Content uploaded by Gennadi Milinevsky
Author content
All content in this area was uploaded by Gennadi Milinevsky on Feb 14, 2022
Content may be subject to copyright.
35
Yu. Andrienko1, *, G. Milinevsky1, 2, 3, V. Danylevsky1
1 Taras Shevchenko National University of Kyiv, Kyiv, 01601, Ukraine
2 State Institution National Antarctic Scientific Center, Ministry of Education
and Science of Ukraine, Kyiv, 01601, Ukraine
3 International Center of Future Science, College of Physics, Jilin University,
Changchun, 130012, China
* Corresponding author: andrienko.j@gmail.com
Vertical ozone profiles in the atmosphere
over the Antarctic Peninsula and Kyiv by Umkehr observations
Abstract. The Umkehr observations over Kyiv (Ukraine) and Antarctic Peninsula areas were processed for the first time to re-
trieve and analyse the vertical distribution of ozone. The Umkehr observations have been pre-processed using the UMK92
software package proposed by the World Ozone and UV-radiation Data Centre (WOUDC). The set of the calculated vertical
ozone profiles for Kyiv–Goloseyev station (2011–2020) and Akademik Vernadsky station (2005–2009) has been obtained.
Analysis of ozone profiles observed with Dobson spectrophotometer D040 indicates that the maximum ozone concentration is
located in the altitude range of 15–25 km with an average height of 19.8 ± 1.4 km. It corresponds to the layer of maximum ozone
concentration in the mid-latitude stratosphere. The maximum ozone partial content in Dobson Units per the layers (DU/layer)
with thickness of 5 km altitude for most of the years are of 60–80 DU/layer. There are also days with the maximum ozone con-
tent significantly larger than an average. A characteristic feature of the profiles is that the lower ozone content occur in summer
and autumn months in the range of 60–75 DU/layer. The winter and spring profiles demonstrate higher ozone values at the
maximum. To analyse the vertical profiles of ozone in Antarctic Peninsula area, we use Umkehr data from observations at the
Akademik Vernadsky station with the Dobson D123 spectrophotometers in 2005–2009. The data processing and the calculation
of the vertical ozone profiles was provided according to the methodology developed at the Kyiv–Goloseyev station. It is shown
that the ozone profiles at the Akademik Vernadsky station vary in a wide range of values of the maximum ozone concentration
from 40 to 110 DU/layer. Ozone content at maximum of vertical distribution was changing dramatically from day to day in the
Antarctic region during the ozone hole period.
Keywords: climate, Dobson spectrophotometer, ozone hole, seasonal variation, stratosphere, total ozone content
Геокосмічні дослідження
Geospace Research
ISSN 1727-7485. Український антарктичний журнал, 2021, № 2, https://doi.org/10.33275/1727-7485.2.2021.676
Andrienko, Yu., Milinevsky, G., & Danylevsky, V. (2021).
Vertical ozone profiles in the atmosphere over the Antarctic Peninsula
and Kyiv by Umkehr observations.
Ukrainian Antarctic Journal, 2, 35—47.
https://doi.org/10.33275/1727-7485.2.2021.676
1 Introduction
Atmospheric ozone concentrations are affected by va r-
ious parameters, including dynamic variability (Fus-
co & Salby, 1999) and climate change (Rex et al.,
2004). Changes in stratospheric ozone can be used to
climate numerical prediction, to check internal heat-
ing and energy balance in the stratosphere (Gettel-
man et al., 2011). Since the 1920s, systematic total
ozone observations using direct solar radiation and
radiation from the sky at the zenith have been intro-
duced by Dobson and Harrison (1926). Since 1984,
similar measurements have been made with the Bre-
wer spectrophotometer (WMO, 1998), when the evi-
36
Yu. Andrienko, G. Milinevsky, V. Danylevsky: Vertical ozone profiles in the atmosphere over the Antarctic Peninsula and Kyiv
ISSN 1727-7485. Ukrainian Antarctic Journal, 2, 2021, https://doi.org/10.33275/1727-7485.2.2021.676
dence of stratospheric ozone decline became obvious
(Staehelin et al., 1998a; 1998b). The problem with
stra tospheric ozone layer is considered in Intergov-
ernmental Panel on Climate Change (IPCC) scien-
tific report 2013 in connection with Montreal Proto-
col (Hartmann et al., 2013). Stratospheric ozone
decline was observed until mid-1990s when it reached
3.5% lower pre-1980s level. Ozone content trend in
the Earth atmosphere are the basis for revising the
Radiative Forcing from –0.05 ± 0.10 W m–2 in 1750
to –0.10 ± 0.15 W m–2 in 2005 (Myhre et al., 2013).
These values strongly depend on the vertical distribu-
tion of the stratospheric ozone changes because of
tropospheric ozone accounts for only about 10% of
the total ozone column (TOC) (Hartmann et al., 2013;
Hassler et al., 2014). Two altitude regions are mainly
responsible for long-term changes in the TOC. In the
upper stratosphere (35 to 45 km), there was a strong
and statistically significant decline (about 10%) up to
the mid-1990s and little change since then. In the
lower stratosphere, between 20 and 25 km over mid-
latitudes, ozone also experienced a statistically sig-
nificant decline (7 to 8%) between 1979 and the mid-
1990s, followed by stabilization or a slight (2 to 3%)
increase (Hartmann et al., 2013). Minimum of the
TOC corresponded to the peak of the equivalent ef-
fective stratospheric chlorine (EESC) maximum that
occurred in the second half of the 1990s.
