Content uploaded by Kotayba Tawfiq Al-Youzbakey
Author content
All content in this area was uploaded by Kotayba Tawfiq Al-Youzbakey on Jan 05, 2022
Content may be subject to copyright.
International Journal of Environment & Water
ISSN 2052-3408
___________________________________________________________________________
Vol 9, Issue 2, 2020 Page
Suitability of Water Harvesting in Bandwaya Valley for Domestic and
Irrigation
Ali Mohammed Sulaiman Kotayba Tawfiq Al-Youzbakey
Da’ad Ahmed Ismaiel
Dams and Water Resources Research Center – University of Mosul ali_msh2@uomosul.edu.iqkotaybatawfiq@gmail.com
Ca2+, Mg2+, Na+, K+
HCO3-, SO4=, Cl-, NO3-
WQI
SSPSodium Adsorption Ratio, SAR
S1
Residual Sodium Bicarbonate, RSBC
MAR
E.C.SAR C2-S1
C3-S1 ABSTRACT
Wadi Bandawaya is located 40 km north of Mosul city. On its path through
Jabal Dehqan, a narrow valley is suitable for constructing a dam on it for the
purposes of harvesting rainwater and feeding water to the valley through several
springs located below the foot of Jabal Al-Qoush on the northern side of the
mountain. The current study evaluated the quality of water for civil and
agricultural purposes in order to complete the data for establishing water
harvesting. It was found through chemical analyzes of the main cations (Ca2+,
Mg2+, Na+, K+) and anions (HCO3-, SO4=, Cl-, NO3-), as well as measuring the
pH, electrical conductivity (E.c.), total dissolved salts (TDS) and total hardness
(TH). The valley water falls within the natural limits set by the World Health
Organization for drinking purposes through the use of the water quality index
(WQI) as well as its suitability for agricultural purposes according to the
International Journal of Environment & Water
ISSN 2052-3408
___________________________________________________________________________
Vol 9, Issue 2, 2020 Page
standards of Sodium Percentage (SSP), Sodium Adsorption Ratio, SAR, and the
amount of residual sodium carbonate (Residual Sodium) Carbonate, RSC). As
well as, the percentage of magnesium (MAR).
Vasanthavigar et al., 2010
low folded zone
Sissakian and Al- Jibouri, 2012; Fouad, 2015 and Al-Jawadi et al., 2020
Al-Azzawi et al., 2014
Sissakian and Al-Jiburi, 2014
Jassim and Goff, 2006
Al-Jawadi et al., 2020
International Journal of Environment & Water
ISSN 2052-3408
___________________________________________________________________________
Vol 9, Issue 2, 2020 Page
HANNA PH211EcHANNA EC214EDTA
Flame-photometer, type- JENWAY PEP7
(UV- Spectrophotometer type - OGAWA, OSK 7724)TDSTH
WQI
Kumar et al., 2015, Udom et al., 2016 and Leizou et al., 2017
WQI
WHO, 2006Gupta and Misra, 2016
WQI = ∑ Qi X Wi / ∑ Wi …………………………………………. (1)
0 2 4 6 8 10 km.
1
1
2
3
1
4
5
6
ة
دس
لصوا
International Journal of Environment & Water
ISSN 2052-3408
___________________________________________________________________________
Vol 9, Issue 2, 2020 Page
Qi = 100 X (Vm - Vi) / (Vs - Vi) ……………… () Qi = Vm = Vi
Vsstandard valuesWHO, 2006
Wi = K / Vs ; (K = 1 = Wi
SSPMAR
Sodium Adsorption Ratio, SAR
Residual Sodium Carbonate, RSC
SSP = Na+ X 100 / (Ca2+ + Mg2+ + Na+ + K+)…………… ()
MAR = Mg2+ X 100 / (Ca2+ + Mg2+)…………………..…… ()
SAR = Na+ / √[(Ca2+ + Mg2+)/2] ………………..………..()
RSC = (CO3= + HCO3-) – (Ca2+ + Mg2+) …………..……….()
WHO, 2006
TDS
International Journal of Environment & Water
ISSN 2052-3408
___________________________________________________________________________
Vol 9, Issue 2, 2020 Page
TDS
Todd, 1980.
