ArticlePDF Available

Guided Bone Regeneration in the Edentulous Atrophic Maxilla Using Deproteinized Bovine Bone Mineral (DBBM) Combined with Platelet-Rich Fibrin (PRF)-A Prospective Study

Authors:
  • Carames Advanced Education Center
  • Instituto de Implantologia®

Abstract

Background: Bone regeneration procedures represent a major challenge in oral surgery. This study aimed to evaluate a composite PRF/particulate xenograft in guided bone regeneration. Methods: Edentulous patients with horizontal ridge deficiencies in the anterior maxilla and candidates to an immediate-loading full-arch rehabilitation were included. Horizontal linear measurements indicating bone gain were assessed from computer beam computer tomography (CBCT) scans obtained at pre-surgery, post-surgery, and the 12-month follow-up. Mean bone values were presented as mean ± 95% CI. Non-parametric tests were used as appropriate, and the effect size was calculated with Cohen's d repeated measures. Results: Eighteen patients were rehabilitated with 72 implants. The mean horizontal bone width was 4.47 [4.13-4.80] mm pre-surgically, 9.25 [8.76-9.75] mm post-surgically, and 7.71 [7.28-8.14] mm 12 months after. Conclusions: PRF associated with a xenograft seems to promote an effective horizontal bone gain. Randomized clinical trials are needed to confirm the benefits of this surgical approach.
J.Clin.Med.2022,11,894.https://doi.org/10.3390/jcm11030894www.mdpi.com/journal/jcm
Article
GuidedBoneRegenerationintheEdentulousAtrophicMaxilla
UsingDeproteinizedBovineBoneMineral(DBBM)Combined
withPlateletRichFibrin(PRF)—AProspectiveStudy
JoãoManuelMendezCaramês
1,2,3,
*,FilipeAraújoVieira
1
,GonçaloBártoloCaramês
1
,AnaCatarinaPinto
1
,
HelenaCristinaOliveiraFrancisco
1,2
andDuarteNunodaSilvaMarques
1,2,3
1
InstitutodeImplantologia,AvenidaColumbanoBordaloPinheiro,nº50,1070064Lisbon,Portugal;
fmaraujo.vieira@gmail.com(F.A.V.);caramesgoncalo@gmail.com(G.B.C.);
anacatarina.pinto@institutoimplantologia.com(A.C.P.);helenafrancisco@campus.ul.pt(H.C.O.F.);
duarte.marques@campus.ul.pt(D.N.d.S.M.)
2
FaculdadedeMedicinaDentária,UniversidadedeLisboa,1600277Lisbon,Portugal
3
LIBPhysFCTUID/FIS/04559/2013,FacultyofDentalMedicine,UniversityofLisbon,
1600277Lisbon,Portugal
*Correspondence:carames@campus.ul.pt;Tel.:+351919727353;Fax:+351217210989
Abstract:Background:Boneregenerationproceduresrepresentamajorchallengeinoralsurgery.
ThisstudyaimedtoevaluateacompositePRF/particulatexenograftinguidedboneregeneration.
Methods:Edentulouspatientswithhorizontalridgedeficienciesintheanteriormaxillaand
candidatestoanimmediateloadingfullarchrehabilitationwereincluded.Horizontallinear
measurementsindicatingbonegainwereassessedfromcomputerbeamcomputertomography
(CBCT)scansobtainedatpresurgery,postsurgery,andthe12monthfollowup.Meanbonevalues
werepresentedasmean±95%CI.Nonparametrictestswereusedasappropriate,andtheeffect
sizewascalculatedwithCohen’sdrepeatedmeasures.Results:Eighteenpatientswererehabilitated
with72implants.Themeanhorizontalbonewidthwas4.47[4.13–4.80]mmpresurgically,9.25
[8.76–9.75]mmpostsurgically,and7.71[7.28–8.14]mm12monthsafter.Conclusions:PRF
associatedwithaxenograftseemstopromoteaneffectivehorizontalbonegain.Randomized
clinicaltrialsareneededtoconfirmthebenefitsofthissurgicalapproach.
Keywords:plateletrichfibrin;deproteinizedbovinebonemineral;guidedboneregeneration;
horizontalaugmentation;atrophicmaxilla;naturalscaffold
1.Introduction
Theatrophicmaxillarepresentsasurgicalandprosthodonticchallengeforan
implantsupportedreconstruction[1,2].Withinthefirst6monthsfollowingananterior
toothextraction,themaxillaexhibitsaprimaryvolumetricchangerangingfrom29to63%
horizontallyand11to22%vertically[3].Thepresenceofperiodontaldisease,trauma,
otherhardtissueinfections,orcongenitalmalformationsworsensthisboneloss,which
continuouslyprogressesovertheyearsfollowingacentripetalpattern[4,5].Cawoodand
Howell’sclassificationdescribesdifferentstagesofmaxillaatrophyassociatedwiththe
collapseofthecircumoralmusculature,triggeringmouthnarrowing,lossoflipsupport,
andinversionofthelips[6].Thislatteraspectismoresignificantintheanteriormaxilla
[7–9].
Despitethecurrentperspectivetowardaminimallyinvasivegraftlessapproach,itis
recognizedthatmostedentulousmaxillaedemandsometypeofboneaugmentation
procedure[10,11].Implantsinthegraftlessedentulousmaxillashowhighsurvivalrates
butarenotexemptfromsideeffectsorprosthodonticcomplications[12].Moreover,the
Citation:Caramês,J.M.M.;
Vieira,F.A.;Caramês,G.B.;
Pinto,A.C.;Francisco,H.C.O.;
Marques,D.N.d.S.GuidedBone
RegenerationintheEdentulous
AtrophicMaxillaUsing
DeproteinizedBovineBoneMineral
(DBBM)CombinedwithPlatelet
RichFibrin(PRF)—AProspective
Study.J.Clin.Med.2022,11,894.
https://doi.org/10.3390/jcm11030894
AcademicEditors:
MarkA.Reynolds
Received:13January2022
Accepted:7February2022
Published:8February2022
Publisher’sNote:MDPIstays
neutralwithregardtojurisdictional
claimsinpublishedmapsand
institutionalaffiliations.
Copyright:©2022bytheauthors.
LicenseeMDPI,Basel,Switzerland.
Thisarticleisanopenaccessarticle
distributedunderthetermsand
conditionsoftheCreativeCommons
Attribution(CCBY)license
(https://creativecommons.org/license
s/by/4.0/).
J.Clin.Med.2022,11,8942of14
levelofboneatrophyhasbeenreportedtoimpactrestorativeandregenerativetreatment
schemesinafixedfullarchrehabilitation[13].Itisclearthatboneregenerationprioror
simultaneouslytoimplantplacementinafixedfullarchrehabilitationinthemaxillais
essentialnotonlyforaprosthodonticallydrivenconceptbutalsotopromotelocalbone
defectandfacialaestheticcorrections[6].Manytechniques,suchasridgesplitting,bone
blockgrafting,orguidedboneregeneration(GBR)combinedwithseveralbonegrafts
(autografts,allografts,xenografts,andalloplasts)ordifferenttypesofmembranesor
mesheshavebeendescribedtohorizontallyreconstructanalveolarridgeintheanterior
region[14–17].Despitetheplethoraofprocedures,themostadequateoptiontoobtaina
stablehorizontalbonedimensionincreaseandalongtermimplantandprosthesis
survivalrateisyetundetermined[15,18,19].
Basedonhighevidencelevelpublications,GBRseemsmorepredictable,
reproducible,andtoresultinfewercomplicationsthanothertechniques[12,15,20].GBR
entailsusingamechanicalhindrance—usuallyaresorbableoranonresorbable
membrane—toseparatethebonydefectfromepithelialandconnectivetissueingrowth,
allowingcreatingaspaceforosteogeniccellstoproliferate[21].Theneedforoptimizing
horizontalbonegainandacceleratingbonetissueformationhashighlightedthe
importanceofaddinggrowthfactorstoGBRprocedures[22].
Abettercomprehensionofthecellulareventsthatregulatebonetissueformation
unveiledtherationalebehindnaturalbiologicalmediators.Accordingly,inorderto
enhanceangiogenesis,stemcellmigration,andosteogenicdifferentiationinherenttothe
regenerativeprocedure,severalauthorshavesuggestedthepotentialofgrowthfactorsto
bonegraftsandtissuehealing,mainlyusingautologousplateletconcentrates(APCs)
[22,23].Sincethat,theefficacyofplateletconcentratesinpromotingwoundhealingand
tissueregenerationhasbeenthecenterofanenrichedandparticipatedacademicdebate.
In2005,Dohanetal.namedasecondgenerationofAPCsasPRF,richinplatelets,
leukocytes,andmonocytes[24].PRFisobtainedaccordingtoastandardizedprotocolby
venipunctureand2700rpmcentrifugationfor12min,withoutusinganticoagulants
[25,26].Itconsistsofanetworkofnanoscalefibersofferinganaturalscaffoldforcell
proliferation,migration,anddifferentiation[27].Additionally,itslowlyreleasescrucial
growthfactorsduring10to14days,suchasPDGF,TGF‐β1,IGF,andVEGF[27].These
factorsplayanimportantroleintissuehealing[23].Accordingtoarecentrandomized
clinicaltrial,PRFhasproventopromotewoundhealingafterdentalextraction[28].
AliquidpresentationofPRF,fibrinogen,canalsobeobtainedbymodifying
centrifugationforces[27].ThisflowablePRFmayberegardedasanautologousbinder,
aggregatinggraftbiomaterial,andchoppedPRFmembranesinacomposite
PRF/particulatexenograftasusedinthisprospectivestudy.Clinicalresearchhasshown
promisingresultsfromtheassociationofPRFandparticulatebonegraftsinregenerative
procedures[29].However,accordingtoarecentsystematicreview,limitedstudies
investigateitsapplicationinintraoralbonegrafting,especiallyinhorizontalandvertical
boneaugmentation[30].
