ArticlePDF Available

Abstract

Assessment of WAter QuAlity Along greAter ZAb river Within irAQi lAnds extended AbstrAct Con il presente studio si è inteso valutare la qualità delle acque del fiume Greater Zab (GZR-Greater Zab River), il maggiore e più importante affluente del fiume Tigri , per il quale contribusce a circa il 40% del volume totale di acqua, costituendo un grande bacino idrografico di estrema rilevanza per l'utenza civile. A partire dalle aree vicino al lago Van in Turchia, dove il F. Greater Zab nasce, il GZR rappresenta il recapito di numerosi corsi d'acqua compresi quelli della regione del Kurdistan iracheno attraverso il quale scorre fino a confluire nel fiume Tigri, a circa 40 km a sud della città di Mosul. nel suo percorso il GZR interessa diverse formazioni geologiche, la maggior parte delle quali costituite da rocce carbonatiche composte da calcite e dolomite, fortemente solubili per effetto delle precipitazioni. Pertanto gli affluenti maggiori (i fiumi Shamdinan, Haji Beg, Rawandooz e Khazir-Gomal), oltre a decine di piccoli affluenti e torrenti stagionali, confluiscono e si riversano nella valle principale del GZR, trsportando i prodotti dell'erosione di queste rocce come ioni solubili. le fluttuazioni nella concentrazione dei principali cationi e anioni sono dovute all'effetto dell'alimentazione idrica di affluenti e torrenti, alla tipologia delle rocce esposte e all'effetto dell'erosione chimica sulle rocce e sul suolo che ne deriva. il presente studio ha mostrato, attraverso i risultati dell'analisi chimica dei principali cationi {(Ca 2+ = 58-41) mg/l, (Mg 2+ = 18,5-33) mg/l, (na + = 3-7 mg/l, (K + = 1,6-2,5) mg/l} e anioni {(HCO 3-= 181-214) mg/l, SO 4 = = 39-64) mg/l, Cl-= 4-12) mg/l, nO 3-= 5-32) mg/l}, oltre alla misura del pH (7,1-7,4), della conducibilità elettrica (EC = 471-587 µs/cm), dei sali disciolti totali (TDS = 250-310 mg/l) , della durezza totale (TH = 168-244) mg/l) e della torbidità (Tr. = 7,3-16,1 nTu), che l'acqua del GZR rientra nei limiti fissati dall'Organizzazione Mondiale della Sanità come idonea per scopi potabili, mediante l'utilizzo dell' indice di qualità WQi. Con un WQi compreso tra 26,71 e 39,84, l'acqua del GZR è valutata come acqua buona, ed è considerata acqua dolce, potabile ed idonea all'uso civile (tenendo conto del trattamento del fattore di torbidità con l'acqua, come attualmente applicato). inoltre, in base agli standard di percentuale di sodio (SSP = 2,41-6,26), del rapporto di adsorbimento di sodio, (SAR = 0,08-0,2), della quantità di carbonato di sodio residuo (RSBC =-1,92-0,96) e della percentuale di magnesio (MAR = 34,53-55,82), l'acqua del GZR è risultata anche idonea all'utilizzo in agricoltura e conseguentemente all'irrigazione: la percentuale di sodio per tutti i campioni è inferiore al 60%, con una percentuale di adsorbimento sodico che non supera il valore di 2.5, quindi l'acqua è classificata a basso contenuto di sodio (S1) e non è stato rilevato alcun effetto sulla quantità di carbonato di sodio residuo, poiché in tutti i campioni risulta inferiore a 1,25 meq/l. in conclusione l'acqua del GZR è classificata ottima per l'uso irriguo, perché i valori di CE e na% sono inferiori rispettivamente a 1000 e 60, ed è ulteriormente classificata come buona per l'irrigazione in base ai valori di EC e SAR che collocano l'acqua del GZR nel campo C2-S, oltre ad essere, secondo l'American Salinity laboratory, un'acqua adatta anche a quasi tutte le colture, in quanto in base ai valori SAR e MAR è considerata di classe S1. in generale è possibile affermare che l'acqua del Grat Zab River (GZR) influisce sulla qualità dell'acqua del fiume Tigri poichè, a valle della confluenza dei due fiumi, si registra una diminuzione delle concentrazioni di cationi e anioni nell'acqua del fiume Tigri. AbstrAct The current study examined the assessment of the waters of the Greater Zab River GZR because it represents the most important and largest tributary of the Tigris River due to its participation in about 40% of the Tigris River water and because it is a large basin and catchment area. The GZR consists of the gathering of streams, starting from the areas near lake Van, and then entering iraqi lands in the Kurdistan region towards the Tigris River. it passes through several geological formations, most of which are containing carbonate rocks composed of calcite and dolomite, which have solubility due to the effect of rainwater. Therefore, several streams gather and empty into the main valley GZR carrying the weathering products of these rocks as soluble ions. it was found through chemical analyzes of the main cations (Ca 2+ , Mg 2+ , na + , K +) and anions (HCO 3-, SO 4= , Cl-, nO 3-), as well as measuring the pH, electrical conductivity (E.c.), total dissolved salts (TDS), total hardness (TH) and turbidity (Tr.), The GZR waterfalls within the natural limits set by the World Health Organization for drinking purposes through the use of the water quality index (WQi) as well as its suitability for agricultural purposes according to the standards of Sodium Percentage (SSP), Sodium Adsorption Ratio, (SAR), and the amount of Residual Sodium Carbonate (RSC). As well as, the percentage of magnesium (MAR).
5
Italian Journal of Engineering Geology and Environment, 1 (2021) © Sapienza Università Editrice www.ijege.uniroma1.it
DOI: 10.4408/IJEGE.2021-01.O-01
Al-YouzbAkeY(*)(*)
(*) University of Mosul - Dams and Water Resources Research Center - Mosul, Iraq

