Article

Cannabidiol inhibits SARS-CoV-2 replication through induction of the host ER stress and innate immune responses

Authors:
To read the full-text of this research, you can request a copy directly from the authors.

Abstract

The spread of SARS-CoV-2 and ongoing COVID-19 pandemic underscores the need for new treatments. Here we report that cannabidiol (CBD) inhibits infection of SARS-CoV-2 in cells and mice. CBD and its metabolite 7-OH-CBD, but not THC or other congeneric cannabinoids tested, potently block SARS-CoV-2 replication in lung epithelial cells. CBD acts after viral entry, inhibiting viral gene expression and reversing many effects of SARS-CoV-2 on host gene transcription. CBD inhibits SARS-CoV-2 replication in part by up-regulating the host IRE1α RNase endoplasmic reticulum (ER) stress response and interferon signaling pathways. In matched groups of human patients from the National COVID Cohort Collaborative, CBD (100 mg/ml oral solution per medical records) had a significant negative association with positive SARS-CoV-2 tests. This study highlights CBD as a potential preventative agent for early-stage SARS-CoV-2 infection and merits future clinical trials. We caution against use of non-medical formulations including edibles, inhalants or topicals as a preventative or treatment therapy at the present time.

No full-text available

Request Full-text Paper PDF

To read the full-text of this research,
you can request a copy directly from the authors.

... A recent study presented an interesting finding in natural products, as cannabidiol (CBD) for the treatment of the COVID-19 disease (13). In their study, they found that CBD and its metabolite 7-OH-CBD can block SARS-CoV-2 replication. ...
... CBD acts after viral entry by reversing the transcription of host genes and their expression. CBD can increase the IRE1-alpha RNase endoplasmic reticulum stress response and the interferon pathways (13). The primary target for entry into host cells has been identified to be the multifunctional protein angiotensinconverting enzyme-related carboxypeptidase (ACE2) discovered simultaneously by Donoghue et al. and Tipnis et al. (14,15). ...
... This molecule can decrease the release of proinflammatory cytokines responsible for inflammation during SARS-CoV-2 infection (4). CBD can enhance the interferon pathway which leads to the activation of the host immune response to viral pathogens (13). The interferon pathway is a well-known signaling targeted as a possible treatment for COVID-19 (44). ...
Article
Full-text available
Cannabidiol (CBD) can prevent the inflammatory response of SARS-CoV-2 spike protein in Caco-2-cells. This action is coupled with the inhibition of IL-1beta, IL-6, IL-18, and TNF-alpha, responsible for the inflammatory process during SARS-CoV-2 infection. CBD can act on the different proteins encoded by SARS-CoV-2 and as an antiviral agent to prevent the viral infection. Furthermore, recent studies have shown the possible action of CBD as an antagonist of cytokine release syndromes. In the SARS-CoV-2 pathophysiology, the angiotensin-converting enzyme 2 (ACE2) seems to be the key cell receptor for SARS-CoV-2 infection. The WNT/β-catenin pathway and PPARγ interact in an opposite manner in many diseases, including SARS-CoV-2 infection. CBD exerts its activity through the interaction with PPARγ in SARS-CoV-2 infection. Thus, we can hypothesize that CBD may counteract the inflammatory process of SARS-CoV-2 by its interactions with both ACE2 and the interplay between the WNT/β-catenin pathway and PPARγ. Vaccines are the only way to prevent COVID-19, but it appears important to find therapeutic complements to treat patients already affected by SARS-CoV-2 infection. The possible role of CBD should be investigated by clinical trials to show its effectiveness.
... The cells were seeded in 96-well plates at appropriate density (3.5 × 10 4 cells for SH-SY5Y and 3.0 × 10 4 cells for Neuro-2a) and allowed to attach at the well's bottom for 24 h. Then, they were pretreated with solutions of pure and micellar CBD (final concentrations: 0. 22 in PBS for 10 min. Then, the contents of the wells were exchanged with culture medium. ...
... Such formulation would be advantageous taking in consideration the limited application of CBD because of its poor water solubility. For example, CBD inhibits SARS-CoV-2 replication, but due to the low solubility, the drug was intraperitoneally administered in mice as an injection solution containing ethanol, Cremophor EL, and phosphate buffer [22]. Many studies have reported successful loading of hydrophobic drugs in Pluronic micelles and consecutive improvement of drug efficacy through micellar systems [23][24][25]. ...
Article
Full-text available
The present study is focused on the development of cannabidiol-loaded polymeric nanomicelles as a drug delivery system with neuroprotective effects. Cannabidiol was loaded in Pluronic micelles (Pluronic P123 or its combination with Pluronic F127) possessing an average diameter smaller than 50 nm and high encapsulation efficiency for the hydrophobic drug (80% and 84%, respectively). The successful encapsulation and transformation of cannabidiol in amorphous phase were observed by IR spectroscopy and X-ray diffraction, respectively. Studies with neuroblastoma cells (SH-SY5Y and Neuro-2a) showed that the pure cannabidiol caused a dose-dependent reduction of cell viability, whereas its loading into the micelles decreased cytotoxicity. Further, neuroprotective effects of pure and micellar cannabidiol were examined in a model of H2O2-induced oxidative stress in both neuroblastoma cells. The pre-treatment of cell lines with cannabidiol loaded into the mixed Pluronic P123/F127 micelles exerted significantly stronger protection against the oxidative stress compared to pure cannabidiol and cannabidiol in single Pluronic P123 micelles. Interestingly, the empty mixed P123/F127 micelles demonstrated protective activity against the oxidative stress. In conclusion, the study revealed the opportunity to formulate a new drug delivery system of cannabidiol, in particular nanosized micellar aqueous dispersion, that could be considered as a perspective platform for cannabidiol application in neurodegenerative diseases.
... However, CBD does not block viral entry; instead, it inhibits viral gene expression and reverses the effects of SARS-CoV-2 on the host gene transcription. CBD inhibits SARS-CoV-2 replication in part by up-regulating the inositol-requiring enzyme 1 alpha (IRE1α) endoplasmic reticulum (ER) stress response and interferon signaling pathways [36]. ...
... Однако КБД не блокирует проникновение вируса; вместо этого он ингибирует экспрессию вирусного гена и оказывает обратное влияние на транскрипцию гена-хозяина, производимое SARS-CoV-2. КБД ингибирует репликацию SARS-CoV-2 частично за счёт повышающей регуляции фермента, нуждающегося в инозитоле, 1альфа типа в реакции на стресс эндоплазматического ретикулума, а также сигнальных путей интерферона [36]. ...
Article
Full-text available
Высокая заболеваемость и смертность от COVID-19 привели к чрезвычайной ситуации в области здравоохранения во всём мире, вызвав активизацию и консолидацию усилий в соответствующих областях научных исследований и практике здравоохранения. Цель:: оценить потенциальную роль растений в качестве источника лекарственных средств против вируса SARS-CoV-2. Методы:: в этом обзоре проанализирована потенциальная роль растительных препаратов в качестве лекарственных средств против вируса SARS-CoV-2 на основе ссылок, опубликованных до февраля 2022 года исключительно на английском языке и полученных с помощью традиционных академических поисковых систем с использованием нескольких ключевых слов и их комбинаций. Научные названия видов растений были подтверждены с помощью ресурса World Flora Online (https://wfoplantlist.org/). Результаты:: была оценена роль растительных препаратов в воздействии на чувствительные к лекарственным препаратам звенья в цикле репликации вируса. Проанализирована потенциальная роль фитохимических веществ и отваров лекарственных растений в предотвращении проникновения вируса в клетку. Кроме того, было показано, что агенты препятствуют присоединению спайкового белка к рецепторам ангиотензинпревращающего фермента 2, блокируют РНК-зависимую РНК-полимеразу, ингибируют 3-химотрипсин-подобную протеазу, основную протеазу, нейраминидазу и другие ферменты, участвующие в репликации вируса. Особое внимание было уделено роли растительных средств как иммуномодуляторов и адаптогенов. Заключение:: растительные препараты обладают высоким потенциалом в качестве возможных средств для лечения вирусных заболеваний. Способ действия растительных препаратов может быть основан на их прямом влиянии на способность вируса проникать в клетки человека и воздействовать на репликацию вируса или активации ими иммуномодулирующих и противовоспалительных реакций. Кроме того, адъювантное лечение растительными препаратами может вызывать ослабление или исчезновение симптомов заболевания, уменьшить бремя заболевания, сократить продолжительность болезни.
... The molecular structure of Δ9-tetrahydrocannabinol was identified for the first time in 1964, which led to the conclusion of the existence of a cannabinoid receptor and boosted the discovery of the Endocannabinoid System (eCB), largely responsible for the maintenance of body homeostasis and is primarily brain modulatory network. In addition, the importance of the eCB gained prominence during the COVID-19 pandemic not only in the inhibition of SARS-CoV-2 replication but also in different studies that include the use for the treatment of chronic pain and mood disorders [1][2][3][4]. ...
... The type 2 cannabinoid receptor (CB2R) was cloned in 1993 from human promyelocytic leukemia cells of the HL-60 lineage [2], and CB2R was identified in mice, rats, zebrafish, and dogs [46][47][48][49]. It has an amino acid sequence that presents around 44% homology with the CB1R receptor amino acid residues. ...
Preprint
The endocannabinoid system (eCB) began to be studied from the identification of the molecular structures present in the cannabis sativa plant. The ECS is constituted of cannabinoid receptors, endogenous ligands and all the associated enzymatic apparatus responsible for maintaining homeostasis. Several physiological effects of cannabinoids are exerted through interaction with various receptors such as CB1 and CB2 receptors, vanilloid receptors, and the recently discovered [GPCRs (GPR55, GPR3, GPR6, GPR12 and GPR19). Endogenous ligands such anandamide and 2-arachidonoylglycerol might modulate these receptors. eCB has proved to play a critical role in some human diseases and has been extensively studied due to its wide therapeutic potential and because it is a promising target for the development of new drugs. Phytocannabinoids and synthetic cannabinoids have shown varied affinities to eCB, which are relevant to the treatment of various diseases. They may also have potential as lead compounds in the development of cannabinoid-based pharmaceuticals for a variety of diseases. Furthermore, Integrative and Complementary Health Practices (ICHP) appear to influence the endocannabinoid system through modulation. This review will show a description of ECS components and discuss how phytocannabinoids, other exogenous compounds, and PICS may operate the eCB balance.
... Due to the current scenario in the world, cannabinoids have also been studied to control the 543 pandemic of SARS-CoV-2. Studies conducted by Nguyen et al., 2021, showed that CBD is able to 544 J o u r n a l P r e -p r o o f inhibit early-stage infection and this action is exerted by the 7-OH-CBD metabolite that blocks 545 the virus replication in lung epithelial cells. In fact, CBD acts by inhibiting the expression of the 546 viral gene thus reversing the symptoms (Nguyen et al., 2021). ...
... Studies conducted by Nguyen et al., 2021, showed that CBD is able to 544 J o u r n a l P r e -p r o o f inhibit early-stage infection and this action is exerted by the 7-OH-CBD metabolite that blocks 545 the virus replication in lung epithelial cells. In fact, CBD acts by inhibiting the expression of the 546 viral gene thus reversing the symptoms (Nguyen et al., 2021). Another investigation performed 547 by Duncan, 2022, showed the effect of the innate immune response of cells in relation to the 548 ORF8 and ORF10 genes, and the SARS-CoV-2 structural membrane (M) protein was studied, 549 analyzing the expression of these genes alone and also combined with CBD. ...
Article
Over the years, the scientific community has sought improvements in the life quality of patients diagnosed with Alzheimer's disease (AD). Synaptic loss and neuronal death observed in the regions responsible for cognitive functions represent an irreversible progressive disease that is clinically characterized by impaired cognitive and functional abilities, along with behavioral symptoms. Currently, image and body fluid biomarkers can provide early dementia diagnostic, being it the best way to slow the disease's progression. The first signs of AD development are still complex, the existence of individual genetic and phenotypic characteristics about the disease makes it difficult to standardize studies on the subject. The answer seems to be related between Aβ and tau proteins. Aβ deposition in the medial parietal cortex appears to be the initial stage of AD, but it does not have a strong correlation with neurodegeneration. The strongest link between symptoms occurs with tau aggregation, which antecede Aβ deposits in the medial temporal lobe, however, the protein can be found in cognitively healthy older people. The answer to the question may lie in some catalytic effect between both proteins. Amid so many doubts, Aducanumab was approved, which raised controversies and results intense debate in the scientific field. Abnormal singling of some blood biomarkers produced by adipocytes under high lipogenesis, such as TNFα, leptin, and interleukin-6, demonstrate to be linked to neuroinflammation worsens, diabetes, and also severe cases of COVID-19, howsoever, under higher lipolysis, seem to have therapeutic anti-inflammatory effects in the brain, which has increasingly contributed to the understanding of AD. In addition, the relationship of severe clinical complications caused by Sars-CoV-2 viral infection and AD, go beyond the term “risk group” and may be related to the development of dementia long-term. Thus, this review summarized the current emerging pharmacotherapies, alternative treatments, and nanotechnology applied in clinical trials, discussing relevant points that may contribute to a more accurate look.