Basedonthedescribedbackground,thisstudyaimstoprospectivelytest
deproteinizedbovinebonemineral(DBBM)combinedwithPRFinGBRsimultaneously
toimplantplacementinedentulouspatientswithanteriormaxillaryatrophywhoare
candidatesforimmediateloadingfullarchrehabilitation.
2.MaterialsandMethods
2.1.PatientSelection
Thisstudywasasinglearmprospectiveclinicalstudywithaprepostdesign,carried
outbetweenDecember2015andJanuary2018.Thestudyprotocolwasapprovedbythe
LocalEthicalCommitteewiththeID:II201506andregisteredatClinicalTrials.gov(U.S.
NationalLibraryofMedicine,Bethesda,MD,USA)withtheregistrationNCT03391258.
J.Clin.Med.2022,11,8943of14
AlltreatmentphaseswereconductedpertheHelsinkiDeclarationof1975,asrevisedin
2008.
Eighteenpatientswereincludedinthisstudyandsignedthewrittenconsentforms
beforesurgery.Patientswereconsecutivelyrecruitedaccordingtothefollowinginclusion
criteria:(1)beingover18yearsofage;(2)beingASAIorASAIIwithmildsystemic
disease;(3)beingedentulousorpartiallyedentulouswithfailingteethindicatedfora
fixedfullarchreconstruction;(4)havingahorizontalbonedefectintheanteriormaxilla;
(5)havingananteriorridgewidthallowingforlateralboneaugmentationsimultaneously
toimplantplacement;(6)beingcomplianttoparticipateinaclinicalstudy.Theexclusion
criteriaconsideredwere:(1)ASAIIIorASAIV;(2)oncologichistoryand/orchemo‐and
radiotherapytreatmentsintheprevioustwoyears;(3)havingahorizontalbonedefect
causedbytumorresection;(4)pregnantwomen;(5)uncontrolleddiabetes;(6)taking
immunosuppressantmedicationormedicationrelatedtoosteonecrosisofthejaw
(MRONJ);(7)heavysmokinghabits(overtencigarettes);(8)hematologicdiseases;(9)any
typeofpsychiatricdisorders;(10)participatinginanotherclinicalstudy.
Theprimaryoutcomemeasurewasdefinedasthelinearhorizontalbonegain(mm)
immediatelyaftersurgeryand12monthslater,measuredbyCBCTpostsurgicallyandat
the12monthfollowup.Thesecondaryoutcomemeasuresweretherateofaugmented
bonestabilityatthe12monthfollowup,theincidenceofpostoperatorycomplications
(softtissuedehiscence,sensorydisorder,woundinfection,orgraftexposure)recordedat
10daysand1monthaftersurgery,andimplantsurvival.
2.2.OutcomesAssessment
Foreachpatient,CBCT(CBCTPlanmecaProMaxDimax3DigitalPlan/Ceph)scans
wereobtainedpresurgery,immediatelyafterthesurgery(postsurgery),andatthe12
monthfollowup.Theywereperformedwitha0.20voxelsize,80kV,and15mA,within
anexposuretimeof12saccordingtothemanufacturer’sinstructions.Crosssectional
imageswerereconstructedtoa0.6mmthickslicewiththeartifactremovaloption
applied.Twoindependent,calibratedoperators(D.M.;A.P.)assessedeachCBCTscan,
andwhenindisagreement,meanvaluesbetweentheirmeasurementswerecalculated.
Forthepurposeofthisstudy,onlythepremaxillaregion,delimitedbytheanterior
bordersofthemaxillarysinus,wasanalyzed,regardlessofimplantplacementinthe
posteriormaxillaryareas.Fourimplantswereanalyzedperpatientinthelocationsofthe
formerlateralincisorsandfirstpremolars.Inthesagittalcuts,eachimplant’slengthwas
measuredfromthenecktothetop.Site1forlinearbonemeasurementwastheneckofthe
implant,perpendiculartothelongaxisoftheimplant.Site2forlinearbonemeasurements
wasthemiddlepointofthetotallengthoftheimplant.Bothsitesweremeasuredfromthe
mostpalatalpointtothemostbuccalpoint(Figure1A–C).Thefollowingvariableswere
determinedinsites1and2,andmeanvalueswerecalculatedtoassesstheoutcomesof
thisstudy.
J.Clin.Med.2022,11,8944of14
Figure1.Exampleofmeasurementsinthreeimplantsitesfromdifferentpatients(AC)evaluated
throughCBCTscansusingthePlanmecaRomexisVersion2.5.1.R.Imagescorrespondto
measurementsinthedifferentperiods:beforetreatment,aftertreatment,andatthe12month
followup.
ImplantpositioninthepresurgicalCBCTscanwasobtainedfromthepostsurgical
CBCTscanaccordingtoapreviouslydescribedmethodology[31].Ontheaxialviewof
thepostsurgicalCBCT,inthemidlineofthemaxilla,theneareranatomicreproducible
landmark(nasalspine,incisiveforamen,maxillarysinusanteriorwall)wasidentified,and
astraightlinewasdrawntotheneckoftheimplant.Thedistancewasobtainedusingthe
PlanmecaRomexissoftware’srulerandreplicatedinthepresurgicalCBCTscan.The
presurgicalwidth(mm)wasmeasuredfromthecorticalbone’spalatalpointtothenative
bone’sbuccalpoint,perpendiculartothelongaxisoftheimplantposition.Thepost
surgicalwidth(mm)wasmeasuredfromthecorticalbone’spalatalpointtothe
regeneratedbone’sbuccalpoint,perpendiculartothelongaxisoftheimplant.The
augmentedhorizontalbonewidth(mm)wascalculatedbythedifferencebetweenpre‐
andpostsurgicalCBCTlinearmeasurements.Thesamemethodwasusedtocalculatethe
horizontalregeneratedbonegainoneyearaftersurgery,usingasreferencethepost
surgicalandthe12monthlinearmeasurements.
2.3.ClinicalProcedures
Invisit1,inclusionandexclusioncriteriawerescreenedforeachparticipant.After
anamnesisandclinicalexamination,participantsunderwentpreoperativeprosthetic
preparation(analysisofaestheticfeatures,suchasfacialprofile,lipsupport,smileline,
andresidualridgeexposure).Subsequently,afterthepatientsignedtheinformedconsent,
apresurgicalCBCTscan(PlanmecaRomexis,Planmeca,Helsinki,Finland)was
performedtoevaluatemaxillaryresorption,whichallowedplanningforimplantposition
andboneaugmentationprocedures.
Invisit2,onthedayofsurgery,PRFmembranes,acompositeformedbyparticulate
xenograft(BioOsssmallparticles,GeistlichAG,Wolhusen,Switzerland),andan
averageofeightPRFmembranesandliquidfibrinogenwereobtainedaccordingtoa
(A)
J.Clin.Med.2022,11,8945of14
describedprotocol(Figure2A–C)[26].Allsurgicalprocedureswereperformedunder
strictsterileconditions,andeachpatientsubmittedtolocalanesthesia(articaine4%with
epinephrine1:200,000,Inibsa,Sintra,Portugal),bothbuccallyandpalatally.Amidcrestal
incisionwasperformed,followedbyamucoperiostealflaprelease(totalthickness)to
exposethefullextensionofthebuccalbonedefect(Figure3A,B).Inpartiallyedentulous
patients,theremainingteethwereextractedintheleasttraumaticwaytoavoidtissue
damage,andanosteotomywasperformedtoleveltheboneheightandimprovethe
prosthodonticdesignandfeatures.Regardlessofimplantneedsintheposteriorregionof
themaxilla,fourimplantswereplacedintheformerpositionsofthelateralincisorsand
firstpremolars(Straumann
®
BoneLevelTaperedImplants,Basel,Switzerland)witha
minimumconfirmedprimarystabilityvalueof45Ncmineachimplant(Figure3C).The
compositePRF/particulateDBBMpreparedwasappliedinthebuccalplateofthepre
maxillaandshapedtorestorebonevolume.Thegraftedareawasthencoveredwithat
leastfourlayersofPRFmembranestoprotectitfromexposureandoptimizewound
healing(Figure3D,E).Atensionlessprimaryclosurewasobtainedthroughhorizontal
periostealreleasing,flapadvancement,andsimplesuturesusinganonresorbablesuture
(60polypropylenePermaSharp
®
Sutures,HuFriedy,Chicago,IL,USA).
Figure2.ClinicalphotographsoftheprotocolsequencetoobtainthecompositePRF/particulate
xenograft:(A)ExtractionofthePRFmembranesfromtheredtoppedtubes.Themembraneswere
posteriorlypressedinapropermetalbox;(B)Irrigationofautologousboneandxenograftwith
liquidfibrinogenobtainedfromthewhitetoppedtubes;(C)ObtainingacompositePRF/particulate
xenograft.Notethestiffnessofthiscomposite,whichacquiredarectangularform.
J.Clin.Med.2022,11,8946of14
Figure3.Clinicalphotographsofsequentialsurgicalstages:(A)Atrophicmaxillaofapartially
edentulouspatientwhoworearemovableprosthesisformorethan15years;(B)Incisionandfull
thicknessflapreleasing.Notethethinbuccalplate;(C)Implantplacement.Notethebuccal
fenestrationoftheimplantsinthepremaxilla;(D)Guidedboneregenerationwithacomposite
PRF/particulatexenografttoreconstructthebuccalaspectofthemaxilla;(E)Overlayofthe
compositePRF/particulatexenograftwithatleastfourPRFmembranes,providingprotectionofthe
graftedarea;(F)Fullarchimplantsupportedprovisionalrestorationplacedaftersurgery.