Due to the ozone decline is different at different
altitudes, the vertical ozone content study is extreme-
ly important to reveal the ozone trend (Harris et al.,
2015). Results of new analysis of the ozone trends
were published in the most recent report of the WMO
(WMO, 2018). Observations indicated that there was
no statistically significant trend in near-global (60°S–
60°N) TOC over the 1997–2016 period. New data-
sets were obtained and focused studies ozone profile
changes were performed recently. Ball et al. (2019)
has recently suggested that ozone in the lower strato-
sphere (<24 km) continued to decline over the 1998–
2016 period and tropical stratospheric ozone column
(1–100 hPa, 30°S–30°N) decreases significantly (Ball
et al., 2019).
Ozone profile trends over the period 2000 to 2016 are
discussed in Steinbrecht et al. (2017). The data indi-
cate significant ozone changes between 35 and 48 km
altitude. Below 35 km, in 2000–2016 period ozone
trends are not statistically significant. The observed
trends are consistent with expectations from chem-
istry climate model simulations. Almost all data sets
indicate ozone increase in the upper stratosphere.
Uncertainties have been reduced for the trend near
2 hPa in the 35 to 60° latitude bands from about ±5%
(2σ) in Harris et al. (2015) to less than ±2% (2σ) (Ste-
in brecht et al., 2017).
These uncertainties are critical to provide altitude
ozone distribution study. For these purposes, the Umkehr
method was first introduced in the 1930s to measure
the vertical ozone profiles in the atmosphere (Götz et
al., 1934). The first numerical Umkehr model was
developed by Dütsch (1959) with later improvements
by Mateer and Dütsch (1964). This method has been
applied as the base to all Umkehr observations from
the world network at the World Ozone Data Center
(WOUDC) after introduction of new ozone absorp-
tion coefficients (Bass & Paur, 1985) in UMK92 algo-
rithm (Mateer & Deluisi, 1992) and later UMK04 algo-
rithm presented by Petropavlovskikh et al. (2005). To
date, Umkehr method developments are underway to
improve the algorithm for reproducing the vertical dis-
tribution of ozone (Petropavlovskikh et al., 2005; Sto ne,
2015) and comparing the results with satellite obser-
vations (Laeng et al., 2014; Bernhard et al., 2017).
Ozone observations with a Dobson spectropho-
tometer (STN232, FAD) at British Antarctic Survey
base Faraday started in 1956. Later, in 1996 the Fara-
day base has been transferred to Ukraine. The base
was renamed Akademik Vernadsky (hereinafter –
Vernadsky) station. Ozone measurements with Dob-
son spectrophotometer D031 at the FAD station were
continued by Ukrainian scientists. Dobson spectro-
photometer D031 has been replaced by Dobson D123
in March 2005. The stratospheric ozone observati-
ons with Dobson spectrophotometer at the Kyiv–
Goloseyev station (STN498, KGV) started in 2010.
These observations provide TOC values and the
Umkehr altitude ozone distribution data. Umkehr
observations were used to retrieve and analyse the
vertical profiles of ozone over Kyiv and Antarctic
Peninsula areas.
37
Yu. Andrienko, G. Milinevsky, V. Danylevsky: Vertical ozone profiles in the atmosphere over the Antarctic Peninsula and Kyiv
ISSN 1727-7485. Український антарктичний журнал, 2021, № 2, https://doi.org/10.33275/1727-7485.2.2021.676
The main goal of this study is retrieve the Umkehr
vertical ozone profiles variability over the KGV Dob-
son station (Ukraine) and over Vernadsky FAD station
in Antarctic Peninsula. These profiles were processed
for the first time. In Section 2, the Dobson ozone ob-
servations and Umkehr data processing software are
briefly described. The results of vertical ozone obser-
vations at KGV and FAD stations are considered in
Section 3 followed by discussion and conclusions in
Section 4.
2 Data and method
Dobson ozone observations
Observations with Dobson spectrophotometer in
Ukrai ne started in May 2010 (Milinevsky et al., 2012)
at the Kyiv-Goloseyev station, located in Kyiv, 10 km
south of the city center. Observations are made using
a Dobson D040 spectrophotometer as part of the
network established by the World Meteorological
Organization (WMO). Data allow determining the
pa rameters of ozone in the Earth’s atmosphere: total
ozone column and vertical distribution of ozone
(Um kehr method). At Faraday/Vernadsky the long-
est time series of the Antarctic ozone measurements
is supported. These observations allow to determine
the TOC in a wide range of meteorological condi-
tions, both in clear weather using the direct Sun light
(observations type Direct Sun – DS) and light scat-
tered by the atmosphere from in cloudless zenith
(Zenith Blue – ZB) conditions, and in cloudy weath-
er (Zenith Cloud – ZC) using light scattered by the
atmosphere and clouds at zenith.
In this paper we consider ozone vertical profiles ob-
tained with the Dobson D040 spectrophotometer over
Kyiv in 2011–2020 and the Dobson D123 spectropho-
tometer over Vernadsky in the period 2005–2009.