ASSESSMENT OF WATER QUALITY ALONG GREATER ZAB RIVER
WITHIN IRAQI LANDS
EXTENDED ABSTRACT



     
  

  


      


 + 
 
  
-
  




  


  






      

Italian Journal of Engineering Geology and Environment, 1 (2021) © Sapienza Università Editrice www.ijege.uniroma1.it
K. T. AL-Y OUZ BAK EY & A. M. SUL AIMAN
ABSTRACT
        
          
          

      
 
         
       
        
    
    

         
2+2+++-

        
          
       
           
        
       
         

Keywords: Greater Zab River, water quality, water assessment, water
utilization, Tigris River, rivers in Iraq
INTRODUCTION
         

   


 
        
         
      
 et alii  et alii


     
        
         
         
       
    et alii 
et alii
      
     
et
alii,   
         
    
         
   

         

       

    
 


        

    2       
et alii
         
2
          
   
         
        

  et alii
et alii
         

 
        
    
      et alii 
  
        
        

         
 
            
            
       



         
          
      
     
Italian Journal of Engineering Geology and Environment, 1 (2021) © Sapienza Università Editrice www.ijege.uniroma1.it
ASSESSMENT OF WATER QUALITY ALONG GREATER ZAB RIVER WITHIN IRAQI LANDS
 
     
    


           


   

       
         
      
         
    

  


         

       
         
       
       
et alii
         
         
          
         

  


         
         


et alii    
         
    

          
        



&
Fig. 1 - Location map and sampling of Greater Zab River
Italian Journal of Engineering Geology and Environment, 1 (2021) © Sapienza Università Editrice www.ijege.uniroma1.it
K. T. AL-Y OUZ BAK EY & A. M. SUL AIMAN
          




    


     
   
et alii
MATERIALS AND METHODS

  
          


       
        




    2+ 2+ 
-  -  
  + +     
   
=  
-  




 
et alii
          


et alii




       
(et aliiet alii&

Water quality scale Quality of water
 
 
 
 
 
    
Qi : 100 X (Vm - Vi) / (Vs - Vi) ……
Qi: 

Vm :       
.
Vi: 


Vs:
Wi = .
Wi:








(&
SSP = Na+ X 100% / (Na++K++ Ca2++Mg2+)   
SAR = Na+/(( Ca2++Mg2+)/2)0.5   
RSBC = (CO32- + HCO3-) - ( Ca2++Mg2+)  
MAR = Mg2+ X 100 / ( Ca2++Mg2+)   
Tab. 1 - Location and ordinations of the samples.
Tab. 2 - Water Quality Index (WQI) scale for drinking water (
&, 2018)
Sample
No.
 - -
Great Zab River
GZW1   
GZW2   
GZW3   
GZW4   
GZW5   
GWZ6   
GZW7   
GZW8   
GZW9   
GZW10   
GZW11   
GZW12   
GZW13   
GZW14   
GZW15   
GZW16   
GZW17   
GZW18 Al’Adiah  
Tributaries
GZT1   
GZT2   
GZT3   
GZT4   
GZT5   
Italian Journal of Engineering Geology and Environment, 1 (2021) © Sapienza Università Editrice www.ijege.uniroma1.it
ASSESSMENT OF WATER QUALITY ALONG GREATER ZAB RIVER WITHIN IRAQI LANDS
RESULTS AND DISCUSSION
  
     

       
   
          
     


   

   





         
         
          
  


        


       
     

      

    

  

  
        
       
& 







Fig. 2 - Cation concentrations along GZR
Fig. 3 - Anion concentrations along GZR
Tab. 3 - Physical parameters of the Greater Zab river
Samp.
No.
pH
E.C
T.D.S
(mg/l)
T.H
Tur.
(NTU)
GWZ1     
GWZ2     
GWZ3     
GWZ4     
GZW5      
GWZ6      
GZW7      
GZW8      
GZW9      
GZW10      
GZW11     
GZW12     
GZW13     
GZW14     
GZW15     225 
GZW16     
GZW17     
GZW18     
GZT1     
GZT2     
GZT3     
GZT4     
GZT5     
0
10
20
30
40
50
60
70
GZW1
GZW2
GZW3
GZW4
GZW5
GWZ6
GZW7
GZW8
GZW9
GZW10
GZW11
GZW12
GZW13
GZW14
GZW15
GZW16
GZW17
GZW18
Concentrations (mg.l-1)
Stations
Ca Mg Na K
T1 T2 T3 T4 T5
Figure 2: cation concentrations along GZR.
0
50
100
150
200
250
GZW1
GZW2
GZW3
GZW4
GZW5
GWZ6
GZW7
GZW8
GZW9
GZW10
GZW11
GZW12
GZW13
GZW14
GZW15
GZW16
GZW17
GZW18
Concentrations (mg.l-1)
Stations
HCO3 SO4 Cl NO3
T1 T2 T3 T4 T5
Figure 3: Anion concentrations along GZR.
0
10
20
30
40
50
60
70
GZW1
GZW2
GZW3
GZW4
GZW5
GWZ6
GZW7
GZW8
GZW9
GZW10
GZW11
GZW12
GZW13
GZW14
GZW15
GZW16
GZW17
GZW18
Concentrations (mg.l-1)
Stations
Ca Mg Na K
T1 T2 T3 T4 T5
Figure 2: cation concentrations along GZR.
0
50
100
150
200
250
GZW1
GZW2
GZW3
GZW4
GZW5
GWZ6
GZW7
GZW8
GZW9
GZW10
GZW11
GZW12
GZW13
GZW14
GZW15
GZW16
GZW17
GZW18
Concentrations (mg.l-1)
Stations
HCO3 SO4 Cl NO3
T1 T2 T3 T4 T5
Figure 3: Anion concentrations along GZR.
Italian Journal of Engineering Geology and Environment, 1 (2021) © Sapienza Università Editrice www.ijege.uniroma1.it

K. T. AL-Y OUZ BAK EY & A. M. SUL AIMAN
          
       
          
         


   

