Content uploaded by Gennadii Manko
Author content
All content in this area was uploaded by Gennadii Manko on Jan 05, 2022
Content may be subject to copyright.
Головний редактор:
П.І. Неєжмаков, д-р техн. наук, проф.,
ННЦ “Інститут метрології”, Україна
Заступник головного редактора, науковий редактор:
Ю.Ф. Павленко, д-р техн. наук, проф.,
ННЦ “Інститут метрології”, Україна
Редакційна колегія:
О. Боднар, доц., університет Еребру, Швеція
О.М. Величко, д-р техн. наук, проф.,
ДП “Укрметртестстандарт”, Україна
О.В. Дзисюк, Метрологічний центр військових еталонів
Збройних Сил України, Україна
І.П. Захаров, д-р техн. наук, проф., ХНУРЕ, Україна
С.С. Зуб, д-р фіз.-мат. наук,
ННЦ “Інститут метрології”, Україна
С.І. Кондрашов, д-р техн. наук, проф., НТУ “ХПІ”, Україна
О.Д. Купко, д-р техн. наук,
ННЦ “Інститут метрології”, Україна
Е. Манске, д-р техн. наук, проф., Технічний університет
Ільменау, Німеччина
Г. Мачін, д-р природничих наук, проф., Національна фізична
лабораторія, Велика Британія
І.О. Мель, ННЦ “Інститут метрології”, Україна
Л.А. Назаренко, д-р техн. наук, проф.,
ХНУМГ ім. О.М. Бекетова, Україна
Г.Ю. Народницький, д-р техн. наук,
ННЦ “Інститут метрології”, Україна
В.В. Паракуда, канд. техн. наук, доц., ДП “НДІ Система”, Україна
О.В. Прокопов, д-р фіз.-мат. наук, проф.,
ННЦ “Інститут метрології”, Україна
В.В. Семенець, д-р техн. наук, проф., ХНУРЕ, Україна
В.В. Скляров, д-р техн. наук,
ННЦ “Інститут метрології”, Україна
Б.І. Стадник, д-р техн. наук, проф.,
НУ “Львівська політехніка”, Україна
Ю.М. Туз, д-р техн. наук, проф.,
НТУУ “КПІ ім. Ігоря Сікорського”, Україна
Відповідальний редактор С.В. Білоусова
Літературний редактор Н.О. Мірошниченко
Комп’ютерна верстка і дизайн Г.С. Мицік
Надруковано в ННЦ “Інститут метрології”.
Адреса редакції: ННЦ “Інститут метрології”,
вул. Мироносицька, 42, м. Харків, 61002
Тел.: (057) 704-98-43, факс: (057) 700-34-47
Е-mail: journal@metrology.kharkov.ua
Вебсайт: http://umj.metrology.kharkov.ua/
Видання індексується міжнародною бібліометричною
та наукометричною базою даних Web of Science Core
Collection, Google Scholar, WorldCat i BASE.
ISSN (Print) 2306-7039
ISSN (Online) 2522-1345
DOI: 10.24027/2306-7039
Журнал зареєстрований у Міністерстві юстиції
України. Свідоцтво про державну реєстрацію cерія
КВ № 22932-12832ПР від 26 вересня 2017 р.
“Український метрологічний журнал” включено до Переліку
наукових фахових видань України на підставі Наказу МОН
України від 15 жовтня 2019 р. № 1301 (категорія “А”).
ННЦ “Інститут метрології” зареєстрований у Державному
комітеті телебачення і радіомовлення України. Свідоцтво
видавця серія ДК № 5944 від 15.01.2018 р.
Електронна версія – на сайті НБУ ім. В.І. Вернадського
НАН України www.nbuv.gov.ua/portal/natural/Umlzh/index.html
Журнал видається з 1995 р.
