ArticlePDF Available

Development of 3D MRI-Based Anatomically Realistic Models of Breast Tissues and Tumours for Microwave Imaging Diagnosis

MDPI
Sensors
Authors:

Abstract and Figures

Breast cancer diagnosis using radar-based medical MicroWave Imaging (MWI) has been studied in recent years. Realistic numerical and physical models of the breast are needed for simulation and experimental testing of MWI prototypes. We aim to provide the scientific community with an online repository of multiple accurate realistic breast tissue models derived from Magnetic Resonance Imaging (MRI), including benign and malignant tumours. Such models are suitable for 3D printing, leveraging experimental MWI testing. We propose a pre-processing pipeline, which includes image registration, bias field correction, data normalisation, background subtraction, and median filtering. We segmented the fat tissue with the region growing algorithm in fat-weighted Dixon images. Skin, fibroglandular tissue, and the chest wall boundary were segmented from water-weighted Dixon images. Then, we applied a 3D region growing and Hoshen-Kopelman algorithms for tumour segmentation. The developed semi-automatic segmentation procedure is suitable to segment tissues with a varying level of heterogeneity regarding voxel intensity. Two accurate breast models with benign and malignant tumours, with dielectric properties at 3, 6, and 9 GHz frequencies have been made available to the research community. These are suitable for microwave diagnosis, i.e., imaging and classification, and can be easily adapted to other imaging modalities.
Content may be subject to copyright.
Sensors2021,21,8265.https://doi.org/10.3390/s21248265www.mdpi.com/journal/sensors
Article
Developmentof3DMRIBasedAnatomicallyRealistic
ModelsofBreastTissuesandTumoursforMicrowave
ImagingDiagnosis
AnaCatarinaPelicano
1,
*
,†
,MariaC.T.Gonçalves
1,
*
,†
,DanielaM.Godinho
1
,TiagoCastela
2
,M.LurdesOrvalho
2
,
NunoA.M.Araújo
3
,EmilyPorter
4
andRaquelC.Conceição
1
1
InstitutodeBiofísicaeEngenhariaBiomédica,FaculdadedeCiências,UniversidadedeLisboa,
CampoGrande,1749016Lisbon,Portugal;dmgodinho@fc.ul.pt(D.M.G.);rcconceicao@fc.ul.pt(R.C.C.)
2
DepartamentodeRadiologia,HospitaldaLuzLisboa,LuzSaúde,1500650Lisbon,Portugal;
tacastela@hospitaldaluz.pt(T.C.);lorvalho@hospitaldaluz.pt(M.L.O.)
3
CentrodeFísicaTeóricaeComputacional,FaculdadedeCiências,UniversidadedeLisboa,
CampoGrande,1749016Lisbon,Portugal;nmaraujo@fc.ul.pt
4
DepartmentofElectricalandComputerEngineering,TheUniversityofTexasatAustin,2501Speedway,
Austin,TX78712,USA;emily.porter@austin.utexas.edu
*Correspondence:acpelicano@fc.ul.pt(A.C.P.),mctgoncalves@fc.ul.pt(M.C.T.G.)
Thefirsttwoauthorscontributedequallytothepaper.
Abstract:BreastcancerdiagnosisusingradarbasedmedicalMicroWaveImaging(MWI)hasbeen
studiedinrecentyears.Realisticnumericalandphysicalmodelsofthebreastareneededfor
simulationandexperimentaltestingofMWIprototypes.Weaimtoprovidethescientific
communitywithanonlinerepositoryofmultipleaccuraterealisticbreasttissuemodelsderived
fromMagneticResonanceImaging(MRI),includingbenignandmalignanttumours.Suchmodels
aresuitablefor3Dprinting,leveragingexperimentalMWItesting.Weproposeapreprocessing
pipeline,whichincludesimageregistration,biasfieldcorrection,datanormalisation,background
subtraction,andmedianfiltering.Wesegmentedthefattissuewiththeregiongrowingalgorithm
infatweightedDixonimages.Skin,fibroglandulartissue,andthechestwallboundarywere
segmentedfromwaterweightedDixonimages.Then,weapplieda3DregiongrowingandHoshen
Kopelmanalgorithmsfortumoursegmentation.Thedevelopedsemiautomaticsegmentation
procedureissuitabletosegmenttissueswithavaryinglevelofheterogeneityregardingvoxel
intensity.Twoaccuratebreastmodelswithbenignandmalignanttumours,withdielectric
propertiesat3,6,and9GHzfrequencieshavebeenmadeavailabletotheresearchcommunity.
