The gradual increase in the density of highway vehicles and traffic flow makes the abnormal driving state of vehicles an indispensable tool for assisting traffic dispatch. Intelligent transportation systems can detect and track vehicles in real time, acquire characteristics such as vehicle traffic, vehicle speed, vehicle flow density, and vehicle trajectory, and further perform advanced tasks such as vehicle trajectory. The detection of abnormal vehicle trajectory is an important content of vehicle trajectory understanding. And the development of the Internet of Things (IoT) and 5G technology has led to a continuous increase in the rate of data information circulation. The “Internet of Vehicles” generated based on the practice of 5G communication technology constitutes a vehicle abnormal trajectory detection system, which has very high feasibility and safety and stability. Therefore, this research is aimed at the needs of preventing major accidents and forensic analysis during highway vehicles. Based on the integration of the Internet of Things 5G communication technology, a trajectorial anomaly detection of highway vehicle trajectory based on the integration of the Internet of Things 5G is proposed. By accurately sensing unsafe events at the perception layer, network layer, and application layer, the vehicle driving trajectory state is divided into several simple semantic representations. The semantic representation is analyzed, and then the moving target detection and moving target tracking algorithms needed to extract the vehicle trajectory are introduced. Through video detection and tracking of moving vehicle targets, the driving trajectory of the vehicle is obtained, and the movement characteristics of the vehicle in each frame of image are extracted. According to the relationship between the trajectory of the vehicle and the lane line, the vehicle trajectory analysis is realized, and then it is judged whether the vehicle has abnormal trajectory. Compared with the traditional method of manually detecting the driving condition of the vehicle, the abnormal trajectory detection of the vehicle based on the integration of the Internet of Things and 5G can quickly detect the abnormal trajectory of the vehicle in the traffic monitoring video.
1. Introduction
With the increase of road vehicles, traffic has become more and more congested, and the rate of traffic accidents has become higher and higher, especially on highways. Once the phenomenon of abnormal driving such as illegal stop and retrograde occurs, it is often accompanied by major traffic accidents, causing serious consequences. The traditional judgment of abnormal vehicle driving requires manual viewing of surveillance videos to monitor and manage traffic conditions [1]. However, the efficiency of this method is very low, the work intensity of the staff is also very high, and there are problems that are missed and cannot be found in time, which cannot meet the needs of current operation management. At the same time, current vehicle abnormal trajectory detection still faces problems such as lack of data, inaccuracy of abnormal definition, occlusion, and poor real-time performance in practical applications.
The development of the Internet of Things (IoT) and the Internet has led to a continuous increase in the rate of data information circulation. As the fifth-generation cellular mobile communication technology, 5G has large-capacity wireless network technology and high-speed wireless transmission technology that surpass 4G. This can be integrated with the large-scale Internet of Things that blows out network requests and network traffic to realize the real interconnection of everything. 5G communication technology can take advantage of its own advantages such as low cost, large capacity, and low energy consumption to flexibly deploy and operate logistics networks, improve the utilization of network space in the process of highway vehicle management, control vehicle driving, and solve the problems faced by vehicles during driving [2, 3]. Therefore, an automatic detection system for abnormal events of highway vehicles based on the integration of the Internet of Things and 5G technology came into being. Through real-time processing and analysis of traffic monitoring video data, it can automatically detect and identify abnormal trajectory of vehicles on the road, such as speeding, sudden braking, illegal steering, unauthorized lane changes, running red lights, and vehicles’ going backwards. The abnormal driving of the vehicle is likely to cause traffic accidents. In the early stage of abnormal vehicle driving, rapid detection and timely warning and trajectory restraint can significantly reduce the incidence of traffic accidents [4]. However, the monitoring of the remote abnormal driving trajectory of existing vehicles mainly returns data through the Internet of Things card, which is limited by the transmission speed and can only transmit small-scale data. Under the existing network transmission conditions, it is difficult to support a large number of vehicles to send back large-scale data (such as high-definition video) concurrently in real time [4]. How to achieve automatic detection of traffic incidents efficiently, accurately, and quickly is still a major problem facing the current highway traffic field.
Therefore, this research was based on 5G communication technology and the Internet of Things fusion system technology, taking the driving video of highway vehicles as the research object. Starting research from several key technologies such as moving target detection, tracking, and abnormal trajectory description, an automatic detection algorithm was designed for abnormal driving on expressways. Through the Internet of Things converged 5G communication technology, problems such as the serious lack of transportation safety and emergency response mechanisms in the information age were solved. The application of the system uses networked and informational means to carry out automated and intelligent safety monitoring and strategy formulation, which is expected to fundamentally reduce the safety risks of the Internet of Vehicles information system, reduce the occurrence of traffic safety accidents, and reduce casualties and economic losses.
2. The Application of IoT and 5G Technology in the Driving Trajectory of Highway Vehicles
Detecting the driving of highway vehicles has been relatively mature for the application of the Internet of Things technology. However, with the abnormal expansion of the trajectory of highway vehicles, the existing communication technology has limitations in terms of safety, real-time performance, and transmission rate. As the latest level of current communication technology capabilities, 5G’s interconnection of everything has greatly promoted the development of the Internet of Things [5].
2.1. The Role of IoT and 5G Technology on Highway Traffic
In the context of the Internet of Things, the practical advantages of 5G communication technology are mainly reflected in the fact that this technology can increase data traffic, expand equipment, and make communication more reliable. 5G technology allows users to directly handle some network services on the network platform, saving users time and ensuring the reliability of communication services. Therefore, in the context of the Internet of Things, 5G communication technology can realize “things and things” communication services. And according to the scenarios required by the Internet of Things, the communication protocol is customized to enable the Internet of Things to have the function of the “Internet of Things.” The integration of the Internet of Things and 5G communication technology realizes the communication interconnection between vehicles and vehicles, vehicles and people, vehicles and road infrastructure, and vehicles and network service platforms (as shown in Figure 1) [6]. “Vehicle to vehicle” can monitor the information between vehicles in the system in real time and realize the functions of vehicle-assisted driving, emergency collision warning, vehicle lane change and steering assist. “Vehicle and person” establishes the interconnection of information between vehicles and pedestrians, which can avoid collisions between vehicles and pedestrians and ensure the safety of pedestrians. “Vehicle and network” realizes the network interconnection between the vehicle and the network platform in the vehicle network system, and the network platform can provide navigation information and road traffic information for the vehicle. “Vehicles and road” provide basic road information for vehicles, such as road traffic conditions and speed limit information, so that violations caused by speeding vehicles can be effectively avoided.