... 2 and Jeremy D. Henson 2,3 Dear Editor, Clinical research has reported that cannabidiol (CBD) is a molecule that has assumed an almost ubiquitous attribute in the management of inflammatory sequelae. The well-designed and elegantly conducted gold standard study by Crippa et al. 1 ran counter to a recent in vitro/in vivo (murine model) study 2 that strongly suggested that CBD could potentially be a preventative agent for early stage SARS-CoV-2 infections.There probably was nothing antagonistic with the CBD formulation used in the Crippa study, which has been used in other studies with good effect. ...
... Comparative studies between murine and human studies are always difficult to assess. Notwithstanding in a pseudo comparison, the in vivo murine preclinical study by Nguyen et al. 2 injected CBD (intraperitoneally at a dose of 20 or 80 mg/kg of body weight b.i.d.) to the mice (with an approximate body weight of the mice est. at 25 g) for 7 days previrus challenge and for an additional 4 days b.i.d. after the challenge. In the Crippa et al. study, patients were dosed with 300 mg/day (i.e., 1 mL or 150 mg per dose, twice a day) for 14 days. ...
... However, the exact mechanism of action through which CBD interacts with the immune system and immune cell signaling are poorly understood. Intriguingly, a recent report showed that CBD could inhibit SARS-CoV-2 replication in lung epithelial cells, suggesting that CBD may regulate antiviral responses (13). ...
... Previous research has primarily focused on CBD's effects for treating epilepsy and seizure (50)(51)(52). A recent report suggests that CBD can inhibit SARS-CoV-2 in lung cells by the induction of ER stress and innate immune response (13). However, very little is known about CBD's effects on immune cells such as macrophages, which are critical innate immune sensors and target of HIV infection. ...
Article
Full-text available
Cannabis ( Cannabis sativa ) is a widely used drug in the United States and the frequency of cannabis use is particularly high among people living with HIV (PLWH). One key component of cannabis, the non-psychotropic (−)-cannabidiol (CBD) exerts a wide variety of biological actions, including anticonvulsive, analgesic, and anti-inflammatory effects. However, the exact mechanism of action through which CBD affects the immune cell signaling remains poorly understood. Here we report that CBD modulates type I interferon responses in human macrophages. Transcriptomics analysis shows that CBD treatment significantly attenuates cGAS-STING-mediated activation of type I Interferon response genes (ISGs) in monocytic THP-1 cells. We further showed that CBD treatment effectively attenuates 2’3-cGAMP stimulation of ISGs in both THP-1 cells and primary human macrophages. Interestingly, CBD significantly upregulates expression of autophagy receptor p62/SQSTM1. p62 is critical for autophagy-mediated degradation of stimulated STING. We observed that CBD treated THP-1 cells have elevated autophagy activity. Upon 2’3’-cGAMP stimulation, CBD treated cells have rapid downregulation of phosphorylated-STING, leading to attenuated expression of ISGs. The CBD attenuation of ISGs is reduced in autophagy deficient THP-1 cells, suggesting that the effects of CBD on ISGs is partially mediated by autophagy induction. Lastly, CBD decreases ISGs expression upon HIV infection in THP-1 cells and human primary macrophages, leading to increased HIV RNA expression 24 hours after infection. However, long term culture with CBD in infected primary macrophages reduced HIV viral spread, suggesting potential dichotomous roles of CBD in HIV replication. Our study highlights the immune modulatory effects of CBD and the needs for additional studies on its effect on viral infection and inflammation.
... Chickens fed with a hemp seed diet provided eggs with 10-20% more enriched yolk fat with α-linolenic acids, without any negative impact on laying performance 13 . Moreover, the seed extracts have inhibitory effects against various pathogenic microorganisms like Gram-positive and negative bacteria, viruses, and yeasts [14][15][16] and as an anti-biofilm mediator against S. aureus 17 . ...
Article
Full-text available
Cannabis seeds have been recognized as one of the most nutritionally complete food sources which are also used for medicinal as well as recreational purposes. In the present study, nutritional, phytochemical, antioxidant and antimicrobial properties of seeds of Cannabis sativa and Cannabis indica, collected from Makawanpur district, central Nepal were evaluated. Nutritional and phytochemical analysis were mainly based on the Association of Official Analytical Chemists (AOAC) methods, while antibacterial activity was tested using the agar well diffusion method. The results revealed that Cannabis seeds contain considerable amount of protein (32.08% to 43.04%), fat (30.86% to 42.40%), carbohydrate (8.39% to 13.79%), total phenolics (701.05 mg/100g to 1312.72 mg/100g), and total flavonoids (366.29 mg/100g to 385.12 mg/100g). The radical scavenging activity of the seeds ranges from 37.83% to 54.84% at the concentration of 6.25 μg/mL. The findings of our study indicate that both the species hold high nutritional contents and substantial antioxidant activities but could not exhibit antibacterial activity at tested concentrations.
... Another recent publication designed to determine whether CBD is capable of inhibiting infection of cells by SARS-CoV-2 has presented strong experimental evidence suggesting CBD and its metabolite 7-OH-CBD, but not other closely related CBD congeners, have the capability of blocking SARS-CoV-2 viral infection both at early and late stages [28]. The authors present: (i) CBD potently inhibited viral replication in three different human and monkey cell lines, including human lung carcinoma A549 cells expressing exogenous human ACE-2 receptor (A549-ACE2); (ii) in a pre-clinical animal model, CBD treatment at non-toxic levels of SARS-CoV-2 infected mice reduced viral titers in the lungs and nasal turbinates; and (iii) analysis of patients with documented CBD consumption of 100 mg/ml CBD at time of testing revealed fewer positive test results. ...
Article
Full-text available
Background: The coronavirus disease-19 (COVID-19) pandemic is attributable to the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). The pathogenesis of SARS-CoV-2 is attributed to the activation of multiple inflammatory pathways secondary to the interaction of virus and host immune responses. 15% of patients over the age of 60 with COVID-19 require hospitalization. In addition, ICU admissions are as high as 5% of COVID-19 patients in this same age group. Most with one or more underlying conditions, undergo the pathophysiologic process of hyper-inflammation and its accompanying Cytokine Storm Syndrome (CSS) which results in significant morbidity and mortality. Therapeutics, which reduce the release of inflammatory cytokines, have been sought to slow disease progression. A growing body of literature attests to the anti-inflammatory effects of the naturally occurring cannabinoids found in both cannabis and hemp plants. The major cannabinoid, cannabidiol (CBD), results in decreased cytokine production via Cannabinoid receptor 2 (CB2). In addition, recent evidence indicates: (1) CBD may protect against infection by inducing anti-viral cellular activity; and (2) two specific cannabinoids exhibit binding to the spike protein thereby preventing infection in vitro. Therefore, examination of the activity of a CBD-rich oil on cellular inflammatory markers, as a potential natural intervention and as an adjuvant to recognized therapeutic interventions, is considered here. Materials and methods: COVID-19 has influenced all sectors of the world’s economic, scientific and commercial communities. This is true also of the investigative work within this report which adapted to the COVID-19 outbreak during the execution of the study. Part 1 of this report focuses on the initial study designed to evaluate the reported anti-inflammatory effects of a hemp-based full-spectrum CBD and cannabinoid-rich microcellular formulation (i.e. Hempzorb81™) on healthy volunteers comparing a treatment group of 100 with a placebo group of 50. Part 2 extends the report to the effects of the Hempzorb81™ formulation on a subset of 44 study subjects who tested positive for COVID-19 infection compared to a 39 subject COVID-19 negative test control group. Results: In Part 1, the treatment cohort found two cytokines associated with the development of SARS-CoV-2. Both TNFα and IL-6 showed statistically significant reductions compared to placebo in healthy patients. Two inflammatory markers, ESR and CRP, showed reductions of 19.4% and 12.5%, respectively, but the results were not statistically significant. In Part 2, TNFα, CRP, IL-1,6 and White Blood Cell count (WBC) all showed statistically significant p-values in the COVID-19 positive cohort. In the course of the study, no COVID-19 positive patients were hospitalized or died. A 2-fold reduction in white blood cell count at the time of diagnosis over the treatment course was an additional significant indicator for improved outcome post-infection.
... The SARS-CoV-2 virus is transmitted through respiratory droplets, with possible transmission through aerosol and fomite contact. A recent study reported that CBD inhibits the replication of SARS-CoV-2 through the strong upregulation of genes associated with the host stress response in the early stages of infection in mice (Nguyen et al., 2022). Another recent study suggested that select high-CBD extracts downregulate serine protease TMPRSS2 gene that produces a crucial transmembrane protein required for SARS-CoV-2 entry into host cells (Wang et al., 2020). ...
Article
Full-text available
Forensic laboratories are required to have analytical tools to confidently differentiate illegal substances such as marijuana from legal products (i.e., industrial hemp). The Achilles heel of industrial hemp is its association with marijuana. Industrial hemp from the Cannabis sativa L. plant is reported to be one of the strongest natural multipurpose fibers on earth. The Cannabis plant is a vigorous annual crop broadly separated into two classes: industrial hemp and marijuana. Up until the eighteenth century, hemp was one of the major fibers in the United States. The decline of its cultivation and applications is largely due to burgeoning manufacture of synthetic fibers. Traditional composite materials such as concrete, fiberglass insulation, and lumber are environmentally unfavorable. Industrial hemp exhibits environmental sustainability, low maintenance, and high local and national economic impacts. The 2018 Farm Bill made way for the legalization of hemp by categorizing it as an ordinary agricultural commodity. Unlike marijuana, hemp contains less than 0.3% of the cannabinoid, Δ9-tetrahydrocannabinol, the psychoactive compound which gives users psychotropic effects and confers illegality in some locations. On the other hand, industrial hemp contains cannabidiol found in the resinous flower of Cannabis and is purported to have multiple advantageous uses. There is a paucity of investigations of the identity, microbial diversity, and biochemical characterizations of industrial hemp. This review provides background on important topics regarding hemp and the quantification of total tetrahydrocannabinol in hemp products. It will also serve as an overview of emergent microbiological studies regarding hemp inflorescences. Further, we examine challenges in using forensic analytical methodologies tasked to distinguish legal fiber-type material from illegal drug-types.
... In this case, CBD inhibits SARS-CoV-2 replication in the early stages of the disease. This relationship is therefore indicated by Nguyen et al. as a very effective potential measure to prevent infection in the early stages of infection; however, further testing and clinical trials are needed to clearly confirm the effects of cannabidiol on this virus [97,98]. ...
Article
Full-text available
This review article provides basic information about cannabis, its structure, and its impact on human development at the turn of the century. It also contains a brief description of the cultivation and application of these plants in the basic branches of the economy. This overview is also a comprehensive collection of information on the chemical composition of individual cannabis derivatives. It contains the characteristics of the chemical composition as well as the physicochemical and mechanical properties of hemp fibers, oil, extracts and wax, which is unique compared to other review articles. As one of the few articles, it approaches the topic in a holistic and evolutionary way, moving through the plant’s life cycle. Its important element is examples of the use of hemp derivatives in polymer composites based on thermoplastics, elastomers and duroplasts and the influence of these additives on their properties, which cannot be found in other review articles on this subject. It indicates possible directions for further technological development, with particular emphasis on the pro-ecological aspects of these plants. It indicates the gaps and possible research directions in basic knowledge on the use of hemp in elastomers.
... In addition, based on the anti-inflammatory, cardioprotective, and anti-angiogenesis effects of CBD [118], protection of endothelial function [119] shown in preclinical research, and by blocking 'cytokine storm' effects, it may warrant further evaluation in treating patients with multiple complications of corona virus disease-19 (COVID-19). However, the investigators cautioned that only highly pure forms of CBD showed significant effects on COVID-19 complications [120]. More clinical research is needed to investigate CBD's potential for treating these indications. ...
Article
Full-text available
Purpose of review There have been many debates, discussions, and published writings about the therapeutic value of cannabis plant and the hundreds of cannabinoids it contains. Many states and countries have attempted, are attempting, or have already passed bills to allow legal use of cannabinoids, especially cannabidiol (CBD), as medicines to treat a wide range of clinical conditions without having been approved by a regulatory body. Therefore, by using PubMed and Google Scholar databases, we have reviewed published papers during the past 30 years on cannabinoids as medicines and comment on whether there is sufficient clinical evidence from well-designed clinical studies and trials to support the use of CBD or any other cannabinoids as medicines. Recent findings Current research shows that CBD and other cannabinoids currently are not ready for formal indications as medicines to treat a wide range of clinical conditions as promoted except for several exceptions including limited use of CBD for treating two rare forms of epilepsy in young children and CBD in combination with THC for treating multiple-sclerosis-associated spasticity. Summary Research indicates that CBD and several other cannabinoids have potential to treat multiple clinical conditions, but more preclinical, and clinical studies and clinical trials, which follow regulatory guidelines, are needed to formally recommend CBD and other cannabinoids as medicines.