Umkehr measurements
In contrast to the TOC observations, only the stable
clear weather is suitable for determining the vertical
ozone profiles by the Umkehr method. Umkehr mea-
su rements provide data on ozone up to a height of
48 km and, with higher precision up to a height of
30 km. Standard Umkehr observations consist of mea-
surements of a pair of C lines (311.45 nm, 332.4 nm)
at 14 zenith angles (Komhyr & Evans, 2008). The
Um kehr method for determining the vertical ozone
distribution in the atmosphere has been first pro-
posed by Götz et al. (1934) and is currently applied to
ozone studies with Dobson spectrophotometer (Stone
et al., 2015; Bahramvash Shams et al., 2019). The
Umkehr technique is based on the analysis of the
brightness ratio of zenith sky at a pair of ultraviolet
wavelengths (Komhyr & Evans 2008; Stone et al.,
2015). The resulting ozone profile derived from re-
duction of these measurements is quite dependent on
the used algorithm. The standard Umkehr technique
uses the fact that light with a wavelength of 311.4 nm
(intensity I) is more strongly absorbed by ozone, and
light with a wavelength of 332.4 nm (intensity I') is
less absorbed by ozone. It is assumed that the light
comes to the spectrophotometer as a result of single
scattering throughout total atmospheric column. The
intensity of scattered light at any level of the atmo-
sphere depends on the number of molecules in the
atmosphere column over that level and is determined
by two factors: ozone absorption and scattering by air
molecules. The detailed description of the method is
provided in (Mateer & Deluisi, 1992; Stone et al.,
2015). To retrieve the vertical ozone distribution, the
N-values are used (1). The ratio of intensities I/I' is
obtained from Dobson spectrophotometer observa-
tions. The actual measurement is the R-dial readings,
which is then converted to atmospheric radiation us-
ing calibration procedures.
N-value (z) = 100 log10 (I/I') + K, (1)
the value K is a constant and depends on the spectro-
photometer. The plot of the Umkehr dependency is
shown in Figure 1.
Mateer and Dütsch (1964) developed the first com-
puterized version of the algorithm UMK64 to restore
the vertical distribution of ozone. Two decades later,
new ozone absorption coefficients and a new math-
ematical method of calculation were published by
Bass and Paur (1985). A new algorithm UMK92, which
uses improved ozone absorption coefficients and their
temperature dependence, was developed by Mateer
and Deluisi (1992) and is currently widely used in WOUDC,
38
Yu. Andrienko, G. Milinevsky, V. Danylevsky: Vertical ozone profiles in the atmosphere over the Antarctic Peninsula and Kyiv
ISSN 1727-7485. Ukrainian Antarctic Journal, 2, 2021, https://doi.org/10.33275/1727-7485.2.2021.676
Toronto, Canada. The Umkehr observations at the
KGV station (Ukraine) and over the FAD station in
Antarctic Peninsula have been pre-processed using the
UMK92 software package proposed by the WOUDC.
For ozone profiles retrievals the advanced algorithm
UMK04 has been developed (Petropavlovskikh et al.,
2005). The comparison of UMK92 and UMK04
shows that the difference in errors of these two algo-
rithms is small. We are going to recalculate KGV and
FAD Umkehr data using UMK04 in the next study
for long-term ozone profiles trend analysis.
The UMK92 algorithm basic features are follow-
ing (Mateer & Deluisi, 1992). The calculation of dif-
fusely transmitted radiance in the zenith direction is
carried out for a clear, dry, spherically homogeneous
atmosphere with molecular scattering and ozone ab-
sorption. For the retrieval of the ozone vertical pro-
file, the atmosphere is divided into 16 layers. For
publication and archiving the profile is reported in 10
layers, with layer 10 including all ozone above layer 9,
and layer 1 including the retrieved ozone amounts for
both layers 0 and 1. So, layers 0–1 are extended to the
altitude of the layer 2 base that is 10.3 km. The base of
layer 10 is located at altitude of 47.9 km. The altitude
resolution is quite broad, the thickness of the tropo-
spheric layer is approximately 10 km, and the thick-
ness of the stratospheric layers are 4.4 to 5.3 km.
The radiative transfer calculations utilize the ozone
absorption cross-sections and their temperature de-
pendence, and the Rayleigh scattering. The absorption
coefficient temperature effect is included. An average
temperature is calculated for each of the forward
model layers and, from this temperature, a layer-av-
erage ozone absorption coefficient is also calculated,
using the weighted coefficients. The atmospheric tem-
perature profile used is the average profile for all
months for average North and South latitude 45°.
Multiple scattering corrections are calculated us-
ing iteration of the auxiliary equation of radiative
transfer in a pseudo-spherical atmosphere, primary
scattering is calculated for a spherically homoge-
neous atmosphere, while higher orders of scattering
are calculated for a flat atmosphere. The refraction
corrections are calculated using a primary scattering
model and the 1962 U.S. Standard Atmosphere geo-
metric heights for the temperature-pressure-height
relationship.
The sensitivity to stratospheric aerosol remains quite
significant for the UMK92 algorithm. In UMK92 the
errors are a strong function of aerosol altitude and are
largest for the uppermost and lowermost layers. The
conclusion of Mateer and Deluisi (1992) is only the
retrievals in layers 4–8 (19–43 km) should be used in
ozone trend analysis. These matters are inherent in
the physics of the Umkehr method.
3 Results
Kyiv-Goloseyev ozone profiles
The data from Umkehr observations obtained using a
Dobson spectrophotometer at the WOUDC No 498
Kyiv-Goloseyev station (50.35N, 30.29E) for the
2011–2020 period (Table 1) were used for analysis.
The number of vertical ozone profiles is reasonably
small because Umkehr observations require cloud-
less weather conditions. The vertical ozone profiles
are shown in Figures 2–4. Each plot shows profiles
for one year, which allows estimating changes in
ozone distribution during the year. The symbols on
the curves correspond to the values of the ozone con-
tent in the Umkehr layers, the lines are obtained by
spline interpolation.