Immediatemetalreinforcedfixedcompletedenturesweremade,inserted,and
adjustedonthesamedayofsurgerytoserveasimmediateprovisionalrestorationsduring
healingandosseointegration(Figure4F).Manufactureandinsertionandadjustment
proceduresfollowedtheprinciplesdescribedbyCaramesetal[32].Patientswere
medicatedwithamoxicillin+clavulanicacid875/125mg(startingthedaybeforesurgery
withonetabletevery12h,for8days),600mgofibuprofen(every12hfor3days),and1
gofparacetamol(every8h,forthefirstthreedays)Theywerealsoinstructedtorinse
twiceadaywithchlorhexidine(PerioAid0.12%;Dentaid,Spain)mouthrinseandnot
brushthesurgicalareauntilsutureremovalatday10.
Figure4.Clinicalphotographsreportingtherelevanceoftheissuepresentedinthisstudy.
Evaluationoftheaestheticfeaturesrelatedtolipsupportandprosthesis,aswellassofttissue
healingandemergenceprofileatthe12monthfollowupappointment.(A)Lipsupportatrest
J.Clin.Med.2022,11,8947of14
beforetreatment;(B)Lipsupportatrestatthe12monthfollowupappointment;(C)Lipsupportat
smilingpositionbeforetreatment;(D)Lipsupportatsmilingpositionatthe12monthfollowup
appointment;(E)Emergencyprofileofthesiximplantsplacedinthemaxilla.(F)Superiorand
inferiorfullarchprosthesisinmonolithiczirconia.Notethatthemaxillaryprosthesisincludeda
veryreducedbuccalflangeduetothehardandsoftregenerationobtainedaftersurgery.
Patientsweresubmittedtomandatorypostsurgicalcontrolappointmentsat10days,
1month,and6monthsaftersurgery,andothersifneeded.Atthe10dayand1month
followupappointments,postoperatorycomplications,suchassensorydisorder,
infection,graftexposure,anddehiscencewereassessed,andthenumberofeventswas
determined.Atthe1yearfollowupappointment,participantswerealsosubmittedtoa
clinicalobservationtomonitoraestheticfeaturesrelatedtolipsupportascomparedto
baseline(Figure4A–D),prostheses,softtissuehealing,andtheemergenceprofile(Figure
4E,F).
2.4.StatisticalAnalysis
AllthecollecteddatawereprocessedinSPSSsoftware(version24;IBMSPSS
Statistics,Chicago,IL,USA)forstatisticalanalysis.Resultswereexpressedasamean±
95%confidenceinterval(CI)inmillimetersforlinearbonemeasurementsorasa
percentageforaugmentedbone.NormalityofdistributionwastestedbyShapiro–Wilk’s
normalitytest,andLevene’stestwasusedtoassesstheequalityofvariance.Accordingto
thevariablestobeassessed,thenonparametricFriedman’s,Mann–WhitneyU,or
Kruskal–Wallistestswereusedtocompareoverallordifferentsitesforregeneratedbone
linearchanges(α =0.05)usingthepatientasthestatisticalunit.Theeffectsizewas
calculatedwithCohen’sdrepeatedmeasuresbetweenpre‐ andpostsurgical
measurementsandbetweenpostsurgicaland12monthfollowupmeasurements,and
consideredassmall(<0.3),moderate(0.3–0.8),orlarge(0.8)effect.Asamplesize
determinationwasperformedtodetectalargeeffect(0.8)inbonegainatthe12month
followupappointment,usingG*Power3.1software(HeinrichHeineUniversität,
Düsseldorf,Germany).Consideringasignificancelevelof5%andapowerof80%,a
minimumof12participantswasrequired.Tooffsetapossibleattritionbias,50%was
addedtothetotalsample,resultingin18patients.Anindependentstatisticianperformed
thestatisticalanalysis.
3.Results
The18participantsincludedfivemenand13women,withagesrangingfrom36to
76years(mean:58years).Sevenweresmokers(lessthantencigarettesperday).No
dropoutswereregistered.Thisstudyassessedatotalof72implants,ofwhichonewas
lostduringthefollowupperiod,equatingtoasurvivalrateof98.61%.
Table1presentshorizontalbonechangespersiteatdesignatedtimepoints:pre
surgery(beforetreatment),postsurgery(aftertreatment),anda12monthfollowup.For
bothsites,thepostsurgicaland12monthfollowuphorizontalwidthwasstatistically
higher(Friedman’stest,p<0.05)thanthepresurgicalvalues,withadrepeatedmeasuresof2.38
[2.07;2.67]and1.66[1.39;1.94],respectively.Site2alsoshowedstatisticallyhighervalues
thansite1atthepostsurgicaland12monthfollowupCBCTs(Figure5).Themean
horizontalwidthatthe12monthfollowupwasstatisticallydifferentfromthepre‐and
postsurgeryvalues(Friedman’stest,p<0.05),withadrepeatedmeasuresof−1.12[1.38;−0.86]
betweenthepostsurgicalandthe12monthfollowuphorizontalwidths.Theobtained
effectsizeswereabovetheminimumdetectableeffectsizeof0.098,withanalfaof0.05
andabetaof0.2.Theoverallmeanaugmentedbonegainatpostopwas4.54mm[4.09;
4.98]withstatisticallysignificantdifferencesbetween3.96[3.51;4.41]mmforsite1and
4.96[4.32;5.60]mmforsite2(Mann–WhitneyUtest,p<0.05).Nosignificantdifferences
weredetectedwhencomparingaugmentedbonestabilitybetweensites(Mann–Whitney
Utest,p>0.05)orimplantlocationsintheaestheticarea(Kruskal–Wallis,p>0.05).
J.Clin.Med.2022,11,8948of14
Table1.Linearbonechanges(inmm)foreachlocationandoverallatdifferentevaluationtimes.
PreSurgeryPostSurgery12MonthFollowUpBoneGain(12Months—PreSurgery)
Site1
Mean3.527.796.533.01
95%CI3.19–3.857.30–8.286.09–6.962.51–3.50
Range6.167.536.68.17
Site2
Mean5.510.848.993.5
95%CI5.04–5.9510.19–11.488.42–9.572.87–4.13
Range8.599.768.478.46
Total
Mean4.479.257.713.24
95%CI4.13–4.808.76–9.757.28–8.142.85–3.64
Range8.8911.5610.928.5
Noneoftheincludedpatientspresentedcomplicationsduringthefollowupvisits
(10daysand12monthpostoperation).
Figure5.Linearbonechanges(mm)(mean±95%CI)fordifferenttimepointsin144locations[n=
18patients].p<0.05betweenlocationsandtimepoints.
4.Discussion
Theevaluationoffacialchanges,suchaslossoflipsupport,hasincreasinglybeen
consideredwhenplanningimplantsupportedrehabilitationofedentulouspatients
[33,34].Aspreviouslyreported,horizontalboneaugmentationinimmediatefullarch
reconstructionsisafrequentprocedurethatshouldalsoconsiderthepatient’spreferences,
expectations,andmorbidity[13].Althoughautogenousboneisregardedasthegold
standardgraftmaterialduetoitsosteogenic,osteoinductive,andosteoconductive
properties,itisalsoassociatedwithincreasedmorbidity,alimitedamountofvolume,and
variableresorptionrates[5].Thus,fromapatientcenteredperspective,cliniciansshould
avoidasecondinvasiveharvestingsurgerytocollectautogenousbone.Toovercomethese
limitations,researchontissueengineeringandhardtissueregenerationhasescalatedin
thelasttwodecades[35].Oneofthestrategiesfocusedongrowthfactors,aimingto
modulatecellulareventsinvolvedintissuehealingandrepair[35].Plateletrichfibrinisa
secondgenerationofAPCsusedinthemanagementofseveremedicalconditions[23].In
dentistry,PRFwasrecognizedasreducingpostoperativepain,postsurgicalbleedingin
J.Clin.Med.2022,11,8949of14
patientstakingantiplateletdrugs,andpromotingsofttissueepithelization[28,29].Few
studieshavebeenidentifiedregardingitsuseinhorizontalorverticalboneregeneration
[29,36–38].Totheauthors’bestknowledge,thisisthelargestprospectiveclinicalstudy
conductinganimmediateloadingprotocolinthemaxillasimultaneouslywithaGBR
procedureusingamixtureofparticulatexenograftandPRFmembranesembeddedin
liquidfibrinogentoformacompositegraft.
Theresultsofthisprospectiveclinicalstudybasedonasamplesizeof18patients
suggestthatcombiningPRFmembraneswithparticulatedeproteinizedbovinebone
mineralcanbeeffectiveandsafeintreatinghorizontalbonedefectsintheanteriormaxilla
togetherwithimplantplacement.Themeanhorizontalbonegainof3.24[2.85;3.64]mm
observedagreeswiththemainfindingsofsystematicreviewsofrandomizedclinicaltrials
analyzingaGBRtechniqueforlateralridgeaugmentation[15,16,18,19,31,39].Thehigh
heterogeneitybetweenstudiesincludedintheseSRsmayexplainslightlydifferent
outcomesbetweenthem[15,18,39].Namely,Milinkovicetal.describeda3.31mm
horizontalbonegainwhenusingGBR,whereasElnayefetal.reported2.59±0.23mmfor
thesameapproach[15,18].MostoftheincludedGBRstudiesuseddifferenttypesofbone
grafts—eitherautologous,xenogenous,allogenous,oramixtureofboth,withdifferent
typesofmembranesandindifferentedentulousregions.Moreover,severalotherfactors
mayinfluencethemeanhorizontalbonegainoutcome:regenerationtechnique,incision
design,flapmanagement,recipientsitepreparation,graftstability,tensionfreeprimary
closing,anddefectmorphology[5].Ridgeaugmentationproceduresaretechnique
sensitiveandrelyontheoperator’sskillfulnessandproficiency[5].Inthisstudy,the
previouslyreferredaspectswereconsistentlymanagedbyasingleexperiencedsurgeon
(J.M.M.C.),exceptdefectmorphology,intrinsictothepatient.