... However, fluvoxamine with metformin and ivermectin cannot prevent the occurrence of hypoxemia, an emergency department visit, hospitalization, or death associated with COVID-19 [94]. It inhibits SARS-CoV-2 replication through ER induction stress and innate immune responses such as cannabidiol [95]. Sensitizing cells to ER may mediate the actions of reactive oxygen species (ROS)-metabolizing ISGs [96]. ...
Article
Full-text available
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) induces immune-mediated type 1 interferon (IFN-1) production, the pathophysiology of which involves sterile alpha motif and histidine-aspartate domain-containing protein 1 (SAMHD1) tetramerization and the cytosolic DNA sensor cyclic-GMP-AMP synthase (cGAS)–stimulator of interferon genes (STING) signaling pathway. As a result, type I interferonopathies are exacerbated. Aspirin inhibits cGAS-mediated signaling through cGAS acetylation. Acetylation contributes to cGAS activity control and activates IFN-1 production and nuclear factor-κB (NF-κB) signaling via STING. Aspirin and dapsone inhibit the activation of both IFN-1 and NF-κB by targeting cGAS. We define these as anticatalytic mechanisms. It is necessary to alleviate the pathologic course and take the lag time of the odds of achieving viral clearance by day 7 to coordinate innate or adaptive immune cell reactions.
... This increase could be overcome by the addition of an ATM kinase inhibitor. Furthermore, CBD was recently shown to inhibit SARS-CoV-2 replication through the activation of ER stress and innate immune responses [70]. Although the effects of CBD on the tumor-immune microenvironment in vivo require further study, CBD's modulation of the immune response may also be advantageous in cancer therapy, as lymphoid tissues are known to express high levels of CBD receptors (Figure 1). ...
Article
Full-text available
There is currently a growing interest in the use of cannabidiol (CBD) to alleviate the symptoms caused by cancer, including pain, sleep disruption, and anxiety. CBD is often self-administered as an over-the-counter supplement, and patients have reported benefits from its use. However, despite the progress made, the mechanisms underlying CBD’s anti-cancer activity remain divergent and unclear. Herein, we provide a comprehensive review of molecular mechanisms to determine convergent anti-cancer actions of CBD from pre-clinical and clinical studies. In vitro studies have begun to elucidate the molecular targets of CBD and provide evidence of CBD’s anti-tumor properties in cell and mouse models of cancer. Furthermore, several clinical trials have been completed testing CBD’s efficacy in treating cancer-related pain. However, most use a mixture of CBD and the psychoactive, tetrahydrocannabinol (THC), and/or use variable dosing that is not consistent between individual patients. Despite these limitations, significant reductions in pain and opioid use have been reported in cancer patients using CBD or CBD+THC. Additionally, significant improvements in quality-of-life measures and patients’ overall satisfaction with their treatment have been reported. Thus, there is growing evidence suggesting that CBD might be useful to improve the overall quality of life of cancer patients by both alleviating cancer symptoms and by synergizing with cancer therapies to improve their efficacy. However, many questions remain unanswered regarding the use of CBD in cancer treatment, including the optimal dose, effective combinations with other drugs, and which biomarkers/clinical presentation of symptoms may guide its use.
Preprint
Initial symptoms of COVID-19 infection depend on viral replication, while hyperinflammation is a hallmark of critical illness and may drive severe pneumonia and death. Among the mechanisms potentially involved in the hyperinflammatory state, we focused on the unfolded protein response, because the IRE1α-XBP1 branch can be activated as result of the endoplasmic reticulum stress produced by the overwhelming synthesis of viral components and synergizes with Toll-like receptor signaling to induce cytokine expression. Viral RNA may trigger the IRE1α-XBP1 branch via TLR7/8 activation and like TLR2 and TLR4 may underpin cytokine expression trough XBP1 splicing ( sXBP1 ). The expression of IL1B , IL6 , and TNF mRNA in bronchoalveolar aspirates (BAAs) were higher in COVID-19 patients under mechanical ventilation and intubation who showed sXBP1 . The scrutiny of monocytic/macrophagic markers during active infection showed a reduction of those involved in antigen presentation and survival, as well as the IFN stimulated gene MX1 . These changes reverted after infection tests turned negative. In contrast, the expression of the mRNA of the serine protease TMPRSS2 involved in S protein priming showed a high expression during active infection. TLR8 mRNA showed an overwhelming expression as compared to TLR7 mRNA, which suggests the presence of monocyte-derived dendritic cells (MDDCs). In vitro experiments in MDDCs activated with ssRNA40, a positive-sense, single-stranded RNA (+ssRNA) like SARS-CoV-2 RNA, induced sXBP1 and the expression of IL-1β, IL-6, and TNF α at mRNA and protein levels. These responses were blunted by the IRE1α ribonuclease inhibitor MKC8866. Given the analogies between the results observed in BAAs and the effects induced by +ssRNA in MDDCs, IRE1α ribonuclease inhibition might be a druggable target in severe COVID-19 disease. Author summary COVID-19 pandemics put an unprecedented pressure on health systems. The need of new therapies urged research on the mechanisms triggered by the interaction of SARS-CoV-2 virus with host cells and the ensuing pathophysiology driving pneumonia and multiorgan failure. Hyperinflammation soon appeared as a mechanism involved in mortality that could even proceed after viral infection comes to an end. Hyperinflammation is supported by an inappropriate production of cytokines, and this explains the use of the term cytokine storm to refer to this phase of the disease. Given that insight into the molecular mechanisms driving cytokine storm should focus on the interaction of viral components with immune cells, experiments addressing the effect of viral components on its cognate receptors were carried out. It was observed that viral RNA induces a cytokine pattern like the one observed in bronchoalveolar aspirates of COVID-19 patients with critical disease. Overall, the study revealed that both cell organelle overload and receptors involved in the recognition of viral RNA may team up to induce proinflammatory cytokines. This mechanism can be exploited to develop new treatments for COVID-19 disease.
Article
Much confusion exists about the chemical composition of widely sold Cannabis sativa products that utilize the cannabidiol (CBD) acronym and related terms such as "CBD oil", "CBD plus hemp oil", "full spectrum CBD", "broad spectrum CBD", and "cannabinoids". Their rational chemical and subsequent biological assessment requires both knowledge of the chemical complexity and the characterization of significant individual constituents. Applicable to hemp preparations in general, this study demonstrates how the combination of liquid-liquid-based separation techniques, NMR analysis, and quantum mechanical-based NMR interpretation facilitates the process of natural product composition analysis by allowing specific structural characterization and absolute quantitation of cannabinoids present in such products with a large dynamic range. Countercurrent separation of a commercial "CBD oil" yielded high-purity CBD plus a more polar cannabinoid fraction containing cannabigerol and cannabidivarin, as well as a less polar cannabinoid fraction containing cannabichromene, trans-Δ9-tetrahydrocannabinol, cis-Δ9-tetrahydrocannabinol, and cannabinol. Representatives of six cannabinoid classes were identified within a narrow range of polarity, which underscores the relevance of residual complexity in biomedical research on cannabinoids. Characterization of the individual components and their quantitation in mixed fractions were undertaken by TLC, HPLC, 1H (q)NMR spectroscopy, 1H iterative full spin analysis (HiFSA), 13C NMR, and 2D NMR. The developed workflow and resulting analytical data enhance the reproducible evaluation of "CBD et al." products, which inevitably represent complex mixtures of varying molecular populations, structures, abundances, and polarity features.
Article
Full-text available
Introduction Coronavirus disease 2019 (COVID-19) is an illness caused by the new coronavirus severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2). It has affected public health and the economy globally. However, no specific antivirals are available, although several are in development. Currently approved vaccines and other drug candidates could be associated with several drawbacks urges to develop alternative therapeutic approaches. Aim To provide a comprehensive review of anti-SARS-CoV-2 activities of plants and their bioactive compounds. Methods Information was gathered from diverse bibliographic platforms such as PubMed, Google scholar, web of science, and ClinicalTrials.gov registry. Results The present review highlights the potential roles of crude extracts of plants as well as plant-derived small molecules in inhibiting SARS-CoV-2 infection by targeting viral or host factors essential for viral entry, polyprotein processing, replication, assembly and release. Their anti-inflammatory and antioxidant properties as well as plant-based therapies that are under development in the clinical trial phases-1 to 3 are also covered. Conclusion This knowledge could further help understanding SARS-CoV2 infection and anti-viral mechanisms of plant-based therapeutics.
Article
Full-text available
During the COVID-19 pandemic lasting now for well more than a year, nearly 247 million cases have been diagnosed and over 5 million deaths have been recorded worldwide as of November 2021. The devastating effects of the SARS-CoV-2 virus on the immune system lead to the activation of signaling pathways involved in inflammation and the production of inflammatory cytokines. SARS-CoV-2 displays a great deal of homology with other coronaviruses, especially SARS-CoV and MERS-CoV which all display similar components which may serve as targets, namely the Spike (S) protein, the main protease (MPro) which is a chymotrypsin-like protease (CLPro) and RNA-directed RNA polymerase (RdRp). Natural constituents found in traditional herbal medicines, dietary supplements and foods demonstrate activity against SARS-CoV-2 by affecting the production of cytokines, modulating cell signaling pathways related to inflammation and even by direct interaction with targets found in the virus. This has been demonstrated by the application of fluorescence resonance energy transfer (FRET) experiments, assays of cytopathic effect (CPE) and in silico molecular docking studies that estimate binding strength. Glycyrrhizin, flavonoids such as quercetin, kaempferol and baicalein, and other polyphenols are the most common constituents found in Traditional Chinese Medicines that modulate inflammation and cell signaling pathways, and bind viral targets demonstrating valuable effects against SARS-CoV-2. However, the bioavailability of these natural products and their dependence on each other in extracts make it difficult to assess their actual utility in the treatment of COVID-19. Therefore, more can be learned through rational drug design based on natural products and from well-designed clinical trials employing specific doses of standardized combinations.
Article
Full-text available
The field of Cannabis sativa L. research for medical purposes has been rapidly advancing in recent decades and a growing body of evidence suggests that phytocannabinoids are beneficial for a range of conditions. At the same time impressing development has been observed for formulations and delivery systems expanding the potential use of cannabinoids as an effective medical therapy. The objective of this review is to present the most recent results from pharmaceutical companies and research groups investigating methods to improve cannabinoid bioavailability and to clearly establish its therapeutic efficacy, dose ranges, safety and also improve the patient compliance. Particular focus is the application of cannabinoids in pain treatment, describing the principal cannabinoids employed, the most promising delivery systems for each administration routes and updating the clinical evaluations. To offer the reader a wider view, this review discusses the formulation starting from galenic preparation up to nanotechnology approaches, showing advantages, limits, requirements needed. Furthermore, the most recent clinical data and meta-analysis for cannabinoids used in different pain management are summarized, evaluating their real effectiveness, in order also to spare opioids and improve patients’ quality of life. Promising evidence for pain treatments and for other important pathologies are also reviewed as likely future directions for cannabinoids formulations.
Article
The coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory distress syndrome coronavirus 2 (SARS-Cov-2), was identified for the first time in late 2019 in China, resulting in a global pandemic of massive impact. Despite a fast development and implementation of vaccination strategies, and the scouting of several pharmacological treatments, alternative effective treatments are still needed. In this regard, cannabinoids represent a promising approach because they have been proven to exhibit several immunomodulatory, anti-inflammatory, and antiviral properties in COVID-19 disease models and related pathological conditions. This mini-review aims at providing a practical brief overview of the potential applications of cannabinoids so far identified for the treatment and prevention of COVID-19, finally considering key aspects related to their technological and clinical implementation.
Article
Full-text available
Aims To study effects on cellular innate immune responses to ORF8, ORF10, and Membrane protein (M protein) from the Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that causes COVID-19, in combination with cannabidiol (CBD). Main methods HEK293 cells transfected with plasmids expressing control vector, ORF8, ORF10, or M protein were assayed for cell number and markers of apoptosis at 24 h, and interferon and interferon-stimulated gene expression at 14 h, with or without CBD. Cells transfected with polyinosinic:polycytidylic acid (Poly (I:C)) were also studied as a general model of RNA-type viral infection. Key findings Reduced cell number and increased early and late apoptosis were found when expression of viral genes was combined with 1–2 μM CBD treatment, but not in control-transfected cells treated with CBD, or in cells expressing viral genes but treated only with vehicle. In cells expressing viral genes, CBD augmented expression of IFNγ, IFNλ1 and IFNλ2/3, as well as the 2′-5′-oligoadenylate synthetase (OAS) family members OAS1, OAS2, OAS3, and OASL. CBD also augmented expression of these genes in control cells not expressing viral genes, but without enhancing apoptosis. CBD similarly enhanced the cellular anti-viral response to Poly (I:C). Significance Our results demonstrate a poor ability of HEK293 cells to respond to SARS-CoV-2 genes alone, but an augmented innate anti-viral response to these genes in the presence of CBD. Thus, CBD may prime components of the innate immune system, increasing readiness to respond to RNA-type viral infection without activating apoptosis, and could be studied for potential in prophylaxis.
