Content uploaded by Alireza Haghighi Hasanalideh
Author content
All content in this area was uploaded by Alireza Haghighi Hasanalideh on Feb 19, 2022
Content may be subject to copyright.
Assessing gene action and heterosis for quantitative traits in rice (Oryza sativa
L.) using North Carolina III mating design
Mehrzad Allahgholipour1, Alireza Haghighi Hasanalideh*2
1 Associate Professor of Rice Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Rasht,
Iran.
*2 Corresponding Author, Assistant Professor of Rice Research Institute, Agricultural Research, Education and Extension
Organization (AREEO), Rasht, Iran. E-mail: haghighi.ag@gmail.com
ABSTRACT
Introduction: Due to the future demand for rice, as a food required by humans, it is necessary to produce new cultivars whose yield exceeds the
existing cultivars. Success in any breeding program depends on selecting appropriate genotypes as parents in the crossing program. Estimating
genetic parameters such as heritability, gene effect, and the relationship between traits is fundamental to developing the most beneficial breeding
method. Various mating designs such as the North Carolina I, II, and III designs are used to estimate genetic diversity and variance components.
This study was performed to evaluate heterosis, genetic parameters, gene effect, and heritability of important quantitative traits in rice using the
North Carolina III mating design.
Materials and methods: In this study, two cultivars, Deylamani and Gilaneh, were used for the North Carolina III mating design according to
the results of a study using microsatellite markers. After the crosses were performed, the progenies from the North Carolina III mating design
were planted with their parents in a randomized complete block design with three replications. Prior to evaluation, off-type plants were removed,
and then the mean of observations per plot was used for statistical analysis. SPSS and Excel softwares were used to analyze variance and estimate
NCIII genetic parameters.
Results: Estimation of additive and dominance variances indicated the presence of additive and non-additive effects in genetic control of grain
yield, 100-grain weight, plant height, number of panicles per plant, number of spikelet per panicle, panicle length, and number of filled grains per
panicle. Non-additive effects played an essential role in plant height, the number of panicles per plant, and the number of filled grains per panicle.
The overdominance phenomenon was observed in grain yield, 100-grain weight, plant height, number of panicles per plant, number of spikelet
per panicle, panicle length, and number of filled grains per panicle. In grain yield, the range of heterosis was -12.64% for the cross of F2 No. 1 ×
Gilaneh up to 38.5% for the cross of F2 No. 11 × Deylamani. For plant height, the highest relative heterosis based on the average parent to reduce
plant height was seen at the cross of F2 No. 9 × Deylamani (-11.4%).
Conclusion: The results of this study indicate the existence of additive and non-additive effects in genetic control of grain yield, 100-seed
weight, plant height, number of panicles per plant, number of spikelets, panicle length, and filled grain number per panicle. On the other hand, in
genetic control of grain yield, 100-grain weight, number of spikelets per panicle, and panicle length, additive effects had a greater role. However,
in addition to additive effects, non-additive effects were also involved in genetic control of grain yield, 100-grain weight, number of panicles, and
panicle length. The study of heterosis also showed the existence of superior offspring in the studied traits and the possibility of using them in
breeding programs.
Keywords: Genetic effect, Heritability, Heterosis.
Article Type: Research Article
Article history: Received: 13/07/2021, Revised: 23/12/2021, Accepted: 26/12/2022
Cite this article: Allahgholipour, M., Haghighi Hasanalideh, A. (2022). Assessing gene action and heterosis for quantitative traits in rice
(Oryza sativa L.) using North Carolina III mating design. Cereal Biotechnology and Biochemistry, 1 (1), 50-65 pages. DOI:
© The Author(s). Publisher: Razi University
DOI:
.Oryza sativa L
III
@yahoo.comhaghighi.ag
I IIIII
III
NCIIISPSSExcel
No. 1
2
FNo. 11
2
F
No. 9
2
F
Oryza sativa L
IIIDOI:
©
Oryza sativa L
Rahaman,
2016
Tejaswini et al.,
2016
Makwana et al., 2018
Rahaman,
2016
Nayak et al., 2016
Kumar et al., 2017
Soni
et al., 2017
Zhou et al., 2017
Khush, 2013
F1
Fonseca & Patterson, 1968
-
Nuruzzaman et
al., 2002
Rahaman, 2016
Makwana et al.,
2018
Nugraha et al., 2016
Haghighi Hasanalideh et
al.. 2017
Bainade et al., 2014
Hadini et al., 2015
I IIIII
INCI
I
II
II
III
F2F2
Wen et al., 2015II
Acquaah, 2009 Zhou et al.,
2017
De Morais et al.,
2017
Li et al., 2015
Allahgholipour et
al., 2014
2
F
2
F
-
Hallauer et al., 2010
m
2
σ
mp
2
σ
F
Comstock & Robinson, 1952
p = q = 1/2
2
F
MPH
NCIIISPSS Excel
F2
F2
III
Table 1. Analysis of variance for design III progenies.