        
         
   
      
   
     


 

       
         
         
          



 
         

   

       
           
         
       
        
           
       
(
        
       
         



      
         
       






    



   
(
   
         
    
          
   

    
     



       


     
        
   
   
      

     
       
          
        

    
 et alii
Fig. 4 - The relationship of E.C. vs TDS in GZR water
200
250
300
350
400
450
500
400 500 600 700 800 900 1000
T.D.S. (mg.l-1)
E.C. (µS.cm-1)
Italian Journal of Engineering Geology and Environment, 1 (2021) © Sapienza Università Editrice www.ijege.uniroma1.it 
     



        
           
           

      
      
    
         
       
          
 


(et alii

     
          



     
         


 



     
&        
 
    
    
       
       
        
ASSESSMENT OF WATER QUALITY ALONG GREATER ZAB RIVER WITHIN IRAQI LANDS
Tab. 4 - Chemical analysis of cations and anions (mg.l-1) of the Grea-
ter Zab water.
Fig. 5 - The +ve relationship between calcium and bicarbonate ions
Fig. 6 - The relationship between calcium and magnesium ions
Fig. 7 - The +ve relation between Sodium and Chloride ions
10
15
20
25
30
35
40
20 40 60 80
Mg2+ (mg.l-1)
Ca2+ (mg.l-1)
River
Tributaries
0
2
4
6
8
10
12
14
02468
Cl-(mg.l-1)
Na+(mg.l-1)
River
Treibutaries
30
35
40
45
50
55
60
65
70
100 150 200 250
Ca2+ (mg.l-1)
HCO3-(mg.l-1)
River
Tributaries
Samp.
No.
Ca2+ Mg2+ Na+ K + HCO3- SO4= Cl- NO3-
GWZ1        25
GWZ2        
GWZ3        
GWZ4        
GZW5        5
GWZ6        
GZW7    2    22
GZW8    2    
GZW9        
GZW10        
GZW11        
GZW12        22
GZW13        
GZW14        
GZW15        
GZW16         
GZW17        25
GZW18        
GZT1         
GZT2         
GZT3         
GZT4         
GZT5     2    
K. T. AL-Y OUZ BAK EY & A. M. SUL AIMAN
Italian Journal of Engineering Geology and Environment, 1 (2021) © Sapienza Università Editrice www.ijege.uniroma1.it


         




        
       
&et aliiet
alii  
        
        


    
   

          

          
           
 
          
       
      
         
        

        
      
          

       


(


       

          
  
   

      

 et alii  
        
    

   
   

       
  

           
        

       
         
         
       
       

       
        
       
        

Fig. 8 - The random relationship between bicarbonate and sulfate in
GZR water
Fig. 9 - The relationship between potassium and nitrate
20
30
40
50
60
70
80
150 170 190 210 230 250
SO4=(mg.l-1)
HCO3-(mg.l-1)
River
Tributaries
0
5
10
15
20
25
30
35
40
1 1,5 2 2,5 3
NO3-(mg.l-1)
K+(mg.l-1)
River
Tributaries
ASSESSMENT OF WATER QUALITY ALONG GREATER ZAB RIVER WITHIN IRAQI LANDS
Italian Journal of Engineering Geology and Environment, 1 (2021) © Sapienza Università Editrice www.ijege.uniroma1.it 
    



&
    
       
         
         

       
       
        &
  
     

   
et alii
 


 
        

CONCLUSION

          

           
         
   

        
         
        
        
  
et alii
       


   



         

(&
           








 
according to the WHO (2006)
Tab. 6 - The chemical analysis in (meq.l-1)
 -
tion.
Samp.
No. Ca2+ Mg2+ Na+ K+ Tota l HCO3- SO4= Cl- NO3- Total
GWZ1     4.74      4.74
GWZ2     5.05      4.61
GWZ3     5.02      4.91
GWZ4     4.60      4.67
GZW5     4.62      4.70
GWZ6     4.79      4.89
GZW7     4.47      4.54
GZW8     4.27      4.34
GZW9     4.65      4.53
GZW10     4.51     4.55
GZW11     4.43     4.63
GZW12     4.45     4.49
GZW13     4.67     4.57
GZW14     4.77     4.72
GZW15     4.82     4.71
GZW16     4.93     4.84
GZW17     4.71     4.68
GZW18     4.84     4.86
GZT1     8.29     7.65
GZT2     4.64     4.44
GZT3     5.18     4.93
GZT4     4.35     4.42
GZT5     5.07     5.23

 WQI SAR SSP RSBC MAR
GWZ1    - 
GWZ2    - 
GWZ3    - 
GWZ4    - 
GZW5    - 
GWZ6    - 
GZW7    - 
GZW8    - 
GZW9    - 
GZW10    - 
GZW11    - 
GZW12    - 
GZW13    - 
GZW14    - 
GZW15    - 
GZW16    - 
GZW17    - 
GZW18    - 
GZT1    - 
GZT2    - 
GZT3    - 
GZT4    - 
GZT5    - 
pH E.C. T.D.S T.H. HCO3- SO4= Cl- NO3- Ca2+ Mg2+ Na+ K+
Vs 8.51400100050040040025050755020055
Wi            
K. T. AL-Y OUZ BAK EY & A. M. SUL AIMAN
Italian Journal of Engineering Geology and Environment, 1 (2021) © Sapienza Università Editrice www.ijege.uniroma1.it






          



        



 
REFERENCES
  The Practice Engineering for Environment. Water Analysis.   

Climate Change Impacts on Water Resources of Greater Zab River, Iraq
10
    Water quality index of delizhiyan Springs and Shawraw river within Soran district Erbil Kurdistan  
3
& Assessment of Groundwater Quality and its Suitability for Drinking and Agricultural Uses in the Oshnavieh
Area, Northwest of Iran.01
 Water quality and heavy metal concentrations in sediment of Sungai Kelantan, Kelantan, Malaysia: A
baseline study.38
  Clay mineral diagenesis and red bed colouration: A SEM study of the Gercus
Formation (Middle Eocene), northern Iraq.55
      The Evaluation of Chemical Characterization for Selected Wells Water in Mosul
Bahshiqa – Shalalat Area, Ninivah Governorate, Northern Iraq.   