Article
Full-text available
The devastating COVID-19 pandemic has caused more than 6 million deaths worldwide during the last 2 years. Effective therapeutic agents are greatly needed, yet promising magic bullets still do not exist. Numerous natural products (cordycepin, gallinamide A, plitidepsin, telocinobufagin, and tylophorine) have been widely studied and play a potential function in treating COVID-19. In this paper, we reviewed published studies (from May 2021 to April 2022) relating closely to bioactive natural products (isolated from medicinal plants, animals products, and marine organisms) in COVID-19 therapy in vitro to provide some essential guidance for anti-SARS-CoV-2 drug research and development.Frontiers in Pharmacology
Article
Introduction: Cannabidiol (CBD) is the second most abundant Phytocannabinoid in Cannabis extracts. CBD has a binding affinity for several cannabinoid and cannabinoid-associated receptors. Epidiolex (oral CBD solution) has been lately licensed by the Food and Drug Administration (FDA) for the treatment of pediatric epileptic seizures. Methods: In this review, we discussed the most promising applications of CBD for chronic inflammatory conditions, namely CBD's anti-inflammatory effects during inflammatory bowel disease, coronavirus disease (antiviral effect), brain pathologies (neuroprotective and anti-inflammatory properties), as well as CBD immunomodulatory and antitumoral activities in the tumor microenvironment. Special focus was shed on the main therapeutic mechanisms of action of CBD, particularly in the control of the immune system and the endocannabinoid system. Results: Findings suggest that CBD is a potent immunomodulatory drug as it has manifested immunosuppressive properties in the context of sterile inflammation (e.g., inflammatory bowel disease, rheumatoid arthritis, and neurodegenerative diseases), and immunoprotective effects during viral infections (e.g. COVID-19) Similarly, CBD has exhibited a selective response toward cancer types by engaging different targets and signaling pathways. These results are in favor of the primary function of the endocannabinoid system which is homeostatic maintenance. Conclusion: The presented evidence suggests that the endocannabinoid system is a prominent target for the treatment of inflammatory and autoimmune diseases, rheumatoid diseases, viral infections, neurological and psychological pathologies, and cancer. Moreover, the antitumoral activities of CBD have been suggested to be potentially used in combination with chemo- or immunotherapy during cancer. However, clinical results are still lacking, which raises a challenge to apply translational cannabis research to the human immune system.
Article
Background: Severe acute respiratory syndrome coronavirus 2 SARS-CoV-2 has caused >211 million infections and >5.5 million deaths within 24 months globally (WHO). Internationally, a debate emerged about potential benefits of cannabidiol (CBD) as treatment of corona virus disease-19 (COVID-19). Objective: To assess the effects of CBD in the treatment of COVID-19-related inflammatory symptoms from the literature. Methods: We searched Cochrane COVID-19 study register, CENTRAL (PubMed, Embase, CINAHL, ClinicalTrials.gov, and the WHO's International Clinical Trials Registry Platform), for studies testing CBD as inflammation intervention. All types of studies and populations were considered. All pre-clinical, clinical, and pharmacological outcomes were of interest. Results: Of 18 articles found, 9 were included: 5 in vivo animal studies, 3 in vitro human tissue studies and, 1 randomized clinical trial. Outcomes in four in vivo animal studies and three human tissue studies were immune response markers, which decreased. One in vivo study showed enhancement of monocytes. One human study did not show group differences in COVID-19 evolution. There was no information on adverse effects or drug interaction. Conclusion: There is not enough evidence to support or refute CBD as a repurpose drug to treat inflammation and other symptoms of COVID-19. Clinical trials are needed to test its efficacy and adverse effects.
Article
Full-text available
Remdesivir (RDV, Veklury®) is an FDA-approved prodrug for the treatment of hospitalized patients with COVID-19. Recent in vitro studies have indicated that human carboxylesterase 1 (CES1) is the major metabolic enzyme catalyzing RDV activation. COVID-19 treatment for hospitalized patients typically also involves a number of antibiotics and anti-inflammatory drugs. Further, individuals who are carriers of a CES1 variant (polymorphism in exon 4 codon 143 [G143E]) may experience impairment in their ability to metabolize therapeutic agents which are CES1 substrates. The present study assessed the potential influence of nine therapeutic agents (hydroxychloroquine, ivermectin, erythromycin, clarithromycin, roxithromycin, trimethoprim, ciprofloxacin, vancomycin, and dexamethasone) commonly used in treating COVID-19 and 5 known CES1 inhibitors on the metabolism of RDV. Additionally, we further analyzed the mechanism of inhibition of cannabidiol (CBD), as well as the impact of the G143E polymorphism on RDV metabolism. An in vitro S9 fraction incubation method and in vitro to in vivo pharmacokinetic scaling were utilized. None of the nine therapeutic agents evaluated produced significant inhibition of RDV hydrolysis; CBD was found to inhibit RDV hydrolysis by a mixed type of competitive and noncompetitive partial inhibition mechanism. In vitro to in vivo modeling suggested a possible reduction of RDV clearance and increase of AUC when coadministration with CBD. The same scaling method also suggested a potentially lower clearance and higher AUC in the presence of the G143E variant. In conclusion, a potential CES1-mediated DDI between RDV and the nine assessed medications appears unlikely. However, a potential CES1-mediated DDI between RDV and CBD may be possible with sufficient exposure to the cannabinoid. Patients carrying the CES1 G143E variant may exhibit a slower biotransformation and clearance of RDV. Further clinical studies would be required to evaluate and characterize the clinical significance of a CBD-RDV interaction.
Article
Full-text available
COVID-19 is still the biggest issue worldwide. Many dietary supplements on the market claim to have anti-COVID-19 effects without scientific evidence. To elucidate the prevalence of dietary supplement usage for the prevention of COVID-19, we conducted an online cross-sectional questionnaire survey among Japanese adults in January 2022. The prevalence of dietary supplement use for the prevention of COVID-19 was 8.3%, and there was no gender difference. We also conducted additional research on these dietary supplement users (1000 males and 1000 females). The most popular ingredient used was vitamin C (61.0%), with vitamin D (34.9%) and probiotics (33.4%) following. Half of these participants reported using supplements for more than one year. The information sources that reportedly led them to start using dietary supplements for the prevention of COVID-19 were the Internet (44.0%), television and radio (29.9%), and family or friends (26.0%), and these information sources differed among generations. In conclusion, some of the population used vitamin/mineral supplements for the prevention of COVID-19 that might be beneficial for their health, but some used ingredients with no scientifically proven effects against the virus at this time. Therefore, information-based scientific evidence is important to prevent the inappropriate use of dietary supplements by consumers.
Article
Full-text available
Cannabinoid receptor 2 (CB2) is of interest as a much-needed target for the treatment or prevention of several neurogenerative diseases. However, CB2 agonists, particularly phytocannabinoids, have been ascribed antimicrobial properties and are associated with the induction of microbiome compositional fluxes. When developing novel CB2 therapeutics, CB2 engagement and antimicrobial functions should both be considered. This review summarizes those cannabinoids and cannabis-informed molecules and preparations (CIMPs) that show promise as microbicidal agents, with a particular focus on the most recent developments. CIMP–microbe interactions and anti-microbial mechanisms are discussed, while the major knowledge gaps and barriers to translation are presented. Further research into CIMPs may proffer novel direct or adjunctive strategies to augment the currently available antimicrobial armory. The clinical promise of CIMPs as antimicrobials, however, remains unrealized. Nevertheless, the microbicidal effects ascribed to several CB2 receptor-agonists should be considered when designing therapeutic approaches for neurocognitive and other disorders, particularly in cases where such regimens are to be long-term. To this end, the potential development of CB2 agonists lacking antimicrobial properties is also discussed.
Article
Full-text available
Excessive substance use and substance use disorders (SUDs) are common, serious and relapsing medical conditions. They frequently co-occur with other diseases that are leading contributors to disability worldwide. While heavy substance use may potentiate the course of some of these illnesses, there is accumulating evidence suggesting common genetic architectures. In this narrative review, we focus on four heritable medical conditions - cardiometabolic disease, chronic pain, depression and COVID-19, which are commonly overlapping with, but not necessarily a direct consequence of, SUDs. We find persuasive evidence of underlying genetic liability that predisposes to both SUDs and chronic pain, depression, and COVID-19. For cardiometabolic disease, there is greater support for a potential causal influence of problematic substance use. Our review encourages de-stigmatization of SUDs and the assessment of substance use in clinical settings. We assert that identifying shared pathways of risk has high translational potential, allowing tailoring of treatments for multiple medical conditions. Funding SSR acknowledges T29KT0526, T32IR5226 and DP1DA054394; RLK acknowledges AA028292; AA acknowledges DA054869 & K02DA032573. The funders had no role in the conceptualization or writing of the paper.
Article
Full-text available
SARS-CoV-2 is the third lethal respiratory coronavirus, after MERS-CoV and SARS-CoV, to emerge this century, causing millions of deaths worldwide. Other common coronaviruses such as HCoV-OC43 cause less severe respiratory disease.
Preprint
Full-text available
The rise of antimicrobial resistance is a global public health crisis that threatens the effective control and prevention of infections. Due to the emergence of pandrug-resistant bacteria, most antibiotics have lost their efficacy. Meanwhile, the development of new antimicrobials has stagnated, which leads to the creation of new and unconventional treatments. Bacteriophages or their components are known to target bacterial cell walls, cell membranes, and lipopolysaccharides (LPS) and hydrolyze them. Bacteriophages being the natural predators of pathogenic bacteria, are inevitably categorized as "human friends", thus fulfilling the adage that "the enemy of my enemy is my friend". Leveraging on their lethal capabilities against pathogenic bacteria, researchers are searching for more ways to overcome the current antibiotic resistance challenge. Bacteriophages are considered to be one of the most effective alternative therapies for multidrug resistant bacteria. In this study, we expressed and purified epsilon 34 phage tailspike protein (E34 TSP) from the E34 TSP gene which was previously cloned into a pET30a-LIC vector, then assessed the ability of this bacteriophage protein in the killing of two CBD-resistant strains of Salmonella spp. We observed that the combined treatment of CBD-resistant strains of Salmonella with CBD and E34 TSP showed poor killing ability whereas the monotreatment with E34 TSP showed considerably higher killing efficiency.
Article
Full-text available
Some patients use dietary supplements and medicines concomitantly, with an inappropriate perception of their safety and efficacy. To clarify the perception between dietary supplement and medicine users and non-users, we conducted an internet survey. In this survey, 38.9% of participants used dietary supplements, 32.6% used prescription medicines, and 14.7% used dietary supplements and prescription medicines concomitantly. Then, we conducted a further survey on four groups, dietary supplement and prescription medicine users, dietary supplement only users, prescription medicine only users, and non-users (500 each). Dietary supplement users had favorable outcomes in terms of both the safety and efficacy of dietary supplements compared to dietary supplement non-users. This perception of dietary supplements was independent from medicine use. The awareness of the Health Food Network consumer navigation site, which provides information about dietary supplements for consumers, was the highest among dietary supplement and prescription medicine users, but it was still low (2.2%). In conclusion, consumers who use dietary supplement and prescription medicine concomitantly have favorable outcomes for their safety and efficacy and a low awareness of their interaction. There is a need to provide information, especially regarding the risk of interaction, that takes into account the consumer’s situation.
Article
Full-text available
SARS-CoV-2, the pathogen of COVID-19, has infected hundreds of millions of people and caused millions of deaths. Looking for valid druggable targets with minimal side effects for the treatment of COVID-19 remains critical. After discovering host genes from multi-scale omics data, we developed an end-to-end network method to investigate drug-host gene(s)-CoV paths and the mechanism of action between the drug and the host factor in a directional network. We also inspected the potential side effect of the candidate drug on several common comorbidities. We established a catalog of host genes associated with three CoVs. Rule-based prioritization yielded 29 FDA-approved drugs via accounting for the effects of drugs on CoVs, comorbidities, and drug-target confidence information. Seven drugs are currently undergoing clinical trials as COVID-19 treatment. This catalog of druggable host genes associated with CoVs and the prioritized repurposed drugs will provide a new sight in therapeutics discovery for severe COVID-19 patients.
Article
Background: SARS-CoV2 has caused over 57 million infections and over 1.3 million deaths within 11 months globally (WHO). Internationally, there is an emerging debate about potential benefits of Cannabidiol (CBD) as treatment of COVID-19. Objective: To assess the beneficial and adverse effects of CBD in the treatment of inflammation from the literature. Methods: We systematically searched Cochrane rCOVID-19 study register, CENTRAL (PubMed, Embase, CINAHL, ClinicalTrials.gov and the WHO’s International Clinical Trials Registry Platform) for studies testing CBD as inflammation intervention. All types of studies and populations were considered. All pre-clinical, clinical, and pharmacological outcomes were of interest. Results: Of 18 papers found, 9 were included: Five in vivo animal studies, 3 in vitro studies on human tissues and 1 ongoing randomized clinical trial. Outcomes in 4 in vivo animal studies and 3 human tissue studies were immune response markers, which decreased. In 1 in vivo study the outcome of monocytes was enhanced. One human study is ongoing. There was no information on adverse effects or drug-interaction. Conclusion: There is not enough evidence to support or refute CBD as a repurpose drug to treat inflammation and other symptoms of COVID-19. Clinical trials are needed to test its efficacy and adverse effects.