SOV
df
MS
variance component
Replications
r-1a
Parents (p)
1
M4
Males (m)
m-1
M3
×
m × p
m-1
M2
Error
(r-1)(2m-1)
M1
rm
r and m refer to number of replications and male plants, respectively.
-
AD
Shabbir et al., 2017
Raju et al., 2017
Gahtyari et al., 2017
Sharma & Mani, 2008
(Pradhan &
Singh, 2008) Patil et al.,
2012
DD
Li et al.,
2015
Ray et al.,
2014
Shen et al., 2014
He et al., 2010
No. 1
2
FNo. 11
2
F
Zhou et al., 2017
Shobhana et al., 2018
Makwana et al., 2018Priyanka
and Jaiswal, 2017 Devi, 2017
Dan et al., 2015
Kumar et al., 2017
Table 2. Analysis of variance for quantitative traits in rice using NCIII.
SOV
df
Mean Square
GY
HGW
PH
PN
SP
PL
FGN
Replications
2
0.33ns
0.04ns
1.25ns
4.09ns
0.1ns
0.01ns
27.45ns
Parents (p)
1
13.15**
2.24**
318.06**
0.54ns
35.66**
16.19**
3293.62**
Males (m)
14
1.18**
0.48**
119.39**
8.25**
2.21**
6.6**
839.31**
×
m × p
14
1.06**
0.45**
187.78**
13.1**
1.67**
6.35**
940.02**
Error
58
0.17
0.03
5.08
1.73
0.09
1.72
10.34
ns
***
ns, * and **: non-significant, significant at 5% and 1% probability levels, respectively.
GY: Grain Yield, HGW: Hundred Grain Weight, PH: Plant Height, PN: Panicle Number (per plant), SP: Spikelet Number (per
panicle), PL: Panicle Length, FGN: Filled Grain Number (per panicle).
2
F
No. 10No. 13
2
F
Kader et al., 2015
-
Table 3. Genetic parameters estimation of quantitative rice traits in NCIII.
genetic
parameters
GY
HGW
PH
PN
SP
PL
FGN
mp
0.3**
0.14**
60.9**
3.79**
0.53**
1.54**
309.89**
m
0.17**
0.07**
19.05**
1.09**
0.35**
0.81**
138.16**
A
0.67**
0.3**
76.21**
4.34**
1.41**
3.25**
552.64**
D
0.59**
0.28**
121.8**
7.58**
1.05**
3.08**
619.78**
DD
1.33*
1.37*
1.79ns
1.87ns
1.22ns
1.38ns
1.5ns
h2b
0.88
0.95
0.97
0.87
0.96
0.79
0.99
h2n
0.47
0.49
0.38
0.32
0.55
0.40
0.47
mp m A D DD
b
2
h
n
2
h
ns
***
mp= m × p variance, m= male variance, A= Additive variance, D= Dominance variance, DD= Average degree of dominance, h2b
= Broad sense heritability and h2n = Narrow sense heritability.
ns, * and **: non-significant, significant at 5% and 1% probability levels, respectively.
Priyanka & Jaiswal, 2017
Zhou et al., 2017
Kumar et al., 2017
No. 9
2
F
No.
2
F
7Devi, 2017
Makwana et al., 2018
No. 4
2
F
No. 8
2
F
No. 7
2
F
No. 13
2
F
No. 6
2
F
No. 10
2
F
.
Table 4. Heterosis (%) over mid-parent (MPH) for quantitative traits in the rice progenies of the NCIII.
