ArticlePDF Available

Suitability of Water Harvesting in Bandwaya Valley for Domestic and Irrigation

Authors:

Abstract

Wadi Bandawaya is located 40 km north of Mosul city. On its path through Jabal Dehqan, a narrow valley is suitable for constructing a dam on it for the purposes of harvesting rainwater and feeding water to the valley through several springs located below the foot of Jabal Al-Qoush on the northern side of the mountain. The current study evaluated the quality of water for civil and agricultural purposes in order to complete the data for establishing water harvesting. It was found through chemical analyzes of the main cations (Ca2+, Mg2+, Na+, K+) and anions (HCO3-, SO4=, Cl-, NO3-), as well as measuring the pH, electrical conductivity (E.c.), total dissolved salts (TDS) and total hardness (TH). The valley water falls within the natural limits set by the World Health Organization for drinking purposes through the use of the water quality index (WQI) as well as its suitability for agricultural purposes according to the standards of Sodium Percentage (SSP), Sodium Adsorption Ratio, SAR, and the amount of residual sodium carbonate (Residual Sodium) Carbonate, RSC). As well as, the percentage of magnesium (MAR).
International Journal of Environment & Water
ISSN 2052-3408
___________________________________________________________________________
Vol 9, Issue 2, 2020 Page

Suitability of Water Harvesting in Bandwaya Valley for Domestic and
Irrigation
   
Ali Mohammed Sulaiman Kotayba Tawfiq Al-Youzbakey
Da’ad Ahmed Ismaiel
Dams and Water Resources Research Center University of Mosul ali_msh2@uomosul.edu.iqkotaybatawfiq@gmail.com

    


     
Ca2+, Mg2+, Na+, K+
HCO3-, SO4=, Cl-, NO3-

           
  
 WQI           
        
SSPSodium Adsorption Ratio, SAR
S1
Residual Sodium Bicarbonate, RSBC
MAR
  E.C.SAR      C2-S1 
C3-S1 ABSTRACT
Wadi Bandawaya is located 40 km north of Mosul city. On its path through
Jabal Dehqan, a narrow valley is suitable for constructing a dam on it for the
purposes of harvesting rainwater and feeding water to the valley through several
springs located below the foot of Jabal Al-Qoush on the northern side of the
mountain. The current study evaluated the quality of water for civil and
agricultural purposes in order to complete the data for establishing water
harvesting. It was found through chemical analyzes of the main cations (Ca2+,
Mg2+, Na+, K+) and anions (HCO3-, SO4=, Cl-, NO3-), as well as measuring the
pH, electrical conductivity (E.c.), total dissolved salts (TDS) and total hardness
(TH). The valley water falls within the natural limits set by the World Health
Organization for drinking purposes through the use of the water quality index
(WQI) as well as its suitability for agricultural purposes according to the
International Journal of Environment & Water
ISSN 2052-3408
___________________________________________________________________________
Vol 9, Issue 2, 2020 Page
standards of Sodium Percentage (SSP), Sodium Adsorption Ratio, SAR, and the
amount of residual sodium carbonate (Residual Sodium) Carbonate, RSC). As
well as, the percentage of magnesium (MAR).



      Vasanthavigar et al., 2010
            


      


low folded zone
       Sissakian and Al- Jibouri, 2012; Fouad, 2015 and Al-Jawadi et al., 2020

Al-Azzawi et al., 2014
            

    Sissakian and Al-Jiburi, 2014 
           
          
Jassim and Goff, 2006
        

  


Al-Jawadi et al., 2020


    

International Journal of Environment & Water
ISSN 2052-3408
___________________________________________________________________________
Vol 9, Issue 2, 2020 Page

           








