Content uploaded by Rémi Morvan
Author content
All content in this area was uploaded by Rémi Morvan on Jan 03, 2022
Content may be subject to copyright.
&
&
knowledge
[]
§
§
@ens-paris-saclay.frremi.morvan
ℕℕ>0 ℤ
∼ ∼
𝜋
𝒫
𝒫
𝒫
𝒫
𝒫
⋃𝑥 = 𝑥
𝑥 ∈ 𝑆 ⋃∶𝒫(𝑆) → 𝑆
− ∶ 𝑆 → 𝒫(𝑆)
𝒫
𝒫
+ ∗
1 2
1 2
+
§
§
+
+ −1
§
§
§
§
§
𝑘
ℕ
𝑘
𝑘
′ + ′ 𝑘
𝑘′ ′ 𝑘
𝑤 𝑤′
𝑤 𝑤′
𝑘0∈ℕ
𝑘 ≥ 𝑘0𝑤≢𝑘𝑤′
′′+ 𝑘′ 𝑘′ 𝑘
′′
+ 𝑘 𝑝𝑘𝑞
+𝑘 𝑘
𝑘
𝐴+ 𝜑<𝑥
𝜑
2< 𝑥
ℕ>0 + 𝑘
𝑘+1 𝑘
<𝑥 ≥𝑥
+ 𝑘 +ℕ>0
+ ℕ>0
ℕ 𝑘
+𝑘2𝑛−1𝑝
𝑛≡𝑘𝑝
ℕ 𝑟
𝑟 𝑚 𝑝 𝑘
𝑚𝑚+1 𝑚
𝑚≡𝑘𝑚
∗
∗
𝑎,
𝑎𝑎∗
ℤ/2ℤ
𝑆𝐿 𝐿 =
𝑏+(𝑎𝑎)∗
+∗
𝐿
1+∗2 + 3 ∗
1 2
3
ℤℤ ℤℤ 2 3
1 2
2 3
3
2 +2 3
⇒
⇒ ⇒ ⇒
12+
1 2
1 2
1≡𝑘2 ℕ
1≡𝑘2≡𝑘 ℕ
1 2 𝑘 1≡𝑘2≡𝑘
11 221𝑘2
𝜑 ∶ 𝐴+→ 𝑈
𝑘 ∈ ℕ
+
ℕ +𝑘
𝑈𝑅𝑘(𝜑) 𝐴+/≡𝑘
(𝑢, 𝐿) ∈ 𝑅𝑘(𝜑) 𝑢 ∈ 𝜑[𝐿]
𝜑
(𝑅𝑘(𝜑))𝑘∈ℕ
𝜑
𝑈
1 2
1
2
1 2
+𝑘
ℕ 1 1 2 2 1𝑘2
12 1 2 1
2 𝑘
1 2 𝑙 ℕ
1
2 𝑖𝑖
1 2 1𝑙2 11
22 𝑖𝑖
§
𝒜 𝒫 +
grp𝒜
𝒮 𝒫 𝒜
𝒢𝒮 𝒢𝒮 𝒮
𝜋𝜋+1 2𝜋−1 𝒮 ∗
grp𝒜
+
grp𝒜
+
grp
+
grp
+
grp
+
grp𝐿
𝐿
+
grp𝐿
+
grp𝐿
∗
{𝒃𝒂,
𝒃𝒂𝒂}∗
{𝒂,
𝒂𝒂}∗
∗
{𝑎},
{𝑎𝑎}∗
+