Crosses
GY
HGW
PH
PN
SP
PL
FGN
DeylamaniNo. 1 ×
2
F
13.96ns
-7.53**
10.79**
4.32ns
8.72*
-2.33ns
18.79**
F2 No. 2 × Deylamani
20.11ns
0.34ns
4.93**
19.43**
1.54**
8.53*
20.92**
F2 No. 3 × Deylamani
10.06*
2.7**
-0.39ns
1.44ns
-0.51ns
-5.74ns
-0.21ns
F2 No. 4 × Deylamani
18.99*
13.75**
13.33**
2.16ns
-8.72*
-2.33ns
7.91**
F2 No. 5 × Deylamani
-3.91ns
9.74**
-5.93*
3.6ns
-15.9**
-0.77ns
-12.88**
F2 No. 6 × Deylamani
13.97ns
30.61**
5.39**
2.88ns
-2.56ns
-7.91**
0.73ns
F2 No. 7 × Deylamani
18.44*
20.11**
0.92ns
9.35*
-18.97**
7.29ns
-5.69*
F2 No. 8 × Deylamani
16.2**
-4.9ns
13.16**
8.16**
13.72**
1.31ns
20.39**
F2 No. 9 × Deylamani
-10.61**
0.9ns
-11.4**
25.9**
2.57ns
0.16ns
40.27**
F2 No. 10 × Deylamani
18.99*
1.73ns
11.43**
8.89*
16.64**
-0.46ns
18.82**
F2 No. 11× Deylamani
38.55**
8.91ns
5.54**
18.96**
2.28ns
12.14**
20.57**
F2 No. 12 × Deylamani
5.03*
10.16ns
-1.58ns
6.23ns
8.35**
-5.55ns
-0.18ns
F2 No. 13 × Deylamani
27.37**
-5.87ns
15.23**
6.46**
-6.38*
-0.16ns
8.94**
F2 No. 14 × Deylamani
6.14ns
-6.84ns
-5.29*
10.28**
-7.36ns
1.52ns
-11.87**
F2 No. 15 × Deylamani
17.32**
44.44**
6.03**
-3.56ns
3.01ns
-5.23**
1.19*
GilanehNo. 1 ×
2
F
-12.64**
31.84**
3.14ns
-6.36*
3.42ns
-0.79ns
-19.32**
-
.
Continue the Table 4. Heterosis (%) over mid-parent (MPH) for quantitative traits in the rice progenies
of the NCIII.
Crosses
GY
HGW
PH
PN
SP
PL
FGN
F2 No. 2 × Gilaneh
2.2ns
14.51**
4.59*
3.01ns
31.61**
9.03ns
28.62**
F2 No. 3 × Gilaneh
-4.95**
5.41**
-1.21ns
1ns
11.92**
-0.16ns
5.92**
F2 No. 4 × Gilaneh
7.69*
28.81**
8.86*
-8.36**
18.13**
0.16ns
-12.91**
F2 No. 5 × Gilaneh
-3.85*
34.44*
6.28**
1.67*
7.77*
7.76ns
14.25ns
F2 No. 6 × Gilaneh
-7.14ns
22.6**
9.83**
7.69ns
24.35**
4.6*
5.77ns
F2 No. 7 × Gilaneh
4.95ns
38.92**
15.47**
1.67ns
3.63*
7.45ns
-6.44ns
F2 No. 8 × Gilaneh
-10.99*
26.64**
4.92*
-3.68ns
20.21**
15.05**
-3.46ns
F2 No. 9 × Gilaneh
2.75ns
21.01**
-7.03**
20.24**
6.82ns
0.14ns
26.43**
F2 No. 10 × Gilaneh
-6.6ns
-9.03**
4.89**
-6.9**
22.61**
15.6**
-0.34ns
F2 No. 11 × Gilaneh
-9.34ns
50.47*
2.86ns
-4.36*
5.95ns
-0.5ns
-17.99**
F2 No. 12 × Gilaneh
10.44ns
46.57*
5.34**
1.48ns
26.88**
6.84*
29.16**
F2 No. 13 × Gilaneh
6.59ns
60.58**
5.7**
10.42*
32.56**
9.17*
29.42**
F2 No. 14 × Gilaneh
12.64**
4.55ns
10.18**
-6.14**
16.39**
1.54*
-13.59**
F2 No. 15 × Gilaneh
1.65ns
18.41**
5.56**
8.35*
14.49**
6.23ns
12.24**
ns
***
ns, * and **: non-significant, significant at 5% and 1% probability levels, respectively.
GY: Grain Yield, HGW: Hundred Grain Weight, PH: Plant Height, PN: Panicle Number (per plant), SP: Spikelet Number (per panicle),
PL: Panicle Length, FGN: Filled Grain Number (per panicle).
2
F
No. 1 No. 8
2
F
Devi,
2017
References
Acquaah, G. 2009. Principles of plant genetics and breeding. John Wiley & Sons.
Allahgholipour, M., Farshadfar, E., & Rabiei, B. 2014. Molecular characterization and genetic diversity
analysis of different rice cultivars by microsatellite markers. Genetika, 46 (1), 187-198.
https://doi.org/10.2298/GENSR1401187A
Bainade, P. S., Manjare, M. R., Deshmukh, S. G., & Kumbhar, S. D. 2014. Genetic analysis in green
gram (Vigna radiata (L.) Wilczek) subjected to North Carolina mating design-I. The Bioscan, 9 (2),
875-878.