UKRAINIAN
METROLOGICAL
JOURNAL
Editor-in-Chief:
P. Neyezhmakov, National Scientific Centre “Institute of Metrology”,
Kharkiv, Ukraine
Deputy Editor-in-Chief, Scientific Editor:
Yu. Pavlenko, National Scientific Centre “Institute of Metrology”,
Kharkiv, Ukraine
Editorial Board:
O. Bodnar, Örebro University, Örebro, Sweden
O. Dzysyuk, Metrology Center of Military Standards of the Armed
Forces of Ukraine, Kharkiv, Ukraine
S. Kondrashov, National Technical University “Kharkiv Polytechnic
Institute”, Kharkiv, Ukraine
O. Kupko, National Scientific Centre “Institute of Metrology”,
Kharkiv, Ukraine
G. Machin, National Physical Laboratory, Teddington, UK
E. Manske, Technical University of Ilmenau, Germany
I. Mel, National Scientific Centre “Institute of Metrology”,
Kharkiv, Ukraine
G. Narodnytskyi, National Scientific Centre “Institute of Metrology”,
Kharkiv, Ukraine
L. Nazarenko, O.M. Beketov National University of Urban Economy
in Kharkiv, Kharkiv, Ukraine
V. Parakuda, DP NDI “Systema”, Lviv, Ukraine
O. Prokopov, National Scientific Centre “Institute of Metrology”,
Kharkiv, Ukraine
V. Semenets, Kharkiv National University of Radio Electronics,
Kharkiv, Ukraine
V. Sklyarov, National Scientific Centre “Institute of Metrology”,
Kharkiv, Ukraine
B. Stadnyk, Lviv Polytechnic National University, Lviv, Ukraine
Yu. Tuz, National Technical University of Ukraine “Igor Sikorsky
Kyiv Polytechnic Institute”, Kyiv, Ukraine
O. Velychko, SE “Ukrmetrteststandard”, Kyiv, Ukraine
I. Zakharov, Kharkiv National University of Radio Electronics,
Kharkiv, Ukraine
S. Zub, National Scientific Centre “Institute of Metrology”,
Kharkiv, Ukraine
Responsible Secretary S. Bilousova
Literary Editor N. Myroshnychenko
Desktop Publishing and Design H. Mytsik
Printed in NSC "Institute of Metrology"
Editorial Address: NSC “Institute of Metrology”,
Myronosytska Str., 42, Kharkiv, 61002
Tel.: (057) 704-98-43, fax: (057) 700-34-47
Е-mail: journal@metrology.kharkov.ua
Website: http://umj.metrology.kharkov.ua/
The edition is indexed by international bibliometric and
scientometric database: Web of Science Core Collection, Google
Scholar, WorldCat and BASE.
ISSN (Print) 2306-7039
ISSN (Online) 2522-1345
DOI: 10.24027/2306-7039
The Journal is registered in the Ministry of Justice of Ukraine.
The Certificate of State Registration: series KV No. 22932-12832PR
of September 26, 2017. “Ukrainian Metrological Journal” was
included to the List of scientific specialized editions of Ukraine
based on the Order of the Ministry of Education and Science of
Ukraine No. 1301, dated October, 15, 2019 in category
“А”
.
NSC “Institute of Metrology” is registered in the State Commit-
tee for Television and Radio Broadcasting of Ukraine Certificate
of publisher series DK No. 5944, dated January 15, 2018.