grp(𝑆𝐿)
𝑆𝐿 𝐿 =
𝑏+(𝑎𝑎)∗
𝒢𝒮 𝒢𝒮
𝒮 𝒫
𝒮
𝒢 𝒮 𝒢𝒮 1𝑛
𝒢 𝒢𝑖 𝜋
𝑖𝜋+1
𝑖2𝜋−1
𝑖 𝑖⋅
𝑖 𝒢𝑖𝒮 𝒢1𝒢𝑛 𝒮
𝑖𝒢𝒢𝑖𝒢𝒢𝒢1𝒢𝑛
𝑖 𝒢
𝒢 𝒮
𝐿
𝐿
§
𝐴+= 𝐴 ⋅ 𝐴∗= 𝐴∗⋅ 𝐴
𝒜𝒫
+
grp𝒜𝒜∗
grp𝒜∗
grp𝒜𝒜
𝒜∗
grp𝒜 +
grp𝒜
+
grp𝒜 𝒜𝒜 𝒜∗
grp𝒜 ′ 𝒜∗
grp𝒜
′′′ ′ ′′𝒜∗
grp𝒜
𝒢 𝒜∗
grp𝒜 𝒢
𝒢𝒢 𝒢𝒜∗
grp𝒜
𝑎 ∈ 𝒜
𝑎⋅(⋃+
grp(𝒜)) ⊊ ⋃+
grp(𝒜)
𝑎 ∈ 𝒜
(⋃+
grp(𝒜)) ⋅ 𝑎 ⊊ ⋃+
grp(𝒜)
+
grp(𝒜)
§
§
𝒜𝒫
𝒜 +
grp𝒜+
grp𝒜
𝒜 +
grp𝒜 +
grp𝒜
+
grp𝒜
+
grp𝒜 𝒜
𝒜⋅ 𝒜 𝒜⋅
+
grp𝒜
+
grp𝒜
+
+
grp +
grp
+
grp+
+
+
grp
2 3
+
grp𝐿 1
2
+
grp𝐿
+
grp
↓+
grp(𝜑)
+
grp
+
+ ≡𝑘 ℕ
′ ℕ 𝑘
′′
𝑘 ′𝑘′
𝑘 𝑘
𝑘′
𝑘 𝑘 ′
ℕ +𝑘
ℕ>0 𝑝𝜋 𝑘
+𝑝𝑘𝑝+𝑞 ℕ 𝑝𝑝+1 2𝑝−1
𝑘 ′ 𝜋2𝜋−1 ′ 𝜋2𝜋−1
𝒫+𝒫 𝒫
+
+
++
grp
+
+
𝐿
+
2 +
3 ∗ +
grp𝐿
++
grp𝐿
+𝜑
𝐿
𝜇
+
grp𝐿
+
§
𝒜+𝒜⋅ 𝒜 𝒫
𝒜 +
grp𝒜 𝒜
+𝑘 𝒜
+
grp𝒜
+
grp𝒜
+ ∗
++
grp𝐿
§
+
grp
+
++
grp ℕ 𝑘 𝑈
+𝑘
≡𝑘 ′ 𝑘′ ̂
𝜑(𝑤) = ̂
𝜑(𝑤′)
̂
𝜑−1[̂
𝜑(𝑤)]
𝑘
′
+
grp
+
grp
+
−1
+ +
grp
§
§
𝜔
§
§
§
§ §
§ §
𝜔1
𝜔1
𝜄𝜄<𝜅
𝜄<𝜅𝜄
1
𝗈𝗋𝖽 𝗈𝗋𝖽+
∗ +
𝗈𝗋𝖽𝗈𝗋𝖽
𝖿𝗅𝖺𝗍 𝗈𝗋𝖽
𝗈𝗋𝖽𝗈𝗋𝖽
𝖿𝗅𝖺𝗍
𝗈𝗋𝖽
𝜋 ∶ 𝑀∗→ 𝑀
1
2𝜄𝖿𝗅𝖺𝗍
𝜄<𝜅𝜄𝜄<𝜅 𝜄𝜄<𝜅 𝗈𝗋𝖽𝗈𝗋𝖽
(𝑀𝗈𝗋𝖽)𝗈𝗋𝖽 𝑀𝗈𝗋𝖽
𝑀𝗈𝗋𝖽 𝑀