HANNA PH211EcHANNA EC214EDTA
Flame-photometer, type- JENWAY PEP7

(UV- Spectrophotometer type - OGAWA, OSK 7724)TDSTH
 WQI
Kumar et al., 2015, Udom et al., 2016 and Leizou et al., 2017
WQI
WHO, 2006Gupta and Misra, 2016
WQI = ∑ Qi X Wi / ∑ Wi …………………………………………. (1)
0 2 4 6 8 10 km.
1
1
2
3
1
4
5
6



International Journal of Environment & Water
ISSN 2052-3408
___________________________________________________________________________
Vol 9, Issue 2, 2020 Page
Qi = 100 X (Vm - Vi) / (Vs - Vi) ……………… () Qi  = Vm = Vi
 Vsstandard valuesWHO, 2006
Wi = K / Vs ; (K = 1 = Wi
           

             
SSPMAR
Sodium Adsorption Ratio, SAR
Residual Sodium Carbonate, RSC
SSP = Na+ X 100 / (Ca2+ + Mg2+ + Na+ + K+)………… ()
MAR = Mg2+ X 100 / (Ca2+ + Mg2+)…………………..…… ()
SAR = Na+ / √[(Ca2+ + Mg2+)/2] ………………..………..()
RSC = (CO3= + HCO3-) (Ca2+ + Mg2+) …………..……….()



WHO, 2006









TDS






International Journal of Environment & Water
ISSN 2052-3408
___________________________________________________________________________
Vol 9, Issue 2, 2020 Page





TDS
Todd, 1980.





7.2
7.2
7.2
7.3
7.4
7.3
Unit
Ph
972.9
625.4
745.7
927.3
952.2
607.7
Sµ.cm-1
E.C
530
447
465
485
515
410
mg.l-1
T.D.S
372
343
355
324
336
308
mg.l-1
T.H
2.5
2.3
2.5
2.1
1.7
1.3
mg.l-1
Tur.
65.8
64.0
62.2
61.4
58.6
56.2
mg.l-1
Ca2+
50.7
38.0
42.0
41.6
43.3
40.9
mg.l-1
Mg2+
17.2
8.6
11.4
6.4
12.3
5.2
mg.l-1
Na+
6.0
4.4
2.1
5.1
4.6
2.2
mg.l-1
K+
307.4
290.2
295.6
275.4
277.8
268.4
mg.l-1
HCO3-
103.2
76.5
66.2
95.6
101.4
67.4
mg.l-1
SO4=
24.9
17.2
16.7
12.5
18.8
8.3
mg.l-1
Cl-
7.0
4.1
3.5
4.8
4.5
3.9
mg.l-1
NO3-


carbonate hardness.


Mustafa et al., 2017



WHO, 2006


Al-Jawadi et al, 2020
International Journal of Environment & Water
ISSN 2052-3408
___________________________________________________________________________
Vol 9, Issue 2, 2020 Page







International Journal of Environment & Water
ISSN 2052-3408
___________________________________________________________________________
Vol 9, Issue 2, 2020 Page
65-56
WHO, 2006







Mg-calcite


















International Journal of Environment & Water
ISSN 2052-3408
___________________________________________________________________________
Vol 9, Issue 2, 2020 Page







Deming, 2002





Phillips and Castro, 2004




Chapelle, 2004








Jones, 1997.
K.N.P.







WHO, 2006
Obiefuna and Sheriff, 2011WHO
WQI
International Journal of Environment & Water
ISSN 2052-3408
___________________________________________________________________________
Vol 9, Issue 2, 2020 Page
WQI
Saeedir et al., 2010Gupta and Misra, 2016


 Gupta and Misra, 2016












WQI

28.2
25.0
25.9
28.8
32.8
27.3
WQI



meq.l-1
.