Figure 1. Umkehr N-value plot by observations on September
23, 2020 at the Kyiv-Goloseyev station
39
Yu. Andrienko, G. Milinevsky, V. Danylevsky: Vertical ozone profiles in the atmosphere over the Antarctic Peninsula and Kyiv
ISSN 1727-7485. Український антарктичний журнал, 2021, № 2, https://doi.org/10.33275/1727-7485.2.2021.676
Profiles are displayed in ozone partial column val-
ues (Dobson Unit per layer — DU/layer, marked as
DU in the Figures), where "layer" is the correspond-
ing altitude range for which this value is calculated.
In this case, the integral value in DU for all layers on
the profile is equal to TOC in DU for this day of ob-
servations. The thickness of each Umkehr layer is ap-
proximately 5 km. The ten layer values in Umkehr
profiles cover the altitude range of approximately
0–50 km (Fig. 2).
In Figure 2, all profiles show a fairly similar alti-
tude distribution and for most years are close with
small differences in values. The maximum concen-
tration in the stratosphere is within the altitudes of
Figure 2. The vertical ozone profiles in DU/layer units and covered the 2011–2020 period. For convenience, all plots are
presented in the same X-axis scale. In the profile date am and pm indicate morning and evening Umkehr observations
40
Yu. Andrienko, G. Milinevsky, V. Danylevsky: Vertical ozone profiles in the atmosphere over the Antarctic Peninsula and Kyiv
ISSN 1727-7485. Ukrainian Antarctic Journal, 2, 2021, https://doi.org/10.33275/1727-7485.2.2021.676
Figure 3. Vertical ozone distribution over Kyiv area in 2013, 2014. Profiles are presented in DU/layer values depending on the
season
Table 1. The number of profiles of the vertical ozone distribution analyzed according
to the Kyiv-Goloseyev station data over the years. Total number is 53
Year 2011 2012 2013 2014 2015 2016 2017 2020
Number of profiles 1 2 9 9 13 5 1 13
41
Yu. Andrienko, G. Milinevsky, V. Danylevsky: Vertical ozone profiles in the atmosphere over the Antarctic Peninsula and Kyiv
ISSN 1727-7485. Український антарктичний журнал, 2021, № 2, https://doi.org/10.33275/1727-7485.2.2021.676
15–25 km, which corresponds to the lower strato-
sphere. The maximum ozone values for most years
are in the range of 60–80 DU/layer.
However, some profiles exhibit significant differ-
ences as a higher maximum value of ozone compared
to neighbouring dates. Thus in 2016, for the profile
on February 7 the maximum ozone value was almost
30 DU larger than for the nearest observed date of
April 4. A similar discrepancy is observed in 2020 for
the August 23 profile. The profiles for February 02, 2011
and February 09, 2017 are difficult to compare due to
the lack of other measurements in these years.
For more detailed analysis, we consider seasonal
changes in ozone altitude distribution (Figs. 3, 4).
Figure 4. Vertical ozone distribution over Kyiv area in 2015, 2020. Profiles are presented in DU/layer values depending on the
season
42
Yu. Andrienko, G. Milinevsky, V. Danylevsky: Vertical ozone profiles in the atmosphere over the Antarctic Peninsula and Kyiv
ISSN 1727-7485. Ukrainian Antarctic Journal, 2, 2021, https://doi.org/10.33275/1727-7485.2.2021.676
closest observations from August 20 have a profile with
maximum ozone of ~65 DU/layer.
For autumn profiles, the characteristic maximum
ozone value is seasonally lowest in the range of 60–70
DU/layer. In October 2014 we provided observations
with a time difference of two days and a discrepancy
in maximum values is about 20 DU/layer (October 9,
maximum ozone is of 77 DU/layer; in October 11,
maximum ozone is of 59.5 DU/layer).
Winter profiles are sparse due to usually cloudy
weather and presented by data for February 2016 and
February 2017 (Fig. 4 top right panel). The va lue of
the winter maximum in the profile for February 7,
2016 is of 102 DU/layer, on February 2, 2017 — 93
DU/layer. When comparing the winter (February 7 —
102.1 DU/layer) and summer (August 9 — 65.6 DU/
layer) profiles in 2016, the difference between the
ma x imum values is of 37DU/layer. That confirms the
annual variations of total ozone with maximum in
Figure 5. Vertical ozone distribution over Vernadsky station by the Dobson D123 spectrophotometer, WOUDC station 232 FAD.
Data are collected in the period from 2005 to 2009
Table 2. The number of profiles of the vertical
ozone distribution analyzed according to the Vernadsky
station data over the 2005–2009 period.
Total number is 22
Year 2005 2006 2007 2008 2009
Number
of profiles 66325
For summer profiles the maximum ozone partial
column value is in the range of 65–75 DU/layer for all
observations. This is well seen in the August 2020 ozone
profiles. In general, during the summer observation
period on eight ozone profiles the ozone distribution
is similar with the maximum ozone value is 70–75 DU/
layer. The exception is the August 23, 2020 profile which
is very different from others and exhibits the maximum
ozone partial column value ~83 DU/layer, while the
43
Yu. Andrienko, G. Milinevsky, V. Danylevsky: Vertical ozone profiles in the atmosphere over the Antarctic Peninsula and Kyiv
ISSN 1727-7485. Український антарктичний журнал, 2021, № 2, https://doi.org/10.33275/1727-7485.2.2021.676
winter and spring and minimum in autumn (Hood &
Zaff, 1995; Evtushevsky et al., 2014).
