Content uploaded by Karol Mikula
Author content
All content in this area was uploaded by Karol Mikula on Jan 27, 2022
Content may be subject to copyright.
Σαβάτα
῎Οκρᾳ ῎Αλπεις
῎Αλπεια ῎Αλβια
a1
n
i=1
2(yi1−a1xi1−a2xi2−b1)(−xi1)=0
a1
n
i=1
xi1xi1+a2
n
i=1
xi2xi1+b1
n
i=1
xi1=
n
i=1
yi1xi1
⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣
n
i=1
x2
i1
n
i=1
xi1xi2
n
i=1
xi1000
n
i=1
xi1xi2
n
i=1
x2
i2
n
i=1
xi2000
n
i=1
xi1
n
i=1
xi2n000
000
n
i=1
x2
i1
n
i=1
xi1xi2
n
i=1
xi1
000
n
i=1
xi1xi2
n
i=1
x2
i2
n
i=1
xi2
000
n
i=1
xi1
n
i=1
xi2n
⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦
⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣
a1
a2
b1
a3
a4
b2
⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦
=
⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣
n
i=1
yi1xi1
n
i=1
yi1xi2
n
i=1
yi1
n
i=1
yi2xi1
n
i=1
yi2xi2
n
i=1
yi2
⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦
Tpkpk,k =1,2,3
k=1
k=2 k=3
Tpk
pj={xi,yi;i=1,...,n
pj}
εpj
mean (Tpk)=1
npj
xi∈pj
DEyi,Tpk(xi)2,
DEyi,Tpk(xi)yi
Tpk(xi)
εpj
max (Tpk)= max
xi∈pj
DEyi,Tpk(xi).
Tpk
pj
pkεp1
mean (Tpk)εp2
mean (Tpk)εp3
mean (Tpk)
7.527 256.856 723.619
197.655 24.259 126.697
155.672 189.790 22.981
Tpk
pj
pkεp1
max (Tpk)εp2
max (Tpk)εp3
max (Tpk)
12.201 383.310 917.010
235.104 32.042 178.451
198.112 232.691 35.989
TpG
pG=p1∪p2∪p3
TpG
pk,k =1,2,3
TpG
pG
pkεpk
mean (TpG)εpk
max (TpG)
45.730 65.453
62.224 92.509
43.519 79.303
52.543 92.509
pk
Tpk
pG=p1∪p2∪p3
∂Ω
ui−1,j =ui+1,j
Δu(x)≈ui+1,j −2ui,j +ui+1,j +ui,j−1−2ui,j +ui,j+1
=2ui+1,j −4ui,j +ui,j−1+ui,j +1
xi,j ∈E(pk):ui,j =v(pk)
vAb
Tpk
xi,j ∈ E(pk)∧xi,j ∈ ∂Ω:−ui−1,j −ui,j−1+4ui,j −ui+1,j −ui,j+1 =0
xi,j ∈ E(pk)∧i=1,j =1:4ui,j −2ui+1,j −2ui,j+1 =0
xi,j ∈ E(pk)∧i=1,j =N2:−2ui,j−1+4ui,j −2ui+1,j =0
xi,j ∈ E(pk)∧i=N1,j =1:−2ui−1,j +4ui,j −2ui,j +1 =0
xi,j ∈ E(pk)∧i=N1,j =N2:−2ui−1,j −2ui,j−1+4ui,j =0
xi,j ∈ E(pk)∧i=N1,j =2,...,N
2−1:−2ui−1,j −ui,j−1+4ui,j −ui,j+1 =0
xi,j ∈ E(pk)∧i=2,...,N
1−1,j =N2:−ui−1,j −2ui,j−1+4ui,j −ui+1,j =0
xi,j ∈ E(pk)∧i=2,...,N
1−1,j =1:−ui−1,j +4ui,j −ui+1,j −2ui,j +1 =0
xi,j ∈ E(pk)∧i=1,j =2,...,N
2−1:−ui,j−1+4ui,j −2ui+1,j −ui,j+1 =0
pkM1
pk
M1
M1M2
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
δH(A, B)= 1
LA
nA
i=1aimin
bj∈
B
DE(ai,
bj),
DE(ai,
bj)ai
bj∈
B
H(A, B)
H(A, B)= LAδH(A, B)+LBδH(B, A)
LA+LB
.