6
5
4
3
2
1
3.283
3.194
3.104
3.064
2.924
2.804
Ca2+



4.169
3.125
3.454
3.421
3.561
3.363
Mg2+
0.748
0.374
0.496
0.278
0.535
0.226
Na+
0.153
0.113
0.054
0.130
0.118
0.056
K+
8.35
6.81
7.11
6.89
7.14
6.45
Total
5.039
4.757
4.845
4.514
4.553
4.399
HCO3-



2.148
1.592
1.378
1.990
2.111
1.403
SO4=
0.702
0.485
0.471
0.353
0.530
0.235
Cl-
0.113
0.066
0.056
0.077
0.073
0.063
NO3-
8.00
6.90
6.75
6.93
7.27
6.10
Total

:

 
 Joshi et al., 2009

International Journal of Environment & Water
ISSN 2052-3408
___________________________________________________________________________
Vol 9, Issue 2, 2020  Page
SSP
RSBC
SAR
 



6
5
4
3
2
1
8.95
5.49
6.97
4.04
7.49
3.51
SSP
-2.41
-1.56
-1.71
-1.97
-1.93
-1.77
RSBC
0.39
0.21
0.27
0.15
0.30
0.13
SAR
55.94
49.46
52.67
52.75
54.91
54.53
MAR

Todd, 1980
            
S1
             

Willcox, 1948Todd, 1980E.C.Na%
E.C.Na%
Richard, 1954
E.C.SARC2-S1
C3-S1
S1SAR
MAR


MARJoshi et al., 2009




   

             
 

International Journal of Environment & Water
ISSN 2052-3408
___________________________________________________________________________
Vol 9, Issue 2, 2020  Page
 



   




 


    


         