Regardlessofthetechniqueorbiomaterialsused,differentlevelsofgraftresorption
areexpectedtooccur[5,29].Untilnow,fewstudieshaveprovidedinformationaboutbone
graftstabilityatlongtermfollowups(12months).However,itisrelevantforlongterm
implantsuccessandfacialaestheticcorrections[18].Thisstudyevaluatedgraftstability
bycomparinghorizontalwidthatthe12monthfollowupwithpostsurgicalwidth,and
foundastatisticallydifferentvalue(Friedman’stest,p<0.05)withadrepeatedmeasuresof−1.12
[1.38;−0.86].mm.ArecentproofofconceptstudyproposingthecombinationofPRFand
DBBMinhorizontalboneaugmentationreportedanaveragebonegraftstabilityof84.4%
inashorterfollowupperiodof5to8months[38].Elanayefetal.alsofoundaslight
horizontalresorptionof1.130.25mmatthe6monthfollowupforGBRprocedures.
Estimatingthisvalueisextremelyusefulforpredictingthesurgicalapproachand
properlyovercorrectingthebonedefect[40].Intheauthor’sopinion,thisslowresorption
rateisprobablyattributedtothepresenceofxenograft.Thebiocompatibilityand
osteoconductivityofDBBMarewelldocumentedinpreclinicalandclinicalstudies.
However,areducedosteoclasticactivitytowardthisbonesubstituteishypothesized[40].
Inaclinicaltrial,ahistomorphometricanalysisshowedthatDBBMparticlesremained
unchangedandintegratedwithinthebonefor11years[41].
GBRinmaxillaboneaugmentationproceduresisusuallyassociatedwithanimplant
survivalrate(ISR)rangingfrom96.1%to100%[12].HigherISRvaluesareobtainedwhen
GBRisperformedsimultaneously,andimplantsareplacedinnativebone[17,39].Itwas
thecaseinthepresentstudy,wherea98.61%ISRwasobtained.Horizontalridge
augmentationwithxenogenousbonegraftisassociatedwithacomplicationrateof7.85%
[19].Membraneexposureisthemostfrequentcomplicationinthistypeofintervention
[19,40].Inthisstudy,nocomplicationswereregisteredduringthefollowupvisits.
However,noindicationsorconclusionscanbewithdrawnbasedonthisfindingina
singlearmclinicalstudy.Accordingtoasystematicreview,PRFmembranesare
associatedwithimprovedwoundhealing,softtissueregeneration,andepithelization[42].
Thus,wemightspeculatethatthisadvantagefavoredsofttissuehealingafterahorizontal
boneaugmentationprocedureandsubsequentlyavoidedmembraneandgraftexposure.
ThestandardizationoftheprotocoltoobtainPRFmembranesandliquidfibrinogenwas
J.Clin.Med.2022,11,89410of14
accomplishedaccordingtoapublishedstudyandisanadvantageofthisresearchwork
[26].
Thepresentstudymayentailsomelimitations.Theprimaryoutcomewasassessed
throughlinearmeasurementsofCBCTscans.Severalstudiesappliedasimilar
methodologybymeasuringthehorizontalbonegaininspecificpointsofthealveolar
ridge[31,36,43–45].Althoughregardedasareproduciblemethodtoevaluatebonegain
obtainedafterGBR,dentalimplantsmaycauseartifactsinCBCTimages,reducingimage
qualityandanatomicaccuracy[46].Althoughanyblurredscanwassubjectedtoartifact
correctionbythePlanmecaARA™metalartifactremovalalgorithm,aidingoperator’s
measurements,thismethodologyisnotexemptfromlimitations.
Sincehorizontalboneregenerationrepresentsanaddedbonevolume,thelinear
natureoftheacquiredmeasurementsisaweakpointinthisstudy.Althoughthe
measurementlandmarksarerepresentativeofthegraftingarea,avolumetricdescription
variationwouldbepreferable[38].Basedonthisperspectiveandconsideringthe
developmentofhighspeedandhighaccuracy3Dintraoralscanners,theiruseinfuture
studiesmayrepresentalessinvasiveoptiontoevaluateboneandsofttissuevolumegain.
IntheGBRtechniqueperformed,PRFmembranesweresolelyusedasabarrierto
coverthecompositePRF/particulateDBBMplacedintheanteriormaxilla’sbonedefect.
Contrarytoasimilarstudyaimingatmaxillahorizontalboneaugmentation,no
resorbablecollagenmembraneorfixationpinswereusedformembranestabilization
underPRFmembranes[38].Whenusingparticulatebonesubstitutesinlargedefectslike
thoseregeneratedinthepresentstudy,membranestabilizationforgraftimmobilization
representsachallengeandkeyfactorforGBRsuccess[17,40].Thisobjectivewasmainly
achievedinthisstudybyaddingliquidfibrinogenbindingbonegraftparticlesinthe
compositePRF/particulateDBBMgraft.Inaddition,thePRFmembranecrosslinking
structureprovidedanelasticmechanicalbehaviorsuitableformembranehandlingand
graftcovering[27].Nonresorbablemembranesfixatedwithpinsystemsshowless
tendencytocollapseandmaintainthehorizontalcontouroftheaugmentedridge[17].
However,thistypeofapproachpresentsmorecomplications,especiallymembrane
exposure,andrequiresadditionalsurgerytoremovethemembraneandthepinswhen
patientssubjectedtoimmediatefullarchrehabilitationusuallydonotexpectadditional
surgeryprocedures.Immediateloadingsimultaneouslytoboneregenerationhasbeen
poorlydescribedintheliterature[47].Althoughimmediateloadinginmaxillafullarch
rehabilitationcanbeapredictableprotocolwhenkeyfactorsareachieved,suchas
adequateprimaryimplantstability,afavorabledrillingtechnique,implantdesign,length,
andimplantmicrostructure[48,49].Inaddition,theimportanceofosteotomytechniques
shouldberecognizedwhenaminimuminsertiontorqueof45N.cmisobtainedinamore
medullarybone[50].Aclearinfluenceofabonecompactorpreparationtoimplant
primarystabilitywassuggestedbyAttanasioetal.inthistypeofbone[50].Inthisstudy,
theoperator(J.M.M.C.)followedbrandinstructionsandaccomplishedanunder
preparationscheme,promotingamorefrictionalimplantinsertion.Otheraspects,suchas
crossarchstabilization,prostheticmaterial,andprostheticrehabilitationdesignaidedto
unloadtheregeneratedarea—acrucialaspectoftheboneregenerationprocess.
Becausethisstudyisasinglearmprospectiveclinicalstudywithoutanycomparison
group,theconclusionsregardingtheuseofPRFinhorizontalboneaugmentationare
limited.AnRCTstudydesignwouldhavethepotentialtobetterclarifythediscussed
biologicalbenefits.AmajoraspectofthebiologicalplausibilityproposedforPRFinbone
regenerationshouldalsobequestioned.Fibrinmatrixdegradationandgrowthfactor
releaseoccurinthefirst10to14days,whereasbonetissueformationoccursin3to4
months[27].Itiseasilyperceivedthatthisnaturalscaffoldlacksaspatialtemporal
deliveryofgrowthfactorsconcomitanttoboneformationevents.Sinceitderivesfrom
blood,itsspecificity,andminimumconcentrationofgrowthfactorstoaidosteogenesis’s
initialphasesarestillunknown.Therefore,futureresearchshouldaimtoclarifythis
questionandoptimizescaffoldspreparedinordertoassistalleventsofbonetissue
J.Clin.Med.2022,11,89411of14
formation,providingacombinedreleaseofgrowthfactorsandextracellularmatrix
components.
5.Conclusions
Withinthelimitationsofthisclinicalstudy,theuseofcompositePRF/particulate
xenograftinGBRforhorizontalboneaugmentationwithsimultaneousimplantplacement
seemssafeandprovidesahorizontalbonegainandgraftstabilitywithinpreviously
describedvaluesforGBRprocedures.Thisresultmightbeparticularlyrelevantsinceno
resorbablecollagenmembraneswereusedtocoveranimmobilizedbonegraftobtained
byaddingliquidfibrinogen.Notypeofcomplicationhasbeenregistered.Furtherstudies
areneededtovalidateorexcludethepotentialbiologicalbenefitsofPRFinGBR
proceduresformaxillahorizontalboneaugmentation.
AuthorContributions:Conceptualization,J.M.M.C.andD.N.d.S.M.;methodology,D.N.d.S.M.;
investigation,J.M.M.C.,G.B.C.,H.C.O.F.,A.C.P.andF.A.V.;supervision,D.N.d.S.M.;surgery
performance,J.M.M.C.;visualization,G.B.C.andH.C.O.F.;writing—originaldraftpreparation,
F.A.V.;writing—reviewandediting,D.N.d.S.M.,F.A.V.andJ.M.M.C.Allauthorshavereadand
agreedtothepublishedversionofthemanuscript.
Funding:Thisstudydidnotreceiveexternalfunding.