δH(A, B)
δH(A, B)= sup
ai∈A
inf
bj∈
B
DEai,
bj
H(A, B)
H(A, B)=max{δH(A, B),δ
H(B, A)}.
ai∈
A
dtB
Lm(A, B, dt)
Lm(A, B, dt)=
ai∈
Aai,
min
bj∈
B
DE(ai,
bj)<d
t.
x=1,2,3
ABδH(A, B)H(A, B)δH(A, B )H(A, B)
317.781 112.802
206.829 79.573
154.611 44.903
149.693 39.621
154.611 44.717
149.693 39.484
317.781 177.243
206.829 130.218
39.020 21.831
38.809 20.547
39.020 21.383
40.628 20.173
154.611 65.344
149.693 59.130
Lm(A, B, dt)
LAdt=10 dt=50 dt= 100
228.127 (8.4 ) 633.263 (23.3 ) 1114.154 (41.0 )
185.952 (13.0 ) 493.414 (34.7 ) 782.470 (55.0 )
207.040 (10.0 ) 563.339 (27.2 ) 948.312 (45.8 )
299.190 (14.7 ) 1285.049 (63.5 ) 1693.837 (83.7 )
267.783 (18.8 ) 1011.383 (71.1 ) 1247.252 (87.7 )
283.486 (16.4 ) 1148.216 (66.6 ) 1470.545 (85.4 )
320.930 (15.8 ) 1289.600 (63.6 ) 1698.389 (83.8 )
287.667 (20.2 ) 1011.383 (71.1 ) 1247.252 (87.7 )
304.299 (17.6 ) 1150.492 (66.7 ) 1472.821 (85.4 )
16.857 (1.1 ) 85.824 (5.9 ) 157.926 (11.0 )
24.146 (3.9 ) 99.998 (16.1 ) 153.185 (24.7 )
20.501 (2.0 ) 92.911 (9.0 ) 155.555 (15.1 )
87.920 (11.9 ) 737.609 (100.0 ) 737.609 (100.0 )
105.976 (17.1 ) 617.966 (100.0 ) 617.966 (100.0 )
96.948 (14.3 ) 677.788 (100.0 ) 677.788 (100.0 )
109.660 (14.7 ) 742.161 (100.0 ) 742.161 (100.0 )
125.860 (20.3 ) 617.966 (100.0 ) 617.966 (100.0 )
117.760 (17.3 ) 680.063 (100.0 ) 680.063 (100.0 )
211.270 (16.4 ) 547.439 (42.6 ) 956.228 (74.4 )
161.806 (20.1 ) 393.416 (48.9 ) 629.285 (78.3 )
186.538 (17.8 ) 470.428 (45.0 ) 792.757 (75.9 )
ABδH(A, B)H(A, B)δH(A, B )H(A, B)
278.962 116.695
194.446 92.584
198.848 66.131
189.915 57.998
198.848 65.625
189.915 56.683
278.962 157.633
194.446 125.898
54.656 35.270
66.735 35.623
54.656 33.857
70.863 32.194
198.848 96.661
189.915 88.555
Lm(A, B, dt)
LAdt=10 dt=50 dt= 100
61.260 (2.2 ) 481.784 (17.7 ) 948.962 (34.9 )
55.447 (3.8 ) 323.687 (22.4 ) 641.770 (44.5 )
58.353 (2.8 ) 402.736 (19.3 ) 795.366 (38.2 )
26.097 (1.2 ) 1082.523 (53.5 ) 1508.358 (74.5 )
26.768 (1.8 ) 852.692 (59.1 ) 1144.834 (79.4 )
26.433 (1.5 ) 967.608 (55.8 ) 1326.596 (76.6 )
41.406 (2.0 ) 1087.075 (53.6 ) 1512.910 (74.6 )
50.989 (3.5 ) 855.911 (59.3 ) 1144.834 (79.4 )
46.197 (2.6 ) 971.493 (56.0 ) 1328.872 (76.6 )