Thesearesuitableformicrowavediagnosis,i.e.,imagingandclassification,andcanbeeasily
adaptedtootherimagingmodalities.
Keywords:realisticnumericalmodels;breasttumourmodels;dielectricproperties;image
segmentation;breastmodelrepositoryformicrowavediagnosis
1.Introduction
Femalebreastcancerwasthemostcommoncancerdiagnosedworldwidein2020,with
over2.26millionnewcases[1].Breastcancerwasalsoreportedthefifthdeadliesttypeof
cancerin2020,andthecancerwiththehighestmortalityrateinthefemalepopulation[1].
Earlydetectionandinterventionhavebeenidentifiedasdeterminingfactorsinthe
reductionofbreastcancermortalityratesandarethekeyfactorsforasuccessfultreatment
outcome,therebyimprovingthequalityoflifeofcancerpatientsandsurvivalrates[2].
ThemostcommonimagingmodalityforbreastcancerdetectionisXray
mammography[2,3].Althoughmammographyisstillthegotoimagingmethodfor
cancerscreening,itdoesnotprovidereliableresultsforwomenwithdensebreasts,which
Citation:Pelicano,A.C.;
Gonçalves,M.C.T.;Godinho,D.M.;
Castela,T.;Orvalho,M.L.;
Araújo,N.A.M.;Porter,E.;
Conceição,R.C.Developmentof3D
MRIBasedAnatomicallyRealistic
ModelsofBreastTissuesand
TumoursforMicrowaveImaging
Diagnosis.Sensors2021,21,8265.
https://doi.org/10.3390/s21248265
AcademicEditor:VangelisSakkalis
Received:29October2021
Accepted:3December2021
Published:10December2021
Publisher’sNote:MDPIstaysneu
tralwithregardtojurisdictional
claimsinpublishedmapsandinstitu
tionalaffiliations.
Copyright:©2021bytheauthors.Li
censeeMDPI,Basel,Switzerland.
Thisarticleisanopenaccessarticle
distributedunderthetermsandcon
ditionsoftheCreativeCommonsAt
tribution(CCBY)license(http://crea
tivecommons.org/licenses/by/4.0/).
Sensors2021,21,82652of27
arecommonamongyoungerwomen[4].Sensitivityofmammographyexamsrangefrom
62.9%,forwomenwithextremelydensebreasts,to87.0%,inwomenwithmostlyfatty
breasts.Specificityhasbeenreportedtorangefrom89.1%to96.9%forthesamebreast
types[5].Besidesshowingdifferentsensitivitiesdependingontissuedensity,
mammographyalsorequirestheuseofionizingradiation,andanuncomfortablebreast
compression.
MicrowaveImaging(MWI)hasbeenidentifiedasatechniquethatcantacklethe
shortcomingsofXraymammography[6,7].InMWI,anexternalelectromagneticfieldis
appliedontotheregionofinterestinthebody,resultinginelectromagneticscattering
generatedbytissueswithdifferentdielectricproperties.Theconductivityandrelative
permittivityarethemostrelevantdielectricpropertiesofbiologicaltissues,wherethe
latterisintrinsicallyrelatedtothewatercontentpresentinthetissuesample.Inrecent
years,MWIsystemshavebeenstudiedforearlystagebreastcancerdiagnosis[8–10]due
tothecontrastbetweenthedielectricpropertiesofcancerousandhealthybreasttissuesat
microwavefrequencies[11].Canceroustissuesdifferfromhealthytissuesdueto
permeabilitychangesintumourcellmembranecausinganincreaseofwaterflowtothe
interiorofthecell.Hence,theextraquantitiesofwateranddissolvedionsinsidethe
cancerouscellsleadtogreatervaluesofrelativepermittivityandconductivitywhen
comparedtohealthycellsofthesametissuetype[12–15].Inadditiontobeinga
comfortableandnoninvasiveimagingmodality,MWIdevicesarealsoportable,lowcost,
userindependent,uselowpower,andtherefore,aresuitableforscreeningprogrammes.