Preprint
Full-text available
Repurposing drugs as treatments for COVID-19 has drawn much attention. A common strategy has been to screen for established drugs, typically developed for other indications, that are antiviral in cells or organisms. Intriguingly, most of the drugs that have emerged from these campaigns, though diverse in structure, share a common physical property: cationic amphiphilicity. Provoked by the similarity of these repurposed drugs to those inducing phospholipidosis, a well-known drug side effect, we investigated phospholipidosis as a mechanism for antiviral activity. We tested 23 cationic amphiphilic drugs—including those from phenotypic screens and others that we ourselves had found—for induction of phospholipidosis in cell culture. We found that most of the repurposed drugs, which included hydroxychloroquine, azithromycin, amiodarone, and four others that have already progressed to clinical trials, induced phospholipidosis in the same concentration range as their antiviral activity; indeed, there was a strong monotonic correlation between antiviral efficacy and the magnitude of the phospholipidosis. Conversely, drugs active against the same targets that did not induce phospholipidosis were not antiviral. Phospholipidosis depends on the gross physical properties of drugs, and does not reflect specific target-based activities, rather it may be considered a confound in early drug discovery. Understanding its role in infection, and detecting its effects rapidly, will allow the community to better distinguish between drugs and lead compounds that more directly impact COVID-19 from the large proportion of molecules that manifest this confounding effect, saving much time, effort and cost. One Sentence Summary Drug-induced phospholipidosis is a single mechanism that may explain the in vitro efficacy of a wide-variety of therapeutics repurposed for COVID-19.
Article
Full-text available
The pandemic caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) continues to expand. Papain-like protease (PLpro) is one of two SARS-CoV-2 proteases potentially targetable with antivirals. PLpro is an attractive target because it plays an essential role in cleavage and maturation of viral polyproteins, assembly of the replicase-transcriptase complex, and disruption of host responses. We report a substantive body of structural, biochemical, and virus replication studies that identify several inhibitors of the SARS-CoV-2 enzyme. We determined the high resolution structure of wild-type PLpro, the active site C111S mutant, and their complexes with inhibitors. This collection of structures details inhibitors recognition and interactions providing fundamental molecular and mechanistic insight into PLpro. All compounds inhibit the peptidase activity of PLpro in vitro, some block SARS-CoV-2 replication in cell culture assays. These findings will accelerate structure-based drug design efforts targeting PLpro to identify high-affinity inhibitors of clinical value.
Article
Full-text available
Cannabis sativa is widely used for medical purposes and has anti-inflammatory activity. This study intended to examine the anti-inflammatory activity of cannabis on immune response markers associated with coronavirus disease 2019 (COVID-19) inflammation. An extract fraction from C. sativa Arbel strain ( FCBD) substantially reduced (dose dependently) interleukin (IL)-6 and -8 levels in an alveolar epithelial (A549) cell line. FCBD contained cannabidiol (CBD), cannabigerol (CBG) and tetrahydrocannabivarin (THCV), and multiple terpenes. Treatments with FCBD and a FCBD formulation using phytocannabinoid standards ( FCBD:std) reduced IL-6, IL-8, C–C Motif Chemokine Ligands (CCLs) 2 and 7, and angiotensin I converting enzyme 2 (ACE2) expression in the A549 cell line. Treatment with FCBD induced macrophage (differentiated KG1 cell line) polarization and phagocytosis in vitro, and increased CD36 and type II receptor for the Fc region of IgG (FcγRII) expression. FCBD treatment also substantially increased IL-6 and IL-8 expression in macrophages. FCBD: std, while maintaining antiinflammatory activity in alveolar epithelial cells, led to reduced phagocytosis and pro-inflammatory IL secretion in macrophages in comparison to FCBD. The phytocannabinoid formulation may show superior activity versus the cannabis-derived fraction for reduction of lung inflammation, yet there is a need of caution proposing cannabis as treatment for COVID-19.
Article
Full-text available
Importance Use of cannabidiol (CBD) has markedly increased in the past 5 years, concurrent with marketing claims that over-the-counter CBD can be used to treat almost any health condition. However, the reasons why individuals use CBD remain unclear. Objective To assess whether individuals are using CBD for diagnosable conditions that have evidence-based therapies. Design, Setting, and Participants This case series assessed claimed treatment applications reported by CBD users in public testimonials shared on the Reddit forum r/CBD. The r/CBD forum was selected because it includes a large, naturally occurring sample of 104 917 registered individuals who publicly discuss their experiences using CBD. All r/CBD posts were obtained from January 1, 2014, through August 31, 2019. A random sample of posts was drawn (n = 3000) and filtered to include posts in which self-identified CBD users testified why they take CBD (n = 376). Exposures Self-reported use of CBD for medicinal purposes. Main Outcomes and Measures Cannabidiol testimonials were divided into 11 subcategories corresponding with the condition’s medical subspecialty and 2 subcategories corresponding with wellness benefits. Posts were allowed to receive more than 1 label. Results Of the 376 posts labeled as testimonials, 90.0% (95% CI, 86.8%-92.8%) of testimonials claimed that CBD treated the individual’s diagnosable conditions. Psychiatric conditions (eg, autism or depression) were the most frequently cited subcategory, mentioned in 63.9% (95% CI, 59.0%-69.1%) of testimonials, followed by orthopedic (26.4%; 95% CI, 21.8%-31.1%), sleep (14.6%; 95% CI, 11.3%-18.5%), and neurological (6.9%; 95% CI, 4.4%-9.6%) conditions. Testimonials also claimed that CBD treated gastroenterological conditions (3.9%; 95% CI, 1.9%-6.1%), as well as addiction, cardiological, dermatological, ophthalmological, oral health, and sexual health conditions (<2.0% each). By contrast, just 29.5% (95% CI, 24.8%-34.2%) of testimonies claimed any wellness benefit, with most citing mental wellness (eg, “quieting my mind”) (29.5% [95% CI, 24.2%-34.4%]); 1.4% (95% CI, 0.3%-2.8%) claimed a physical wellness benefit (eg, “exercise performance”). Conclusions and Relevance The findings of this case series suggest a need for regulation of factors associated with CBD being used to treat diagnosable conditions, engagement of health care professionals with patients on their potential CBD use, and implementation of public health campaigns that encourage the public to seek treatment advice from health care professionals regarding evidence-based therapies.
Article
Full-text available
Objective: Coronavirus disease 2019 (COVID-19) poses societal challenges that require expeditious data and knowledge sharing. Though organizational clinical data are abundant, these are largely inaccessible to outside researchers. Statistical, machine learning, and causal analyses are most successful with large-scale data beyond what is available in any given organization. Here, we introduce the National COVID Cohort Collaborative (N3C), an open science community focused on analyzing patient-level data from many centers. Materials and methods: The Clinical and Translational Science Award Program and scientific community created N3C to overcome technical, regulatory, policy, and governance barriers to sharing and harmonizing individual-level clinical data. We developed solutions to extract, aggregate, and harmonize data across organizations and data models, and created a secure data enclave to enable efficient, transparent, and reproducible collaborative analytics. Results: Organized in inclusive workstreams, we created legal agreements and governance for organizations and researchers; data extraction scripts to identify and ingest positive, negative, and possible COVID-19 cases; a data quality assurance and harmonization pipeline to create a single harmonized dataset; population of the secure data enclave with data, machine learning, and statistical analytics tools; dissemination mechanisms; and a synthetic data pilot to democratize data access. Conclusions: The N3C has demonstrated that a multisite collaborative learning health network can overcome barriers to rapidly build a scalable infrastructure incorporating multiorganizational clinical data for COVID-19 analytics. We expect this effort to save lives by enabling rapid collaboration among clinicians, researchers, and data scientists to identify treatments and specialized care and thereby reduce the immediate and long-term impacts of COVID-19.
Article
Full-text available
The COVID-19 disease caused by the SARS-CoV-2 coronavirus has become a pandemic health crisis. An attractive target for antiviral inhibitors is the main protease 3CL Mpro due to its essential role in processing the polyproteins translated from viral RNA. Here we report the room temperature X-ray structure of unliganded SARS-CoV-2 3CL Mpro, revealing the ligand-free structure of the active site and the conformation of the catalytic site cavity at near-physiological temperature. Comparison with previously reported low-temperature ligand-free and inhibitor-bound structures suggest that the room temperature structure may provide more relevant information at physiological temperatures for aiding in molecular docking studies. The SARS-CoV-2 3CL main protease (3CL Mpro) is a chymotrypsin-like protease that facilitates the production of non-structural proteins, which are essential for viral replication and is therefore of great interest as a drug target. Here, the authors present the 2.30 Å room temperature crystal structure of ligand-free 3CL Mpro and compare it with the earlier determined low-temperature ligand-free and inhibitor-bound crystal structures.
Article
Full-text available
Like most modern molecular biology and natural product chemistry, understanding cannabinoid pharmacology centres around molecular interactions; in this case, between the cannabinoids and their putative targets, the G-protein coupled receptors (GPCRs) cannabinoid receptor 1 (CB1) and cannabinoid receptor 2 (CB2). Understanding the complex structure and interplay between the partners in this molecular dance is required to understand the mechanism of action of synthetic, endogenous, and phytochemical cannabinoids. This review, with 91 references, surveys our understanding of the structural biology of the cannabinoids and their target receptors including both a critical comparison of the extant crystal structures and the computationally derived homology models, as well as an in-depth discussion about the binding modes of the major cannabinoids. The aim is to assist in situating structural biochemists, synthetic chemists, and molecular biologists who are new to the field of cannabis research.
Article
Full-text available
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 19 (COVID-19) has rapidly spread to the entire world within a few months. The origin of SARS-CoV-2 has been related to the lineage B Betacoronavirus SARS-CoV and SARS-related coronaviruses found in bats. Early characterizations of the SARS-CoV-2 genome revealed the existence of a distinct 4 amino acid insert within the spike (S) protein (underlined, SPRRAR↓S), at the S1/S2 site located at the interface between the S1 receptor binding subunit and the S2 fusion subunit. Notably, this insert appears to be a distinguishing feature among SARS-related sequences and introduces a potential cleavage site for the protease furin. Here, we investigate the potential role of this novel S1/S2 cleavage site and present direct biochemical evidence for proteolytic processing by a variety of proteases. We discuss these findings in the context of the origin of SARS-CoV-2, viral stability and transmission.
Article
Full-text available
Background The coronavirus disease of 2019 (COVID-19) emerged as a global pandemic. Historically, the group of human coronaviruses can also affect the central nervous system leading to neurological symptoms; however, the causative mechanisms of the neurological manifestations of COVID-19 disease are not well known. Seizures have not been directly reported as a part of COVID-19 outside of patients with previously known brain injury or epilepsy. We report two cases of acute symptomatic seizures, in non-epileptic patients, associated with severe COVID-19 disease.Case PresentationsTwo advanced-age, non-epileptic, male patients presented to our northeast Ohio-based health system with concern for infection in Mid-March 2020. Both had a history of lung disease and during their hospitalization tested positive for SARS-CoV-2. They developed acute encephalopathy days into their hospitalization with clinical and electrographic seizures. Resolution of seizures was achieved with levetiracetam.DiscussionPatients with COVID-19 disease are at an elevated risk for seizures, and the mechanism of these seizures is likely multifactorial. Clinical (motor) seizures may not be readily detected in this population due to the expansive utilization of sedatives and paralytics for respiratory optimization strategies. Many of these patients are also not electrographically monitored for seizures due to limited resources, multifactorial risk for acute encephalopathy, and the risk of cross-contamination. Previously, several neurological symptoms were seen in patients with more advanced COVID-19 disease, and these were thought to be secondary to multi-system organ failure and/or disseminated intravascular coagulopathy-related brain injury. However, these patients may also have an advanced breakdown of the blood–brain barrier precipitated by pro-inflammatory cytokine reactions. The neurotropic effect and neuroinvasiveness of SARS-Coronavirus-2 have not been directly established.Conclusions Acute symptomatic seizures are possible in patients with COVID-19 disease. These seizures are likely multifactorial in origin, including cortical irritation due to blood–brain barrier breakdown, precipitated by the cytokine reaction as a part of the viral infection. Patients with clinical signs of seizures or otherwise unexplained encephalopathy may benefit from electroencephalography monitoring and/or empiric anti-epileptic therapy. Further studies are needed to elucidate the risk of seizures and benefit of monitoring in this population.