Electronic version is on the website of Vernadsky National Library of
The NAS of Ukraine www.nbuv.gov.ua/portal/natural/Umlzh/index.html
The Journal has been issued since 1995
2021 № 4
C o n t e n t s
General and legal metrology
O. Velychko, T. Gordiyenko. Application of systems
thinking to the establishment of metrological
traceability chains ............................. 3
A. Kolbasin. Ensuring the validity of the
results of calibrations and tests by statistical
methods ..................................... 8
G. Manko, E. Titova. Informational uncertainty of
measuring instruments ........................ 15
Measurements of electrical and magnetic
quantities
V. Bolyukh, A. Vinnichenko, A. Omelchenko.
Reduction of the auto seismic component of error
of a ballistic laser gravimeter by excitation of an
induction-dynamic catapult from an AC voltage
source ...................................... 20
D. Ornatskyi, S. Yehorov, M. Kataieva, M. Graf,
D. Shcherbyna. Precision active power measuring
channel ..................................... 28
Measurements of geometric quantities
P. Neyezhmakov, O. Prokopov, T. Panasenko,
A. Shloma. Analysis of the temperature component
of the combined standard uncertainty of the
refractive index according to the test data of the
control system for meteorological parameters
developed for the Lyptsi geodetic polygon ........ 34
Measurements of optical-physical and
luminous quantities
О. Kupko, О. Liashenko, P. Neyezhmakov,
Ye. Tymofeiev, E. Diumіn, N. Mushchynska,
А. Lіtvіnenko. Method for the numerical evalua-
tion of the color rendering quality of matrix
photodetectors ............................... 39
M. Kokodii, S. Berdnik, V. Katrich,
M. Nesterenko, I. Priz, A. Natarova,
V. Maslov, K. Muntian. Measurement of micro-
wave radiation pressure on thin metal fibers ...... 45
Measurements of ionizing radiation
characteristics
A. Kozyrenko, O. Letuchyi, A. Pystovyi, V. Sklia-
rov. Intrinsic background of the beta channel of
the aerosol volumetric activity monitor ........ 51
Measurements of acoustic quantities
Yu. Taranenko, R. Mygushchenko, O. Kropachek,
G. Suchkov, Yu. Plesnetsov. Minimization of errors
in discrete wavelet filtering of signals during
ultrasonic measurements and testing ............ 57
Information
List of articles and other materials published in the
Ukrainian Metrological Journal in 2021 ......... 63
Alphabetical index of the authors of articles ...... 66
Author Guidelines ............................ 68
З м і с т
Загальна та законодавча метрологія
O.М. Величко, Т.Б. Гордієнко. Застосування
системного підходу до встановлення ланцюгів
метрологічної простежуваності ................. 3
O.І. Колбасін. Забезпечення достовірності ре-
зультатів калібрувань та випробувань статистич-
ними методами .............................. 8
Г.І. Манко, О.В. Тітова. Інформаційна невизна-
ченість засобів вимірювання ................. 15
Вимірювання електричних та магнітних
величин
В.Ф. Болюх, О.І. Вінніченко, А.В. Омельченко.
Зменшення автосейсмічної складової похибки
балістичного лазерного гравіметра шляхом
збудження індукційно-динамічної катапульти від
джерела змінної напруги ...................... 20
Д.П. Орнатський, С.В. Єгоров, М.О. Катаєва,
М.С. Граф, Д.Е. Щербина. Прецизійний
вимірювальний канал активної потужності ..... 28
Вимірювання геометричних величин
П.І. Неєжмаков, О.В. Прокопов, Т.А. Панасенко,
А.І. Шлома. Аналіз температурної складової
сумарної стандартної невизначеності показника
заломлення за даними випробувань системи
контролю метеопараметрів, створеної для
Липецького геодезичного полігону ............ 34
Вимірювання оптико-фізичних та світло-
вих величин
О.Д. Купко, О.М. Ляшенко, П.І. Неєжмаков,
Є.П. Тимофеєв, Е.С. Дюмін, Н.Ю. Мущинська,
А.С. Литвиненко. Метод чисельної оцінки якос-
ті передання кольорів матричних фотоприйма-
чів ......................................... 39
М.Г. Кокодій, С.Л. Бердник, В.О. Катрич,
М.В. Нестеренко, І.О. Приз, А.О. Натарова,
В.О. Маслов, К.І. Мунтян. Вимірювання тиску
мікрохвильового випромінювання на тонкі
металеві волокна ............................ 45
Вимірювання характеристик іонізуючого
випромінювання
А.М. Козиренко, О.М. Летучий, А.С. Пустовий,
В.В. Скляров. Власний фон бета-каналу монітора
об’ємної активності аерозолів ................ 51
Вимірювання акустичних величин
Ю.K. Тараненко, Р.П. Мигущенко, О.Ю. Кропачек,
Г.М. Сучков, Ю.О. Плєснецов. Мінімізація похи-
бок дискретної вейвлет-фільтрації сигналів при
ультразвукових вимірюваннях і контролі ....... 57
Інформація
Перелік статей та інших матеріалів, опублікова-
них в “Українському метрологічному журналі”
у 2021 році
.................................. 63
Алфавітний покажчик авторів статей ......... 66
Керівництва для авторів ..................... 68
© ННЦ “Інститут метрології”
Журнал рекомендовано до друку науково-технічною радою ННЦ “Інститут метрології” (протокол № 12 від 30.12.2021 р.).