   Selecting the Potential Water Harvesting Sites Using Fuzzy GIS-Based Spatial Selecting the Potential
Water Harvesting Sites Using Fuzzy GIS-Based Spatial Multi-Criteria Evaluation in Salah Al-Din Governorate , Iraq. 
37
No Title
Assessment of Greater-Zab River Water Quality for Drinking and Irrigation Purposes.18
Monitoring Variation of Some Water Quatity Parameters of Greater-Zab River atlfraz Station During Fourteen Months
20
Treatment of Greater-Zab Water by Direct Filtration.

&Analysis of water quality using physico-
chemical parameters Hosahalli Tank in Shimoga District, Karnataka, India11
Geochemistry of Groundwater&Treatise On Geochemistry 

Introduction to Hydrogeology.
&
in the Kurdistan region99
&
and health implications.57
&Establishment of background water quality conditions in the Great Zab
 
77
 Global Hydrology, Processes, resources and environmental management.
&Assessment of the irrigation water quality of River Ganga in Haridwar District India.2 
&Assessment of Physico-Chemical Quality of Ground Water in Some Rural Areas Receiving Industrial Wastewater
ASSESSMENT OF WATER QUALITY ALONG GREATER ZAB RIVER WITHIN IRAQI LANDS
Italian Journal of Engineering Geology and Environment, 1 (2021) © Sapienza Università Editrice www.ijege.uniroma1.it 
Discharges in Nagpur District, Maharashtra State, India4 
&Evaluation of Water Quality Index of the Brass River, Bayelsa State, South-South, Nigeria
5 
 The Content and Relations of Mahor, Trace and Rare Earth Elements in Dissolved and suspended Forms in Tigris River Water
between Fishkhaboor and Biji during 2011
Groundwater Dating and Residence-time Measurements.Treatise on
geochemistry
Analysis of Rainfall Drought Periods in the North of Iraq Using Standard Precipitation Index (SPI)
18
          
16
Natural and drinking water quality in Erbil, Kurdistan3
&Physical and Chemical Status of Drinking Water from Water Treatment Plants on Greater
Zab River.13 
 Evaluation of Water Quality for Greater Zab River by Principal Component Analysis / Factor Analysis
57 
Geomorphology and morphometry of the Greater Zab River Basin, north of Iraq. 9 
Ground Water Hydrology
 Evaluating Raw and treated water quality of Greater Zab River within Erbil city by index analysis.
3
Water Quality Assessment in Terms of Water Quality Index.1 
&Assessment of Coastal Water Quality through Weighted Arithmetic Water Quality Index
around Visakhapatnam, Bay of Bengal, India.4 
Guideline for drinking water quality
Received March 2021 - Accepted June 2021
Italian Journal of Engineering Geology and Environment, 1 (2021) © Sapienza Università Editrice www.ijege.uniroma1.it

K. T. AL-Y OUZ BAK EY & A. M. SUL AIMAN
Appendix I
Qi ph E.C. T.D.S T.H. Ca2+ Mg2+ Na+ K+ HCO3- SO4= Cl- NO3-
GWZ1             
GWZ2             
GWZ3             
GWZ4             
GZW5             
GWZ6             
GZW7             
GZW8             
GZW9             
GZW10            
GZW11            
GZW12            
GZW13            
GZW14            
GZW15            
GZW16            
GZW17            
GZW18            
GZT1            
GZT2            
GZT3            
GZT4            
GZT5            
Appendix II
Qi*Wi ph E.C. T.D.S. T.H. Ca2+ Mg2+ Na+ K+ HCO3- SO4= Cl- NO3- Total
GWZ1               
GWZ2               
GWZ3               
GWZ4               
GZW5               
GWZ6               
GZW7               
GZW8               
GZW9               
GZW10             
GZW11             
GZW12             
GZW13             
GZW14             
GZW15             
GZW16             
GZW17             
GZW18             
GZT1              
GZT2              
GZT3              
GZT4              
GZT5              
*MAHMOOD (2013)

Italian Journal of Engineering Geology and Environment, 1 (2021) © Sapienza Università Editrice www.ijege.uniroma1.it
ASSESSMENT OF WATER QUALITY ALONG GREATER ZAB RIVER WITHIN IRAQI LANDS
Appendix III
 2+ 2+ +k+ -So2- - 

