studied in a set of seven line and three testers with twenty one hybrids. The magnitude of heterosis varied from cross to cross for all the quantitative traits using L x T analysis. Among the parents, M1-10-29VL and TM07280 were the best performing parents for seed yield per plant and its components traits. Cross combinations IR777629-72-2-1-3 X IR64, Basmati 370 X CR2703, Sonam X NDR118 and IR7734-4-0 X CR2703 exhibited high significant effects with high per se performance and standard heterosis over PHB71. High magnitude of heterobltiosis and standard heterosis were observed for almost all characters. Cross combinations M1-10-29 VL X NDR118, Basmati 370 X CR2703, TM07280 X NDR118, IR77629-72-2-1-3 X IR-64 and TM07280 X IR-64 exhibited highly significant heterosis over PHB71.
Article
Full-text available
Experiment was conducted to study heterosis for different morphological traits i.e. days to fifty per cent flowering (DFF), plant height (PH), chlorophyll content (CC), tillers per plant (TPP), relative water content (RWC), panicle length (PL), grains per panicle (GPP), 1000 grain weight (1000-GW), harvest index (HI) and yield per plant (GYP) under drought conditions with Randomized Block Design (RBD) at DRPCAU, Pusa Samastipur Bihar in 2016 Our results indicates that the maximum standard heterosis under drought condition i.e. 119.05% was recorded in (P2 X P8) for tillers per plant followed by 109.86% in (P4 x P10) for grain yield per plant, 73.53% in (P4 x P10) for grains perpanicle, 39.92% in (P3 x P7) for chlorophyll content, 27.72% in (P1 x P2) for harvest index, 27.08% in (P3 x P5) for 1000- grain weight, 24.40% in (P3 x P6) for panicle length and 10.78% in (P1 x P3) for relative water content. Some hybrids had good heterosis for specific traits such as tillers per plant, 1000 grain weight and yield per plant that can be used for the development of new hybrid rice varieties. It can be concluded that our recent genotype has great potential that can be used for development of new varieties.
Article
Full-text available
A diallel technique was employed in which ten genotypically diverse lines of rice were A diallel technique was employed in which ten genotypically diverse lines of rice were A diallel technique was employed in which ten genotypically diverse lines of rice were A diallel technique was employed in which ten genotypically diverse lines of rice were A diallel technique was employed in which ten genotypically diverse lines of rice were crossed among themselves in all possible combinations excluding reciprocals. The analysis for crossed among themselves in all possible combinations excluding reciprocals. The analysis for crossed among themselves in all possible combinations excluding reciprocals. The analysis for crossed among themselves in all possible combinations excluding reciprocals. The analysis for crossed among themselves in all possible combinations excluding reciprocals. The analysis for combining ability was significant for all the characters which indicated the presence of both combining ability was significant for all the characters which indicated the presence of both additive and non-additive gene actions. The magnitude of mean square due to SCA were smaller additive and non-additive gene actions. The magnitude of mean square due to SCA were smaller additive and non-additive gene actions. The magnitude of mean square due to SCA were smaller additive and non-additive gene actions. The magnitude of mean square due to SCA were smaller additive and non-additive gene actions. The magnitude of mean square due to SCA were smaller than the GCA for the most of the traits indicating the preponderance of additive gene effects than the GCA for the most of the traits indicating the preponderance of additive gene effects than the GCA for the most of the traits indicating the preponderance of additive gene effects than the GCA for the most of the traits indicating the preponderance of additive gene effects than the GCA for the most of the traits indicating the preponderance of additive gene effects for all the character under study for all the character under study for all the character under study for all the character under study for all the character under study, wher , wher , wher , wher , whereas the ratio of the estimates of variances due to GCA to eas the ratio of the estimates of variances due to GCA to eas the ratio of the estimates of variances due to GCA to eas the ratio of the estimates of variances due to GCA to eas the ratio of the estimates of variances due to GCA to that of SCA indicated the preponderance of non-additive type of gene effects for most of the that of SCA indicated the preponderance of non-additive type of gene effects for most of the that of SCA indicated the preponderance of non-additive type of gene effects for most of the that of SCA indicated the preponderance of non-additive type of gene effects for most of the that of SCA indicated the preponderance of non-additive type of gene effects for most of the characters except for kernel length/breadth ratio and protein content. The best general combiners characters except for kernel length/breadth ratio and protein content. The best general combiners characters except for kernel length/breadth ratio and protein content. The best general combiners characters except for kernel length/breadth ratio and protein content. The best general combiners characters except for kernel length/breadth ratio and protein content. The best general combiners for grain yield per plant wer for grain yield per plant wer for grain yield per plant wer for grain yield per plant wer for grain yield per plant were GR