Підписано до друку 30.12.2021 р.
Формат 60×84/8. Офсетний друк. Ум.-друк. арк. 7,8. Обл.-вид. арк. 7,3. Тираж 400 прим.
2021
№ 4 UKRAINIAN METROLOGICAL JOURNAL
УКРАЇНСЬКИЙ МЕТРОЛОГІЧНИЙ ЖУРНАЛ
Український метрологічний журнал, 2021, № 4, 15-19 15
G. Manko, E. Titova
1. Introduction
As it is known, measurement is an information
process. Therefore, it seems obvious that it is possible
to use information characteristics to assess the quality
of measuring instruments (MIs).
Attempts to use the informational approach in
measurement theory have been made repeatedly.
A number of works [1, 2, etc.] presented the basics
of information theory of measurement (ITM).
It was proposed to estimate the amount of information
in the measurement by the difference between the
unconditional and conditional Shannon entropy.
In this case, the accuracy of the measurement result
is determined not by the root-mean-square or limiting
error, but depends on the shape of the error proba-
bility distribution law.
It is known that a complete description of a random
variable is provided by the probability distribution of
its values. The traditional measurement theory operates
with only the first two statistical moments (mean,
variance). ITM estimates the amount of information
obtained in the measurement process. In this case, the
distribution law of the measurand is fully taken into
account. This is what ensures the worth of ITM.
The works above were felt to be of purely
theoretical interest. ITM demanded to abandon
habitual notions. The basic concepts of traditional
measurement theory are “error” and “uncertainty”.
ITM estimates the amount of information received in
the measurement process and the loss of information
due to imperfection of the MI.
Nevertheless, after a while, interest in using the
information approach resumed.
The paper [3] analyzes the process of measurement
using the information theory, puts forward the essence
of measurement process and builds an information
model for the measurement process, which can explain
why the interference and error are always existed in
the result of measurement. The article [4] describes the
fractal-entropy analysis of the results of measurements.
To evaluate the results of measurements in dynamic
systems, it is proposed to use an expression linking
Shannon entropy with the fractal dimension of the
time series of measurement results. Boris Menin [5]
compares the features of the application of the theory
of measurements and the measure of the similarity of
the model to the phenomenon under study on the basis
of calculating the amount of information contained in
the physical phenomena and technological processes.
In a number of works, the information approach
is used to estimate the measurement uncertainty.
Jae-Yoon Jung et al. [6] propose an entropy-
based uncertainty measure which captures the dynamic
behavior of processes. It enables experts to better
understand the nature of processes at runtime. In the
paper [7] the informational uncertainty is expressed
as the difference of information before receiving
a message and after receiving it. The relative change in
UDC 681.518.3
DOI: 10.24027/2306-7039.4.2021.250399
Informational uncertainty of measuring instruments
G. Manko, E. Titova
Ukrainian State University of Chemical Technology, Haharina Ave., 8, 49005, Dnipro, Ukraine
elenatittova@gmail.com
Abstract
Recently, there has been a revival of interest in the use of the information approach in the theory of measurements.