7.2
7.2
7.2
7.3
7.4
7.3
Unit
Ph
972.9
625.4
745.7
927.3
952.2
607.7
Sµ.cm-1
E.C
530
447
465
485
515
410
mg.l-1
T.D.S
372
343
355
324
336
308
mg.l-1
T.H
2.5
2.3
2.5
2.1
1.7
1.3
mg.l-1
Tur.
65.8
64.0
62.2
61.4
58.6
56.2
mg.l-1
Ca2+
50.7
38.0
42.0
41.6
43.3
40.9
mg.l-1
Mg2+
17.2
8.6
11.4
6.4
12.3
5.2
mg.l-1
Na+
6.0
4.4
2.1
5.1
4.6
2.2
mg.l-1
K+
307.4
290.2
295.6
275.4
277.8
268.4
mg.l-1
HCO3-
103.2
76.5
66.2
95.6
101.4
67.4
mg.l-1
SO4=
24.9
17.2
16.7
12.5
18.8
8.3
mg.l-1
Cl-
7.0
4.1
3.5
4.8
4.5
3.9
mg.l-1
NO3-
carbonate hardness.
Mustafa et al., 2017
WHO, 2006
Al-Jawadi et al, 2020
International Journal of Environment & Water
ISSN 2052-3408
___________________________________________________________________________
Vol 9, Issue 2, 2020 Page
International Journal of Environment & Water
ISSN 2052-3408
___________________________________________________________________________
Vol 9, Issue 2, 2020 Page
65-56
WHO, 2006
Mg-calcite
International Journal of Environment & Water
ISSN 2052-3408
___________________________________________________________________________
Vol 9, Issue 2, 2020 Page
Deming, 2002
Phillips and Castro, 2004
Chapelle, 2004
Jones, 1997.
K.N.P.
WHO, 2006
Obiefuna and Sheriff, 2011WHO
WQI
International Journal of Environment & Water
ISSN 2052-3408
___________________________________________________________________________
Vol 9, Issue 2, 2020 Page
WQI
Saeedir et al., 2010Gupta and Misra, 2016
Gupta and Misra, 2016
WQI
28.2
25.0
25.9
28.8
32.8
27.3
WQI
meq.l-1
.
6
5
4
3
2
1
3.283
3.194
3.104
3.064
2.924
2.804
Ca2+
4.169
3.125
3.454
3.421
3.561
3.363
Mg2+
0.748
0.374
0.496
0.278
0.535
0.226
Na+
0.153
0.113
0.054
0.130
0.118
0.056
K+
8.35
6.81
7.11
6.89
7.14
6.45
Total
5.039
4.757
4.845
4.514
4.553
4.399
HCO3-
2.148
1.592
1.378
1.990
2.111
1.403
SO4=
0.702
0.485
0.471
0.353
0.530
0.235
Cl-
0.113
0.066
0.056
0.077
0.073
0.063
NO3-
8.00
6.90
6.75
6.93
7.27
6.10
Total
:
Joshi et al., 2009
International Journal of Environment & Water
ISSN 2052-3408
___________________________________________________________________________
Vol 9, Issue 2, 2020 Page
SSP
RSBC
SAR
6
5
4
3
2
1
8.95
5.49
6.97
4.04
7.49
3.51
SSP
-2.41
-1.56
-1.71
-1.97
-1.93
-1.77
RSBC
0.39
0.21
0.27
0.15
0.30
0.13
SAR
55.94
49.46
52.67
52.75
54.91
54.53
MAR
Todd, 1980
S1
Willcox, 1948Todd, 1980E.C.Na%
E.C.Na%
Richard, 1954
E.C.SARC2-S1
C3-S1
S1SAR
MAR
MARJoshi et al., 2009
International Journal of Environment & Water
ISSN 2052-3408
___________________________________________________________________________
Vol 9, Issue 2, 2020 Page
Al-Azzawi, N.K., Al-Khatony, S.E. and Al-Sumaidaie, M.A.(2014)
Detachment Surface Morphology and Shortening Distribution in the
Foreland Folds of Iraq. Iraqi National Journal of Earth Sciences, Vol.