Al-Azzawi, N.K., Al-Khatony, S.E. and Al-Sumaidaie, M.A.(2014)
Detachment Surface Morphology and Shortening Distribution in the
Foreland Folds of Iraq. Iraqi National Journal of Earth Sciences, Vol.
14, No. 1, pp. 39 - 58
Al-Jawadi, A.S., Abdul Baqi, Y.T. and Sulaiman, A.M. (2020) Qualifying the
Geotechnical and Hydrological Characteristic of the Bandawaya Stream
Valley Northern Iraq. Journal of Engineering and Environmentn
Vol.19 issue, 89.
Buday, T., (1980) The Regional Geology of Iraq. Stratigraphy and
Paleogeography. Edited by Kassab, I.I.M. and Jassim, S.Z., Dar Al-
Kutub Pub., Mosul University.
Chapelle, F.H., (2004) Geochemistry of Groundwater. In: Holland, H.D. and
Turekian, K.K. TREATISE on GEOCHEMISTRY, Surface and Ground
Water, Weathering and Soils, 5: 425-449.
Deming, D., (2000) Introduction to Hydrogeology. McGraw-Hill Co. 468P.
Fouad, S. F. A. (2015). Tectonic Map of Iraq , Scale 1 : 1000 000 ,. Iraqi
Bulletin of Geology and Mining, 11(1), 17.
Gupta, R. and Misra, A. K. (2016) Groundwater quality analysis of quaternary
aquifers in Jhajjar District, Haryana, India: Focus on groundwater
fluoride and health implications. Alexandria Engineering journal
(Available online, 2016).
International Journal of Environment & Water
ISSN 2052-3408
___________________________________________________________________________
Vol 9, Issue 2, 2020  Page
Jassim, S. Z. & Goff, J. C. (2006). Geology of Iraq (Lea Novotna (ed.); 1 st).
Dolin, Hlavni 2732, Prague and Moravian Museum, Zelny trh 6, Brno,
Czech Republic.
Jones, J.A.A., (1997) Global Hydrology, Processes, resources and
environmental management. Longman. England, 399P.
Joshi, D.M., A. Kumar and N. Agrawal, 2009. Assessment of the irrigation
water quality of River Ganga in Haridwar District India. J. Chem., 2(2):
285-292.
Kumar, S. K., Logeshkumaran, A., Magesh, N. S., Godson, P. S. and
Chandrasekar, N., (2015) Hydro-geochemistry and application of water
quality index (WQI) for groundwater quality assessment, Anna Nagar,
part of Chennai City, Tamil Nadu, India. Appl. Water Sci. Vol. 5, pp
335-343.
Leizou, K.E., Nduka, J. O. and Veria, A.W., (2017) Evaluation of Water
Quality Index of the Brass River, Bayelsa State, South Nigeria. Jou. Res.
Granthaalayah, Vol. 5, No. 8, pp 277-287.
Mustafa, M.H., Al-Naqib, S.Q. and Al-Youzbakey, K.T. (2017)
Hydrochemistry of Nwaiget Spring in Relation to Hand Dug Well at
Tebba Riyah Village, Northern Iraq. International Journal of
Environment & Water, Vol. 6, Issue 2, 30-39.
Obiefuna, G.I. and Sheriff, A. (2011) Assessment of Shallow Ground Water
Quality of Pindiga Gombe Area, Yola Area, NE, Nigeria for Irrigation
and Domestic Purposes. Research Journal of Environmental and Earth
Sciences 3(2): 132-142, ISSN: 2041-0492, Maxwell Scientific
Organization
Phillips, F.M. and Castro, M. C., (2004) Groundwater Dating and Residence-
time Measurements. In: Holland, H.D. and Turekian, K.K. (2004)
TREATISE on GEOCHEMISTRY, Surface and Ground Water,
Weathering and Soils, 5: 451-497.
Saeedir, M., Abessi, O., Sharifi, F. and Meraji, H. (2010) Development of
groundwater quality index. Environmental Monitoring and Assessment,
April 2010, Volume 163, Issue 14, pp 327335.
Sissakian, V.K. and Al-Jibouri, B.S.M. (2012) Stratigraphy of the Low Folded
Zone. Iraqi Bull. Geol. Min., Special Issue, No.5, p 63− 132.
Sissakian, V. K. and Al-Jiburi, B.S.M. (2014) Stratigraphy of the High Folded
Zone. Iraqi Bull. Geol. Min., Special Issue, No.6, 2014: Geology of the
High Folded Zone, p 73 161.
Todd, D.K. 1980. Ground water hydrology, 2nd Edition, John Wiley and Sons,
New York, 278P.
Udom, G. J. Nwankwoala, H.O. and Daniel, T.E., (2016) Determination of
water quality index of shallow quaternary aquifer system in Ogbia,
International Journal of Environment & Water
ISSN 2052-3408
___________________________________________________________________________
Vol 9, Issue 2, 2020  Page
Bayelsa State, Nigeria. British J. of Earth Sci. Res. Vol. 4, No. 1, pp 23-
37.
Vasanthavigar, M., Srinivasamoorthy, K., Vijayaragavan, K., Ganthi, R. R.,
Chidambaram, S., Anandhan, P., Manivannan, R. and Vasudevan S.
(2010) Application of water quality index for groundwater quality
assessment: Thirumanimuttar sub-basin, Tamilnadu, India. Environ
Monit Assess 171:595609 © Springer Science+Business Media B.V.
WHO, (2006) Guideline for drinking water quality. Vol. Recommendation.
World Health Organization, Geneva, 130P.
 Qi
6
5
4
3
2
1
Qi