InstitutionalReviewBoardStatement:Thestudywasconductedaccordingtotheguidelinesofthe
DeclarationofHelsinkiandapprovedbytheInstitutionalReviewBoardandEthicsCommitteein
Lisbon(II042019).
InformedConsentStatement:Informedconsentwasobtainedfromeachpatientconsideredfor
dataanalysis.
DataAvailabilityStatement:Datacannotbesharedduetodataprotectionobligations.
ConflictsofInterest:Theauthorsdeclarenoconflictofinterest.
Abbreviations
PRFPlateletrichfibrin
CBCTConebeamcomputedtomography
GBRGuidedboneregeneration
APCsAutologousplateletconcentrates(APCs)
PDGFPlateletderivedgrowthfactor
TGF
β
1Transforminggrowthfactor
β
1
IGFInsulinlikegrowthfactor
VEGFVascularendothelialgrowthfactor
DBBMDeproteinizedbovinebonemineral
ASAAmericanSocietyofAnesthesiology(physicalstatusclassificationscoreIVI)
MRONJMedicationrelatedtoosteonecrosisofthejaw
SRsSystematicreviews
ISRImplantsurvivalrate
RCTRandomizedclinicaltrial
References
1. Mertens,C.;Freier,K.;Engel,M.;Krisam,J.;Hoffmann,J.;Freudlsperger,C.Reconstructionoftheseverelyatrophicedentulous
maxillaewithcalvarialbonegrafts.Clin.OralImplant.Res.2016,28,749–756,https://doi.org/10.1111/clr.12873.
2. Gallucci,G.O.;Avrampou,M.;Taylor,J.C.;Elpers,J.;Thalji,G.;Cooper,L.MaxillaryImplantSupportedFixedProsthesis:A
SurveyofReviewsandKeyVariablesforTreatmentPlanning.Int.J.OralMaxillofac.Implant.2017,31,s192–s197,
https://doi.org/10.11607/jomi.16suppl.g5.3.
3. Tan,W.L.;Wong,T.L.T.;Wong,M.C.M.;Lang,N.P.Asystematicreviewofpostextractionalalveolarhardandsofttissue
dimensionalchangesinhumans.Clin.OralImplant.Res.2012,23(Suppl.S5),1–21,https://doi.org/10.1111/j.1600
0501.2011.02375.x.
4. VanDerWeijden,F.;DellʹAcqua,F.;Slot,D.E.Alveolarbonedimensionalchangesofpostextractionsocketsinhumans:A
systematicreview.J.Clin.Periodontol.2009,36,1048–1058,https://doi.org/10.1111/j.1600051x.2009.01482.x.
J.Clin.Med.2022,11,89412of14
5. Chiapasco,M.;Casentini,P.Horizontalboneaugmentationproceduresinimplantdentistry:Prostheticallyguided
regeneration.Periodontology20002018,77,213–240,https://doi.org/10.1111/prd.12219.
6. Sutton,D.;Lewis,B.;Patel,M.;Cawood,J.Changesinfacialformrelativetoprogressiveatrophyoftheedentulousjaws.Int.J.
OralMaxillofac.Surg.2004,33,676–682,https://doi.org/10.1016/s09015027(03)001322.
7. Bidra,A.S.ThreeDimensionalEstheticAnalysisinTreatmentPlanningforImplantSupportedFixedProsthesisinthe
EdentulousMaxilla:ReviewoftheEstheticsLiterature.J.Esthet.Restor.Dent.2011,23,219–236,https://doi.org/10.1111/j.1708
8240.2011.00428.x.
8. Pollini,A.;Goldberg,J.;Mitrani,R.;Morton,D.TheLipToothRidgeClassification:AGuidepostforEdentulousMaxillary
Arches.Diagnosis,RiskAssessment,andImplantTreatmentIndications.Int.J.PeriodonticsRestor.Dent.2017,37,835–841,
https://doi.org/10.11607/prd.3209.
9. Kuchler,U.;vonArx,T.Horizontalridgeaugmentationinconjunctionwithorpriortoimplantplacementintheanterior
maxilla:Asystematicreview.Int.J.OralMaxillofac.Implant.2014,29,14–24.
10. Cordaro,M.;Donno,S.;Ausenda,F.;Cordaro,L.InfluenceofBoneAnatomyonImplantPlacementProceduresinEdentulous
ArchesofElderlyIndividuals:ACrossSectionalStudyonComputedTomographyImages.Int.J.OralMaxillofac.Implant.2020,
35,995–1004,https://doi.org/10.11607/jomi.8297.
11. Pommer,B.;MailathPokorny,G.;Haas,R.;Busenlechner,D.;Fürhauser,R.;Watzek,G.Patientsʹ preferencestowards
minimallyinvasivetreatmentalternativesforimplantrehabilitationofedentulousjaws.Eur.J.OralImplant.2014,7(Suppl.S2),
S91–S109.
12. Aghaloo,T.L.;Misch,C.;Lin,G.H.;Iacono,V.J.;Wang,H.L.BoneAugmentationoftheEdentulousMaxillaforImplant
Placement:ASystematicReview.Int.J.OralMaxillofac.Implant.2017,31,s19–s30,https://doi.org/10.11607/jomi.16suppl.g1.
13. Caramês,J.M.M.;Marques,D.N.D.S.;Caramês,G.B.;Francisco,H.C.O.;Vieira,F.A.ImplantSurvivalinImmediatelyLoaded
FullArchRehabilitationsFollowinganAnatomicalClassificationSystem—ARetrospectiveStudyin1200EdentulousJaws.J.
Clin.Med.2021,10,5167,https://doi.org/10.3390/jcm10215167.
14. Elnayef,B.;Monje,A.;Lin,G.H.;GargalloAlbiol,J.;Chan,H.L.;Wang,H.L.;HernándezAlfaro,F.AlveolarRidgeSpliton
HorizontalBoneAugmentation:ASystematicReview.Int.J.OralMaxillofac.Implant.2015,30,596–606,
https://doi.org/10.11607/jomi.4051.
15. Milinkovic,I.;Cordaro,L.Aretherespecificindicationsforthedifferentalveolarboneaugmentationproceduresforimplant
placement?Asystematicreview.Int.J.OralMaxillofac.Surg.2014,43,606–625,https://doi.org/10.1016/j.ijom.2013.12.004.
16. Esposito,M.;Grusovin,M.G.;Felice,P.;Karatzopoulos,G.;Worthington,H.;Coulthard,P.TheEfficacyofHorizontaland
VerticalBoneAugmentationProceduresforDentalImplants:ACochraneSystematicReview.Eur.J.OralImplant.2009,2,167–
184https://doi.org/10.1007/9783642050251_13.
17. Wessing,B.;Lettner,S.;Zechner,W.GuidedBoneRegenerationwithCollagenMembranesandParticulateGraftMaterials:A
SystematicReviewandMetaAnalysis.Int.J.OralMaxillofac.Implant.2018,33,87–100,https://doi.org/10.11607/jomi.5461.
18. Elnayef,B.;Porta,C.;SuárezLópezdelAmo,F.;Mordini,L.;GargalloAlbiol,J.;HernándezAlfaro,F.TheFateofLateralRidge
Augmentation:ASystematicReviewandMetaAnalysis.Int.J.OralMaxillofac.Implant.2018,33,622–635,
https://doi.org/10.11607/jomi.6290.
19. Carvalho,P.H.D.A.;Trento,G.D.S.;Moura,L.B.;Cunha,G.;Gabrielli,M.A.C.;PereiraFilho,V.A.Horizontalridge
augmentationusingxenogenousbonegraft—Systematicreview.OralMaxillofac.Surg.2019,23,271–279,
https://doi.org/10.1007/s1000601900777y.
20. Jung,R.E.;Fenner,N.;Hämmerle,C.H.;Zitzmann,N.U.Longtermoutcomeofimplantsplacedwithguidedboneregeneration
(GBR)usingresorbableandnonresorbablemembranesafter12–14years.Clin.OralImplant.Res.2013,24,1065–1073.
21. Dahlin,C.;Linde,A.;Gottlow,J.;Nyman,S.HealingofBoneDefectsbyGuidedTissueRegeneration.Plast.Reconstr.Surg.1988,
81,672–676,https://doi.org/10.1097/0000653419880500000004.
22. Miron,R.J.;Zucchelli,G.;Pikos,M.A.;Salama,M.;Lee,S.;Guillemette,V.;FujiokaKobayashi,M.;Bishara,M.;Zhang,Y.;Wang,
H.L.;etal.Useofplateletrichfibrininregenerativedentistry:Asystematicreview.Clin.OralInvestig.2017,21,1913–1927,
https://doi.org/10.1007/s007840172133z.
23. Fortunato,L.;Barone,S.;Bennardo,F.;Giudice,A.ManagementofFacialPyodermaGangrenosumUsingPlateletRichFibrin:
ATechnicalReport.J.OralMaxillofac.Surg.2018,76,1460–1463,https://doi.org/10.1016/j.joms.2018.01.012.
24. Dohan,D.M.;Choukroun,J.;Diss,A.;Dohan,S.L.;Dohan,A.J.;Mouhyi,J.;Gogly,B.Plateletrichfibrin(PRF):Asecond
generationplateletconcentrate.PartI:Technologicalconceptsandevolution.OralSurg.OralMed.OralPathol.OralRadiol.Endod.
2006,101,e37–e44.
25. DohanEhrenfest,D.M.;Pinto,N.R.;Pereda,A.;Jiménez,P.;DelCorso,M.;Kang,B.S.;Nally,M.;Lanata,N.;Wang,H.L.;
Quirynen,M.Theimpactofthecentrifugecharacteristicsandcentrifugationprotocolsonthecells,growthfactors,andfibrin
architectureofaleukocyte‐ andplateletrichfibrin(LPRF)clotandmembrane.Platelets2018,29,171–184,
https://doi.org/10.1080/09537104.2017.1293812.