Simulationsandexperimentsmimickingtherealisticconditionsandrealisticpatients
ofaclinicalexamareessentialforthedevelopmentandvalidationofMWIdiagnostic
systems,aswellasthedevelopmentoftherapeuticdevices,suchasthoseformicrowave
hyperthermiaandablation[16,17].Hence,realisticcomputationalandphysicalmodelsof
breasttissuesandtumourswiththerespectivedielectricpropertiesestimatedat
microwavefrequenciesareofutmostimportance.
Realisticmodelsofhealthybreasttissuesarecurrentlyavailableinpublic
repositories,however,duetotheircomplexshape,tumourmodelsareoften
oversimplified.Malignantbreasttumoursgenerallyhaveanirregularshapesurrounded
byspiculeswhereasbenigntumourspresentroughlyroundedorellipticalshapes[18,19].
Therefore,weaimtoprovidethescientificcommunitywitharepositoryofmultiple
anthropomorphicmodelsofbreasttissueswithrealisticbenignandmalignantbreast
tumours.
Inthisstudy,weuseMRIexamstodeveloptheanatomicallyrealisticmodelsofthe
breast,andestimatethedielectricpropertiesoffat,fibroglandular,skin,muscle,and
tumoroustissuesofthisregion.Additionally,wedevelopedarobustsegmentation
pipelinesuitabletosegmenthighlyheterogeneoustumoursfromMRIexams.The
developedsemiautomaticimageprocessingpipelineincludesthefollowingsteps:(i)
Imagepreprocessing,(ii)Imagesegmentation/Featureextraction,comprisingthebreast
region(skin,breast/chestwallboundary,fatandfibroglandulartissues)andthebreast
tumour,andfinally,(iii)Estimationoftissuedielectricproperties.Thesecondaimofour
workistoaddressthelackofrealisticbreasttumourphantomsforMWIprototypetesting.
Hence,wehavebeenpreparingaccuratemodelsofthebreastwhichwillbeusedto
simulatetissueresponsetomicrowaveradiationandlater3Dprintedforexperimental
testing.Inshort,ourworkaimsto:
providethescientificcommunitywitharepositoryofmultipleanthropomorphic
modelsofbreasttissuesandtumours;
addressthelackofrealisticphysicalbreasttumourphantomsforMWIprototype
testing.
Thispaperisorganisedasfollows:firstly,wepresentrelatedworkalreadyconducted
concerningbreastandbreasttumourmodels;then,wedetailthematerialsusedandthe
methodologydevelopedforimagepreprocessing,segmentation,andestimationof
Sensors2021,21,82653of27
dielectricproperties;then,wepresenttheresultsofourproposedmethodology,followed
byadiscussion,andfinally,wehighlightthemainconclusionsofourwork.
RelatedWork
Wintersetal.[20]designedtwonumericalMRIderivedmodelsofthebreastsurface.
Later,apublicrepositorywithninenumericalbreastphantomscontainingrealistic
distributionsofskin,fat,glandularandmuscletissuewascreated[21];theSTLfilesto3D
printthesemodelswaslaterpublishedin[22].Morerecently,ananthropomorphicbreast
modelrepositoryincludingrealisticmodelsofskin,fatandfibroglandulartissues,anda
modelofa10mmmalignanttumourwasmadeavailablein[23].However,the
segmentationofthetumourvolumewasachievedbymanualcroppingandthresholding
techniques.