Unlike the traditional approach, information theory does not evaluate error or uncertainty, but entropy and the amount
of information. This article analyzes a number of recent publications that develop ideas for the information approach. The
limitations and disadvantages of both the entropy approach and the concept of uncertainty are indicated. As a compromise
solution, it is proposed to use a criterion based on the Bongard’s uncertainty and useful information. The concept of
information uncertainty is proposed, which is estimated by the amount of negative useful information, that is, misinformation
introduced by the measuring instrument. Some methods for calculating information uncertainty are described.
The problems of using the uncertainty approach are noted. This approach does not imply the use of such a generalized
characteristic of measuring instruments as an accuracy class. The article proposes an analogue of the accuracy class in the
form of relative informational uncertainty, expressed as a percentage. This will make it possible to evaluate the quality of
the measuring instrument by a single parameter, the calculation of which requires a minimum of computational operations.
Keywords: uncertainty; entropy; information criterion; distribution law; measuring instrument; accuracy class.
Received: 23.07.2021 Edited: 04.10.2021 Approved for publication: 11.10.2021
© ННЦ «Інститут метрології», 2021
Ukrainian Metrological Journal, 2021, No 4, 15-1916
Informational uncertainty of measuring instruments
the informational uncertainty of measurement systems
can be used to calculate the required number of extra
measurements. In [8], a new information approach
is proposed, which makes possible to calculate the
absolute minimum uncertainty in the measurement
of the investigated quantity of the phenomenon. The
entropy is used here as a function of the state of a
thermodynamic system. So the validity of using the
term “informational” is questionable.
Summarizing, we can conclude that all the
works considered are based on the use of the entropy
approach. A number of constraints and flaws of this
approach should be noted.
Shannon’s entropy can be determined for
random processes only. To calculate the measurement
information, it is necessary to know the conditional
probability distributions. Calculations are quite time
consuming. To date, no effective entropy estimates of
measurement accuracy have been developed.
The purpose of this article is to describe the
methods of using information criteria for assessing the
quality of MIs and establishing their suitability for use.
2. Informational uncertainty of measurement
Soviet cyberneticist M.M. Bongard is known for
his works on the pattern recognition problems. In his
main book [9], he introduced the concept of “useful
information”, which turned out to be little-noticed.
Nevertheless, it can be effectively used in measurement
theory. Useful information can be either positive or
negative. That is, the misinformation introduced by
the imperfection of the MI can be measured.
According to [9], when the answer probability
distribution is p, but an observer uses the hypothesis
that the distribution is q, the problem uncertainty is:
Np qpq
ii
i
n
(/)log .
1
(1)
If a problem had an uncertainty N0 prior to
receiving message, and uncertainty N1 after receipt of
the message, then the message carries the following
amount of useful information
IN N
01
.
(2)
Shannon’s entropy Н(p) is a particular case of
uncertainty. Entropy is the uncertainty for an algorithm
that knows and uses to best advantage the probability
distribution of the problem answers. If this is not
known, uncertainty increases.
Let’s apply Bongard’s developments to the
measurement process. We will assume that p is the
true distribution of the measured value, and q is the
distribution of the measurement results. Then entropy
is the uncertainty for MI, which gives the true value
of the measurand. The amount of useful information
that a measuring instrument provides is
IHpNpq() (/).
(3)
As shown in [9], if the pi are fixed, problem
uncertainty is minimal when qi = pi. In this case
N( p/q) = N( p/p) = Н( p), i.e., the problem uncertainty
is equal to the entropy of the answer probabilities.
As a result, the amount of useful information (3)
is always negative, and we should talk about the
misinformation introduced by the MI:
DNpq Hp pp
q
i
i
i
i
(/)()log .