14, No. 1, pp. 39 - 58
Al-Jawadi, A.S., Abdul Baqi, Y.T. and Sulaiman, A.M. (2020) Qualifying the
Geotechnical and Hydrological Characteristic of the Bandawaya Stream
Valley – Northern Iraq. Journal of Engineering and Environmentn
Vol.19 issue, 89.
Buday, T., (1980) The Regional Geology of Iraq. Stratigraphy and
Paleogeography. Edited by Kassab, I.I.M. and Jassim, S.Z., Dar Al-
Kutub Pub., Mosul University.
Chapelle, F.H., (2004) Geochemistry of Groundwater. In: Holland, H.D. and
Turekian, K.K. TREATISE on GEOCHEMISTRY, Surface and Ground
Water, Weathering and Soils, 5: 425-449.
Deming, D., (2000) Introduction to Hydrogeology. McGraw-Hill Co. 468P.
Fouad, S. F. A. (2015). Tectonic Map of Iraq , Scale 1 : 1000 000 ,. Iraqi
Bulletin of Geology and Mining, 11(1), 1–7.
Gupta, R. and Misra, A. K. (2016) Groundwater quality analysis of quaternary
aquifers in Jhajjar District, Haryana, India: Focus on groundwater
fluoride and health implications. Alexandria Engineering journal
(Available online, 2016).
International Journal of Environment & Water
ISSN 2052-3408
___________________________________________________________________________
Vol 9, Issue 2, 2020 Page
Jassim, S. Z. & Goff, J. C. (2006). Geology of Iraq (Lea Novotna (ed.); 1 st).
Dolin, Hlavni 2732, Prague and Moravian Museum, Zelny trh 6, Brno,
Czech Republic.
Jones, J.A.A., (1997) Global Hydrology, Processes, resources and
environmental management. Longman. England, 399P.
Joshi, D.M., A. Kumar and N. Agrawal, 2009. Assessment of the irrigation
water quality of River Ganga in Haridwar District India. J. Chem., 2(2):
285-292.
Kumar, S. K., Logeshkumaran, A., Magesh, N. S., Godson, P. S. and
Chandrasekar, N., (2015) Hydro-geochemistry and application of water
quality index (WQI) for groundwater quality assessment, Anna Nagar,
part of Chennai City, Tamil Nadu, India. Appl. Water Sci. Vol. 5, pp
335-343.
Leizou, K.E., Nduka, J. O. and Veria, A.W., (2017) Evaluation of Water
Quality Index of the Brass River, Bayelsa State, South Nigeria. Jou. Res.
Granthaalayah, Vol. 5, No. 8, pp 277-287.
Mustafa, M.H., Al-Naqib, S.Q. and Al-Youzbakey, K.T. (2017)
Hydrochemistry of Nwaiget Spring in Relation to Hand Dug Well at
Tebba Riyah Village, Northern Iraq. International Journal of
Environment & Water, Vol. 6, Issue 2, 30-39.
Obiefuna, G.I. and Sheriff, A. (2011) Assessment of Shallow Ground Water
Quality of Pindiga Gombe Area, Yola Area, NE, Nigeria for Irrigation
and Domestic Purposes. Research Journal of Environmental and Earth
Sciences 3(2): 132-142, ISSN: 2041-0492, Maxwell Scientific
Organization
Phillips, F.M. and Castro, M. C., (2004) Groundwater Dating and Residence-
time Measurements. In: Holland, H.D. and Turekian, K.K. (2004)
TREATISE on GEOCHEMISTRY, Surface and Ground Water,
Weathering and Soils, 5: 451-497.
Saeedir, M., Abessi, O., Sharifi, F. and Meraji, H. (2010) Development of
groundwater quality index. Environmental Monitoring and Assessment,
April 2010, Volume 163, Issue 1–4, pp 327–335.
Sissakian, V.K. and Al-Jibouri, B.S.M. (2012) Stratigraphy of the Low Folded
Zone. Iraqi Bull. Geol. Min., Special Issue, No.5, p 63− 132.