Studiesincludingnumericalbreasttumourmodelsoftenoversimplifytheir
representationbyusingspherical[24–26],andcross‐ andpeanutshapednumerical
models[14].Amoresophisticated3Dbreastmassmodelwasdevelopedin[27]usinga
growthmodelwithadensecentreandfadingboundariesfromanellipsoidvolumewhich
resultedinastellatepattern.
MostofthephysicalbreasttumourmodelsreportedintheliteraturetotestMWI
systemspresentanunrealisticsimplifiedshape,generallyspherical,elliptical,and
cylindrical:in[22],sphericalglassbulbswith5,10and15mmradiicontainingsaline
solutionswereusedtomimictumourtissuesinphantomstudies;anellipsoidcontainer
withinternaldimensions10and20mmwas3Dprintedin[28]tostudythefeasibilityof
aradarbasedbreastMWIdrysetup;a20mmsphericalphantomfilledwitha10:90ratio
ofwatertoglycerinewasusedtoemulateabreasttumourin[29];twocylindricalshaped
tumourphantomswith10and20mmdiametersand30mmheightweretestedin[30];
andin[31],asmallcylindricalplasticcontainerfilledwithwaterwasusedasabreast
tumourphantominexperimentaltests.
Breasttumourshavebeenmodelled,morerealistically,withGaussianRandom
Spheres.Thesewereusedforvalidationtestsofamicrowaveimagingdevicein[32],and
fortumourclassificationusingaMWIprototypesystemin[33].In[34],realisticbenign
andmalignantbreastphantomswerecarvedbyhand,resultinginapproximatespherical
andspiculatedmodelsforbenignandmalignanttumours,respectively.Weemphasize
thatnoneofthemodelsreportedintheliteraturewerebasedonaccurateanatomical
representationsoftumours.
Asummaryofpreviouslydevelopedmethodologiestocreatebreastmodelshasbeen
recentlypublishedin[35].
2.MaterialsandMethods
2.1.Dataset
ThisstudywasapprovedbytheScientificandEthicalCommissionofHospitalda
Luz—Lisboa,underreferencesCES/44/2019/ME(19September2019)and
CES/34/2020/ME(6November2020).ThebreastMRIexamscollectedatHospitaldaLuz—
Lisboawereanonymisedbeforeprocessingandinformedconsentwasobtainedfromall
patients.
Thecurrentdatasetofthisongoingstudycomprisesexamsfrom16patients,witha
totalof29tumours:15benignand14malignant.Inthispaper,weselectedbreastmasses
scoredwithBIRADS2and3[1](benigntumours)andBIRADS5and6(malignant
tumours)[1].
Womenwereimagedinapronepositionina3.0TMAGNETONVidaclinical
MagneticResonance(MR)scan(SiemensHealthineers,Erlangen—Germany)witha
dedicatedcoilforthebreast(SiemensBreast18coil,SiemensHealthineers,Erlangen—
Germany).TwoMRIsequenceswerecollected:DynamicContrastEnhanced(DCE)
transversalthreedimensional(3D)T1weighted(T1w)FastLowAngleShot3D(fl3D)
Sensors2021,21,82654of27
SpectralAttenuatedInversionRecovery(SPAIR)sequence;andDirectcoronalisotropic
3DT1wfl3DVolumetricInterpolatedBreathholdExamination(VIBE)Dixonimage
sequence(T1wDixon).
DCEfl3Dconsistsofafatsuppressionsequencewithsixsetsofimages:aprecon
trastimage,acquiredbeforetheinjectionofgadoliniumintravenouscontrastagent,and
fivepostcontrastconsecutiveimageswherehighlyvascularisedtissues,suchastumours,
areenhanced.Digitalsubtractionsofeachpostcontrastimagefromtheprecontrastim
agearealsoavailable.Thedigitalsubtractionsenhancetumourregionsduetothecontrast
uptakeinthoselocationsandannulhypersignalregionspresentintheprecontrastimage.