Vernadsky ozone profiles
The stratospheric ozone observations with Dobson
spectrophotometer D123 at the Vernadsky station were
used to retrieve and analyse the vertical distribution
of ozone over Antarctic Peninsula area. Using the same
procedure as for the Kyiv-Goloseyev station data, we
calculated the vertical ozone distributions for the
2005–2009 period (Table 2).
Figure 5 presents the annual set of the ozone verti-
cal distribution profiles at the period 2005–2009. The
graphs show that the profiles differ in a wide range of
values of the maximum ozone concentration from 40
to 110 DU/layer. The maximum of ozone is in the
range of altitudes from 13 km (December 07, 2005)
to 25 km (November 15, 2006).
The 2005 profiles (Fig. 5) are presented from Oc-
tober 15 to December 21. The ozone maximum value
changes and variations of the maximum position are
seen. In December 5, the maximum ozone value is of
~103 DU/layer corresponds to an altitude of 18 km,
but in December 7, the maximum value is of ~88
DU/layer corresponds to an altitude of ~13 km.
The 2006 profiles (Fig. 5) are presented from
January 4 to December 24. In January 4, the max-
imum ozone value is of 78 DU/layer, in November
14, 15–48.6 DU/layer and 42.6 DU/layer, respec-
tively, while in December 24, the ozone value at the
maximum is of 91 DU/layer. That is evidence of ozo-
ne concentrations decrease two-fold in one month
and recovering to the previous value also during one
month. This variations should be considered taking
into account the position and dynamics of ozone
hole over the FAD station, that is located at the ozone
hole edge.
Figure 6. Distribution of ozone with altitude for the three Antarctic seasons in Southern Hemisphere over Vernadsky station,
observations in the 2005–2009 period
44
Yu. Andrienko, G. Milinevsky, V. Danylevsky: Vertical ozone profiles in the atmosphere over the Antarctic Peninsula and Kyiv
ISSN 1727-7485. Ukrainian Antarctic Journal, 2, 2021, https://doi.org/10.33275/1727-7485.2.2021.676
Figure 6 shows the vertical distributions of ozone
for the period under study for different Antarctic sea-
sons. For summer profiles (Fig. 6, summer) the most
characteristic values of the maximum ozone concen-
tration are the range of values 60–90 DU/layer,
which corresponds to an altitude of about 18 km.
Small additional maxima are observed at the altitude
of about 33 km on the profiles constructed by the
data at the end of February and at the beginning of
March (Fig. 6, autumn). Profiles constructed for the
spring season are presented in November data for the
discussed years (Fig. 6, spring) and show a wide range
of changes in the maximum ozone concentration in
this period from year to year.
The profiles obtained at the Vernadsky station
show that the seasonal ozone values at the maximum
ozone concentration have a wider range of values.
Similar to the Kyiv-Goloseyev data, the profiles with
a lower maximum ozone concentration value have a
maximum at high altitudes. For example, the maxi-
mum value of ozone concentration is 45 DU/layer at
altitude of 24 km (on November 15, 2006), and 83
DU/layer at altitude of 19 km (on March 06, 2009).
4 Discussion and conclusions
The first results of processing the Umkehr observa-
tions over Kyiv (Ukraine) and Vernadsky (Antarctic
Peninsula) stations were provided to retrieve the
vertical distributions of ozone and to analyse their
seasonal variations. To data processing the software
package was developed, which in conjunction with
the WOUDC program UMK92 allows to retrieve
the vertical distribution of ozone using Umkehr ob-
servations.
The data of Umkehr observations at Kyiv-Goloseyev
station for the period 2011–2020 were processed. The
obtained ozone distributions show that in the men-
tioned period gradual increasing of TOC was registered
over the Kyiv-Goloseyev station. The value of ozone
partial column at the altitude highest concentration
(about 20 km) during the year varies in 60–110 DU/
layer. Winter and spring ozone concentrations at alti-
tudes above 15 km exceed the values observed in other
seasons. These seasons are characterized by ozone par-
tial column values in the range of 75–85 DU/layer, for
some observations 100–110 DU/layer. The spring con-
centration of ozone at the maximum of its profile tends
to exceed the summer one. The summer months are
characterized by the values of the maximum concentra-
tion in the range of 65–75 DU/layer. In autumn the
minimum ozone partial column value about 60 DU/
layer is observed at the heights of the maximum. These
seasonal variations in ozone can be explained by the
Brewer-Dobson circulation, when reach ozone air en-
ters to the stratosphere at the equator and moves in the
stra tosphere to the mid-latitude and polar latitudes, and
descends into the troposphere. Brewer-Dobson circu-
lation is stronger in the winter hemisphere than in the
summer (Brewer, 1949; Hardiman et al., 2017).
The profiles obtained at the Vernadsky station show
that the seasonal ozone partial column values at the
maximum ozone concentration have a wider range of
variations. For example in 2006, the ozone content in
the profile maximum decreases two-fold in one month
and recovers to the previous value also during one
month. This variations should be considered taking
into account the position and dynamics of ozone
hole over the Vernadsky station, located at the ozone
hole edge. Similar to the Kyiv-Goloseyev data, the
profiles with a lower maximum ozone concentration
exhibit the maximum at highest altitudes. The de-
tailed analysis of vertical ozone profiles from Umkehr
observation over Kyiv-Goloseyev and Vernadsky sta-
tions will be provided in future work. The compari-
son of satellite ozone profiles with Umkehr retrievals
will also be undertaken. The Umkehr profiles processed
for Faraday/Vernadsky data from 1971–2020 period
will allow to retrieve the comprehensive seasonal and
interannual ozone altitude profile variations, which
are most sharp during ozone hole period.