   22     

    2    

    2 0   
*MAHMOOD (2013)
... Whereas; TDS readings ranged from 543-630 mg/l, EC values were between 90.53 to 98.5 ms/s, Sulfate concentrations (SO4) in these studied water samples were (20.7-24.4) mg/l, the presence of this range of SO4 may be attributed to the fragments of gypsum rock which formed from the erosion of theses rocks as a result of chemical weathering during seasonal high rain particularly those related to the formation of Gercus since Gercus Formation rocks exposed widely spread in the mountain regions of northern Iraq [34] . The measured concentrations of nitrate range from 1.04 to 5.9 mg/l. ...
... The measured concentrations of nitrate range from 1.04 to 5.9 mg/l. Even so, several ways nitrates end up in the water: rainfall (and the bacteria in the soil that fix it), agricultural practices (like chemical and organic fertilization), or biological activities (like animal excrement and sewage discharges) [34] . The mean concentration of chloride (Cl -1 ) in water samples throughout the studied seasons ranged from 113.1 to 136.7. ...
... Carbonate hardness, or total hardness (TH), refers to the degree to which certain mineral phases that are unstable due to chemical weathering may dissolve when dissolved in rainfall. This process mainly affects the carbonate phases [34,35] . As compared to other analyzed parameters at different sites, the results showed that turbidity and nitrate were significantly altered during the studied months. ...
Article
Full-text available
Kani Mazi River is a branch of the Greater Zab River, it is an important freshwater ecosystem in Duhok Province, Kurdistan Region of Iraq, which serves as a vital resource for biodiversity and human livelihoods. The study aimed to evaluate the water quality and macroinvertebrate diversity of Kani Mazi, a significant segment of the river, to assess its ecological health and potential anthropogenic impacts in a seasonal pattern from March to December 2022.Water samples and macro-invertebrate specimens were systematically collected from three sites. Macro-invertebrates were identified to the lowest practical taxonomic level to assess abundance and ecological status. Findings indicate that water quality varies over time and space, with certain locations exhibiting pollution.A gradient of ecological health can also be observed in the macroinvertebrate communities across the study area. Principal component analysis/Cluster analysis was used to evaluate the water quality.The collected macroinvertebrate samples from studied sites contained genera belong to phylum arthropoda including: Crustacea (family: Gammaroidea) and insects of three orders (Emphemeroptera including family: Baetidae, Heptagenidae, Caenidae), order Odonata (include family: Gomphidae) and order Trichoptera (family: Hydropsychidae). The physico-chemical results demonstrated that nitrate and turbidity were significantly changed during studied months as compared to other studied parameters at various locations. Principal component analysis regarding seasons extracted three PCs, accounting for 56%, 15.9%, and 14.6% of the total variance, respectively. While based on the results of the cluster analysis, two clusters with three subgroups each were created. The findings showed that sample sites can be categorized using these statistical techniques in a way that is consistent with their interrelated features. https://creativecommons.org/licenses/by-nc/4.0/
Preprint
Full-text available
Iber Model was used to simulates fresh water flow and pollutant transport in various aquatic environments, focusing on the main valleys in Mosul City that discharge into Tigris River. These valleys, including Al-Rashidia, Al-Kharrazi, Al-Khosar, Al-Danffilli, Al-Shor, and Eqab, are heavily polluted with solid waste, sewage, and industrial runoff, especially during the rainy season. Total dissolved solids (TDS) concentrations were measured, revealing levels of 520, 500, 670, 660, 1820, and 660 mg/L, respectively. Iber model showed that mixing Tigris River fresh water with valleys water reduces TDS concentrations downstream mouth valleys, with varying distances of impact based on discharge and pollution levels: 293 m from Eqab, 323 m from Al-Khosar, 280 m from Al-Danffilli, and 650 m from Al-Shor. Al-Rashidia and Al-Kharazi showed minimal impact due to their low discharge. Overall, the valleys' discharges do not pose a significant concern for Tigris River's dissolved salt content.
Article
Full-text available
The quality of the water used for irrigation depends on the total amount of dissolved salts, their species soil properties, and crop type. One hundred thirty-nine samples were taken from wells in the east regions of Nineveh Governorate to analyze their physical and chemical properties. Wells water was assessed for irrigation purposes based on the following guides; (SAR), (BSRC), (SSP%), (PI), and (KR). The results showed that the suitability of water for irrigation use that nearly (97%) of samples was excellent based on (SAR) and (BSRC) guides. While the suitability of wells water was (47%) based on (SSP%) guide. Also, the results show that (68%) of wells have good permeability for the PI index and (96%) are suitable by (KR) guide for irrigation. According to the hydrochemical investigation, modified quality facies (R3) have been suggested where (Ca-SO4) is the dominant species This guide was developed based on sulphate as one of the important irrigation criteria in the study area. The results of the application of this index show that (11%) are excellent, (26%) good, (45%) are suitable, (15%) doubtful, and (3%) are unsuitable.
Article
The study of water geochemistry is of great importance in evaluating surface water sources, and the physical and chemical properties are among the most important criteria adopted to determine the suitability of water for various uses, including irrigation, The term irrigation water quality coefficient expresses the suitability of water. Water quality is affected by natural processes and human activities.A geochemical study was carried out to evaluate the water quality for irrigation and other uses of the main valleys (Al-Rashediya, Al-Kharrazi, Al-Khosar, Al-Danffilli, Al-Shor) lies on the left side of Mosul city. for the purpose of evaluating its quality and suitability for irrigation purposes. 48 samples were collected, and field and physical measurements were conducted, which included temperature, pH, electrical conductivity, total dissolved salts, total hardness, and turbidity. The concentrations of the main ions were also measured and it was found that the dominant positive ions are) Ca2+>Mg2+>Na+>K+ ), and negative ions(HCO3->SO42->Cl->NO3- ), The classification developed from the Piper water scheme of the studied valleys showed that the water quality in Al-Rashediya Valley is (Ca-Mg-SO4) type , the water quality in both the valley of Al-Khosar and Al-Shor is of the type (Ca-Mg-SO4-Cl). The water quality in Al-Kharrazi Valley is of the type (Alkaline earths exceed alkali metals). While the water quality in Al-Danffilli Valley is of the type (Ca, Mg, HCO3). The classifications of Sodium Adsorption Ratio (SAR), Magnesium Adsorption Ratio (MAR), Sodium Saturation Percentage (SSP), Wilcox scheme, Residual Sodium Carbonate (RSC)