26. Temmerman,A.;Vandessel,J.;Castro,A.;Jacobs,R.;Teughels,W.;Pinto,N.;Quirynen,M.Theuseofleucocyteandplatelet
richfibrininsocketmanagementandridgepreservation:Asplitmouth,randomized,controlledclinicaltrial.J.Clin.Periodontol.
2016,43,990–999,https://doi.org/10.1111/jcpe.12612.
J.Clin.Med.2022,11,89413of14
27. FujiokaKobayashi,M.;Katagiri,H.;Kono,M.;Schaller,B.;Zhang,Y.;Sculean,A.;Miron,R.J.Improvedgrowthfactordelivery
andcellularactivityusingconcentratedplateletrichfibrin(CPRF)whencomparedwithtraditionalinjectable(iPRF)protocols.
Clin.OralInvestig.2020,24,4373–4383,https://doi.org/10.1007/s00784020033037.
28. Brancaccio,Y.;Antonelli,A.;Barone,S.;Bennardo,F.;Fortunato,L.;Giudice,A.Evaluationoflocalhemostaticefficacyafter
dentalextractionsinpatientstakingantiplateletdrugs:Arandomizedclinicaltrial.Clin.OralInvestig.2021,25,1159–1167.
29. Sanz,M.;Dahlin,C.;Apatzidou,D.;Artzi,Z.;Bozic,D.;Calciolari,E.;DeBruyn,H.;Dommisch,H.;Donos,N.;Eickholz,P.;et
al.Biomaterialsandregenerativetechnologiesusedinboneregenerationinthecraniomaxillofacialregion:Consensusreportof
group2ofthe15thEuropeanWorkshoponPeriodontologyonBoneRegeneration.J.Clin.Periodontol.2019,46(Suppl.S21),82–
91,https://doi.org/10.1111/jcpe.13123.
30. Dragonas,P.;Katsaros,T.;Ortiz,G.A.;Chambrone,L.;Schiavo,J.;Palaiologou,A.Effectsofleukocyte–plateletrichfibrin(L
PRF)indifferentintraoralbonegraftingprocedures:Asystematicreview.Int.J.OralMaxillofac.Surg.2019,48,250–262,
https://doi.org/10.1016/j.ijom.2018.06.003.
31. Mordenfeld,A.;Johansson,C.B.;Albrektsson,T.;Hallman,M.Arandomizedandcontrolledclinicaltrialoftwodifferent
compositionsofdeproteinizedbovineboneandautogenousboneusedforlateralridgeaugmentation.Clin.OralImplant.Res.
2014,25,310–320,https://doi.org/10.1111/clr.12143.
32. Caramês,J.;DaMata,A.D.S.P.;Marques,D.N.D.S.;Francisco,H.CeramicVeneeredZirconiaFrameworksinFullArchImplant
Rehabilitations:A6Monthto5YearRetrospectiveCohortStudy.Int.J.OralMaxillofac.Implant.2016,31,1407–1414,
https://doi.org/10.11607/jomi.4675.
33. Calvani,L.;Michalakis,K.;Hirayama,H.Theinfluenceoffullarchimplantretainedfixeddentalprosthesesonupperlip
supportandlowerfacialesthetics:Preliminaryclinicalobservations.Eur.J.Esthet.Dent.2007,2,420–428.
34. Uhlendorf,Y.;deMattiasSartori,I.A.;MoreiraMelo,A.C.;Uhlendorf,J.ChangesinLipProfileofEdentulousPatientsAfter
PlacementofMaxillaryImplantSupportedFixedProsthesis:IsaWaxTryinaReliableDiagnosticTool?Int.J.OralMaxillofac.
Implant.2017,32,593–597.
35. Pilipchuk,S.P.;Plonka,A.B.;Monje,A.;Taut,A.D.;Lanis,A.;Kang,B.;Giannobile,W.V.Tissueengineeringforbone
regenerationandosseointegrationintheoralcavity.Dent.Mater.2015,31,317–338,https://doi.org/10.1016/j.dental.2015.01.006.
36. Valladão,C.A.A.,Jr.;Monteiro,M.F.;Joly,J.C.Guidedboneregenerationinstagedverticalandhorizontalboneaugmentation
usingplateletrichfibrinassociatedwithbonegrafts:Aretrospectiveclinicalstudy.Int.J.ImplantDent.2020,6,1–10,
https://doi.org/10.1186/s4072902000266y.
37. Hartlev,J.;Nørholt,S.E.;SpinNeto,R.;Kraft,D.;Schou,S.;Isidor,F.Histologyofaugmentedautogenousbonecoveredbya
plateletrichfibrinmembraneordeproteinizedbovinebonemineralandacollagenmembrane:Apilotrandomizedcontrolled
trial.Clin.OralImplant.Res.2020,31,694–704,https://doi.org/10.1111/clr.13605.
38. Cortellini,S.;Castro,A.B.;Temmerman,A.;VanDessel,J.;Pinto,N.;Jacobs,R.;Quirynen,M.Leucocyte‐andplateletrichfibrin
blockforboneaugmentationprocedure:Aproofofconceptstudy.J.Clin.Periodontol.2018,45,624–634,
https://doi.org/10.1111/jcpe.12877.
39. SanzSánchez,I.;OrtizVigón,A.;SanzMartín,I.;Figuero,E.;Sanz,M.EffectivenessofLateralBoneAugmentationonthe
AlveolarCrestDimension:ASystematicReviewandMetaanalysis.J.Dent.Res.2015,94(Suppl.S9),128s–142s.
40. Benic,G.I.;Hämmerle,C.H.F.Horizontalboneaugmentationbymeansofguidedboneregeneration.Periodontology20002014,
66,13–40,https://doi.org/10.1111/prd.12039.
41. Mordenfeld,A.;Hallman,M.;Johansson,C.B.;Albrektsson,T.Histologicalandhistomorphometricalanalysesofbiopsies
harvested11yearsaftermaxillarysinusflooraugmentationwithdeproteinizedbovineandautogenousbone.Clin.OralImplant.
Res.2010,21,961–970,https://doi.org/10.1111/j.16000501.2010.01939.x.
42. Miron,R.J.;FujiokaKobayashi,M.;Bishara,M.;Zhang,Y.;Hernandez,M.;Choukroun,J.PlateletRichFibrinandSoftTissue
WoundHealing:ASystematicReview.TissueEng.PartB:Rev.2017,23,83–99,https://doi.org/10.1089/ten.teb.2016.0233.
43. Lumetti,S.;Galli,C.;Manfredi,E.;Consolo,U.;Marchetti,C.;Ghiacci,G.;Toffoli,A.;Bonanini,M.;Salgarelli,A.;Macaluso,
G.M.CorrelationbetweenDensityandResorptionofFreshFrozenandAutogenousBoneGrafts.BioMedRes.Int.2014,2014,
508328,https://doi.org/10.1155/2014/508328.
44. Castagna,L.;Polido,W.;Soares,L.;Tinoco,E.Tomographicevaluationofiliaccrestbonegraftingandtheuseofimmediate
temporaryimplantstotheatrophicmaxilla.Int.J.OralMaxillofac.Surg.2013,42,1067–1072,
https://doi.org/10.1016/j.ijom.2013.04.020.
45. Amorfini,L.;Migliorati,M.;Signori,A.;SilvestriniBiavati,A.;Benedicenti,S.BlockAllograftTechniqueversusStandard
GuidedBoneRegeneration:ARandomizedClinicalTrial.Clin.ImplantDent.Relat.Res.2013,16,655–667,
https://doi.org/10.1111/cid.12040.
46. Sheridan,R.A.;Chiang,Y.C.;Decker,A.M.;Sutthiboonyapan,P.;Chan,H.L.;Wang,H.L.TheEffectofImplantInduced
ArtifactsonInterpretingAdjacentBoneStructuresonConeBeamComputedTomographyScans.ImplantDent.2018,27,10–14,
https://doi.org/10.1097/id.0000000000000684.
47. Shibly,O.;Patel,N.;Albandar,J.M.;Kutkut,A.BoneRegenerationaroundImplantsinPeriodontallyCompromisedPatients:A
RandomizedClinicalTrialoftheEffectofImmediateImplantwithImmediateLoading.J.Periodontol.2010,81,1743–1751,
https://doi.org/10.1902/jop.2010.100162.
48. Jiang,X.;Zhou,W.;Wu,Y.;Wang,F.ClinicalOutcomesofImmediateImplantLoadingwithFixedProsthesesinEdentulous
Maxillae:ASystematicReview.Int.J.OralMaxillofac.Implant.2021,36,503–519,https://doi.org/10.11607/jomi.8509.
J.Clin.Med.2022,11,89414of14
49. Gapski,R.;Wang,H.L.;Mascarenhas,P.;Lang,N.P.Criticalreviewofimmediateimplantloading.Clin.OralImplant.Res.2003,
14,515–527,https://doi.org/10.1034/j.16000501.2003.00950.x.
50. Attanasio,F.;Antonelli,A.;Brancaccio,Y.;Averta,F.;Figliuzzi,M.M.;Fortunato,L.;Giudice,M.PrimaryStabilityofThree
DifferentOsteotomyTechniquesinMedullaryBone:AninVitroStudy.Dent.J.2020,8,21,https://doi.org/10.3390/dj8010021.