Author contributions: conceptualization, G.M.; me-
thodology, Yu.A. and G.M.; software, Yu.A. and G.M.;
validation, G.M. and V.D.; investigation, G.M., Yu.A.
and V.D.; observations G.M. and V.D.; writing —
original draft preparation, Yu.A. and G.M.; writing —
review and editing, Yu.A., V.D. and G.M. Each au-
thor contributed to the analysis and discussion of the
results and edited the manuscript.
45
Yu. Andrienko, G. Milinevsky, V. Danylevsky: Vertical ozone profiles in the atmosphere over the Antarctic Peninsula and Kyiv
ISSN 1727-7485. Український антарктичний журнал, 2021, № 2, https://doi.org/10.33275/1727-7485.2.2021.676
Acknowledgments: This work was partly supported
by the Ministry of Education and Science of Ukraine
through the projects 19BF051-08 and 20BF051-02
of the Taras Shevchenko National University of Kyiv.
This work also contributed to the State Institution
National Antarctic Scientific Center of the Ministry
of Education and Science of Ukraine research objec-
tives.The authors would also like to thank observers
from the Dobson Kyiv-Goloseyev and Vernadsky sta-
tions who provided valuable Umkehr observations.
Funding: This research received no external funding.
Conflict of Interest: The authors declare no conflict
of interest.
References
Bahramvash Shams, S., Walden, V. P., Petropavlovskikh,
I., Tarasick, D., Kivi, R., Oltmans, S., Johnson, B., Cullis, P.,
Sterling, C. W., Thölix, L., & Errera, Q. (2019). Variations in
the vertical profile of ozone at four high-latitude Arctic sites
from 2005 to 2017. Atmospheric Chemistry and Physics, 19,
9733–9751. https://doi.org/10.5194/acp-19-9733-2019
Ball, W. T., Alsing, J., Staehelin, J., Davis, M. S., Froi-
devaux, L., & Peter, T. (2019). Stratospheric ozone trends for
1985–2018: sensitivity to recent large variability. Atmospheric
Chemistry and Physics, 19, 12731–12748. https://doi.org/10.
5194/acp-19-12731-2019
Bass, A. M., & Paur, R. J. (1985). The ultraviolet cross-
section of ozone: I. The measurements. In C. S. Zerefos, A.
Ghazi (Eds.), Atmospheric Ozone (pp. 606—610). Springer,
Dor drecht. https://doi.org/10.1007/978-94-009-5313-0_120
Bernhard, G., Petropavlovskikh, I., & Mayer, B. (2017). Re-
trieving vertical ozone profiles from measurements of global
spectral irradiance. Atmospheric Measurement Techniques, 10,
4979–4994. https://doi.org/10.5194/amt-10-4979-2017
Brewer, A. W. (1949). Evidence for a world circulation pro-
vided by the measurements of helium and water vapour distri-
bution in the stratosphere. Quarterly Journal of the Royal Me-
teorological Society, 75(326), 351–363. https://doi.org/10.1002/
qj.49707532603
Dobson, G. M. B., & Harrison, D. N. (1926). Measurements
of the amount of ozone in the Earth’s atmosphere and its rela-
tion to other geophysical conditions. Proceedings of the Royal
Society of London A, 110, 660–693. https://doi.org/10.1098/
rspa.1926.0040
Dütsch, H. U. (1959). Vertical ozone distribution from Um-
kehr observations. Archiv für Meteorologie, Geophysik und Bio-
klimatologie, Serie A, 11, 240–251.
Evtushevsky, O., Grytsai, A., & Milinevsky, G. (2014). On
the regional distinctions in annual cycle of total ozone in the
northern midlatitudes. Remote Sensing Letters, 5(3), 205–212.
http://dx.doi.org/10.1080/2150704X.2014.894653
Fusco, A. C., & Salby, M. L. (1999). Interannual variations
of total ozone and their relationship to variations of planetary
wave activity. Journal of Climate, 12(6), 1619–1629. https://doi.
org/10.1175/1520-0442(1999)012<1619:ivotoa>2.0.co;2
Gettelman, A., Hoor, P., Pan, L. L., Randel, W. J., Heg-
glin, M. I., & Birner, T. (2011). The extratropical upper tropo-
sphere and lower stratosphere. Reviews of Geophysics, 49(3).
https://doi:10.1029/2011RG000355
Götz, F. W. P., Meetham, A. R., & Dobson, G. M. B.
(1934). The vertical distribution of ozone in the atmosphere.
Proceedings of the Royal Society of London. Seria-A, 145, 416–
446. https://doi.org/10.1098/rspa.1934.0109
Hardiman, S. C., Lin, P., Scaife, A. A., Dunstone, N. J., &
Ren, H.-L. (2017). The influence of dynamical variability on
the observed Brewer-Dobson circulation trend. Geophysical
Research Letters, 44(6), 2885–2892. https://doi.org/10.1002/
2017GL072706
Harris, N. R. P., Hassler, B., Tummon, F., Bodeker, G. E.,
Hubert, D., Petropavlovskikh, I., Steinbrecht, W., Anderson,
J., Bhartia, P. K., Boone, C.D., Bourassa, A., Davis, S. M.,
Degenstein, D., Delcloo A., Frith, S. M., Froidevaux, L.,
Godin-Beekmann, S., Jones, N., Kurylo, M. J., ... & Zawod-
ny, J. M. (2015). Past changes in the vertical distribution of
ozone – Part 3: Analysis and interpretation of trends. Atmo-
spheric Chemistry and Physics, 15, 9965–9982. https://doi:10.