Article
Full-text available
The global pandemic of COVID-19 cases caused by infection with SARS-CoV-2 is ongoing, with no approved antiviral intervention. We describe here the effects of treatment with interferon (IFN)-α2b in a cohort of confirmed COVID-19 cases in Wuhan, China. In this uncontrolled, exploratory study, 77 adults hospitalized with confirmed COVID-19 were treated with either nebulized IFN-α2b (5 mU b.i.d.), arbidol (200 mg t.i.d.) or a combination of IFN-α2b plus arbidol. Serial SARS-CoV-2 testing along with hematological measurements, including cell counts, blood biochemistry and serum cytokine levels, and temperature and blood oxygen saturation levels, were recorded for each patient during their hospital stay. Treatment with IFN-α2b with or without arbidol significantly reduced the duration of detectable virus in the upper respiratory tract and in parallel reduced duration of elevated blood levels for the inflammatory markers IL-6 and CRP. These findings suggest that IFN-α2b should be further investigated as a therapy in COVID-19 cases.
Article
Full-text available
SARS-CoV-2 enters cells using its Spike protein, which is also the main target of neutralizing antibodies. Therefore, assays to measure how antibodies and sera affect Spike-mediated viral infection are important for studying immunity. Because SARS-CoV-2 is a biosafety-level-3 virus, one way to simplify such assays is to pseudotype biosafety-level-2 viral particles with Spike. Such pseudotyping has now been described for single-cycle lentiviral, retroviral, and vesicular stomatitis virus (VSV) particles, but the reagents and protocols are not widely available. Here, we detailed how to effectively pseudotype lentiviral particles with SARS-CoV-2 Spike and infect 293T cells engineered to express the SARS-CoV-2 receptor, ACE2. We also made all the key experimental reagents available in the BEI Resources repository of ATCC and the NIH. Furthermore, we demonstrated how these pseudotyped lentiviral particles could be used to measure the neutralizing activity of human sera or plasma against SARS-CoV-2 in convenient luciferase-based assays, thereby providing a valuable complement to ELISA-based methods that measure antibody binding rather than neutralization.
Article
Full-text available
Viral pandemics, such as the one caused by SARS-CoV-2, pose an imminent threat to humanity. Because of its recent emergence, there is a paucity of information regarding viral behavior and host response following SARS-CoV-2 infection. Here we offer an in-depth analysis of the transcriptional response to SARS-CoV-2 compared with other respiratory viruses. Cell and animal models of SARS-CoV-2 infection, in addition to transcriptional and serum profiling of COVID-19 patients, consistently revealed a unique and inappropriate inflammatory response. This response is defined by low levels of type I and III interferons juxtaposed to elevated chemokines and high expression of IL-6. We propose that reduced innate antiviral defenses coupled with exuberant inflammatory cytokine production are the defining and driving features of COVID-19.
Article
Full-text available
A novel betacoronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which caused a large respiratory outbreak in Wuhan, China in December 2019, is currently spreading across many countries globally. Here, we show that a TMPRSS2-expressing VeroE6 cell line is highly susceptible to SARS-CoV-2 infection, making it useful for isolating and propagating SARS-CoV-2. Our results reveal that, in common with SARS- and Middle East respiratory syndrome-CoV, SARS-CoV-2 infection is enhanced by TMPRSS2.
Article
Full-text available
The human OAS1 (hOAS1) gene produces multiple possible isoforms due to alternative splicing events and sequence variation among individuals, some of which affect splicing. The unique C-terminal sequences of the hOAS1 isoforms could differentially affect synthetase activity, protein stability, protein partner interactions and/or cellular localization. Recombinant p41, p42, p44, p46, p48, p49 and p52 hOAS1 isoform proteins expressed in bacteria were each able to synthesize trimer and higher order 2′-5′ linked oligoadenylates in vitro in response to poly(I:C). The p42, p44, p46, p48 and p52 isoform proteins were each able to induce RNase-mediated rRNA cleavage in response to poly(I:C) when overexpressed in HEK293 cells. The expressed levels of the p42 and p46 isoform proteins were higher than those of the other isoforms, suggesting increased stability in mammalian cells. In a yeast two-hybrid screen, Fibrillin1 (FBN1) was identified as a binding partner for hOAS1 p42 isoform, and Supervillin (SVIL) as a binding partner for the p44 isoform. The p44-SVIL interaction was supported by co-immunoprecipitation data from mammalian cells. The data suggest that the unique C-terminal regions of hOAS1 isoforms may mediate the recruitment of different partners, alternative functional capacities and/or different cellular localization.
Article
Full-text available
While great interest in health effects of natural product (NP) including dietary supplements and foods persists, promising preclinical NP research is not consistently translating into actionable clinical trial (CT) outcomes. Generally considered the gold standard for assessing safety and efficacy, CTs, especially phase III CTs, are costly and require rigorous planning to optimize the value of the information obtained. More effective bridging from NP research to CT was the goal of a September, 2018 transdisciplinary workshop. Participants emphasized that replicability and likelihood of successful translation depend on rigor in experimental design, interpretation, and reporting across the continuum of NP research. Discussions spanned good practices for NP characterization and quality control; use and interpretation of models (computational through in vivo) with strong clinical predictive validity; controls for experimental artefacts, especially for in vitro interrogation of bioactivity and mechanisms of action; rigorous assessment and interpretation of prior research; transparency in all reporting; and prioritization of research questions. Natural product clinical trials prioritized based on rigorous, convergent supporting data and current public health needs are most likely to be informative and ultimately affect public health. Thoughtful, coordinated implementation of these practices should enhance the knowledge gained from future NP research.
Article
Full-text available
X-box binding protein 1 (XBP1) mRNA processing plays a crucial role in the unfolded protein response (UPR), which is activated in response to endoplasmic reticulum (ER) stress. Upon accumulation of the UPR-converted XBP1 mRNA splicing from an unspliced (u) XBP1 (inactive) isoform to the spliced (s) XBP1 (active) isoform, inositol-requiring enzyme 1 α (IRE1α) removes a 26-nucleotide intron from uXBP1 mRNA. Recent studies have reported the assessment of ER stress by examining the ratio of sXBP1 to uXBP1 mRNA (s/uXBP1 ratio) via densitometric analysis of PCR bands relative to increased levels of sXBP1 to uXBP1 using a housekeeping gene for normalization. However, this measurement is visualized by gel electrophoresis, making it very difficult to quantify differences between the two XBP1 bands and complicating data interpretation. Moreover, most commonly used housekeeping genes display an unacceptably high variable expression pattern of the s/uXBP1 ratio under different experimental conditions, such as various phases of development and different cell types, limiting their use as internal controls. For a more quantitative determination of XBP1 splicing activity, we measured the expression levels of total XBP1 (tXBP1: common region of s/uXBP1) and sXBP1 via real-time PCR using specific primer sets. We also designed universal real-time PCR primer sets capable of amplifying a portion of each u/s/tXBP1 mRNA that is highly conserved in eukaryotes, including humans, monkeys, cows, pigs, and mice. Therefore, we provide a more convenient and easily approachable quantitative real-time PCR method that can be used in various research fields to assess ER stress.
Article
Full-text available
A critical component in the interpretation of systems-level studies is the inference of enriched biological pathways and protein complexes contained within OMICs datasets. Successful analysis requires the integration of a broad set of current biological databases and the application of a robust analytical pipeline to produce readily interpretable results. Metascape is a web-based portal designed to provide a comprehensive gene list annotation and analysis resource for experimental biologists. In terms of design features, Metascape combines functional enrichment, interactome analysis, gene annotation, and membership search to leverage over 40 independent knowledgebases within one integrated portal. Additionally, it facilitates comparative analyses of datasets across multiple independent and orthogonal experiments. Metascape provides a significantly simplified user experience through a one-click Express Analysis interface to generate interpretable outputs. Taken together, Metascape is an effective and efficient tool for experimental biologists to comprehensively analyze and interpret OMICs-based studies in the big data era.
Article
Full-text available
Medically refractory epilepsy remains an area of intense clinical and scientific interest since a significant porportion of patients continue to suffer from debilitating seizures despite available therapies. In this setting, recent studies have focused on assessing the benefits of cannabidiol (CBD)-enriched cannabis, a plant based product without psychoactive properties which has been shown to decrease seizure frequency in animal models. More recently, several randomized controlled and open label trials have studied the effects of Epidiolex, a 99% pure oral CBD extract, on patients with refractory epilepsy. This in turn has led to the FDA approval of and more recently, to the Drug Enforcement Administration’s placement of Epidiolex into schedule V of the Controlled Substances Act (CSA). In this review, we summarize the major findings of several recent large-scale studies using this product with a focus on its adverse effects.
Article
Full-text available
Background A formal single ascending and multiple dose pharmacokinetic (PK) trial of cannabidiol (CBD) oral solution was required to determine the safety and tolerability of CBD, the maximum tolerated dose, and to examine the effect of food on CBD PK parameters. Objective This trial assessed the safety, tolerability and PK of CBD oral solution in healthy adult volunteers, as well as the effect of food on CBD PK parameters. Methods The study consisted of three arms: single ascending dose (1500, 3000, 4500 or 6000 mg CBD [n = 6 per group]/placebo [n = 8; 2 per CBD dose group]), multiple dose (750 or 1500 mg CBD [n = 9 per group]/placebo [n = 6; 3 per CBD dose group] twice daily), and food effect (1500 mg CBD single dose [n = 12]). All subjects completed all trial arms and were analyzed as planned. Results CBD was generally well tolerated. Diarrhea, nausea, headache, and somnolence were the most common adverse events (AEs) across all trial arms, with an increased incidence of some gastrointestinal and nervous system disorder AEs (most notably diarrhea and headache) apparent in subjects taking CBD compared with placebo. All AEs were of mild or moderate severity; none were severe or serious. There were no deaths or discontinuations in the trial. After single oral doses, CBD appeared rapidly in plasma; time to maximum plasma concentration (tmax) was approximately 4–5 h. The major circulating metabolite was 7-carboxy-CBD, then parent CBD, 7-hydroxy-CBD (active metabolite), and 6-hydroxy-CBD (a relatively minor metabolite). Plasma exposure to CBD [maximum plasma concentration (Cmax) and area under the plasma concentration-time curve from time zero to time t (AUCt)] increased in a less than dose-proportional manner (Cmax slope 0.73; AUCt slope 0.64). Oral clearance of CBD was high (1111–1909 L/h) and apparent volume of distribution was large (20,963–42,849 L). CBD reached steady state after approximately 2 days, with moderate accumulation (1.8- to 2.6-fold) after 750 and 1500 mg CBD twice daily. After 7 days, a twofold increase in CBD dose resulted in 1.6- and 1.9-fold increases in geometric mean Cmax and area under the plasma concentration-time curve over a dosing interval (AUCτ), respectively. CBD elimination was multiphasic; the terminal elimination half-life was approximately 60 h after 750 and 1500 mg CBD twice daily; and effective half-life estimates ranged from 10 to 17 h. Cmax was 541.2 ng/mL and AUCτ was 3236 ng·h/mL after 1500 mg CBD twice daily. A high-fat meal increased CBD plasma exposure (Cmax and AUCt) by 4.85- and 4.2-fold, respectively; there was no effect of food on tmax or terminal half-life. Conclusion CBD was generally well tolerated. Most AEs were mild in severity; none were severe or serious. The safety and PK profile support twice-daily administration of CBD.
Article
Full-text available
Galaxy (homepage: https://galaxyproject.org, main public server: https://usegalaxy.org) is a web-based scientific analysis platform used by tens of thousands of scientists across the world to analyze large biomedical datasets such as those found in genomics, proteomics, metabolomics and imaging. Started in 2005, Galaxy continues to focus on three key challenges of data-driven biomedical science: making analyses accessible to all researchers, ensuring analyses are completely reproducible, and making it simple to communicate analyses so that they can be reused and extended. During the last two years, the Galaxy team and the open-source community around Galaxy have made substantial improvements to Galaxy's core framework, user interface, tools, and training materials. Framework and user interface improvements now enable Galaxy to be used for analyzing tens of thousands of datasets, and >5500 tools are now available from the Galaxy ToolShed. The Galaxy community has led an effort to create numerous high-quality tutorials focused on common types of genomic analyses. The Galaxy developer and user communities continue to grow and be integral to Galaxy's development. The number of Galaxy public servers, developers contributing to the Galaxy framework and its tools, and users of the main Galaxy server have all increased substantially.
Article
Full-text available
Viral hepatitis B (HBV) and hepatitis C (HCV) pose a major health problem globally and if untreated, both viruses lead to severe liver damage resulting in liver cirrhosis and cancer. While HBV has a vaccine, HCV has none at the moment. The risk of drug resistance, combined with the high cost of current therapies, makes it a necessity for cost-effective therapeutics to be discovered and developed. The recent surge in interest in Medical Cannabis has led to interest in evaluating and validating the therapeutic potentials of Cannabis and its metabolites against various diseases including viruses. Preliminary screening of cannabidiol (CBD) revealed that CBD is active against HCV but not against HBV in vitro. CBD inhibited HCV replication by 86.4% at a single concentration of 10 μM with EC50 of 3.163 μM in a dose-response assay. These findings suggest that CBD could be further developed and used therapeutically against HCV. Summary: Cannabidiol exhibited in vitro activity against viral hepatitis C. Abbreviations Used: CB2: Cannabis receptor 2, CBD: Cannabidiol, DNA: Deoxyribonucleic acid, HBV: Hepatitis B virus, HCV: Hepatitis C virus, HIV/AIDS: Human immunodeficiency virus/acquired immune deficiency syndrome, HSC: Hepatic stellate cells, MTS: 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2Htetrazolium, PCR: Polymerase chain reaction.