−𝖿𝗅𝖺𝗍
𝜋𝗈𝗋𝖽 𝜋
𝜋
2
𝗈𝗋𝖽+
1 2𝜄𝖿 𝗅𝖺𝗍
𝜄<𝜅 𝜄𝜄<𝜅
𝜄𝜄<𝜅 𝗈𝗋𝖽+𝗈𝗋𝖽+ −𝗈𝗋𝖽
−𝗈𝗋𝖽+
−∗ −+
−𝗈𝗋𝖽
−𝗈𝗋𝖽+
§
𝜔
𝜔
§
1
𝗈𝗋𝖽 𝗈𝗋𝖽+
1
∗
𝜔 𝜔 𝑖<𝜔
𝜔
𝜔𝜔
𝜔
𝜔
1
2𝑛𝜔𝜔
3𝜔𝜔
4
5𝜔
𝜔
1 2𝑛𝜔𝜔 3𝜔 𝜔
ℕ max ℕ
ℕℕ ℕℕ ℕ>0
𝜔
𝜔
ℕ ℕ 𝑛
𝑥 ∼𝑛𝑦 𝑥′∼𝑛𝑦′
max(𝑥, 𝑥′) ∼𝑛max(𝑦, 𝑦′)
𝑥 ∼𝑛𝑦 𝑆(𝑥) ∼𝑛𝑆(𝑦)
𝜔 𝜔𝑛 𝑛
1 𝜔
𝑘−1 𝑘 ℕ>0
𝜔 𝜔
2
𝜔 𝜔
3 2
1 1
ℝ>0
𝜄<𝜅 𝜄
𝑖∈𝐼 𝑖
ℝ>0
ℝ>0 𝑖<𝜔
𝜄<𝜅𝜄
𝜄<𝜅 𝜄
(2−𝑖)𝑖<𝜔
ℝ>0
ℝ>0
𝜔
𝗈𝗋𝖽+ 𝜔
§
§
𝜔
𝜋 ⋅,𝜔
𝜋⋅,𝜔
𝜔
max
ℕ>0
𝜔𝜔
𝝎
𝗈𝗋𝖽
[0,𝜔𝜔[
12 1 2
1 2 𝜔
§
𝜔 § 𝜔
𝜔1
1
𝜔 1
𝜔
𝜔
𝗈𝗋𝖽+ 𝐿
∗ 𝐿
𝗈𝗋𝖽+ 𝜔 𝜔
+ ≥𝜔
2
<𝜔𝑛 𝑛+1 ℕ
𝜔∗𝜔
∗
𝑎,
𝑎𝑎∗
ℤ/2ℤ
𝐿 =
(𝑎𝑎)𝗈𝗋𝖽+
𝑎𝜔 §
𝗈𝗋𝖽+
ℕ2𝑝 𝐿2𝑞2𝑝+1 𝐿2𝑞+1 2𝑝 𝐿2𝑞+1
ℕ2𝑝 𝐿𝜔 2𝑝 𝜔 𝜔 𝜔
2𝑝+1 𝐿𝜔 𝜔 𝜔𝐿𝜔
10 𝛼𝐿𝜔 0
𝛼𝐿𝜔
∗
∗
∗
(𝑎𝑏)𝗈𝗋𝖽+
𝗈𝗋𝖽+
𝗈𝗋𝖽+ 𝗈𝗋𝖽𝗈𝗋𝖽 𝗈𝗋𝖽 𝗈𝗋𝖽
§
§
𝒫𝗈𝗋𝖽+ 𝒫
𝜄𝜄<𝜅𝜄𝜄<𝜅 𝜄𝜄
𝒫
𝒫
𝒫
𝒫
𝜔𝜔 ⋅
ℒ
ℛ𝒥 ℋ §
ℒ𝒥 ℒ ℛ
ℋ
𝒟
𝒟=𝒥
𝒥 𝒥
ℋ
ℒ ℛ
𝒥
𝜔𝜋𝜔
ℛ 𝜔𝜔
ℛ 𝜔 𝜔𝜔
𝜔𝜔 3
𝜔 𝜔 ℛ
𝜔
𝒥𝒥𝒥 𝜔ℒ𝜔
𝜋 𝜋 𝒥
ℒ ℒ𝑛 ℕ>0 𝒥
𝒥 𝒥
𝜔 𝜔 𝜔 𝜔
𝗈𝗋𝖽+
𝒥 𝜔 ℒ𝜔
⇒ ⇒
⇒
𝒥
01 𝑖𝑖<𝜔 𝜔
𝜔
𝜔
𝐺
2 𝜔 𝜋𝜔 𝜔
𝐺
𝒥 ℋ
𝒥 ℋ 2𝒥2
𝒥𝒥𝒥 𝜔ℒ𝜔 ℋ𝒥𝜔𝒥𝜔
𝜔ℛ 𝜔𝜔 𝜔ℛ
𝜔 𝜔 𝜔 𝑒≤ℋ𝑓
𝑒𝑓 = 𝑒 = 𝑓𝑒
ℋ
𝒥
ℒ
ℒ𝜔
𝜔 ℒ𝜔 𝜔𝒥
𝜔 𝜔 𝜔ℛ 𝜔𝒥
𝜔𝒥
𝜔𝒥 𝜔ℛ
ℒ𝜔 𝜔ℒ𝜔 ℋ