5194/acp-15-9965-2015
Hartmann, D. L., Klein Tank, A. M. G., Rusticucci, M.,
Alexander, L. V., Brönnimann, S., Charabi, Y. A. R., Dente-
ner, F. J., Dlugokencky, E. J., Easterling, D. R., Kaplan, A.,
Soden, B. J., Thorne, P. W., Wild, M., & Zhai, P. (2013). Ob-
servations: Atmosphere and Surface. In T. F. Stocker, D. Qin,
G.-K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Na-
uels, Y. Xia, V. Bex & P. M. Midgley (Eds.), Climate Change 2013:
The Physical Science Basis. Contribution of Working Group I to
the Fifth Assessment Report of the Intergovernmental Panel on
Climate Change (pp.159–254). Cambridge: Cambridge Uni-
versity Press, United Kingdom and New York, NY, USA.
https://www.ipcc.ch/report/ar5/wg1/
Hassler, B., Petropavlovskikh, I., Staehelin, J., August, T.,
Bhartia, P. K., Clerbaux, C., Degenstein, D., Mazière, M.,
Dinelli, B. M., Dudhia, A., Dufour, G., Frith, S. M., Froide-
vaux, L., Godin-Beekmann, S., Granville, J., Harris, N. R. P.,
Hoppel, K., Hubert, D., Kasai, Y., ... & Zawodny, J. M. (2014).
Past changes in the vertical distribution of ozone – Part 1:
Measurement techniques, uncertainties and availability. Atmo-
spheric Measurement Techniques, 7, 1395–1427, https://doi.org/
10.5194/amt-7-1395-2014
Hood, L. L., & Zaff, D. A. (1995). Lower stratospheric sta-
tionary waves and the longitude dependence of ozone trends
in winter. Journal Geophysical Research, 100(D12), 25791–
25800. https://doi.org/10.1029/95JD01943
46
Yu. Andrienko, G. Milinevsky, V. Danylevsky: Vertical ozone profiles in the atmosphere over the Antarctic Peninsula and Kyiv
ISSN 1727-7485. Ukrainian Antarctic Journal, 2, 2021, https://doi.org/10.33275/1727-7485.2.2021.676
Komhyr, W. D., & Evans, R. D. (2008). Operations Hand-
book – Ozone Observations with a Dobson Spectrophotom-
eter. GAW Report No. 183. World Meteorological Organiza-
tion, Geneva, 2008. https://gml.noaa.gov/ozwv/dobson/GAW
183-Dobson-WEB.pdf
Laeng, A., Grabowski, U., von Clarmann, T., Stiller, G.,
Glatthor, N., Höpfner, M., Kellmann, S., Kiefer, M., Linden,
A., Lossow, S., Sofieva, V., Petropavlovskikh, I., Hubert, D.,
Bathgate, T., Bernath, P., Boone, C. D., Clerbaux, C., Coheur,
P., Damadeo, R., ... & Zawodny, J. (2014). Validation of MI-
PAS IMK/IAA V5R_O3_224 ozone profiles. Atmospheric Mea-
surement Techniques, 7, 3971–3987. https://doi.org/10.5194/
amt-7-3971-2014
Mateer, C. L., & Dütsch, H. U. (1964). Uniform evaluation
of Umkehr observations from the world ozone network: Part I,
Proposed standard Umkehr evaluation technique. National Cen-
ter for Atmospheric Research.
Mateer, C. L., & Deluisi, J. J. (1992). A new Umkehr in-
version algorithm. Journal of Atmospheric and Terrestrial Phys-
ics. 54(5), 537−556. doi:10.1016/0021-9169(92)90095-3
Milinevsky, G. P., Danylevsky, V. O., Grytsai, A. V., Evtu-
shevsky, O. M., Kravchenko, V. O., Bovchaliuk, A. P., Bov-
chaliuk, V. P., Sosonkin, M. G., Goloub, Ph., Savitska, L. Y.,
Udodov, E. V., & Voytenko, V. P. (2012). Recent developments
of atmospheric research in Ukraine. Advances in astronomy
and space physics, 2(2), 114–120. https://doi.org/10.1007/978-
90-481-9618-0_32
Myhre, G., Shindell, D., Bréon, F.-M., Collins, W., Fu-
glestvedt, J., Huang, J., Koch, D., Lamarque, J.-F., Lee, D.,
Mendoza, B., Nakajima, T., Robock, A., Stephens, G., Take-
mura, T., & Zhang, H. (2013). Anthropogenic and Natural
Radiative Forcing. In Climate Change 2013: The Physical Sci-
ence Basis. Contribution of Working Group I to the Fifth Assess-
ment Report of the Intergovernmental Panel on Climate Chan-
ge (pp. 659–740). Cambridge: Cambridge University Press.
https:// doi.org/10.1017/CBO9781107415324.018.
Petropavlovskikh, I., Bhartia, P. K., & DeLuisi, J. (2005).
New Umkehr ozone profile retrieval algorithm optimized for
climatological studies. Geophysical Research Letters, 32(16).
doi:10.1029/2005GL023323
Rex, M., Salawitch, R. J., von der Gathen, P., Harris, N.