13.33
14.58
15.83
20.00
26.67
20.00
Ph
69.49
44.67
53.26
66.24
68.01
43.41
E.C
53.00
44.70
46.50
48.50
51.50
41.00
T.D.S
74.40
68.60
71.00
64.80
67.20
61.60
T.H
87.73
85.33
82.93
81.87
78.13
74.93
Ca2+
101.40
76.00
84.00
83.20
86.60
81.80
Mg2+
8.60
4.30
5.70
3.20
6.15
2.60
Na+
10.91
8.00
3.82
9.27
8.36
4.00
K+
76.85
72.55
73.90
68.85
69.45
67.10
HCO3-
25.80
19.13
16.55
23.90
25.35
16.85
SO4=
9.96
6.88
6.68
5.00
7.52
3.33
Cl-
14.00
8.20
7.00
9.60
9.00
7.80
NO3-
standards WHO, 2006Wi
Wi
Standard
0.1176
8.5
Ph
0.0007
1400
E.C
0.0010
1000
T.D.S
0.0020
500
T.H
0.0133
75
Ca2+
0.0200
50
Mg2+
0.0050
200
Na+
0.0182
55
K+
0.0025
400
HCO3-
0.0025
400
SO4=
0.0040
250
Cl-
0.0200
50
NO3-
0.2069
Total
International Journal of Environment & Water
ISSN 2052-3408
___________________________________________________________________________
Vol 9, Issue 2, 2020  Page
Qi*Wi
Qi*Wi
1.5686
1.7157
1.8627
2.3529
3.1373
2.3529
Ph
0.0496
0.0319
0.0380
0.0473
0.0486
0.0310
E.C
0.0530
0.0447
0.0465
0.0485
0.0515
0.0410
T.D.S
0.1488
0.1372
0.1420
0.1296
0.1344
0.1232
T.H
1.1698
1.1378
1.1058
1.0916
1.0418
0.9991
Ca2+
2.0280
1.5200
1.6800
1.6640
1.7320
1.6360
Mg2+
0.0430
0.0215
0.0285
0.0160
0.0308
0.0130
Na+
0.1983
0.1455
0.0694
0.1686
0.1521
0.0727
K+
0.1921
0.1814
0.1848
0.1721
0.1736
0.1678
HCO3-
0.0645
0.0478
0.0414
0.0598
0.0634
0.0421
SO4=
0.0398
0.0275
0.0267
0.0200
0.0301
0.0133
Cl-
0.2800
0.1640
0.1400
0.1920
0.1800
0.1560
NO3-
5.8357
5.1749
5.3658
5.9624
6.7754
5.6482
Total
ResearchGate has not been able to resolve any citations for this publication.
Article
Full-text available
In northern Iraq, countless non-abuse stream valleys can be used to store water for a variety of purposes; domestic, supplementary irrigation, and recharging groundwater. Bandawaya is one of the stream valleys, which form the first perspective has excellent quality. The location of the suggested dam has been evaluated by hydrological and geotechnical studies. Geotechnical studies included measurement of all the parameters related to the rock mass classification for evaluation based on four classification systems, which are the Q-System, the rock mass rating (RMR), the geological strength index (GSI), and the rock mass index (RMi). The classification results indicated that the rocks of the valley are good for constructing a dam on them, with some weak zones that may affect the integrity of the dam, which the study recommended treating before starting the construction of the dam. According to preliminary studies on different dam’s heights the qualification demonstrates an excellent choice of the site. Four stream orders are recognized, dendritic pattern in the southern part of the watershed, and trellised in the northern part. Three heights assumed to the proposed dam 450, 460, 470 m a.s.l. with 640,764; 3429,787; 8,590,763 m3 storage capacity respectively. According to the Q-System, the RMR, the GSI, and the RMi, the rock mass of the study area is evaluated. The findings illustrate the excellent selection by geotechnical, hydrological, and engineering features of the dam place.
Article
Full-text available
Determinations of detachment surface depth and amount of local shortening were carried out in the more specific location foreland folds of Iraq. Twenty one traverses of anticlinal structures which are normally distributed on the study area were used for this application. Two types of deformation styles were found in the study area. They are thin-skinned and thick-skinned tectonics. Depth of the detachment surface generally increases towards east with as abnormal case appeared in Aqra Anticline. Westerlythe depth becomes shallower depth from the south towards Dohuk Anticline and it returns to increase toward the north. In Ain Zala, Butma West, Dohuk and Dahqan Anticlines and some parts of Bekhair Anticline, thin-skinned style was indicated. The shortening generally increases towards the north and northeast, with specific anomaly at Permam Dagh. It increases in the area after Permam Dagh to the north and northeast. However southeast of this area has low amount of shortening and the lowest appears in Qara chauq Anticline. keywords:Detachment surface, Shortening, Thick-skinned, Thin-skinned, folds.
Article
Full-text available