... It is rich in platelets, white blood cells, mononuclear cells, and various cytokines, with advantages such as simple preparation, no immunogenicity, and easy clinical application [76,77]. In vitro, studies have shown that PRF exhibits properties such as promoting angiogenesis and has achieved good results when used in conjunction with xenografts in studies on ARP, guided bone regeneration, periodontal regeneration, MSFE, and accelerated orthodontic tooth movement [15,46,[78][79][80][81]. Studies have found that different centrifugal processes may alter the 3D network structure of PRF, which may potentially affect the efficacy of related bone-augmentation techniques [72][73][74][75][76][77][78][79][80][81][82][83][84]. ...
... In vitro, studies have shown that PRF exhibits properties such as promoting angiogenesis and has achieved good results when used in conjunction with xenografts in studies on ARP, guided bone regeneration, periodontal regeneration, MSFE, and accelerated orthodontic tooth movement [15,46,[78][79][80][81]. Studies have found that different centrifugal processes may alter the 3D network structure of PRF, which may potentially affect the efficacy of related bone-augmentation techniques [72][73][74][75][76][77][78][79][80][81][82][83][84]. Based on the above background, PRF has great research potential in enhancing the performance of bone xenografts and is one of the future research hotspots. ...
Article
Full-text available
Background: Bone defect therapy is a common clinical challenge for orthopedic and clinical physicians worldwide, and the therapeutic effect affects the physiological function and healthy life quality of millions of patients. Compared with traditional autogenous bone transplants, bone xenografts are attracting attention due to their advantages of unlimited availability and avoidance of secondary damage. However, there is currently a lack of bibliometric analysis on bone xenograft. This study aimed to use bibliometric methods to analyze the literature on bone xenograft from 2013 to 2023, to explore the current status, hotspots, and future trends of research in this field, and to promote its development and progress. Methods: Using the Web of Science Core Collection database, we retrieved and collected publication data related to xenogeneic bone grafting materials worldwide from January 2013 to March 2023. Origin (2021), CiteSpace (6.2.R2 standard), and an online bibliometric platform were used for bibliometric analysis and data visualization. Results: A total of 3395 documents were retrieved, and 686 eligible papers were selected. The country and institutions with the highest number of publications and centrality were the United States (125 papers, centrality = 0.44) and the University of Zurich (29 papers, centrality = 0.28), respectively. The most cited author was Araujo MG (163 times), and the author with the most significant centrality was Froum SJ (centrality = 0.09). The main keyword clusters were "tissue engineering", "sinus floor elevation", "dental implants", "tooth extraction", and "bone substitutes". The most significant bursting keywords in the last three years were "platelet rich fibrin". Conclusions: Research on bone xenograft is steadily growing and will continue to rise. Currently, research hotspots and directions are mainly focused on dental implants related to bone-augmentation techniques and bone tissue engineering. In the future, research hotspots and directions may focus on decellularization technology and investigations involving platelet-rich fibrin.
... In the present report, alveolar preservation and horizontal augmentation were performed with the use of a particulate biphasic calcium phosphate graft associated with leukocyte-and platelet-rich fibrin (L-PRF) in the liquid phase. The entire grafted area was covered with L-PRF membranes, without association of resorbable or non-resorbable membrane barriers as described in the GBR technique [20]. One of the advantages of using L-PRF membranes was that, due to their highly dense structure, they can be sutured onto the soft tissues, thereby promoting enhanced stability in the region. ...
Article
Full-text available
In bone defects caused by tooth loss, tissue reconstructions are necessary to enable prosthetic rehabilitation with dental implants. Diverse techniques and materials of different origins are used for this purpose. Leukocyte- and Platelet-Rich Fibrin (L-PRF) has been used in association with osteoconductive biomaterials in procedures of bone regeneration and for covering grafted areas. The aim of this article was to demonstrate a clinical case of bone grafting in the posterior region of the mandible, performed with the use of synthetic biomaterial composed of biphasic calcium phosphate associated with Leukocyte- and Platelet-Rich Fibrin for performing bone augmentation in an alveolar ridge with a horizontal defect, thereby enabling later installation of dental implants and prosthetic rehabilitation in the region. Keywords: bone graft, biomaterials, leukocyte- and platelet-rich fibrin, bone substitutes, dental implants.
... Sealing systems can simply be barriers to contain the grafting material and guide the soft tissue closure, or be derived from autogenous blood and therefore also be carriers of growth factors, such as Platelet-Derived Growth Factor (PDGF), and/or be infused like grafts by the operator with specific proteins involved in bone regeneration (Bone Morphogenetic Proteins, BMPs) [13]. Autogenous blood-derived PRP or PRF is often employed as a membrane onto the material, as described in a prospective clinical study published in 2022 [14]. ...
Article
Full-text available
It has been calculated that 8 [...]
... Current research in implant dentistry is largely focused on technical and biological aspects of this field [3,8,9]. This includes, for example, developments regarding bone substitute materials [10][11][12], modifications of the implant surface [13][14][15], or platform switching [16][17][18]. The number of studies in this field is huge and systematic reviews and meta-analyses already exist on many of these issues [19][20][21][22]. ...
Article
Full-text available
Objectives In both elective surgeries and aviation, a reduction of complications can be expected by paying attention to the so-called human factors. Checklists are a well-known way to overcome some of these problems. We aimed to evaluate the current evidence regarding the use of checklists in implant dentistry. Methods An electronic literature search was conducted in the following databases: CINHAL, Medline, Web of Science, and Cochrane Library until March 2022. Based on the results and additional literature, a preliminary checklist for surgical implant therapy was designed. Results Three publications dealing with dental implants and checklists were identified. One dealt with the use of a checklist in implant dentistry and was described as a quality assessment study. The remaining two studies offered suggestions for checklists based on literature research and expert opinion. Conclusions Based on our results, the evidence for the use of checklists in dental implantology is extremely low. Considering the great potential, it can be stated that there is a need to catch up. While creating a new implant checklist, we took care of meeting the criteria for high-quality checklists. Future controlled studies will help to place it on a broad foundation. Clinical relevance Checklists are a well-known way to prevent complications. They are especially established in aviation, but many surgical specialties and anesthesia adopt this successful concept. As implantology has become one of the fastest-growing areas of dentistry, it is imperative that checklists become an integral part of it.
... The three-dimensional structure of fibrin allows for a series of cellular interactions and provides a temporary matrix in which cells can proliferate, organize, and perform their functions, especially at injured or inflamed sites. Thus, fibrin has been used with the aim of accelerating healing and regeneration in several surgical procedures, especially in medicine in the areas of orthopedics [5,6], neurology [7][8][9], and plastic surgery [10,11], as well as in dentistry in the areas of periodontics [12,13], implantology [14,15], and oral and maxillofacial surgery [16,17]. ...
Article
Full-text available
Fibrin, derived from proteins involved in blood clotting (fibrinogen and thrombin), is a biopolymer with different applications in the health area since it has hemostasis, biocompatible and three-dimensional physical structure properties, and can be used as scaffolds in tissue regeneration or drug delivery system for cells and/or growth factors. Fibrin alone or together with other biomaterials, has been indicated for use as a biological support to promote the regeneration of stem cells, bone, peripheral nerves, and other injured tissues. In its diversity of forms of application and constitution, there are platelet-rich fibrin (PRF), Leukocyte- and platelet-rich fibrin (L-PRF), fibrin glue or fibrin sealant, and hydrogels. In order to increase fibrin properties, adjuvant therapies can be combined to favor tissue repair, such as photobiomodulation (PBM), by low-level laser therapy (LLLT) or LEDs (Light Emitting Diode). Therefore, this systematic review aimed to evaluate the relationship between PBM and the use of fibrin compounds, referring to the results of previous studies published in PubMed/MEDLINE, Scopus and Web of Science databases. The descriptors “fibrin AND low-level laser therapy” and “fibrin AND photobiomodulation” were used, without restriction on publication time. The bibliographic search found 44 articles in PubMed/MEDLINE, of which 26 were excluded due to duplicity or being outside the eligibility criteria. We also found 40 articles in Web of Science and selected 1 article, 152 articles in Scopus and no article selected, totaling 19 articles for qualitative analysis. The fibrin type most used in combination with PBM was fibrin sealant, mainly heterologous, followed by PRF or L-PRF. In PBM, the gallium-aluminum-arsenide (GaAlAs) laser prevailed, with a wavelength of 830 nm, followed by 810 nm. Among the preclinical studies, the most researched association of fibrin and PBM was the use of fibrin sealants in bone or nerve injuries; in clinical studies, the association of PBM with medication-related treatments osteonecrosis of the jaw (MRONJ). Therefore, there is scientific evidence of the contribution of PBM on fibrin composites, constituting a supporting therapy that acts by stimulating cell activity, angiogenesis, osteoblast activation, axonal growth, anti-inflammatory and anti-edema action, increased collagen synthesis and its maturation, as well as biomolecules.
... Other less invasive treatment options include the use of zygomatic implants [9], tilted implants, or short implants [10]. Although several treatment options for bone augmentation exist, the most effective method for achieving a sufficient horizontal bone dimension as well as a long-term implant and prosthesis survival is yet to be determined [11]. Bone resorptions are caused by the absence of mechanical load on the bone due to the loss of teeth which can be caused by trauma, periodontal diseases, caries, or infections with 40-60% of the ridge volume being lost in the first 3 years [12]. ...