Article
Full-text available
EXTENDED ABSTRACT L'aumento della popolazione e l'espansione delle operazioni industriali e agricole si traducono in un aumento dei rifiuti agricoli e industriali, nonché dei rifiuti della comunità residenziale che vengono scaricati direttamente nei fiumi e nei torrenti. Questi in-quinanti tipicamente inquinano l'acqua dei fiumi o dei torrenti, così come altre fonti d'acqua in cui sono smaltiti, il che ha un effetto sulla qualità della stessa. Questo studio si concentra sugli effetti delle acque reflue domestiche, industriali e agricole sulla qualità dell'acqua delle cinque valli principali nella parte sinistra della città di Mosul: dell'acqua di queste valli sono stati analizzati in campo per le loro caratteristiche fisiche (pH, EC, TDS, S.S e Tr); E.c (524-2315) μS/cm, pH (6,1-8,3), TDS (257-1163) mg/l, S.S (20-2240) mg/l e Tr (0,36-94,5) NTU. Le proprietà chimiche (Ca 2+ , Mg 2+ , Na + , K + , HCO 3-, SO 4 2-, Cl-e NO 3-), gli elementi pesanti (Fe, Cu, Pb, Co e Mn) e le materie organiche (OM), sono state analizzate presso il laboratorio del Centro Ricerche Dighe e Risorse Idriche dell'Università di Mosul. I risultati delle analisi chimiche sono stati: Ca 2+ (86-504) mg/l, Mg 2+ (43-188) mg/l, Na + (23-150) mg/l K + (2-29) mg/l, HCO 3-(234-742) mg/l, SO 4 2-(75-1300) mg/l, Cl-(56-233) mg/l, NO 3-(3-190) mg/l e TH (512-2028) mg/l; invece, per gli elementi pesanti: Fe (0,13-3,74) mg/l, Cu (0,64-1,38) mg/l, Pb (0,11-1,41) mg/l, Co (0,01-0,07) mg/l e Mn (0,06-0,48) mg/l e OM (1030-4820) mg/l. L'acqua della valle di Al-Shor ha mostrato un pH inferiore a 7 e un'elevata conduttività elettrica; secondo le ipotesi industriali prevalenti, il pH di questa valle era leggermente superiore a 7 in altre valli. Secondo l'OMS (2017) e IQS (2009), i componenti di fram-menti rocciosi nel suolo e le rocce carbonatiche e gessose esposte, hanno portato i valori di durezza totale ad aumentare oltre i limiti consentiti (2009). I risultati hanno indicato che il calcio e il bicarbonato sono più abbondanti rispettivamente di altri cationi e anioni. Ciò indica principalmente l'impatto del contenuto di frammenti carbonatici del suolo e delle rocce carbonatiche esposte all'erosione chimica negli affioramenti sulla qualità dell'acqua. Lo ione magnesio riflette l'esposizione della dolomite nei frammenti del suolo alla dis-soluzione da parte delle acque superficiali. Le maggiori concentrazioni di sodio e potassio sono dovute, rispettivamente, all'effetto degli usi civili e agricoli, nonché ai minerali clorurati secondari presenti nello strato superficiale del suolo. La principale fonte di accumulo di solfato nell'acqua deriva dai componenti del gesso presenti nei terreni. Mentre le fonti di nitrati variano a seconda di come vengono utilizzati i fertilizzanti organici nelle fattorie vicino alle valli. La maggior parte delle acque ha mostrato la presenza di diversi metalli pesanti in quantità elevate che hanno superato i limiti previsti dalle norme internazionali a causa delle acque reflue domestiche, industriali e agricole. Le diverse quantità di metalli pesanti nelle acque sono influenzate dalla presenza di sostanza or-ganica, depositi argillosi e canneti, molto diffusi nei corsi vallivi. Per quanto riguarda i fattori di inquinamento da elementi pesanti, sono stati considerati: l'indice di inquinamento da metalli pesanti (HPI), l'indice di valutazione dei metalli pesanti (HEI), l'indice di metalli (MI) e l'indice di contaminazione (C d), che hanno generalmente indicato che l'acqua nell'area di studio è altamente inquinata e non adatta all'uso agricolo. Tutti i campioni dell'area di studio, infatti, rientravano nella categoria di alto inquinamento considerando gli indici HPI, HEI e C d. I quantitativi di inquinanti nei fiumi delle valli di Al-Shor e Al-Danffilli risultano essere superiori a quelli delle altre valli in quanto queste valli sono generalmente le più esposte ai rifiuti, soprattutto industriali. ABSTRACT Increases in population and the expansion of industrial and agricultural operations result in an increase in agricultural and industrial trash as well as residential waste that is dumped directly into rivers and streams. These pollutants typically pollute river or stream water. This study focuses on the effects of domestic, industrial, and agricultural waste water on the water quality of the five main valleys in the left part of Mosul City: Forty-eight samples of the water from these valleys were measured in the field for their physical characteristics (pH, EC, TDS, and Tr). The chemical properties (Ca 2+ , Mg 2+ , Na + , K + , HCO 3-, SO 4 2-, Cl-and NO 3-), the heavy elements (Fe, Cu, Pb, Co and Mn) and the organic maters, were analyzed. The results indicated that calcium and bicarbonate are more abundant than other cations and anions, respectively. This mainly indicates the impact of carbonate fragment contents and calcareous cementing materials in the soils that exposed to chemical weathering in the outcrops on water quality. Heavy element pollution factors {The heavy metal pollution index (HPI), Heavy metals rating index (HEL), Metal Index (MI), and Contamination Index (Cd)} generally indicated that the water in the study area is highly polluted and unsuitable for agricultural use. The amounts of pollutants in the rivers of Al-Shoar and Al-Danffilli valleys appear to be higher than those of the other valleys since these valleys are generally the most exposed to waste, especially industrial waste.
Article
Full-text available