𝒥 ℒ ℒ𝜔
𝗈𝗋𝖽+
𝒥
𝜔𝒥 𝜔𝒥 𝜔 𝜔
𝒥
ℛ
ℒ 𝜔 𝜔
𝜋
𝜋 𝜋𝜋
𝜋𝜔𝜋
§
𝛼
𝜔
𝜔 𝜔 𝜔
𝛼𝜋 𝜋
⋅,𝜔
𝜔
𝑛
𝛼
𝜌
𝛼𝜌 |𝑆| 𝜔
𝗈𝗋𝖽+
|𝑆|
|𝑆| §
𝛼 𝛽
𝜔 1+𝜔
𝛼𝛼𝛾𝛼𝛾 𝛾𝛽𝛾 𝛽𝛾 𝛽
𝛼𝛼<𝜔1 ℛ
𝛼𝛼<𝜔1
𝛽
𝛼𝜋
𝛼𝜔𝜋 ℋ ℒ𝜔
𝛼𝜋
𝑠𝜔𝑖⋅𝑛
∗
𝑠𝜔𝑖⋅2
𝑠𝜔𝑖
𝑠𝜔𝑖−1
∗
𝑠𝜔
∗
𝑠∗
𝑠𝜔𝑖
ℕ
𝜔𝑛 𝜔𝑛⋅
§
𝗈𝗋𝖽+
𝑘
𝑘 𝑘 ℕ
′ 𝑘′ ′
𝑘 𝑘
𝗈𝗋𝖽+ ℕ 𝑘 𝑝𝑘𝑞
ℕ>0
1 𝗈𝗋𝖽+
ℕ ℕ>0 𝑛𝑛1
𝑛
§
𝜔12
𝜔12 22 𝜔 2 2
1 1
𝗈𝗋𝖽+
ℕ 𝗈𝗋𝖽+𝑘
∗
𝜔 𝜔
𝜔∗𝜔
∗
𝑎,
𝑎𝑎∗
∗
𝐿∶=
𝑏𝗈𝗋𝖽+(𝑎𝑎)𝗈𝗋𝖽
𝗈𝗋𝖽+𝗈𝗋𝖽
𝐿
𝒥
𝐿
1 𝗈𝗋𝖽+𝗈𝗋𝖽2 𝗈𝗋𝖽+ 3 𝗈𝗋𝖽
𝐿 1 2 3
ℤℤ
1 2
ℕ
ℕ 𝑙𝑘𝑙
𝗈𝗋𝖽+ 𝐿
2 3
𝒜 𝒫
𝜔
grp𝒜𝜔+
grp𝒜+
grp𝒜𝜔
ord+
grp 𝒜 𝒮 𝒫
ord
grp𝒜 ord+
grp 𝒜
+
grp𝒜 𝜔
grp𝒜 ord+
grp 𝒜
𝐴𝗈𝗋𝖽+ = 𝐴 ⋅ 𝐴𝗈𝗋𝖽
ord+
grp 𝒜𝒜ord
grp𝒜
∗
{𝒃𝒂𝝎𝒂,
𝒃𝒂𝝎}
{𝑏𝑎𝜔𝑎} {𝑏𝑎𝜔}
{𝒃𝒂,
𝒃𝒂𝒂}
{𝒂𝝎𝒂,
𝒂𝝎}∗
{𝑎𝜔𝑎}∗{𝑎𝜔}∗
{𝒂,
𝒂𝒂}∗
∗
{𝑎},
{𝑎𝑎}∗
ord+
grp (𝑆𝐿)
𝐿∶=
𝑏𝗈𝗋𝖽+(𝑎𝑎)𝗈𝗋𝖽
ord+
grp 𝐿 𝐿 𝒫𝐿
ord+
grp 𝐿
𝜔𝜔 𝜔𝜔 ord+
grp 𝐿
ord+
grp 𝐿
𝒜
𝒫
𝒜 ord+
grp 𝒜ord+
grp 𝒜
ord+
grp 𝜔
grp𝒜ord+
grp 𝒜
ord+
grp 𝒜 ℒ ℛ
𝒜𝗈𝗋𝖽+ 𝒜⋅,𝜔
ord+
grp 𝐿
ord+
grp 𝐿ord+
grp 𝐿
§
§
𝗈𝗋𝖽+
ord+
grp
ord+
grp
ord+
grp
𝗈𝗋𝖽+
ℕ𝑘
ord+
grp
𝐴𝗈𝗋𝖽 → 𝑈
𝐴𝗈𝗋𝖽 →ord
grp(𝑈)
𝗈𝗋𝖽+
𝗈𝗋𝖽+