Article
Full-text available
Background In terms of a highly atrophic maxilla, bone augmentation still remains very challenging. With the introduction of computer-aided design/computer-aided manufacturing (CAD/CAM) for allogeneic bone blocks, a new method for the treatment of bone deficiencies was created. This case report demonstrates the successful use of two specially designed and CAD/CAM manufactured allogeneic bone blocks for a full arch reconstruction of a highly atrophic maxilla with an all-on-six concept. Case presentation We report the case of a 55-year-old male patient with a highly atrophic maxilla and severe bone volume deficiencies in horizontal and vertical lines. In order to treat the defects, the surgeon decided to use a combination of two allogeneic bone blocks and two sinus floor augmentations. The bone blocks were fabricated from the data of a cone beam computed tomography (CBCT) using CAD/CAM technology. After the insertion of the two bone blocks and a healing period of 7 months, six dental implants were placed in terms of an all-on-six concept. The loading of the implants took place after an additional healing time of 7 months with a screw-retained prosthetic construction and with a milled titanium framework with acrylic veneers. Conclusion The presented procedure shows the importance of the precise design of CAD/CAM manufactured allogeneic bone blocks for the successful treatment of a highly atrophic maxilla. Proper soft-tissue management is one of the key factors to apply this method successfully.
Article
Full-text available
This retrospective study analyzed implant survival of immediate implant-supported fixed complete denture (IFCD) treatment options (TOs) based on the level of alveolar atrophy (CC). Records of 882 patients receiving a total of 6042 implants at one private referral clinic between 2004 and 2020 were considered. The mean follow-up period was 3.8 ± 2.7 years. Cumulative implant survival rates (CSRs) were analyzed as a function of CCs and TOs according to Mantel-Haenszel and Mantel-Cox. Hazard risk ratios for implant loss were compared using Cox regression. Confounding factors were identified using mixed Cox regression models. The 2- and 5-year CSRs were 98.2% and 97.9%, respectively. Maxillary 2- and 5-year CSRs were lower (97.7% and 97.3%) compared to mandibular CSRs (99.8% and 98.6%) (p = 0.030 and 0.0020, respectively). The CC did not influence CSRs of IFCDs in the mandible (p = 0.1483 and 0.3014, respectively) but only in the maxilla (p = 0.0147 and 0.0111), where CSRs decreased with increasing atrophy. TOs did not statistically differ in terms of survival rate for a given level of alveolar atrophy. The adaption of IFCD treatments to the level of atrophy and patient-specific risk factors can result in high CSRs, even at different levels of bone atrophy.
Article
Full-text available
Purpose: To review the evidence from the clinical outcomes of immediately loaded implants with fixed prostheses in edentulous maxillae. Materials and methods: An electronic search was performed in PubMed/MEDLINE, Embase, and Cochrane to identify studies investigating the outcome of implants subjected to immediate loading with fixed dental prostheses in edentulous maxillae. Only clinical studies with more than 10 patients and a mean follow-up time of more than 12 months were included. Meta-analysis was utilized to compare the clinical outcomes between immediately loaded implants and conventionally loaded implants. For immediately loaded implants, a cumulative implant survival rate (ISR) was weighted by the duration of follow-up and number of implants. The weighted marginal bone loss (MBL) was also assessed. Results: A total of 33 studies (16 retrospective studies and 17 prospective studies) were included, which involved 2,635 patients and 12,480 implants. Meta-analysis did not reveal a significant difference of ISR or MBL between the two loading groups. For immediately loaded implants, the weighted cumulative ISR was 95.53% (median: 97.50%) with a mean follow-up of 46.07 months (SD: 30.92). Fourteen studies reported on the MBL of implants, and the mean MBL was 1.19 mm (SD: 0.88) with a mean period of 57.70 months (SD: 32.56). The results should be interpreted with caution due to the lack of randomized controlled trials (RCTs) and the heterogeneity of the data. Conclusion: Despite the lack of RCTs, immediate implant loading with a fixed prosthesis in the edentulous maxilla seems to be a reliable treatment alternative with a high ISR, when appropriate inclusion/exclusion criteria are followed.
Article
Full-text available
Background The use of guided bone regeneration (GBR) for vertical and horizontal bone gain is a predictable approach to correct the bone defects before implant installation; however, the use of different protocols is associated with different clinical results. It is suggested that platelet-rich fibrin (PRF) could improve the outcomes of regenerative procedures. Thus, this study aimed to describe the bone gain associated with GBR procedures combining membranes, bone grafts, and PRF for vertical and horizontal bone augmentation. Materials and methods Eighteen patients who needed vertical or horizontal bone regeneration before installing dental implants were included in the study. The horizontal bone defects were treated with a GBR protocol that includes the use of a mixture of particulate autogenous and xenogenous grafts in the proportion of 1:1, injectable form of PRF (i-PRF) to agglutinate the graft, an absorbable collagen membrane covering the regenerated region, and leukocyte PRF (L-PRF) membrane covering the GBR membrane. The vertical bone defects were treated with the same grafted mixture protected by a titanium-reinforced non-resorbable high-density polytetrafluoroethylene (d-PTFE-Ti) membrane and covered by L-PRF. The bone gain was measured using a cone-beam computed tomography at baseline and after a period of 7.5 (± 1.0) months. Results All patients underwent surgery to install implants after this regenerative protocol. The GBR produces an increase in bone thickness ( p < 0.001) and height ( p < 0.005) after treatment, with a bone gain of 5.9 ± 2.4 for horizontal defects and 5.6 ± 2.6 for vertical defects. In horizontal defects, the gain was higher in the maxilla than in mandible ( p = 0.014) and in anterior than the posterior region ( p = 0.033). No differences related to GBR location were observed in vertical defects ( p > 0.05). Conclusion GBR associated with a mixture of particulate autogenous and xenogenous grafts and i-PRF is effective for vertical and horizontal bone augmentation in maxillary and mandibular regions, permitting sufficient bone gain to future implant placement. Trial registration REBEC, RBR-3CSG3J . Date of registration—19 July 2019, retrospectively registered. http://www.ensaiosclinicos.gov.br/rg/RBR-3csg3j/
Article
Full-text available
Objectives The purpose of this study was to evaluate clinical efficacy of four different local hemostatics in patients taking oral antiplatelet therapy, after multiple dental extractions without discontinuing drugs.Materials and methodsStudy sample included 102 patients (mean age 64.1 ± 17.4 years) in treatment with oral antiplatelet agents needing multiple dental extractions. After surgery, the sockets were randomly sealing with suture alone (control group), hemostatic plug (HEM), advanced platelet-rich fibrin (A-PRF+), and leukocyte-platelet-rich fibrin (L-PRF). Primary outcomes were post-operative bleeding, wound healing index, and possible complications. Secondary outcomes were correlation between primary outcomes and patient’s comorbidities and voluptuous habits. Descriptive statistics, bivariate comparisons, and logistic regression analysis were performed (p < 0.05).ResultsBoth A-PRF+ and L-PRF showed a reduced bleeding risk when compared with suture alone (OR = 0.09, p = 0.001 for A-PRF+; OR = 0.09, p = 0.005 for L-PRF). Only L-PRF showed a reduced risk for incomplete wound healing when compared with the control site (OR = 0.43, p = 0.019). Patients affected by hypertension (OR 3.91, p = 0.015) and diabetes (OR 3.24, p = 0.026) had the highest bleeding risk. Smoking (OR 4.30, p = 0.016) and diabetes (OR 3.79, p = 0.007) interfered with healing process.ConclusionL-PRF and A-PRF represent a valid alternative to the traditional hemostatics, reducing post-surgical bleeding and promoting wound healing.Clinical relevanceIn patients taking antiplatelet drugs, different local hemostatics are useful to control potential post-operative bleeding and to favor wound healing. However, comorbidities and voluptuous habits may increase bleeding risk, interfering with healing process.
Article
Full-text available
Objectives Several studies have recently demonstrated that only marginal improvements in platelet and leukocyte concentrations are achieved following standard injectable platelet-rich fibrin (i-PRF) protocols. Due to these previous findings, a novel harvesting technique was recently developed to collect higher concentrations of platelets/leukocytes specifically from the buffy coat layer (C-PRF) following faster centrifugation protocols. The aim of this study was to investigate the regenerative properties and effects on growth factor release and cellular activity of PRF collected through this novel harvesting technique compared to standard i-PRF protocols.Materials and methodsThe upper 1-ml layer collected through standard i-PRF protocols at low centrifugation speeds was compared with 1 mL of C-PRF collected from the buffy coat layer following high centrifugation protocols (3000×g for 8 min on a horizontal centrifuge) to specifically concentrate cells within the platelet/leukocyte-rich buffy coat layer. Thereafter, the expression of seven different growth factors, including PDGF-AA, PDGF-AB, PDGF-BB, TGF-β1, VEGF, IGF-1, and EGF, was characterized for up to 10 days. Then, gingival fibroblast biocompatibility was investigated at 24 h (live/dead assay); migration was investigated at 24 h; proliferation was investigated at 1, 3, and 5 days; and the expression of PDGF and TGF-β was investigated at 3 days. Collagen 1 immunostaining was also quantified at 14 days.ResultsAt all investigated time periods, a significant increase in growth factor release was observed in C-PRF. In particular, the release of PDGF-AA, TGF-β1, and EGF exhibited the highest increases when compared with that in i-PRF. While both i-PRF and C-PRF exhibited high biocompatibility and induced significantly higher fibroblast migration and proliferation when compared with that of the control tissue culture plastic group, C-PRF showed the greatest potential for cell migration and proliferation. Furthermore, C-PRF induced significantly higher mRNA levels of TGF-β and PDGF levels at 3 days and greater collagen 1 staining when compared with induced by i-PRF.Conclusions In the present study, it was found that C-PRF collected specifically from the buffy coat layer following higher centrifugation protocols exhibited an up to a threefold increase in growth factor release when compared with that exhibited by standard i-PRF. This significantly promoted higher gingival fibroblast migration, proliferation, gene expression, and collagen I synthesis.Clinical relevanceThe findings of the present study demonstrate that a more potent formulation of liquid platelet concentrate than that obtained from the upper plasma layer following a short and slow centri