Development anD evaluation of the Drinking Water Quality inDex in the eastern Bank of nineveh governorate extenDeD aBstract obiettivo di questo studio è il tentativo di sviluppare un nuovo metodo per valutare l'indice di qualità delle acque sotterranee (GWQI) derivato dall'equazione di Gupta & Misra, 2018. Tale indice si basa sugli standard indicati dall'Organizzazione Mondiale della Sanità (OMS, 2006) (GWQI 3) e sulle specifiche standard irachene di potabilità (IQS 417, 2001) (GWQI.6) per la valutazione delle acque sotterranee e la possibilità di utilizzo delle acque dei pozzi per uso potabile nella zona orientale del fiume Tigri, nel Governatorato di Ninive. Per'un'attenta valutazione sono stati quindi selezionati tre siti: il primo tra la città di Mosul e Jabal Bashiqa, il secondo tra i distretti di Hamdaniya, Bartella e Nimrod, ed il terzo tra la città di Tel-kaif e la città di Wana. Complessivamente, per misurare 12 parametri e calcolare l'indice di qualità dell'acqua (GWQI), che comprende: le proprietà fisiche, il pH, i sali totali disciolti (TDS) e la conducibilità elettrica (E.C.), sono stati prelevati centotrentanove campioni di acqua di pozzo. Le proprietà chimiche misurate in laboratorio includevano i cationi (Ca 2+ , Mg 2+ , Na + , K +), gli anioni (SO 4 2-, HCO 3-, Cl-, NO 3-) ela durezza totale (TH). I valori ottenuti di qualità dell'acqua in termini di GWQI. 1 variavano da 20 a 271, quindi l'acqua dei pozzi è stata classificata come non potabile nel 43% dei casi, di pessima qualità potabile nel 28%, di scarsa qualità nel 27% e di buona qualità solo nel 2% dei campioni esaminati. Mentre i valori del proposto GWQI. 2, derivato dall'equazione originale, dopo aver eliminato i paramentri che non influiscono sulla qualità dell'acqua potabile, vale a dire pH, K + e HCO 3-.variavano tra 66 e 172. Secondo la classificazione di Gupta & Misra (2018), la maggior parte dei campioni, per il 59%, mostrava una qualità dell'acqua molto scarsa, scarsa nel 12%, potabile solo nel 29%, mentre la categoria buona ed eccellente non è stata trovata. Utilizzando la formula proposta GWQI. 3 e la classificazione in funzione dei limiti del WHO, (2006), il 37% dei pozzi risulta non potabile, il 57% con acqua molto scadente, il 6% scadente, mentre non si riscontrava la categoria buono e ottimo. Il GWQI. 4 variava da 24 a 374 per le specifiche standard irachene (IQS 417. 2001), nei seguenti rapporti: 10%, 18% e 72%, rispettivamente scarso, molto scarso e inadatto. Mentre il proposto GWQI. 5 secondo gli standard IQS 417. (2001) variava tra 80 e 268, con i campioni distribuiti in molto scadente nel 19% e inadatta all'uso potabile nell'81%. Infine, applicando l'equazione e la classificazione proposta GWQI.6 è stato trovato che il 68% dei pozzi erano non potabili, il 30% con qualità molto bassa e il 2% con qualità bassa. Il motivo per cui i pozzi presentavano valori di GWQI molto alti era probabilmente legato al forte aumento delle concentrazioni di potassio provenienti dai fertilizzanti organici e chimici utilizzati in agricoltura. In generale, le acque sotterranee nell'area di studio risultano non adatte per usi potabili e domestici. a. s. kateB & k. t. al-youzBakey aBstract Groundwater quality is the result of all the chemical and hydrological reactions and processes that affected on the water. The Water Quality Index (WQI) is a mathematical tool that describes water quality to assess the levels of water usage. This study attempts to develop a new method for the groundwater quality index (GWQI). It is based on the standards of the (WHO, 2006) and the (IQS 417, 2001) to assess the groundwater and validity of wells water for drinking in the eastern bank of Nineveh Governorate. 139 well water samples were taken to measure 12 physical variables (pH, E.C. and T.D.S.) and chemical variables (Ca 2+ , Mg 2+ , Na + , K + , SO 4 2 , HCO 3 2-, Cl-, NO 3-, and T.H.). Nine variables were use to calculate the WQI, excluding non-influential parameters (potassium, pH, and bicarbonate) that fall within the permissible ranges for drinking in WHO and IQS 417, based on the statistical treatments. The study developed and modified equations and classifications were used to reflect an accurate quality of the groundwater in the region. The (GWQI.3) classified depending on (WHO, 2006), 37% of wells were unsuitable, 57% were very poor, 6% were poor, while the (GWQI.6) was classified as follows: 68% are unsuitable, 30% very poor, 2% poor, depending on (IQS 417, 2001). In general, groundwater in the study area is unsuitable for drinking and civil uses.
Article
Full-text available
Many sources play a significant role in changing the Tigris river water quality within Iraqi territory, such as the river’s tributaries receiving points, impounding like Mosul dam, the residential settlements as Mosul city, and the untreated discharge of agricultural activities. The First river tributary is Khabbor which confluences the Tigris River at Feshkhaboor village, near the Iraqi-Turkish borders. The second one is Upper Zab which meeting the river at Mishraq, 45 Km south of Mosul. Upper Zab Tributary is characterized by high discharges rates, and high pollution content. The study aim to evaluate its effect on the Tigris river water quality. The Study revealed that the Upper Zab river has buffering capacity that polishes or enhances the Tigris river water characteristics, with an adverse effect for the others. For example, the values increased by 6% for pH, 56% for Dissolved oxygen, and 134.5% for alkalinity, Whereas the other characteristics decreased by 27.7% for electrical conductivity, 23.6% for total solids, 40% for suspended solids,16.5% for calcium ion, 20% for chloride, 33% for sulfate, 50% for chemical oxygen demand, and 6% for biological oxygen demand.
Article
Full-text available
Remote sensing and GIS-based techniques were used to select the potential sites for water harvesting in Salah Al-Din Governorate, northern Baghdad/ Iraq. Spatial Multi-Criteria Evaluation (MCE) was used where seven criteria layers have been evaluated to identify water-harvesting sites, such as slope, stream order, precipitation, potential evaporation rate, soil type, distance to roads and the Normalized Difference Vegetation Index (NDVI). This method helps in locating water-harvesting sites in suitable places as well as improves the management of water resources in the study area. Fuzzy logic modeling was used to standardize the criteria layers, and the Fuzzy Gamma overlay was used to combine these layers together in ArcGIS 10.5. Specific criteria were used to unify all these layers. Finally, the final suitability map for the potential water harvesting sites in Salah Al-Din area was produced were twelve potential water-harvesting sites within the study area have been identified according to the specific criteria used for this purpose and have a high potential for water harvesting. This map will provide optimum sites to build dams in order to store the water, especially in drought-stricken areas. The results illustrate that the GIS can be used as a decision-making tool in water resources management in a scientific approach, which makes the decision making easier and accurate.
Conference Paper
Full-text available