Comstock, R. E., & Robinson, H. F. 1952. Estimation of average dominance of genes. Heterosis, 2, 494-
516.
Dan, Z., Hu, J., Zhou, W., Yao, G., Zhu, R., Huang, W., & Zhu, Y. 2015. Hierarchical additive effects on
heterosis in rice (Oryza sativa L.). Frontiers in plant science, 6, 738.
https://doi.org/10.3389/fpls.2015.00738
de Morais, O. P., Pereira, J. A., Melo, P. G. S., Guimarães, P. H. R., & de Morais, O. P. 2017. Gene
action and combining ability for certain agronomic traits in red rice lines and commercial cultivars.
Crop Science, 57 (3), 1295-1307. https://doi.org/10.2135/cropsci2015.11.0687
Devi, B. 2017. Magnitude of heterosis in some inter-Varietal crosses of Rice (Oryza sativa L.). Journal of
Pharmacognosy and Phytochemistry, 6 (2), 327-330.
Fonseca, S., & Patterson, F. L. 1968. Hybrid vigor in a seven‐parent diallel cross in common winter
wheat (Triticum aestivum L.). Crop Science, 8 (1), 85-88.
https://doi.org/10.2135/cropsci1968.0011183X000800010025x
-
Gahtyari, N. C., Patel, P. I., Choudhary, R., Kumar, S., Kumar, N., & Jaiswal, J. P. 2017. Combining
ability studies for yield, associated traits and quality attributes in rice for South Gujarat (Oryza sativa
L.). Journal of Applied and Natural Science, 9 (1), 60-67. https://doi.org/10.31018/jans.v9i1.1151
Hadini, H., Nasrullah, N., Taryono, T., & Basunanda, P. 2015. Estimates of genetic variance component
of an equilibrium population of corn. AGRIVITA, Journal of Agricultural Science, 37 (1), 45-50.
https://doi.org/10.17503/Agrivita-2015-37-1-p045-050
Haghighi Hasanalideh, A., Farshadfar, E., & Allahgholipour, M. 2017. Genetic parameters and combining
ability of some important traits in rice (Oryza sativa L.). Genetika, 49 (3), 1001-1014.
https://doi.org/10.2298/GENSR1703001H
Hallauer, A. R., Carena, M. J., & Miranda Filho, J. D. 2010. Quantitative genetics in maize breeding
(Vol. 6). Springer Science & Business Media.
He, Q., Zhang, K., Xu, C., & Xing, Y. 2010. Additive and additive× additive interaction make important
contributions to spikelets per panicle in rice near isogenic (Oryza sativa L.) lines. Journal of Genetics
and Genomics, 37 (12), 795-803. https://doi.org/10.1016/S1673-8527(09)60097-7
Kader, M. A., Patwary, A. K., Hossain, M. M., & Majumder, R. R. 2015. Study on heterosis of some
experimental hybrids in rice. Scientia Agriculturae, 12 (3), 135-143.
https://doi.org/10.15192/PSCP.SA.2015.12.3.135143
Khush, G. S. 2013. Strategies for increasing the yield potential of cereals: case of rice as an example.
Plant Breeding, 132 (5), 433-436. https://doi.org/10.1111/pbr.1991
Kumar, S., Singh, N. K., Kumar, R., Singh, S. K., Nilanjaya, C. K., & Kumar, A. 2017. Heterosis studies
for various morphological traits of rice under drought conditions. International Journal of Current
Microbiology and Applied Sciences, 6 (10), 507-521. DOI:
https://doi.org/10.20546/ijcmas.2017.610.062
Li, L., He, X., Zhang, H., Wang, Z., Sun, C., Mou, T., Li, X., Zhang, Y., & Hu, Z. 2015. Genomewide
mapping reveals a combination of different genetic effects causing the genetic basis of heterosis in two
elite rice hybrids. Journal of genetics, 94 (2), 261-270. https://doi.org/10.1007/s12041-015-0527-8
Makwana, R., Patel, V., Pandya, M., & Chaudhari, B. 2018. Inferences on magnitude and nature of gene
effects for morpho-physiological traits in rice (Oryza sativa L.). International Journal of Pure and
Applied Bioscience, 6, 1488-1493. http://dx.doi.org/10.18782/2320-7051.5530
Nayak, P., Sreedhar, M., SurenderRaju, C., & Vanisree, S. 2016. Heterosis and gene action studies
involving aromatic lines for grain quality traits in rice. International Journal of Life Sciences, 4 (4),
517-528.