ord+
grp
𝗈𝗋𝖽+
𝜔 𝜔𝜔
𝜔𝜔𝜔
𝜔 𝜔𝜔
𝜔𝜔𝜔
𝐿
𝗈𝗋𝖽+ 𝐿 −1
−1−1−1−1𝜔−1𝜔−1 𝜔 −1𝜔
𝐿ord+
grp 𝐿
𝗈𝗋𝖽+ ord+
grp 𝐿
−1
−1
−1+∗+
−1𝜔𝜔
𝗈𝗋𝖽+ +
§
§
§
𝒜𝗈𝗋𝖽+
ord+
grp 𝒜 𝒜𝒫 𝒜 ord+
grp 𝒜
𝒜
𝑘 §
§ 𝒜
𝒜
§ §
ord+
grp (𝒜) ⋅ 𝑎 ⊊ ord+
grp (𝒜)
+ord+
grp
𝜔 §
𝜔
𝜔
grp
∗∗
𝜔1/∼
1
1
𝒞
𝒞
lim𝑛∞ 𝑛 𝜔 lim𝑛∞ 𝑛
𝒞𝜔
2 lim𝑛→∞ 𝑛 lim𝑛→∞𝑘𝑛 ℕ
3
𝜔𝜔
max
𝜔 𝑥+1
2 max𝜔
3
max
max max
𝒥 𝒥
𝒥
𝒜𝒫
𝒜++
grp𝒜 𝒜+
+
grp𝒜 𝒜
Y +
grp𝓐 ⟨𝒜⟩⋅
+
grp(𝒜)
𝒜++
grp𝒜
+
grp𝒜 𝒜⋅
Y 𝓐 𝒜 𝒜⋅
𝒜⋅ 𝑛
𝒢 𝒜⋅ 𝑘𝒜+
𝑘
𝒢
𝑘
𝑘 𝒢 𝑘
𝒜+
Y +
grp𝓐 𝓐
𝒜 +
grp𝒜 +
grp𝒜
+
grp𝒜 +
grp𝒜 +
grp𝒜
YY +
grp𝒜+
grp𝒜 𝒜
𝑤 ∈ 𝒜∗
𝑎
𝑎
ℬ𝒜
𝒜∗ℬ∗+ℬ+∗∗ ℬ
𝒜 𝑎 +
+
grp ℬℬ++
grpℬ 𝑎 +
ℬ ℬ+
+
grp𝒜+
grp𝒜
+
grp+
grp+
grpℬ+
grp𝒜+
grp𝒜
+
grp+
grpℬ++
grp+
grp+
grpℬ
𝑎ℬ +
grp +
grpℬ+
𝒜++
grp𝒜 ℬ𝑎,𝑖 ℬ,𝑖𝑖<𝑘𝑎𝒜∗ℬ∗+ℬ+∗∗
̂𝜋
∗
grp(−) +
grp(−)
𝑤ℬ𝑤𝑎 (𝑤𝑎,𝑖𝑤ℬ,𝑖 )𝑖<𝑘
ℬℬ𝑎𝑎,𝑖ℬℬ,𝑖𝑖<𝑘𝑎𝑎
𝑎ℬ
∗
grpℬ∗
grp+
grp+
grpℬ∗
grp∗
grp𝒜
+
grp𝒜
YY +
grp𝒜 +
grp𝒜 𝒜
YY +
grp𝒜
|+
grp(𝒜)| ≥ 2
+
grp(𝒜)
𝒜
𝒜++
grp𝒜
𝒜+
𝒜+⋅
+
𝑈
𝑈
𝒫(𝑈)
+
+ + + 𝑈
𝒫+𝒫 𝒫
𝒫
+
grp
+ +
grp +
grp
++