Theseimagespresenthighresolutioninallanatomicalplanesandhaveisotropicvoxels.
Eventhoughourdatasetincludesimageswithdifferentspatialresolutions(0.99mm×0.99
mm×1mmand1.04mm×1.04mm×1mm),weonlyuseimageswith0.99mm×0.99mm
×1mminthispaper.WechosethesubtractionDCEfl3Dimage(SUBDCEfl3D)thatbest
revealsthewholetumourregionfortumoursegmentation.Onemustnotethatlargertu
moursrequiremoretimedelayforcontrastenhancementtobeobserved.
TheT1wDixonsequencereliesonthedifferenceinresonancefrequencybetween
hydrogennucleiboundtowaterandfat.Thisdifferenceallowsobtainingfoursetsofim
agesinasingleacquisition:inphase,oppositephase,fatonly,andwateronlyimages.For
thisstudy,weusedfatonly(F),wateronly(W),andinphase(I)imagestoretrievestruc
turalinformationofthebreast.Toderivethedielectricpropertiesofthetissuesinthe
breast(fat,fibroglandular,skin,andbenignandmalignanttumours),weusedtheT1w
DixonIimages,asthefatandfibroglandulartissuesareeasiertodistinguishintheirhis
tograms.Theseimageshadisotropicvoxels(0.99mm×0.99mm×1mm)andwereac
quiredinthecoronalplane.
2.2.PreProcessingPipeline
ThissectiondetailseachstepofthepreprocessingpipelineappliedtobreastMRI
imagesbeforetissuesegmentation.
2.2.1.ImageRegistration
WeusedtwodifferentMRIsequencestosegmentthebreasttissues:thetransverse
SUBDCEfl3Dsequence(fortumoursegmentation)andthecoronalT1wDixonsequence
(forthesegmentationoffat,fibroglandular,skin,andthebreast/chestwallboundary,pre
dominantlycomposedofmuscle);hencethealignmentofthetwoimagesisrequired.We
usedtheInsightToolkit(ITK)implementation(SimpleITK’s)[36]ofalinearregistration
withlinearinterpolationtoregistertheSUBDCEfl3Dsequence(movingimage)tothe
T1wDixonsequence(staticimage).T1wDixonwasconsideredthestaticimagedueto
itshigherinformationcontentregardingthedifferentbreasttissues.Theapplicationof
thelineartransformationresultedinimageswithdimensionsandresolutionofthestatic
image,andinthesamespatialreferential,allowingtheircorrectsuperimposition.
2.2.2.BiasFieldCorrection
MRIimagesarepronetothebiasfieldartefact[37],whichcausesunreliableintensity
variationswithinvoxelsofthesametissue.Astheaccuracyofintensitybasedimagingpro
cessingalgorithms,suchassegmentationandclassification,isgreatlyaffectedbythebias
fieldartefact,apreprocessingstepaddressingitseffectsandcorrectionisrequired[38].
Anonparametricnonuniformsignalintensitynormalisation(N3)algorithm,pro
posedbySledetal.[39],usesaGaussianmodeltocorrectthebiasfieldwithouttheneed
foraprioriknowledge.Later,animprovementofthistechniqueledtothedevelopment
oftheN4algorithm[40],whichusesamultiscaleoptimisationapproachtocomputethe
biasfield.Thisalgorithmhasshownpromisingresultsinremovingthebiasfieldfrom
breastMRIimages[41].Thebiasfieldartefactcorrectionwasappliedtoallimagesusing
theSimpleITKN4BiasFieldCorrectionImageFilterimplementation[40].