(4)
Expression (4) defines the informational
uncertainty (IU) of the measurement. IU takes zero
value for ideal measurements (there is no uncertainty)
and the maximum value in case of Н( p) = 0. Dividing
the IU by this maximum value, we obtain the relative
informational uncertainty (RIU)
D
Np q
pp
pq
ii
i
ii
i
(/)
log
log
.1
(5)
RIU (5) is a generalized criterion for the quality
of MI which takes into account the shape of the curve
of the measurand distribution. Thus, it is possible to
assess how a particular device is suitable for measuring
a given specific measurand.
It is recommended to obtain the Q-distribution
by statistical processing of a sample of measurement
results. To obtain the P -distribution, one should use
the conventional true values obtained using control
instrument. In an extreme case, one can accept the
hypothesis about the standard distribution law of the
true values of the measurand. As a standard distribution,
one can take the normal, as the most common, or
uniform, as suggesting the greatest a priori uncertainty.
This method complies with the calculation of Type A
uncertainty according to the GUM.
Calculation by Type B is possible using the
following methods. If there is information about the
form of the measurand probability distribution, then an
estimate of the uncertainty can be obtained analytically.
For this, expression (4) should be presented in integral
form using the differential entropy.
If only interval estimates of the measurement results
are known, then two situations can be considered: the
value of the measured quantity is either covered by
the confidence interval, or lies outside the confidence
interval. The probability of the first situation is equal
to the confidence level β, the probability of the second
is equal to (l – β,). If α is the a priori (before the
interval estimate) confidence level, then IU can be
calculated by the formula:
D
log()log .1 1
1
(6)
Український метрологічний журнал, 2021, № 4, 15-19 17
G. Manko, E. Titova
3. Uncertainty and accuracy class
The concept of “accuracy class” (AC) was
widely used to compare the MI accuracy in the
“pre-reform era”. The same basic accuracy of two
measuring instruments does not mean that they have
the same quality if their measurement ranges differ
significantly. Uncertainty approach (UA) provides
even fewer opportunities for comparative assessment
of the accuracy of dissimilar instruments, since the
uncertainty is estimated in units of measurement for
measurand.
Today, many specifications of the MI quality
and measuring methods are used. In addition to the
concepts of “error” and “uncertainty”, the “accuracy”,
“repeatability”, “reproducibility”, “trueness”, and
“precision” have been introduced into metrological
practice. At the same time, AC served as a unified
indirect assessment of the MI quality.
Ukrainian standards formulate the concept of AC
as generalized characteristic of measuring instruments,
determined by the limits of permissible basic and
additional errors, as well as a number of other
properties that affect the accuracy of measurements.
With UA, this characteristic cannot be used. Therefore,
attempts are being made to find a compromise in using
the concepts of error and uncertainty.
The paper [10] assumes the establishment of
an acceptable risk for wrong measurements. It is
recommended that decision-making in conformity
assessment when accounting for uncertainty in testing
follows the shared risk principle under the condition
that the uncertainty of the complete measurement
system – MPU – is less than 1/3 of the maximum
permissible error – MPE – for the actual conformity
assessment.
It is noted in [11] that the notion of accuracy
class has the value of universality and can also be
for the assessment of measuring transducers at the
instrument design stage. A method of using the
instrument accuracy class for the estimation of the
Type B uncertainty is proposed.
In recommendation [12] concepts “uncertainty”
and “error” are recommended to be used harmoniously.
It is offered the general rule: in the most metrological
situations, measurement results are characterized by
uncertainty and accuracy of measuring instruments
are characterized by error limits. Concept “error”
is used at comparison with reference quantity value,
and evaluation errors are obtained at calibration or
verification of measuring instruments.
Still, it would be more convenient to be able to
evaluate the instrument’s accuracy of the device within
the UA by a parameter like an AC. We propose to use
the relative informational uncertainty (5), expressed
as a percentage, as such a parameter. Its maximum
admissible value νadm must be indicated in the technical
documentation for MI. When the MI’s conformity
assessment procedure is carried out, the value of
the RIU should be experimentally determined and
compared with νadm.