grp +
+
+
𝛼 1
𝜔
01𝑛−1 0
ℤℤ
𝑖𝜔
𝑖−1 𝑖−1 𝜔
𝑖−1 𝑖−1 𝑖𝜔
𝑖−2 𝑖 𝜔𝑘−1
𝑖−𝑘 𝑖 𝜔𝑛−1
𝑖𝑖𝜔𝑛−1+1
𝑖
𝜔
𝑖(𝜔𝑛−1+1)𝜔
𝑖𝜔𝑛
𝑖
𝑖+1 𝑖 0 1 𝑛−1
𝜆
𝜆
𝜔
𝜆ℛ𝜔ℛ 𝜔𝜋ℛ
𝜔2𝜔 ℕ>0 𝜔𝑛𝜔
𝜔 𝜆 𝜔 ⋅𝑝
ℕ 𝜔 ⋅𝑝 ℋ𝜔 ℋ𝜔
𝜔
𝛼
§
ℕ
𝜔𝑛 𝜔𝑛
𝜔𝑚𝜔𝑛⋅ 𝜔𝑚𝜔𝑛⋅𝑘
ℕ 𝜔𝑚
𝜔𝑛 𝜔𝑚𝑚<𝑛
§
𝜔 ⋅ 3
n n
n 1
n
n 𝜔
† 1
† n
†
ℕ 𝑘+2
n 𝑘n
ℕ ℕ>0
𝑛
ℕ
𝑛+1 𝑛+1 n 𝑛
𝑛
1 † n 𝑛 𝑛+1
𝑛 1
𝑛 <𝑥 𝑛1
ord+
grp 𝒜ord+
grp 𝒜 𝒜
ord+
grp 𝜔
grp𝒜ord+
grp 𝒜
ord+
grp 𝒜 ℒ ℛ
𝒜𝗈𝗋𝖽+ ord+
grp 𝒜
ord+
grp (𝒜)
𝒥
ord+
grp 𝒜 ℛ 𝒜
𝒥 ℛ 𝒜
𝒥 ℛ
𝜔𝒥𝜔
ord+
grp 𝒜 𝒥 𝒥 𝒥
𝒥𝒥𝜔𝒥
ℋ ℒ
ℛ ℒ
ℒ
ℛ
𝜄𝜄<𝜅
𝜄𝜄<𝜅𝜃
ord+
grp 𝒜
𝗈𝗋𝖽+ ord+
grp 𝒜
ord+
grp ℋ
𝒜 ord+
grp 𝒜 ord+
grp
ord+
grp 𝒜 ℒ ℛ
𝜋
𝐽
𝒜𝗈𝗋𝖽+ ord+
grp 𝒜
ord+
grp 𝒜 ord+
grp 𝒜
ord+
grp 𝒜 ℒ𝜔
𝒜𝒫 𝒜𝜔
𝜔
grp𝒜 𝒜𝜔
𝒜 +
grp𝒜
Y 𝓐 𝒜𝜔
𝒜𝜔
Y 𝓐
𝒜 +
grp𝒜 +
grp𝒜
𝒜 +
grp𝒜 +
grp𝒜 +
grp𝒜
YY +
grp𝒜 +
grp𝒜 𝒜 ℬ𝒜 𝒜𝜔
𝐿𝑎 𝐿ℬ
{𝑎}
ℬ
𝒜𝜔 𝑎ℬ 𝑎ℬ 𝑎ℬ∗+ℬ+∗𝜔
ℬℬ𝜔ℬ∗+ℬ+∗+ℬ𝜔 𝑎ℬℬ∗+ℬ+𝜔
𝒜𝜔𝜔
grp𝒜 𝑎ℬ
𝑎ℬ
𝒜∗∗
grp𝒜 𝒜∗
𝑎 ++
grp 𝑎 +
ℬℬ++
grpℬ ℬ ℬ+
+
grp𝒜+
grp𝒜 +
grp+
grp+
grpℬ
+
grp𝒜
+
grp𝒜+
grpℬ𝜔𝜔
grp+
grp𝒜+
grpℬ
+
grp𝒜 +
grpℬ𝜔
𝐿𝑎ℬ𝑎ℬ𝜔