Sissakian, V. K. and Al-Jiburi, B.S.M. (2014) Stratigraphy of the High Folded
Zone. Iraqi Bull. Geol. Min., Special Issue, No.6, 2014: Geology of the
High Folded Zone, p 73 161.
Todd, D.K. 1980. Ground water hydrology, 2nd Edition, John Wiley and Sons,
New York, 278P.
Udom, G. J. Nwankwoala, H.O. and Daniel, T.E., (2016) Determination of
water quality index of shallow quaternary aquifer system in Ogbia,
International Journal of Environment & Water
ISSN 2052-3408
___________________________________________________________________________
Vol 9, Issue 2, 2020 Page
Bayelsa State, Nigeria. British J. of Earth Sci. Res. Vol. 4, No. 1, pp 23-
37.
Vasanthavigar, M., Srinivasamoorthy, K., Vijayaragavan, K., Ganthi, R. R.,
Chidambaram, S., Anandhan, P., Manivannan, R. and Vasudevan S.
(2010) Application of water quality index for groundwater quality
assessment: Thirumanimuttar sub-basin, Tamilnadu, India. Environ
Monit Assess 171:595–609 © Springer Science+Business Media B.V.
WHO, (2006) Guideline for drinking water quality. Vol. Recommendation.
World Health Organization, Geneva, 130P.
Qi
6
5
4
3
2
1
Qi
13.33
14.58
15.83
20.00
26.67
20.00
Ph
69.49
44.67
53.26
66.24
68.01
43.41
E.C
53.00
44.70
46.50
48.50
51.50
41.00
T.D.S
74.40
68.60
71.00
64.80
67.20
61.60
T.H
87.73
85.33
82.93
81.87
78.13
74.93
Ca2+
101.40
76.00
84.00
83.20
86.60
81.80
Mg2+
8.60
4.30
5.70
3.20
6.15
2.60
Na+
10.91
8.00
3.82
9.27
8.36
4.00
K+
76.85
72.55
73.90
68.85
69.45
67.10
HCO3-
25.80
19.13
16.55
23.90
25.35
16.85
SO4=
9.96
6.88
6.68
5.00
7.52
3.33
Cl-
14.00
8.20
7.00
9.60
9.00
7.80
NO3-
standards WHO, 2006Wi
Wi
Standard
0.1176
8.5
Ph
0.0007
1400
E.C
0.0010
1000
T.D.S
0.0020
500
T.H
0.0133
75
Ca2+
0.0200
50
Mg2+
0.0050
200
Na+
0.0182
55
K+
0.0025
400
HCO3-
0.0025
400
SO4=
0.0040
250
Cl-
0.0200
50
NO3-
0.2069
Total
International Journal of Environment & Water
ISSN 2052-3408
___________________________________________________________________________
Vol 9, Issue 2, 2020 Page
Qi*Wi
Qi*Wi
1.5686
1.7157
1.8627
2.3529
3.1373
2.3529
Ph
0.0496
0.0319
0.0380
0.0473
0.0486
0.0310
E.C
0.0530
0.0447
0.0465
0.0485
0.0515
0.0410
T.D.S
0.1488
0.1372
0.1420
0.1296
0.1344
0.1232
T.H
1.1698
1.1378
1.1058
1.0916
1.0418
0.9991
Ca2+
2.0280
1.5200
1.6800
1.6640
1.7320
1.6360
Mg2+
0.0430
0.0215
0.0285
0.0160
0.0308
0.0130
Na+
0.1983
0.1455
0.0694
0.1686
0.1521
0.0727
K+
0.1921
0.1814
0.1848
0.1721
0.1736
0.1678
HCO3-
0.0645
0.0478
0.0414
0.0598
0.0634
0.0421
SO4=
0.0398
0.0275
0.0267
0.0200
0.0301
0.0133
Cl-
0.2800
0.1640
0.1400
0.1920
0.1800
0.1560
NO3-
5.8357
5.1749
5.3658
5.9624
6.7754
5.6482
Total