4. Discussion and conclusions
As rightly noted in [5], the practical application of
the information approach can cause an uneven response
in the scientific community. At the same time, the
general principles of the information-oriented approach
do not contradict the firmly established conclusions of
modern physics, but, on the contrary, allow to consider
them as an opportunity for purposefully increasing the
accuracy of calculations and experiments.
The authors are aware that the introduction of
information estimates of uncertainty in metrological
practice will face a number of difficulties of the
objective and subjective nature. In particular, changes
will be required to many standards. However, it should
be borne in mind that the overwhelming majority of
regulatory documents do not take into account UA,
and some even contradict it. Since, in any case, there
is a lot of work to be done to update such documents,
it would be advisable to use an information approach.
Uncertainty assessment using information criteria
(4) and (5) has the following advantages.
1. Full consideration of the distribution laws of
the measurands and measurement results increases
the accuracy of uncertainty estimation. Traditional
methods underestimate the accuracy of measurements.
2. Taking into account the shape of the curve
of the distribution law of the measurand provides an
opportunity to assess how a particular MI is suitable
for measuring this particular value.
3. The proposed method does not require
correction factors such as coverage factor, which
significantly reduces the arbitrariness in the assessment
of uncertainty.
4. Estimation of measurement uncertainty in
accordance with the above method requires a minimum
of computational operations.
5. Assessing the quality of measuring instruments
by a single parameter is convenient from a practical
point of view.
Ukrainian Metrological Journal, 2021, No 4, 15-1918
Informational uncertainty of measuring instruments
Інформаційна невизначеність засобів вимірювання
Г.І. Манко, О.В. Тітова
Український державний хіміко-технологічний університет, просп. Гагаріна, 8, 49005, Дніпро, Україна
elenatittova@gmail.com
Анотація
Останнім часом відроджується інтерес до використання інформаційного підходу в теорії вимірювань. На від-
міну від традиційного підходу, інформаційна теорія оцінює не похибку або невизначеність, а ентропію і кількість
інформації. Перевагою інформаційного підходу є врахування форми кривої розподілу ймовірностей вимірюваної
величини, в той час як традиційна теорія вимірювань оперує тільки двома першими статистичними моментами,
що достатньо тільки у випадку нормального розподілу. На практиці закон розподілу вимірювальної величини часто
суттєво відрізняється від нормального.
Аналіз наукових публікацій показав, що на сьогодні усі розробки стосовно інформаційної теорії вимірювань
базуються винятково на використанні поняття ентропії як міри невизначеності вимірювальної величини. У статті
аналізуються обмеження і недоліки як ентропійного підходу, так і загальноприйнятої концепції невизначеності.
Пропонується компромісне рішення – використання інформаційного критерію на основі поняття невизначеності
Бонгарда. Як міра інформаційної невизначеності використовується кількість дезінформації, яка вноситься неточніс-
тю вимірювань. Для оцінки якості засобів вимірювань слід використовувати відносну інформаційну невизначеність,
виражену у відсотках. Описані методи розрахунку інформаційної невизначеності.
Відзначаються проблеми використання концепції невизначеності, яка не передбачає використання такої уза-
гальненої характеристики засобів вимірювання, як клас точності. У статті пропонується аналог класу точності
у вигляді критерію відносної інформаційної невизначеності, вираженої у відсотках. Це дозволить оцінювати якість
вимірювального приладу і придатність його до використання єдиним параметром. Наведені переваги такого кри-
терію, головними з яких є врахування форми закону розподілу і мінімальний обсяг обчислювальних операцій.
Ключові слова: невизначеність; ентропія; інформаційний критерій; закон розподілу; засіб вимірювання; клас
точності.