34.437 (2.4 ) 112.681 (7.8 ) 178.212 (12.4 )
25.465 (3.9 ) 90.754 (14.0 ) 143.805 (22.2 )
29.951 (2.8 ) 101.717 (9.7 ) 161.008 (15.5 )
0.000 (0.0 ) 713.419 (96.7 ) 737.609 (100.0 )
0.000 (0.0 ) 619.759 (95.8 ) 646.869 (100.0 )
0.000 (0.0 ) 666.589 (96.2 ) 692.239 (100.0 )
15.308 (2.0 ) 717.971 (96.7 ) 742.161 (100.0 )
24.221 (3.7 ) 622.978 (96.3 ) 646.869 (100.0 )
19.764 (2.8 ) 670.474 (96.5 ) 694.515 (100.0 )
26.097 (2.0 ) 369.103 (28.7 ) 770.749 (60.0 )
26.768 (3.3 ) 232.933 (29.3 ) 497.964 (62.6 )
26.433 (2.5 ) 301.018 (28.9 ) 634.357 (61.0 )
ABδH(A, B)H(A, B)δH(A, B )H(A, B)
296.586 117.455
205.818 92.198
219.255 84.164
205.818 74.903
219.255 83.610
205.818 74.175
296.586 145.940
194.015 115.984
101.197 65.823
94.308 60.811
101.197 64.181
94.308 58.773
219.255 112.879
205.818 99.975
Lm(A, B, dt)
LAdt=10 dt=50 dt= 100
46.134 (1.6 ) 327.386 (12.0 ) 911.606 (33.5 )
40.573 (2.7 ) 248.261 (16.9 ) 674.137 (45.9 )
43.354 (2.0 ) 287.824 (13.7 ) 792.871 (37.9 )
22.798 (1.1 ) 374.882 (18.5 ) 1390.515 (68.7 )
20.561 (1.4 ) 301.285 (20.5 ) 1130.088 (76.9 )
21.679 (1.2 ) 338.083 (19.3 ) 1260.301 (72.2 )
48.427 (2.3 ) 379.434 (18.7 ) 1395.067 (68.8 )
48.975 (3.3 ) 296.829 (20.2 ) 1130.088 (76.9 )
48.701 (2.7 ) 338.131 (19.3 ) 1262.577 (72.2 )
19.581 (1.3 ) 122.200 (8.5 ) 257.106 (17.9 )
10.404 (1.7 ) 57.143 (9.5 ) 144.355 (24.0 )
14.992 (1.4 ) 89.671 (8.8 ) 200.730 (19.7 )
0.000 (0.0 ) 191.060 (25.9 ) 727.479 (98.6 )
0.000 (0.0 ) 178.483 (29.7 ) 600.305 (100.0 )
0.000 (0.0 ) 184.771 (27.6 ) 663.892 (99.2 )
25.628 (3.4 ) 195.612 (26.3 ) 732.031 (98.6 )
28.413 (4.7 ) 174.027 (28.9 ) 600.305 (100.0 )
27.021 (4.0 ) 184.819 (27.5 ) 666.168 (99.2 )
22.798 (1.7 ) 183.821 (14.3 ) 652.906 (50.8 )
20.561 (2.3 ) 122.801 (14.1 ) 529.782 (61.0 )
21.679 (2.0 ) 153.311 (14.2 ) 591.344 (54.9 )
ὥστ᾿ ἀνάγκη τῷ ἐκ τῆς Κελτικῆς ἐπὶ τὸν ῾Ερκύνιον δρυμὸν ἰόντι
πρῶτον μὲν διαπερᾶσαι τὴν λίμνην ἔπειτα τὸν ῎Ιστρον εἶτ᾿ ἤδη δι᾿
εὐπετεστέρων χωρίων ἐπὶ τὸν δρυμὸν τὰς προβάσεις ποιεῖσθαι δι᾿ ὀροπε-
δίων
ἔστι δὲ καὶ ἄλλη ὕλη μεγάλη Γαβρῆτα ἐπὶ τάδε τῶν Σοήβων ἐπέκεινα
δ᾿ ὁ ῾Ερκύνιος δρυμός ἔχεται δὲ κἀκεῖνος ὑπ᾿ αὐτῶν
Γαβρῆτα
οἱ τοίνυν ῞Ελληνες τοὺς Γέτας Θρᾷκας ὑπελάμβανον