grp
ℬ𝑎,𝑖ℬ,𝑖𝑖<𝜔 ℬ𝑎𝑎,𝑖ℬℬ,𝑖𝑖<𝜔
𝐿𝑎 𝐿ℬ
ℬ
YY +
grp𝒜 +
grp𝒜 𝒜
YY +
grp𝒜
𝜔 𝜔
grp𝒜 𝜔
§
𝒫𝗈𝗋𝖽+ 𝒫
𝒫
𝒜𝒫
𝒜𝗈𝗋𝖽+ ord+
grp 𝒜 𝒜𝗈𝗋𝖽+
𝒜 ord+
grp 𝒜
Y 𝓐 𝒜𝗈𝗋𝖽+ 1
𝒜𝗈𝗋𝖽+ 1 𝒜𝜋 𝒮 ℕ ℕ>0 𝑛
𝒢 𝑛
𝑛 𝒢 𝑛 𝑛 ℕ
𝑚 𝜌 𝑎𝑖= 0̂𝜋(𝜔𝑚−1𝑎𝑖)
ord
grp(𝒜)
𝑚𝑚𝑚−1 𝑚−1 10 𝑚 𝑚−1𝑚−1 1 0
𝑚1 𝑚−10ℕ
Y 𝓐 ord+
grp 𝒜ord+
grp 𝒜
𝒜 ord+
grp 𝜔
grp𝒜ord+
grp 𝒜 𝒜𝗈𝗋𝖽+ 𝒜⋅,𝜔
YY ord+
grp 𝒜ord+
grp 𝒜 𝒜 ℬ𝒜
𝒜𝗈𝗋𝖽 ℬ𝗈𝗋𝖽𝗈𝗋𝖽+ℬ𝗈𝗋𝖽+𝗈𝗋𝖽𝗈𝗋𝖽
ord+
grp ord+
grp ord+
grp ℬord+
grp 𝒜
§
YY ord+
grp 𝜔
grp𝒜ord+
grp 𝒜 𝒜𝗈𝗋𝖽 = (𝒜𝜔)𝗈𝗋𝖽𝒜∗
𝜔⋅𝛼+𝑛 𝛼 < 𝜔1 𝑛 ∈ ℕ
𝒜𝗈𝗋𝖽
𝒜𝜔𝗈𝗋𝖽𝒜∗
∗𝒜∗∗
grp𝒜 ∗ 𝒜∗
𝜔𝒜𝜔𝜔
grp𝒜 𝜔 𝒜𝜔
ord+
grp 𝜔
grp𝒜 ord+
grp 𝒜
𝜔
grp𝒜𝗈𝗋𝖽+ ord+
grp 𝜔
grp𝒜
𝜔
grp𝒜𝗈𝗋𝖽+
𝒜𝗈𝗋𝖽+ ord+
grp 𝒜
𝜄𝜄<𝜅∗ 𝜔𝜄𝜄<𝜅 ∗∗
∗ 𝜔
𝒜𝗈𝗋𝖽 𝒜𝜔𝗈𝗋𝖽𝒜∗
YY
ℤℤℤℤ +
𝑎mod 𝑏mod
−1
ℤℤ
𝒥ℋ ℤℤℤℤ
+
grp
+
grp
+
grp
+
grp ℋ
ℋ
ℋ
𝑎2
∗,
𝑎3
𝑎(𝑎𝑎)+
𝐿 + +
grp𝐿
23 23
1
1𝑛
2𝑛 𝑛
2𝑛
𝑛
𝑛+1
𝑛
𝑛+1
1 𝜔
𝜔 𝜔
𝜔 𝑛 ℕ
12 𝜔
1[0,𝜔𝜔[ 2 [0,𝜔𝜔[ 𝗈𝗋𝖽+
1 2
[0,𝜔𝜔[ 𝜋⋅,𝜔 ⋅,𝜔 [0,𝜔𝜔[
1𝗈𝗋𝖽+ 2𝗈𝗋𝖽+ 𝗈𝗋𝖽 𝗈𝗋𝖽 𝗈𝗋𝖽𝗈𝗋𝖽∗
∗(𝑏𝑎)𝜔
∗
∗(𝑎𝑏)𝜔
∗
𝐿2
21 2 𝜔 𝜔𝜔
2
2
2 𝜔 𝜔
𝜔
𝜔