Article
Full-text available
In comparative high-throughput sequencing assays, a fundamental task is the analysis of count data, such as read counts per gene in RNA-seq, for evidence of systematic changes across experimental conditions. Small replicate numbers, discreteness, large dynamic range and the presence of outliers require a suitable statistical approach. We present DESeq2, a method for differential analysis of count data, using shrinkage estimation for dispersions and fold changes to improve stability and interpretability of estimates. This enables a more quantitative analysis focused on the strength rather than the mere presence of differential expression. The DESeq2 package is available at http://www.bioconductor.org/packages/release/bioc/html/DESeq2.html. Electronic supplementary material The online version of this article (doi:10.1186/s13059-014-0550-8) contains supplementary material, which is available to authorized users.
Article
Full-text available
Stress induced by accumulation of misfolded proteins in the endoplasmic reticulum is observed in many physiological and pathological conditions. To cope with endoplasmic reticulum stress, cells activate the unfolded protein response, a dynamic signalling network that orchestrates the recovery of homeostasis or triggers apoptosis, depending on the level of damage. Here we provide an overview of recent insights into the mechanisms that cells employ to maintain proteostasis and how the unfolded protein response determines cell fate under endoplasmic reticulum stress.
Article
Full-text available
In comparative high-throughput sequencing assays, a fundamental task is the analysis of count data, such as read counts per gene in RNA-seq, for evidence of systematic changes across experimental conditions. Small replicate numbers, discreteness, large dynamic range and the presence of outliers require a suitable statistical approach. We present DESeq2, a method for differential analysis of count data, using shrinkage estimation for dispersions and fold changes to improve stability and interpretability of estimates. This enables a more quantitative analysis focused on the strength rather than the mere presence of differential expression. The DESeq2 package is available at http://www.bioconductor.org/packages/release/bioc/html/DESeq2.html.
Article
Full-text available
Motivation: Accurate alignment of high-throughput RNA-seq data is a challenging and yet unsolved problem because of the non-contiguous transcript structure, relatively short read lengths and constantly increasing throughput of the sequencing technologies. Currently available RNA-seq aligners suffer from high mapping error rates, low mapping speed, read length limitation and mapping biases. Results: To align our large (>80 billon reads) ENCODE Transcriptome RNA-seq dataset, we developed the Spliced Transcripts Alignment to a Reference (STAR) software based on a previously undescribed RNA-seq alignment algorithm that uses sequential maximum mappable seed search in uncompressed suffix arrays followed by seed clustering and stitching procedure. STAR outperforms other aligners by a factor of >50 in mapping speed, aligning to the human genome 550 million 2 × 76 bp paired-end reads per hour on a modest 12-core server, while at the same time improving alignment sensitivity and precision. In addition to unbiased de novo detection of canonical junctions, STAR can discover non-canonical splices and chimeric (fusion) transcripts, and is also capable of mapping full-length RNA sequences. Using Roche 454 sequencing of reverse transcription polymerase chain reaction amplicons, we experimentally validated 1960 novel intergenic splice junctions with an 80-90% success rate, corroborating the high precision of the STAR mapping strategy. Availability and implementation: STAR is implemented as a standalone C++ code. STAR is free open source software distributed under GPLv3 license and can be downloaded from http://code.google.com/p/rna-star/.
Article
Full-text available
MatchIt implements the suggestions of Ho, Imai, King, and Stuart (2007) for improving parametric statistical models by preprocessing data with nonparametric matching methods. MatchIt implements a wide range of sophisticated matching methods, making it possible to greatly reduce the dependence of causal inferences on hard-to-justify, but commonly made, statistical modeling assumptions. The software also easily fits into existing research practices since, after preprocessing data with MatchIt, researchers can use whatever parametric model they would have used without MatchIt, but produce inferences with substantially more robustness and less sensitivity to modeling assumptions. MatchIt is an R program, and also works seamlessly with Zelig.
Article
Full-text available
Stress induced by accumulation of unfolded proteins at the endoplasmic reticulum (ER) is a classic feature of secretory cells and is observed in many tissues in human diseases including cancer, diabetes, obesity, and neurodegeneration. Cellular adaptation to ER stress is achieved by the activation of the unfolded protein response (UPR), an integrated signal transduction pathway that transmits information about the protein folding status at the ER to the nucleus and cytosol to restore ER homeostasis. Inositol-requiring transmembrane kinase/endonuclease-1 (IRE1α), the most conserved UPR stress sensor, functions as an endoribonuclease that processes the mRNA of the transcription factor X-box binding protein-1 (XBP1). IRE1α signaling is a highly regulated process, controlled by the formation of a dynamic scaffold onto which many regulatory components assemble, here referred to as the UPRosome. Here we provide an overview of the signaling and regulatory mechanisms underlying IRE1α function and discuss the emerging role of the UPR in adaptation to protein folding stress in specialized secretory cells and in pathological conditions associated with alterations in ER homeostasis.
Article
Full-text available
The propensity score is a subject's probability of treatment, conditional on observed baseline covariates. Conditional on the true propensity score, treated and untreated subjects have similar distributions of observed baseline covariates. Propensity-score matching is a popular method of using the propensity score in the medical literature. Using this approach, matched sets of treated and untreated subjects with similar values of the propensity score are formed. Inferences about treatment effect made using propensity-score matching are valid only if, in the matched sample, treated and untreated subjects have similar distributions of measured baseline covariates. In this paper we discuss the following methods for assessing whether the propensity score model has been correctly specified: comparing means and prevalences of baseline characteristics using standardized differences; ratios comparing the variance of continuous covariates between treated and untreated subjects; comparison of higher order moments and interactions; five-number summaries; and graphical methods such as quantile-quantile plots, side-by-side boxplots, and non-parametric density plots for comparing the distribution of baseline covariates between treatment groups. We describe methods to determine the sampling distribution of the standardized difference when the true standardized difference is equal to zero, thereby allowing one to determine the range of standardized differences that are plausible with the propensity score model having been correctly specified. We highlight the limitations of some previously used methods for assessing the adequacy of the specification of the propensity-score model. In particular, methods based on comparing the distribution of the estimated propensity score between treated and untreated subjects are uninformative.
Article
Obesity* is a recognized risk factor for severe COVID-19 (1,2), possibly related to chronic inflammation that disrupts immune and thrombogenic responses to pathogens (3) as well as to impaired lung function from excess weight (4). Obesity is a common metabolic disease, affecting 42.4% of U.S. adults (5), and is a risk factor for other chronic diseases, including type 2 diabetes, heart disease, and some cancers.† The Advisory Committee on Immunization Practices considers obesity to be a high-risk medical condition for COVID-19 vaccine prioritization (6). Using data from the Premier Healthcare Database Special COVID-19 Release (PHD-SR),§ CDC assessed the association between body mass index (BMI) and risk for severe COVID-19 outcomes (i.e., hospitalization, intensive care unit [ICU] or stepdown unit admission, invasive mechanical ventilation, and death). Among 148,494 adults who received a COVID-19 diagnosis during an emergency department (ED) or inpatient visit at 238 U.S. hospitals during March-December 2020, 28.3% had overweight and 50.8% had obesity. Overweight and obesity were risk factors for invasive mechanical ventilation, and obesity was a risk factor for hospitalization and death, particularly among adults aged <65 years. Risks for hospitalization, ICU admission, and death were lowest among patients with BMIs of 24.2 kg/m2, 25.9 kg/m2, and 23.7 kg/m2, respectively, and then increased sharply with higher BMIs. Risk for invasive mechanical ventilation increased over the full range of BMIs, from 15 kg/m2 to 60 kg/m2. As clinicians develop care plans for COVID-19 patients, they should consider the risk for severe outcomes in patients with higher BMIs, especially for those with severe obesity. These findings highlight the clinical and public health implications of higher BMIs, including the need for intensive COVID-19 illness management as obesity severity increases, promotion of COVID-19 prevention strategies including continued vaccine prioritization (6) and masking, and policies to ensure community access to nutrition and physical activities that promote and support a healthy BMI.
Article
On December 14, 2020, the United Kingdom reported a SARS-CoV-2 variant of concern (VOC), lineage B.1.1.7, also referred to as VOC 202012/01 or 20I/501Y.V1.* The B.1.1.7 variant is estimated to have emerged in September 2020 and has quickly become the dominant circulating SARS-CoV-2 variant in England (1). B.1.1.7 has been detected in over 30 countries, including the United States. As of January 13, 2021, approximately 76 cases of B.1.1.7 have been detected in 12 U.S. states.† Multiple lines of evidence indicate that B.1.1.7 is more efficiently transmitted than are other SARS-CoV-2 variants (1-3). The modeled trajectory of this variant in the U.S. exhibits rapid growth in early 2021, becoming the predominant variant in March. Increased SARS-CoV-2 transmission might threaten strained health care resources, require extended and more rigorous implementation of public health strategies (4), and increase the percentage of population immunity required for pandemic control. Taking measures to reduce transmission now can lessen the potential impact of B.1.1.7 and allow critical time to increase vaccination coverage. Collectively, enhanced genomic surveillance combined with continued compliance with effective public health measures, including vaccination, physical distancing, use of masks, hand hygiene, and isolation and quarantine, will be essential to limiting the spread of SARS-CoV-2, the virus that causes coronavirus disease 2019 (COVID-19). Strategic testing of persons without symptoms but at higher risk of infection, such as those exposed to SARS-CoV-2 or who have frequent unavoidable contact with the public, provides another opportunity to limit ongoing spread.
Article
The COVID-19 pandemic has claimed the lives of over one million people worldwide. The causative agent, SARS-CoV-2, is a member of the Coronaviridae family of viruses that can cause respiratory infections of varying severity. The cellular host factors and pathways co-opted during SARS-CoV-2 and related coronavirus life cycles remain ill-defined. To address this gap, we performed genome-scale CRISPR knockout screens during infection by SARS-CoV-2 and three seasonal coronaviruses (HCoV-OC43, HCoV-NL63, and HCoV-229E). These screens uncovered host factors and pathways with pan-coronavirus and virus-specific functional roles, including major dependency on glycosaminoglycan biosynthesis, SREBP signaling, BMP signaling, and glycosylphosphatidylinositol biosynthesis, as well as a requirement for several poorly characterized proteins. We identified an absolute requirement for the VTT-domain containing protein TMEM41B for infection by SARS-CoV-2 and three seasonal coronaviruses. This human Coronaviridae host factor compendium represents a rich resource to develop new therapeutic strategies for acute COVID-19 and potential future coronavirus pandemics.
Article
The Coronaviridae are a family of viruses that cause disease in humans ranging from mild respiratory infection to potentially lethal acute respiratory distress syndrome. Finding host factors common to multiple coronaviruses could facilitate the development of therapies to combat current and future coronavirus pandemics. Here, we conducted genome-wide CRISPR screens in cells infected by SARS-CoV-2 as well as two seasonally circulating common cold coronaviruses, OC43 and 229E. This approach correctly identified the distinct viral entry factors ACE2 (for SARS-CoV-2), aminopeptidase N (for 229E), and glycosaminoglycans (for OC43). Additionally, we identified phosphatidylinositol phosphate biosynthesis and cholesterol homeostasis as critical host pathways supporting infection by all three coronaviruses. By contrast, the lysosomal protein TMEM106B appeared unique to SARS-CoV-2 infection. Pharmacological inhibition of phosphatidylinositol kinases and cholesterol homeostasis reduced replication of all three coronaviruses. These findings offer important insights for the understanding of the coronavirus life cycle and the development of host-directed therapies.
Article
The aberrant accumulation of disease-specific protein aggregates accompanying cognitive decline is a pathological hallmark of age-associated neurological disorders, also termed as proteinopathies, including Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, amyotrophic lateral sclerosis and multiple sclerosis. Along with oxidative stress and neuroinflammation, disruption in protein homeostasis (proteostasis), a network that constitutes protein surveillance system, plays a pivotal role in the pathobiology of these dementia disorders. Cannabidiol, a non-psychotropic phytocannabinoid of Cannabis sativa, is known for its pleiotropic neuropharmacological effects on the central nervous system, including the ability to abate oxidative stress, neuroinflammation, and protein misfolding. Over the past years, compelling evidence has documented disease-modifying role of cannabidiol in various preclinical and clinical models of neurological disorders, suggesting the potential therapeutic implications of cannabidiol in these disorders. Because of its putative role in the proteostasis network in particular, cannabidiol could be a potent modulator for reversing not only age-associated neurodegeneration but also other protein misfolding disorders. However, the current understanding is insufficient to underpin this proposition. In this review, we discuss the potentiality of cannabidiol as a pharmacological modulator of the proteostasis network, highlighting its neuroprotective and aggregates clearing roles in the neurodegenerative disorders. We anticipate that the current effort will advance our knowledge on the implication of CBD in proteostasis network, opening up a new therapeutic window for ageing proteinopathies.
