Conference Paper

BERT Based Cross-Task Sentiment Analysis with Adversarial Learning

To read the full-text of this research, you can request a copy directly from the authors.

No full-text available

Request Full-text Paper PDF

To read the full-text of this research,
you can request a copy directly from the authors.

ResearchGate has not been able to resolve any citations for this publication.
Full-text available
In this paper, we introduce the task of targeted aspect-based sentiment analysis. The goal is to extract fine-grained information with respect to entities mentioned in user comments. This work extends both aspect-based sentiment analysis that assumes a single entity per document and targeted sentiment analysis that assumes a single sentiment towards a target entity. In particular, we identify the sentiment towards each aspect of one or more entities. As a testbed for this task, we introduce the SentiHood dataset, extracted from a question answering (QA) platform where urban neighbourhoods are discussed by users. In this context units of text often mention several aspects of one or more neighbourhoods. This is the first time that a generic social media platform in this case a QA platform, is used for fine-grained opinion mining. Text coming from QA platforms is far less constrained compared to text from review specific platforms which current datasets are based on. We develop several strong baselines, relying on logistic regression and state-of-the-art recurrent neural networks.
Conference Paper
Full-text available
We propose Adaptive Recursive Neural Network (AdaRNN) for target-dependent Twitter sentiment classification. AdaRNN adaptively propagates the sentiments of words to target depending on the context and syntactic relationships between them. It consists of more than one composition functions, and we model the adaptive sentiment propagations as distributions over these composition functions. The experimental studies illustrate that AdaRNN improves the baseline methods. Furthermore, we introduce a manually annotated dataset for target-dependent Twitter sentiment analysis.
Conference Paper
Aspect-level sentiment classification aims at identifying the sentiment polarity of specific target in its context. Previous approaches have realized the importance of targets in sentiment classification and developed various methods with the goal of precisely modeling thier contexts via generating target-specific representations. However, these studies always ignore the separate modeling of targets. In this paper, we argue that both targets and contexts deserve special treatment and need to be learned their own representations via interactive learning. Then, we propose the interactive attention networks (IAN) to interactively learn attentions in the contexts and targets, and generate the representations for targets and contexts separately. With this design, the IAN model can well represent a target and its collocative context, which is helpful to sentiment classification. Experimental results on SemEval 2014 Datasets demonstrate the effectiveness of our model.
Sentiment analysis seeks to identify the view- point(s) underlying a text span; an example appli- cation is classifying a movie review as "thumbs up" or "thumbs down". To determine this sentiment po- larity, we propose a novel machine-learning method that applies text-categorization techniques to just the subjective portions of the document. Extracting these portions can be implemented using efficient techniques for finding minimum cuts in graphs; this greatly facilitates incorporation of cross-sentence contextual constraints.
An important part of our information-gathering behavior has always been to find out what other people think. With the growing availability and popularity of opinion-rich resources such as online review sites and personal blogs, new opportunities and challenges arise as people now can, and do, actively use information technologies to seek out and understand the opinions of others. The sudden eruption of activity in the area, of opinion mining and sentiment analysis, which deals with the computational treatment of opinion, sentiment, and subjectivity in text, has thus occurred at least in part as a direct response to the surge of interest in new systems that deal directly with opinions as a first-class object. This survey covers techniques and approaches that promise to directly enable opinion-oriented information-seeking systems. Our focus is on methods that seek to address the new challenges raised by sentiment-aware applications, as compared to those that are already present in more traditional fact-based analysis. We include material on summarization of evaluative text and on broader issues regarding privacy, manipulation, and economic impact that the development of opinion-oriented information-access services gives rise to. To facilitate future work, a discussion of available resources, benchmark datasets, and evaluation campaigns is also provided.
Utilizing BERT for Aspect-Based Sentiment Analysis via Constructing Auxiliary Sentence
  • Chi Sun
  • Luyao Huang
  • Xipeng Qiu
  • Sun Chi
BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding
  • Jacob Devlin
  • Ming-Wei Chang
  • Kenton Lee
  • Kristina Toutanova
  • Devlin Jacob
Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever
  • Alec Radford
  • Karthik Narasimhan
  • Tim Salimans
  • Ilya Sutskever
  • Radford Alec
Effective LSTMs for Target-Dependent Sentiment Classification
  • Duyu Tang
  • Bing Qin
  • Xiaocheng Feng
  • Ting Liu
  • Tang Duyu