doi:10.4230/LIPIcs.CSL.2011.
67
https://
tel.archives-ouvertes.fr/tel-00003586
doi:10.1006/
jcss.2001.1782
https://arxiv.org/
abs/1502.04898v1
arXiv:2008.11635v1
doi:10.1016/j.jcss.2011.06.003
1
doi:10.1007/
BFb0082721
doi:10.1017/jsl.2018.7
doi:10.
1016/0304-3975(91)90075-D
doi:10.1007/978-3-662-47666-6_12
doi:
10.1007/3-540-68804-8_3
doi:10.
1016/0003-4843(82)90004-3
doi:10.1016/j.
aim.2019.03.020
doi:
10.1016/0022-4049(88)90042-4
1
doi:10.1016/
j.apal.2003.11.002
doi:10.1007/BFb0030294
https://www.irif.fr/~jep/PDF/MPRI/MPRI.
pdf
https://hal.
archives-ouvertes.fr/hal-00112831
doi:10.
2168/LMCS-12(1:5)2016
doi:10.4230/LIPIcs.FSTTCS.2018.47
http://www.jstor.org/stable/1995086
https://hal.
archives-ouvertes.fr/hal-00160985
https:
//tel.archives-ouvertes.fr/tel-00720658
doi:10.1016/
S0019-9958(65)90108-7
http://www.jstor.org/stable/
1971037
doi:10.4153/CMB-2018-014-8
doi:10.1142/S0218196793000287