R. P., Chipperfield, M. P., & Naujokat, B. (2004). Arctic ozo-
ne loss and climate change. Geophysical Research Letters,
31(4). L04116. https://doi.org/10.1029/2003GL018844
Staehelin, J., Kegel, R., & Harris, N. R. P. (1998). Trend
analysis of the homogenized total ozone series of Arosa (Swit-
zerland), 1926—1996. Journal of Geophysical Research: Atmosp-
he res, 103(D7), 8389—8399. https://doi.org/10.1029/97JD03650
Staehelin, J., Renaud, A., Bader, J., McPeters, R., Viatte, P.,
Hoegger, B., Bugnion, V., Giroud, M., & Schill, H. (1998). To-
tal ozone series at Arosa (Switzerland): Homogenization and
data comparison. Journal of Geophysical Research: Atmosp he res,
103(D5), 5827–5841. https://doi.org/10.1029/97JD02402
Steinbrecht, W., Froidevaux, L., Fuller, R., Wang, R., An-
derson, J., Roth, C., Bourassa, A., Degenstein, D., Damadeo,
R., Zawodny, J., Frith, S., McPeters, R., Bhartia, P., Wild, J.,
Long, C., Davis, S., Rosenlof, K., Sofieva, V., Walker, K., ...
& Tummon, F. (2017). An update on ozone profile trends for
the period 2000 to 2016. Atmospheric Chemistry and Physics, 17,
10675–10690, https://doi.org/10.5194/acp-17-10675-2017
Stone, K., Tully, M. B., Rhodes, S. K. & Schofield, R. (2015).
A new Dobson Umkehr ozone profile retrieval method opti-
mising information content and resolution. Atmospheric Mea-
surement Techniques, 8, 1043–1053. https://doi.org/10.5194/
amt-8-1043-2015
WMO (World Meteorological Organization). (1998). The
fifth biennial WMO consultation on Brewer ozone and UV spec-
trophotometer operation, calibration, and data reporting (Re-
port No 139). Geneva, Switzerland. https://library.wmo.int/
index.php?lvl=notice_display&id=11071#.Ya5DCNBBxZU
WMO (World Meteorological Organization). (2018). Sci-
entific Assessment of Ozone Depletion: 2018. Global Ozone Re-
search and Monitoring Project (Report No. 58). Geneva, Swit-
zerland.
Received: 6 June 2021
Accepted: 9 December 2021
Ю. Андрієнко1, *, Г. Міліневський1, 2, 3, В. Данилевський 1
1 Київський національний університет імені Тараса Шевченка, м. Київ, 01601, Україна
2 Державна установа Національний антарктичний науковий центр
Міністерства освіти і науки України, м. Київ, 01601, Україна
3 Міжнародний центр науки майбутнього, коледж Фізики,
Університет Цзілінь, м. Чанчунь, 130012, Китай
* Автор для кореспонденції: andrienko.j@gmail.com
Вертикальні профілі озону в атмосфері над районами Києва
та Антарктичного півострова за спостереженнями Umkehr
Анотація. Для аналізу вертикального розподілу озону над Києвом та над Антарктичним півостровом (станція «Ака-
демік Вернадський») використані спостереження методом Umkehr. Результати спостережень Umkehr були поперед-
47
Yu. Andrienko, G. Milinevsky, V. Danylevsky: Vertical ozone profiles in the atmosphere over the Antarctic Peninsula and Kyiv
ISSN 1727-7485. Український антарктичний журнал, 2021, № 2, https://doi.org/10.33275/1727-7485.2.2021.676
ньо оброблені з використанням програмного пакету UMK92, запропонованого Всесвітнім центром даних з озону та
УФ-випромінювання (WOUDC). В результаті розрахунків отримано набір профілів вертикального розподілу озону
для станції Kyiv-Goloseyev (2011–2021 рр.) та антарктичної станції Фарадей/Академік Вернадський (2005–2009 рр.).
Аналіз профілів станції Kyiv-Goloseyev, отриманих за допомогою спектрофотометра Добсона D040, вказує на те, що
максимум у розподілі озону в одиницях Добсона у шарі атмосфери товщиною 5 км (DU/layer) спостерігається в
діапазоні 15–25 км висот із середнім значенням висоти 19.8 ± 1.4 км. Це відповідає шару максимального вмісту озону
в стратосфері на середніх широтах. Максимальні значення вмісту озону протягом більшої частини років становлять
60–80 DU/layer. У деякі дні є випадки, коли ці величини є значно вищими. Характерною особливістю профілів є те,
що менші значення максимумів вмісту озону відповідають літнім та осіннім місяцям, знаходяться в межах 60–75 DU/
layer. Зимовий та весняний профілі озону демонструють максимальні значення. Дослідження вертикального розподілу
озону в Південному полярному регіоні також розглянуто у статті. Для аналізу вертикальних профілів озону в цій
області використані спостереження Umkehr на антарктичній станції Фарадей/Академік Вернадський на спек тро фо-
то метрі Добсона D123 у 2005–2009 рр. Обробка даних та розрахунок вертикальних профілів озону проводилася від-
повідно до методології, розробленої для даних станції Kyiv-Goloseyev. Показано, що озонові профілі на антарктичній
станції відрізняються великим діапазоном значень максимальної концентрації озону від 40 до 110 DU/layer. На
відміну від даних середньоширотної станції Kyiv-Goloseyev, профілі антарктичної станції з меншими значеннями
максимальної концентрації озону мають максимум на більшій висоті. Згідно з розрахунками, значення озону в мак-
симумі розподілу озону різко змінюються від дати до дати в Антарктичному регіоні протягом періоду озонової діри.
Ключові слова: загальний вміст озону, клімат, озонова діра, сезонні коливання, cпектрофотометр Добсона, стратосфера