Two main areas were chosen to investigate the water quality of Nwaiget spring and hand dug well at Tebba Riyah village. Nwaiget spring is located near the core of Butmah west anticline, it locates stratigraphically within Unit (A1) of the lower member of Fat'ha Formation. Tebba Riayh hand dug well is located in the synclinal area north the Butmah west anticline and it locates stratigraphically within Injanah Formation. Comparison of water quality parameters between the two locations marks that Nwaiget spring was affected by aquifer rock type, which is mostly made up of the overlaying thick gypsum beds (about 142m. in Butmah east anticline and about 40 m. in Butmah west anticline). Whereas, Tebba Riyah was affected mostly by infiltrated rain water through soil at the upper part. This appear through the high concentrations of T.D.S., T.H., Ca 2+ and SO 4 = as well as E.C. in Nwaiget spring compared to Tebba Riayh well, in turn, the concentrations of alkalinity, Na + and Cl-are higher in Tebba Riayh well than Nwaiget spring.
Article
Full-text available
This study evaluates the groundwater quality status of shallow groundwater in Ogbia, using water quality index (WQI) with a view to ascertain its suitability for domestic and industrial purposes. Groundwater samples were collected from thirty (30) functional boreholes within fifteen (I5) communities of the study area. These water samples were subjected to a comprehensive Physico-Chemical Analysis using standard methods. The water quality index (WQI) of the area was calculated using weighted arithmetic mean and statistical package for social science (SPSS) version I5, software. Seventeen (I7) chemical parameters were considered for the WQI calculation. The results revealed that I0% of the water samples were in the excellent category, 46.6% were in the good water category while 43.3% of the water samples were in the poor water category. The high value of the water quality index (WQI) has been found to be mainly from the higher values of Iron, phosphate, pH and electrical conductivity. Also from the result of the sodium adsorption ratio (SAR), it indicates that, the groundwater is not suitable for irrigation.
Article
Full-text available
The stratigraphy of the High Folded Zone (HFZ), in Iraq is reviewed. The oldest exposed rocks are Early Triassic in age, whereas the youngest are of Pliocene – Pleistocene age, which belong to the Bai Hassan Formation. The exposed stratigraphical column is represented by 36 formations, with 10 main types of Quaternary sediments, which have wide geographic extent and well preserved in the HFZ. The Triassic, Jurassic, Cretaceous and Paleogene rocks are mainly of marine carbonates with some clastics. The Oligocene rocks form a complex of reef – backreef – forereef and are restricted almost in the eastern and western parts of the area, with restricted exposures in different parts. The Early and Middle Miocene rocks are mainly of marine origin, lagoonal carbonates and fairly developed evaporates, respectively, with restricted exposures. The Late Miocene – Pleistocene rocks, which represent the beginning of the continental environment, consist of molasse sediments, deposited in sinking foredeep, which had few separated and isolated basins. The Quaternary sediments are well developed, especially Pleistocene river terraces of different stages, alluvial fan sediments, calcrete and other different types. Glacier moraine sediments, may be present in Rawandooz – Galala vicinity. For each exposed formation, the type locality, exposure areas, subsurface extension, main lithology (as described in form of members and/ or informal units), thickness, fossils, age, depositional environment, and the lower contact are described. The described lithologies of the formations by different authors from different localities are reviewed, with occasional remarks by the present authors. The main tectonic events and the paleogeography of each era or period are reviewed briefly. Each formation is discussed, for the majority of them the present authors' opinion are given, with many recommendations for future studies. Some new ideas dealing with many aspects for many formations including proposals for establishing new formations are given, too.
Article
Full-text available