The studied area located in the eastern north of Mosul city in the Mosul – Bahshiqa – Shalalat province. This area is trained topographically from Bahshiqa mountain in the eastern north to the Mosul city in the western south, it is representing a wide depression, with lower elevation in the middle distance between Mosul city and Bahshiqa mountain. This depression represents the catchment area of the precipitation. Thirteen shallow wells were selected to evaluate their water quality. Physical parameters: pH, EC., T.D.S, and T.H. were tested. A well as the chemical composition for cations (Ca2+, Mg2+, Na+, K+) and anions (HCO3-, SO42-, Cl-, NO3-) were analyzed by standard methods. The chemical analyses classified the well into two groups, the first one found within Al-Fat'ha Formation gypsum/anhydrite layers. These kinds of rocks dissolved easily in ground water and cause increasing the salt concentrations. The second group represent ground water found within layers above the evaporates, which are belong to Injanah Formation and recent sediments that derived from the weathered rocks of Al-Fat'ha and Injanah formations. Dissolving the calcareous and gypsiferous materials of these rocks and sediments are enriched ground water with salts. So that the second group ground water show lower concentrations than the first one.
Article
Full-text available
In this research, the standard precipitation index (SPI) was used to analyze rainfall records between 1941-2002 for nine metrological stations in the north of Iraq. In addition, digital maps of average drought magnitude and average drought intensity for the study region had drawn by using geographic information system (GIS). It is concluded that 56% of the study period were drought years. 2008/12/31 2009/6/24
Article
Full-text available
The Great Zab River catchment is a major left-bank tributary of the River Tigris and drains a substantial part of the Kurdistan Region, an autonomous region of Northern Iraq. Within Kurdistan, the water resources of the Great Zab River catchment are under pressure from population increase and are utilized for potable, domestic and agricultural and industrial supply. As with many parts of the world, effective management of water resources within Kurdistan is hindered by a lack of water quality data and established background concentrations. This study therefore represents the first regional survey of river water chemistry for the Great Zab River catchment and presents data on the spatial and temporal trends in concentrations of As, Ba, Ca, Cd, Co, Cr, Cu, Fe, Hg, Li, Mn, Mo, Ni, Pb, Sr, Zn, NO3−, SO42−, F−, Cl− and PO43−, in addition to pH, electrical conductivity, dissolved oxygen and turbidity. As a tool for underpinning the management and monitoring of water quality, background concentrations were defined for the Great Zab catchment using three methods. The influences of geogenic and anthropogenic controls upon spatial and temporal trends in water chemistry are also evaluated. The influence of geogenic loading from underlying bedrock was identifiable within the observed spatial trends, with the most notable differences found between waters sampled from the relatively more volcanic-rich Zagros zone to the north and those sampled from the lower catchment underlain by younger clay-, sand- and siltstones. The greatest anthropogenic influence, identifiable through elements such as Cl− and NO3−, is present in the more highly populated lower catchment. The background concentrations identified in the Great Zab catchment would be those expected as a result of geogenic loading with some anthropogenic influence and represent a more conservative value when compared to those such as the World Health Organization Maximum Admissible Concentration. However, background concentrations represent a powerful tool for identifying potential anthropogenic impacts on water quality and informing management of such occurrences.
Article
Full-text available
The purpose of this study is to evaluate some major physical, chemical variables and heavy metals in water of the Brass River, Bayelsa State, South-South, Nigeria and assess the potential ecological risk. The variables investigated were: pH, EC, turbidity, TDS, TSS, Cl-, SO 2-4 , HCO-3, TH, TA, Ca 2+ , K and Mg 2+ , while the heavy metals were: Mn, Pb, Zn, Cu, Fe, Cd, Ni and Cr respectively. The results showed that pH, EC, TDS, Cl-, SO4, TA, TH, Na and K were appreciably high and the heavy metals: Fe, Pb, Zn, Cu and Cd, Ni was found at low concentration, Cr and Mn was below detection limits (BDL). Water quality index (WQI) was computed in order to assess suitability to beneficial purposes and assess the potential ecological risk of the Brass River. The results obtained on WQI from the four sampling stations (Mouth, Upstream, Downstream and Middlestream) fluctuate from 84.13 to 86.36. Hence, the Brass River water quality is considered good based on the water quality index (WQI). A comparative analysis of this study with FEPA, CCME standards for brackish water revealed that the results obtained in this study were within the permissible limits and concomitant with documented studies from similar environments.
Article
Full-text available
This study was conducted to determining the variable effects on water quality of Greater Zab River in Erbil province, Iraq, using multivariate statistical analysis. Seventeen variables were monitored in four sampling sites during one year (from May 2012 to April 2013). The dataset were treated using principal component analysis (PCA)/ factor analysis (FA), cluster analysis (CA) to the most important factors affecting water quality, sources of pollution and suitability of water for drinking consumption and irrigation. Six factors were identified as responsible for the data structure explaining 73.5% of the total variance in the dataset and are conditionally named, hydrochemical from weathering, mineral salts and domestic wastes. CA showed two different groups of similarity between sampling sites, in which site 2 was more contaminated than other studied sites. Their pH and TDS values were found in agreement for drinking and irrigation purposes with drinking water quality standard for Iraq, WHO, and Richards standards. SAR contents were low and maximum value was observed at site 2 and all sites classified as S1 type (low salinity) water quality. While, sulfate concentration exceeding permissible level according to water quality standard for Iraqi standard for drinking water, and irrigation purposes Richards standards. Generally, results of most water quality parameters revealed that Greater Zab River were within permissible level for drinking water consumption, while it regarded as safe water type for all kinds of crops.