Article
To better understand host-virus genetic dependencies and find potential therapeutic targets for COVID-19, we performed a genome-scale CRISPR loss-of-function screen to identify host factors required for SARS-CoV-2 viral infection of human alveolar epithelial cells. Top-ranked genes cluster into distinct pathways, including the vacuolar ATPase proton pump, Retromer, and Commander complexes. We validate these gene targets using several orthogonal methods such as CRISPR knock-out, RNA interference knock-down, and small-molecule inhibitors. Using single-cell RNA-sequencing, we identify shared transcriptional changes in cholesterol biosynthesis upon loss of top-ranked genes. In addition, given the key role of the ACE2 receptor in the early stages of viral entry, we show that loss of RAB7A reduces viral entry by sequestering the ACE2 receptor inside cells. Overall, this work provides a genome-scale, quantitative resource of the impact of the loss of each host gene on fitness/response to viral infection.
Article
This Miniperspective of the published essential medicinal chemistry of cannabidiol (CBD) provides evidence that the popularization of CBD-fortified or CBD-labelled health products, and associated health claims, lack a rigorous scientific foundation. CBD's reputation as a cure-all puts it in the same class as other “natural” panaceas, where valid ethnobotanicals are reduced to single, purportedly active ingredients. Such reductionist approaches oversimplify useful, chemically complex mixtures in an attempt to rationalize the commercial utility of natural compounds and exploit the “natural” label. Literature evidence associates CBD with certain semi-ubiquitous, broadly-screened, primarily plant-based substances of undocumented purity that interfere with bioassays and have a low likelihood of becoming therapeutic agents. Widespread health challenges and pandemic crises such as SARS-CoV-2 create circumstances under which scientists must be particularly vigilant about healing claims that lack solid foundational data. Herein, we offer a critical review of the published medicinal chemistry properties of CBD, as well as precise definitions of CBD-containing substances and products, distilled to reveal the essential factors that impact its development as a therapeutic agent.
Article
Cellular stress induced by the abnormal accumulation of unfolded or misfolded proteins at the endoplasmic reticulum (ER) is emerging as a possible driver of human diseases, including cancer, diabetes, obesity and neurodegeneration. ER proteostasis surveillance is mediated by the unfolded protein response (UPR), a signal transduction pathway that senses the fidelity of protein folding in the ER lumen. The UPR transmits information about protein folding status to the nucleus and cytosol to adjust the protein folding capacity of the cell or, in the event of chronic damage, induce apoptotic cell death. Recent advances in the understanding of the regulation of UPR signalling and its implications in the pathophysiology of disease might open new therapeutic avenues. The unfolded protein response (UPR) comprises a network of signalling pathways that reprogramme transcription, translation and protein modifications to relieve the load of unfolded or misfolded proteins in the endoplasmic reticulum lumen and restore proteostasis. Understanding the regulation of the UPR and the role it has in the pathophysiology of various cell types and organs might open new therapeutic avenues.
Article
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 19 (COVID-19) has rapidly spread from an initial outbreak in Wuhan, China in December 2019 to the rest of the world within a few months. On March 11th 2020, the rapidly evolving COVID-19 situation was characterized as a pandemic by the WHO. Much attention has been drawn to the origin of SARS-CoV-2, a virus which is related to the lineage B betacoronavirus SARS-CoV and SARS-related coronaviruses found in bat species. The closest known relative to SARS-CoV-2 is a bat coronavirus named RaTG13 (BatCoV-RaTG13). Early characterizations of the SARS-CoV-2 genome revealed the existence of a distinct 4 amino acid insert (underlined, SPRRAR↓S), found within the spike (S) protein, at a position termed the S1/S2 site located at the interface between the S1 receptor binding subunit and the S2 fusion subunit. Notably, this S1/S2 insert appears to be distinguishing feature among SARS-related sequences and introduces a potential cleavage site for the protease furin. Here, we investigate the potential role of this novel S1/S2 cleavage site and present direct biochemical evidence for proteolytic processing by a variety of proteases, including furin, trypsin-like proteases and cathepsins. We discuss these findings in the broader context of the origin of SARS-CoV-2, viral stability and transmission. Funding: Work in the author's laboratory is supported by the National Institutes of Health (research grant R01AI35270).
Article
The recent emergence of the novel, pathogenic SARS-coronavirus 2 (SARS-CoV-2) in China and its rapid national and international spread pose a global health emergency. Cell entry of coronaviruses depends on binding of the viral spike (S) proteins to cellular receptors and on S protein priming by host cell proteases. Unravelling which cellular factors are used by SARS-CoV-2 for entry might provide insights into viral transmission and reveal therapeutic targets. Here, we demonstrate that SARS-CoV-2 uses the SARS-CoV receptor ACE2 for entry and the serine protease TMPRSS2 for S protein priming. A TMPRSS2 inhibitor approved for clinical use blocked entry and might constitute a treatment option. Finally, we show that the sera from convalescent SARS patients cross-neutralized SARS-2-S-driven entry. Our results reveal important commonalities between SARS-CoV-2 and SARS-CoV infection and identify a potential target for antiviral intervention.
Article
Introduction: Cannabidiol (CBD) containing products are available in a plethora of flavors in oral, sublingual, and inhalable forms. Immunotoxicological effects of CBD containing liquids were assessed by hypothesizing that CBD regulates oxidative stress and lipopolysaccharide (LPS) induced inflammatory responses in macrophages, epithelial cells, and fibroblasts. Methods: Epithelial cells (BEAS-2B and NHBE), macrophages (U937), and lung fibroblast cells (HFL-1) were treated with varying CBD concentrations or exposed to CBD aerosols. Generated reactive oxygen species (ROS) and inflammatory mediators were measured. Furthermore, monocytes and epithelial cells were stimulated with LPS in combination with CBD or dexamethasone to understand the anti-inflammatory effects of CBD. Results: CBD showed differential effects on IL-8 and MCP-1, and acellular and cellular ROS levels. CBD significantly attenuated LPS-induced NF-κB activity, IL-8, and MCP-1 release from macrophages. Cytokine array data depicted a differential cytokine response due to CBD. Inflammatory mediators, IL-8, serpin E1, CXCL1, IL-6, MIF, IFN-γ, MCP-1, RANTES, and TNF-α were induced, whereas MCP-1/CCL2, CCL5, eotaxin, and IL-2 were reduced. CBD and dexamethasone treatments reduced the IL-8 level induced by LPS when the cells were treated individually, but showed antagonistic effects when used in combination via MCPIP (monocytic chemotactic protein-induced protein). Conclusion: CBD differentially regulated basal pro-inflammatory response and attenuated both LPS-induced cytokine release and NF-κB activity in monocytes, similar to dexamethasone. Thus, CBD has a differential inflammatory response and acts as an anti-inflammatory agent in pro-inflammatory conditions but acts as an antagonist with steroids, overriding the anti-inflammatory potential of steroids when used in combination.
Article
Coronavirus infection induces the generation of autophagosomes, and certain host proteins regulating cellular autophagy are hijacked by some coronaviruses to facilitate the formation of double membrane vesicles. However, mechanisms underlying coronavirus-induced autophagy remain largely unknown. In this study, we demonstrate that autophagosome formation and apparent autophagic flux are induced in cells infected with infectious bronchitis virus (IBV)– a gammacoronavirus. Notably, IBV-induced autophagy was dependent on autophagy related 5 (ATG5)but not beclin1 (BECN1), although both are essential proteins in the canonical autophagy pathway. Moreover, the ER stress sensor inositol requiring enzyme 1 (IRE1), but not its substrate X-box protein 1 (XBP1), was also essential for the induction of autophagy during IBV infection. Finally, the anti-apoptotic extracellular signal-regulated kinase 1/2 (ERK1/2)also contributed to IBV-induced autophagy. Our findings add new knowledge to the regulatory mechanisms governing coronavirus-induced autophagy, highlighting an extensive cross-talk among cellular signaling pathways during coronavirus infection.
Article
Rapid improvements in sequencing and array-based platforms are resulting in a flood of diverse genome-wide data, including data from exome and whole-genome sequencing, epigenetic surveys, expression profiling of coding and noncoding RNAs, single nucleotide polymorphism (SNP) and copy number profiling, and functional assays. Analysis of these large, diverse data sets holds the promise of a more comprehensive understanding of the genome and its relation to human disease. Experienced and knowledgeable human review is an essential component of this process, complementing computational approaches. This calls for efficient and intuitive visualization tools able to scale to very large data sets and to flexibly integrate multiple data types, including clinical data. However, the sheer volume and scope of data pose a significant challenge to the development of such tools.
Article
Next-generation sequencing technologies generate millions of short sequence reads, which are usually aligned to a reference genome. In many applications, the key information required for downstream analysis is the number of reads mapping to each genomic feature, for example to each exon or each gene. The process of counting reads is called read summarization. Read summarization is required for a great variety of genomic analyses but has so far received relatively little attention in the literature. We present featureCounts, a read summarization program suitable for counting reads generated from either RNA or genomic DNA sequencing experiments. featureCounts implements highly efficient chromosome hashing and feature blocking techniques. It is considerably faster than existing methods (by an order of magnitude for gene-level summarization) and requires far less computer memory. It works with either single or paired-end reads and provides a wide range of options appropriate for different sequencing applications. featureCounts is available under GNU General Public License as part of the Subread (http://subread.sourceforge.net) or Rsubread (http://www.bioconductor.org) software packages. shi@wehi.edu.au.
Article
Ketorolac is widely used for postoperative analgesia in patients who undergo cesarean delivery. In countries where the use of opioids is considerably restricted, alternatives to narcotics are required. We hypothesize that the addition of complex B synergize the analgesic effect of ketorolac in postoperative cesarean patients, thus requiring a smaller dose of the anti-inflammatory agent, and therefore decreasing the potential side effects of ketorolac. A randomized clinical trial with 100 patients undergoing a primary elective cesarean delivery enrolled in the study. Pain was assessed in the recovery room and then they were randomized to receive ketorolac 30 mg intramuscular (i.m.) or 15 mg of ketorolac plus complex B vitamin (CBV). The pain score with an analog scale was assessed 1, 2, 6, 12, 18, and 24 h after the baseline. The student's t test was performed to compare the demographic differences between the 2 means. 100 patients were included in the study, showing no statistical differences in the demographics. The patient's pain score at 1, 2, 6, 12, 18 and 24 hours showed no statistical differences between the control group (ketorolac 30mg) compared to the group of ketorolac 15mg and complex B vitamins. No changes in the coagulation studies were found in both groups. The present study demonstrates that ketorolac 30 mg and ketorolac 15 mg plus complex B vitamins can provide acceptable analgesia in many patients with severe pain.
Article
Coronaviruses infect many species of animals including humans, causing acute and chronic diseases. This review focuses primarily on the pathogenesis of murine coronavirus mouse hepatitis virus (MHV) and severe acute respiratory coronavirus (SARS-CoV). MHV is a collection of strains, which provide models systems for the study of viral tropism and pathogenesis in several organs systems, including the central nervous system, the liver, and the lung, and has been cited as providing one of the few animal models for the study of chronic demyelinating diseases such as multiple sclerosis. SARS-CoV emerged in the human population in China in 2002, causing a worldwide epidemic with severe morbidity and high mortality rates, particularly in older individuals. We review the pathogenesis of both viruses and the several reverse genetics systems that made much of these studies possible. We also review the functions of coronavirus proteins, structural, enzymatic, and accessory, with an emphasis on roles in pathogenesis. Structural proteins in addition to their roles in virion structure and morphogenesis also contribute significantly to viral spread in vivo and in antagonizing host cell responses. Nonstructural proteins include the small accessory proteins that are not at all conserved between MHV and SARS-CoV and the 16 conserved proteins encoded in the replicase locus, many of which have enzymatic activities in RNA metabolism or protein processing in addition to functions in antagonizing host response.
Article
To the Editor: Rapid improvements in sequencing and array-based platforms are resulting in a flood of diverse genome-wide data, including data from exome and whole-genome sequencing, epigenetic surveys, expression profiling of coding and noncoding RNAs, single nucleotide polymorphism (SNP) and copy number profiling, and functional assays. Analysis of these large, diverse data sets holds the promise of a more comprehensive understanding of the genome and its relation to human disease. Experienced and knowledgeable human review is an essential component of this process, complementing computational approaches. This calls for efficient and intuitive visualization tools able to scale to very large data sets and to flexibly integrate multiple data types, including clinical data. However, the sheer volume and scope of data pose a significant challenge to the development of such tools.
Article
Vita. Thesis (Ph. D.)--University of Toronto, 1979. Includes bibliographical references (leaves 147-151). Microfiche of typescript.