Информационная неопределенность средств измерений
Г.И. Манко, Е.В. Титова
Украинский государственный химико-технологический университет, просп. Гагарина, 8, 49005, Днепр, Украина
elenatittova@gmail.com
Аннотация
В последнее время возрождается интерес к использованию информационного подхода в теории измерений.
В отличие от традиционного подхода, информационная теория оценивает не погрешность или неопределенность,
а энтропию и количество информации. В статье анализируются ограничения и недостатки как энтропийного
подхода, так и концепции неопределенности. В качестве компромиссного решения предлагается использование
информационного критерия на основе понятия неопределенности Бонгарда.
Отмечаются проблемы использования концепции неопределенности, которая не предполагает использования
такой обобщенной характеристики средств измерения, как класс точности. В статье предлагается аналог класса
точности в виде относительной информационной неопределенности, выраженной в процентах. Это позволит
оценивать качество измерительного прибора единственным параметром, расчет которого требует минимума
вычислительных операций.
Ключевые слова: неопределенность; энтропия; информационный критерий; закон распределения; средство
измерения; класс точности.
Український метрологічний журнал, 2021, № 4, 15-19 19
G. Manko, E. Titova
References
1. Kavalerov G.I. and Mandelstam S.М. Vvedenye
v ynformatsyonnuiu teoryiu yzmerenyi [Introduc-
tion to the information theory of measurements].
Moscow, Energy, 1974. 375 p. (in Russian).
2. Ornatsky P.P. Teoretycheskye osnovy ynfor-
matsyonno-yzmerytelnoi tekhnyky [Theoretical
basis of information and measurement techno-
logy]. Kyiv, High school, 1983. 455 p. (in Rus-
sian).
3. Shuangbao Ma and Yong Xue. The philosophi-
cal thoughts of measurement information theory
and its applications. EDT, Shenzhen, China, 2010,
pp. 473–475.
4. Machekhin Y.P., Kurskoy Y.S. Fractal-Entro-
py Analysis of the Results of Measurements in
Nonlinear Dynamical Systems. Measurement Tech-
niques, 2014, vol. 57, issue 6, pp. 609–614.
5. Menin B. Applying Measurement Theory and
Information-based Measure in Modeling Physical
Phenomena and Technological Processes. European
Journal of Engineering Research and Science,
2018, vol. 3, no. 1, pp. 28–34. doi:https://doi.
org/10.24018/ejers.2018.3.1.594
6. Jae-Yoon Jung, Chang-Ho Chin, Jorge Cardoso.
An entropy-based uncertainty measure of pro-
cess models. Information Processing Letters, 2011,
vol. 111, issue 3, pp. 135–141.
7. Rybokas M. et al. The determination of measure-
ment accuracy using information entropy. Journal
of Measurements in Engineering, 2013, vol. 1, is-
sue 1, pp. 59–62.
8. Menin B. h, k, N
A
: Evaluating the Relative Uncer-
tainty of Measurement. American Journal of Com-
putational and Applied Mathematics, 2018, vol. 8(5),
pp. 93–102. doi:10.5923/j.ajcam.20180805.02
9. Bongard M.M. Pattern Recognition. Rochelle
Park, N.J.: Hayden Book Co., Spartan Books,
1970. 253 p.
10. WELMEC 4.2. Issue 1. Elements for deciding
the appropriate level of confidence in regulated
measurements. (Accuracy classes, MPE in-service,
nonconformity, principles of uncertainty). WEL-
MEC Secretariat, Vienna, 2006. 12 p.
11. Tokarska M., Gniotek K. The measuring instru-
ment accuracy class as a measure of the Type B
uncertainty. Measurement Automation Monitoring,
Feb. 2015, vol. 61, no. 02, pp. 28–31.
12. COOMET R/GM/21:2011. Use of concepts “er-
ror of measurement” and “uncertainty of measure-
ment”: General principles. 2011. 10 p. Available at:
http://www.coomet.org/EN/doc/r21_2011.pdf