Article
Full-text available
Hybrid breeding programs involve large number of combinations made and evaluated, only a few are selected. Therefore, it is very important to explore alternative approaches to enhance the selection efficiency and to predict hybrid performance. In the present study, a set of 30 hybrids derived from crosses between 10 tropical japonica lines and 3 indica were analyzed for heterosis, per-day productivity, yield efficiency and an association index were established between yield and molecular marker amplification pattern. The heterosis value varied from -80.73% to 14.95% over the selected standard check. Parental lines of all the hybrids were characterized using a set of 40 uniformly distributed hypervariable microsatellite markers. A total of 131 allelic fragments with an average of 3.28 alleles per locus amplified, indicated presence of polymorphism among the rice lines. Similarity coefficients ranged from 0.58 to 0.83. Coefficient of marker polymorphism (CMP) for each hybrid was calculated based on extent of polymorphism among the parental lines of the hybrid with respect to markers analyzed. Association of CMP with the standard heterosis for grain yield, showed positive correlation (r = 0.227), indicating the strong utility of the selected microsatellite markers with PIC ≥ 0.5 for prediction of heterosis.
Article
Full-text available
A line x tester analysis was carried out in rice with nine new plant type lines and four testers to measure the expression and magnitude of heterosis in single plant yield and nine other yield attributing characters. The study revealed that the hybrids differed significantly among themselves for all the characters. Evaluation of hybrids based on mean performance disclosed that the hybrids, L6 x T2, L9 x T4, L5 x T4, L4 x T4, L3 x T1, L1 x T2, L1 x T3, L2 x T2 and L3 x T3 were superior for most of the yield contributing traits. The hybrids, L3 x T1, L3 x T3, L1 x T2, L6 x T2 and L7 x T1 had significantly high sca effects for maximum number of traits. The hybrids were evaluated for their extent of heterosis on the basis of commercially exploitable standard heterosis for yield traits. It was inferred from the studies that cross combinations viz., L2 x T3, L3 x T1, L3 x T3, L4 x T1, L4 x T3, L4 x T4, L5 x T1, L5 x T2, L6 x T2, L8 x T2 and L9 x T4 expressed significantly superior heterosis percent for most of the characters including single plant yield. On the basis of superior mean performance, sca effects and heterosis percent, the hybrids namely, L3 x T1, L3 x T3 and L6 x T2 were suitable for involving them in heterosis breeding.
Article
Full-text available
In order to study the combining ability, genetic parameters and gene actions of yield, yield components and quality characters in rice, fifteen F2 generation of a 6×6 diallel cross, excluding reciprocals, was grown in a randomized complete block design (RCBD) with three replications. The results of analysis of variance showed significant differences between the genotypes for grain yield (GY), 100-grain weight (HGW), number of panicles per plant (PN), panicle length (PL), number of full grains per panicle (FGN) and for quality characters including amylose content (AC) and gel consistency (GC). The results of combining ability analysis revealed that general combining ability (GCA) and specific combining ability (SCA) were significant for characters GY, FGN, GC, AC, HGW and PN indicating the involvement of additive and non-additive effects in their inheritance, however high amounts of Bakers ratio remarked that additive gene effect had more portion in controlling these traits. The best combiners for GY, HGW, FGN, PN and PL, were RI18447-2, IR 50, Daylamani, RI18430-46 and Daylamani respectively. For AC and GC, the best combiner was Daylamani. Hayman's graphs showed that regression line passed below the origin cutting Wr axis in the negative region for HGW, PN, PL and GC, indicating the presence of over dominance. Estimates of genetic parameters showed significant amount of H1 and H2, and non-significant amount of D for the characters GY, PN, PL and GC, which confirmed the existence of dominance in the inheritance of these traits.