The aim of this study is to assess the shallow groundwater quality of Pindiga Gombe area for irrigation and domestic purposes. Fifteen water samples collected from wells tapping shallow aquifer was used. The water samples were analyzed for major cations: Na + , Ca 2+ , K + and anions: ClG, HCO 3 G 1 , SO 4 2 G and NO 3 G. The important constituents that influence the water quality for irrigation such as Electrical Conductivity (EC), Total Dissolved Solids (TDS), Sodium Adsorption Ratio (SAR), Magnesium Adsorption Ratio (MAR), Permeability Index (PI), Kellys Ratio (KR), and Residual Sodium Bicarbonate (RSBC) were assessed and compared with standard limits. The values of total dissolved solids (<166 mg/L), electrical conductivity (<0.249 ds/m), soluble sodium percentage (2.60 to 38.40%), permeability index (0.19 to 7.40%), magnesium adsorption ratio (37.34 to 66.50%), kellys ratio (0.0004 to 0.029 meq/L), residual sodium bicarbonate (0.35 to 3.02 meq/L) and sodium adsorption ratio (0 to 0.035) were found to be within the safe limits and thus largely suitable for irrigation purposes. The groundwater will thus neither cause salinity hazards nor have an adverse effect on the soil properties of the study area. Furthermore, the water samples also fall within the recommended limits and are found suitable for domestic purposes.
Article
Full-text available
Assessing the water quality status for special use is the main objective of any water quality monitoring studies. The water quality index (WQI) is a mathematical instrument used to transform large quantities of water quality data into a single number which represents the water quality level. In fact, developing WQI in an area is a fundamental process in the planning of land use and water resources management. In this study, a simple methodology based on multivariate analysis is developed to create a groundwater quality index (GWQI), with the aim of identifying places with best quality for drinking within the Qazvin province, west central of Iran. The methodology is based on the definition of GWQI using average value of eight cation and anion parameters for 163 wells during a 3-year period. The proportion of observed concentrations to the maximum allowable concentration is calculated as normalized value of each parameter in observing wells. Final indices for each well are calculated considering weight of each parameter. In order to assess the groundwater quality of study area, the derived indices are compared with those of well-known mineral waters. Using developed indices, groundwater iso-index map for study area and the map of areas of which the indices are near to mineral waters was drawn. In the case study, the GWQI map reveals that groundwater quality in two areas is extremely near to mineral water quality. Created index map provides a comprehensive picture of easily interpretable for regional decision makers for better planning and management.
Article
This paper is an attempt to analyze the water quality of river Ganga in Haridwar district for irrigation purpose. Water samples were collected from 5 sampling stations. The study area has been divided into three seasons: Winter (November-February), summer (March to June) and rainy (July to October). Water quality variables were measured in the river over a period of two years (Nov.2006 to Oct. 2008). The samples were analyzed for electrical conductivity (Ec), total dissolved salts (TDS), magnesium content (MC), sodium percent (SP), sodium adsorption ratio (SAR), residual sodium carbonate (RSC) and permeability Index (PI). Study of all these characteristics Indicates that river water In rainy season is not suitable for Irrigation purpose because of high values of total dissolved salts, Ec and SP.
Article
In the present study, the geochemical characteristics of groundwater and drinking water quality has been studied. 24 groundwater samples were collected and analyzed for pH, electrical conductivity, total dissolved solids, carbonate, bicarbonate, chloride, sulphate, nitrate, calcium, magnesium, sodium, potassium and total hardness. The results were evaluated and compared with WHO and BIS water quality standards. The studied results reveal that the groundwater is fresh to brackish and moderately high to hard in nature. Na and Cl are dominant ions among cations and anions. Chloride, calcium and magnesium ions are within the allowable limit except few samples. According to Gibbs diagram, the predominant samples fall in the rock–water interaction dominance and evaporation dominance field. The piper trilinear diagram shows that groundwater samples are Na–Cl and mixed CaMgCl type. Based on the WQI results majority of the samples are falling under excellent to good category and suitable for drinking water purposes.