Sensors2021,21,82655of27
2.2.3.DataNormalisation
Subsequently,theimageswerescaledbetween0and255usingtheMinimumMaxi
mum(MinMax)normalisationapproach,followingEquation(1):
𝑣󰆒󰇛󰇜
󰇛󰇜󰇛󰇜𝑛𝑒𝑤󰇛󰇜𝑛𝑒𝑤
󰇛󰇜 𝑛𝑒𝑤󰇛󰇜,(1)
where𝑣′and𝑣aretheoriginalandscaledvaluesofeachvoxelrespectively;𝐴isthevol
umedata,andmax󰇛𝐴󰇜andmin󰇛𝐴󰇜arethemaximumandminimumvaluesof𝐴,respec
tively.𝑛𝑒𝑤󰇛󰇜and𝑛𝑒𝑤󰇛󰇜arethe[new]maximumandminimumvaluesofthe
scaledrange,respectively[42].
2.2.4.ImageFiltering
MRIimagesarepronetonoiseduetoimageacquisitionerrors,whichcorruptstheir
qualityanddeterioratestheperformanceofintensitybasedautomaticsegmentationalgo
rithms.SaltandPeppernoise,commonlypresentinMRIimages,consistsofrandomly
distributedcorruptedvoxelswhichwereeithersettohavethevalue0orthemaximum
intensityvalueofthevoxelsintheimage[43].Themedianfilterisawellknownnon
linearfilterwhichallowsthereplacementofthevalueofavoxelbythemedianofthegray
levelsinitsneighbourhoodandhasbeenprovenveryeffectiveinthepresenceofSalt
andPeppernoise[44].Besidesremovingnoise,theimplemented3by3by3medianfil
ter,appliedtotheSUBDCEfl3Dimages,alsosmoothsvoxelsignalintensitydifferences
betweentumorousandnontumoroustissues.However,wedidnotapplythemedian
filterforinfracentimetrictumours,asitproducessubstantialchangesinthesizeand
shapeoftumours.
2.3.ImageSegmentation
Accuratebreasttissuesegmentationisofparamountimportancetoobtainanatomi
callyrealisticnumericalandphysicalbreastmodels.Mosttissuesegmentationalgorithms
relyonthediscontinuityorsimilaritypropertiesoftheimage’sintensityvalues[44,45].
Severalprocessingpipelineshavebeendevelopedtoidentifythedifferenttissuesofthe
breastanduseacombinationofbothpropertiestoachieveacorrectsegmentation.Dis
continuitybasedapproachesforbreasttissuesegmentationrelyontheidentificationof
airbreastandbreastchestwallboundaries[46,47],whilesimilaritybasedtechniques
mostlyrelyonthresholding[48],regiongrowing[47],andclustering[49,50].Energy
basedapproaches,suchasactivecontour,havealsobeenproposedtosegmenttheskinof
thebreast[51].
Wedetailthesegmentationmethodologyusedforthedifferentbreasttissuesinthis
section.Figure1representsasimplifiedschematicofthestepsfollowedtoobtainamask
ofthebreastregion.

Sensors2021,21,82656of27
Figure1.Simplifiedschematicoftheprocessingstepstoobtainthemaskofthebreastregion.
2.3.1.BreastRegion
WeusedT1wDixonFandT1wDixonWimagestogenerateabinarymaskofthe
breastregion.Wechosetheseimagessincefatisrepresentedwithhighintensityvalues
intheT1wDixonFimages,whilefibroglandular,skin,andmusclehavehighintensity
valuesintheT1wDixonWimages.Wepresenttheresultsfromourprocessingpipeline
inSection3.2.1,forclarity.
1. Step1:Fatmask+removaloforgansinsidethethoraciccavity
Theorgansinsidethethoraciccavity,suchastheheart,lungs,stomach,andliver,
presentedlowintensityvaluescomparedwiththehighintensityvaluesofthefattissues
intheT1wDixonFimage.Hence,weusedtheseimagestoexcludethemfromthebreast
regionmask.
Firstly,weneededtolocatethesternumintheT1wDixonWimage.Todothis,we
identified,ineachframe,thevoxelswithanintensityhigherthanthemeanintensityof
theT1wDixonWimage.Wethenpickedthecoordinatesoftheoutermostidentified
voxelandusedthesetolatercomputetheseedtogrowthefatregion.