Nugraha, Y., Ardie, S. W., Ghulamahdi, M., Suwarno, S., & Aswidinnoor, H. 2016. Implication of gene
action and heritability under stress and control conditions for selection iron toxicity tolerant in rice.
AGRIVITA, Journal of Agricultural Science, 38 (3), 282-295.
https://doi.org/10.17503/agrivita.v38i3.740
Nuruzzaman, M., Alam, M. F., Ahmed, M. G., Shohael, A. M., Biswas, M. K., Amin, M. R., & Hossain,
M. M. 2002. Studies on parental variability and heterosis in rice. Pakistan Journal of Biological
Sciences, 5, 1006-1009. https://doi.org/10.3923/pjbs.2002.1006.1009
Patil, P. P, Vashi, R. D., Lodam, V. A, Patil, S. R., & Patil, S. S. 2012. Combining ability for yield and
component characters in rice (Oryza sativa L.). Agricultural Science Digest, 32 (1), 28-32.
Pradhan, S. K., & Singh, S. 2008. Combining ability and gene action analysis for morphological and
quality traits in basmati rice. ORYZA-An International Journal on Rice, 45 (3), 193-197.
Priyanka, K., & Jaiswal, H. K. 2017. Heterosis studies for yield and yield related traits over seasons in
boro rice. International Journal of Pure and Applied Bioscience, 5 (6), 1000-1009.
http://dx.doi.org/10.18782/2320- 7051.5154
Rahaman, A. 2016. Study of nature and magnitude of gene action in hybrid rice (Oryza sativa L.) through
experiment of line x tester mating design. International Journal of Applied Research, 2 (2), 405-410.
Raju, N. S., Senguttuvel, P., Prasad, A. H., Beulah, P., Naganna, P., Ali, S., & Rao, K. 2017. Combining
ability and heterosis prediction for grain yield of parental lines and hybrids for heat tolerance in rice
(Oryza sativa L.). Agriculture update, 12, 1213-1221.
https://doi.org/10.15740/HAS/AU/12.TECHSEAR(5)2017/1213-1221
Ray, B. P., Sarker, M. & Saha, S. 2014. Combining ability and heterosis in inter-ecotypic classes of rice
(Oryza sativa L.). Bulletin of the Institute of Tropical Agriculture, Kyushu University, 37 (1), 27-39.
Shabbir, G., Husnain, S., Mehdi, S. M., & Ehsan, M. 2017. Combining ability studies in rice through 6 ×
6 diallel cross analysis. Journal of Agricultural Research, 55 (4), 591-600.
Sharma, R. K., & Mani, S. C. 2008. Analysis of gene action and combining ability for yield and its
component characters in rice. ORYZA-An International Journal on Rice, 45 (2), 94-97.
Shen, G., Zhan, W., Chen, H., & Xing, Y. 2014. Dominance and epistasis are the main contributors to
heterosis for plant height in rice. Plant Science, 215, 11-18.
https://doi.org/10.1016/j.plantsci.2013.10.004
Shobhana, V. G., Ashokkumar, K., Karthikeyan, A., Kumar, R. N., Sheeba, A., & Vivekanandan, P.
2018. Heterosis analysis for yield in hybrids involving new plant type and indica lines of rice (Oryza
sativa L.). International Journal of Chemical Studies, 6 (3), 3043-3049.
Soni, S. K., Yadav, V. K., Bhadana, V. P., Yadav, M. C., & Sundaram, R. M. 2017. Prediction of
heterosis using hypervariable microsatellite markers in tropical japonica× indica rice hybrids.
International Journal of Current Microbiology and Applied Sciences, 6 (10), 1419-1427.
Tejaswini, K. L. Y., Kumar, B. R., Mohammad, L. A., Raju, S. K., Srinivas, M., & Rao, P. R. 2016.
Study of genetic parameters in F5 families of rice (Oryza sativa L.). International Journal of
Environment, Agriculture and Biotechnology, 1 (4), 238592. https://doi.org/10.22161/ijeab/1.4.17
Wen, J., Zhao, X., Wu, G., Xiang, D., Liu, Q., Bu, S. H., Yi, C., Song, Q., Dunwell, J. M., Tu, J., Zhang,
T., & Zhang, Y. M. 2015. Genetic dissection of heterosis using epistatic association mapping in a
partial NCII mating design. Scientific Reports, 5 (1), 18376. https://doi.org/10.1038/srep18376
Zhou, H., Xia, D., Zeng, J., Jiang, G., & He, Y. 2017. Dissecting combining ability effect in a rice NCII-
III population provides insights into heterosis in indica-japonica cross. Rice, 10 (1), 39.
https://doi.org/10.1186/s12284-017-0179-9