Weappliedaregiongrowingalgorithm,implementedusingSimpleITK’sNeighbor
hoodConnectedImageFilter,totheT1wDixonFimagetoidentifythevoxelsconnected
totheseedandwhoseneighboursliewithinauserdefinedintensityrange.Weautomat
icallycalculatedtheintensityrangeassignedtofattissue.Thelowerlimithasbeeniden
tifiedbyotherauthors[47]asthesumofthemeanandthreetimesthestandarddeviation
valuesofthevoxelintensitiesofnonfatsuppressedbreastMRIimages,wherefat,fibro
glandular,muscle,andskintissuesarerepresentedwithmediumtohighintensityvalues.
SinceonlyfathashighintensityvaluesintheT1wDixonFimage,weadjustedthelower
limitoftheintensitytothesumofthemeanandstandarddeviationvaluesofthevoxel
intensities.Wesettheupperlimittothemaximumintensityvoxeloftheimage.Inbreast
MRIimages,withnoclearseparationbetweenthefattissuesofthebreastandtheinner
partofthethoraciccavity,theregiongrowingalgorithmmaynotcorrectlysegmentboth
Sensors2021,21,82657of27
fattissues.However,theapplicationofmorphologicalwatershedtransformfrommarkers
[52](themarkerimageobtainedfromtheoutputoftheregiongrowingalgorithmbyap
plyingadistancetransform)totheregiongrowingalgorithmoutputsuccessfullydistin
guishesthetwotypesoffat.
2. Step2:Skin+Fibroglandular+Fatmask
Weincludedtheskinbydilatingthefatmask.Accordingto[53],thethickestskin
areaofthebreastcorrespondstotheareolarregionwith2.040.31mm.Withavoxel
spacing,inmillimetres,of0.9965 0.99651,weperformedadilationusingastructur
ingelementofradius3.Thedilatedmaskwaswhitedoutontheanteriorpartofthebody
andthenmultipliedbytheT1wDixonWimagetoincludethefibroglandulartissue.We
binarizedtheresultingimagebythresholding,usingstatisticalinformation(meanand
standarddeviation)oftheimage,andaddedthebinarizedimagetothedilatedmask.The
thresholdwasdefined,inEquation(2),as:
𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 𝑚𝑒𝑎𝑛  
.(2)
Tobinarizetheimage,wehadtoconsiderthefollowing:thethresholdhadtobe
higherthanthemeanvoxelintensitytoremovethebackgroundvoxelsintroducedbymul
tiplicationwiththeT1wDixonWimage,butnotexcessivelyhighthattheholesleftfrom
thefatmaskwerenotfilled,especiallyinthenipplearea.Fromthisstep,weobtainamask
thatincludestheskin,fat,andfibroglandulartissue.
3. Step3:Maskevaluation
Asourmethodologyusesthesternumcoordinatesasreference,areaswhereatu
mourinvadesthepectoralismusclearenotincludedinthebreastregionmask.Aninva
sivetumourintroducesanasymmetryinthebreast;hence,theobtainedbreastmaskand
itsflippedimage(flippedalongthesagittalplane)areevaluated.Wechosethemean
squarederror(MSE)metric(Equation(3))toevaluatethedifferencesbetweenthemask
anditsflippedimage:
𝑀𝑆𝐸 󰇡
󰇛
𝐴
𝐵
󰇜
 󰇢100,(3)
where𝑛representsthenumberofdatapoints,ivariesfrom1ton,𝐴isthemask,and𝐵is
theflippedimageofthemask.
Thelowerthemeansquarederror,themoresimilararetheimagesunderevaluation.
Weconsideredthatameansquarederrorvaluehigherthan10%indicatedthepresence
ofaninvasivetumour.
4. Step4:Maskforanexamwithaninvasivetumour(optional,whenMSE>10%)
Forameansquarederrorvaluehigherthan10%,weaddedthebreastregionmask
anditsflippedimage.Then,wecomparednoncoincidingareastotheT1wDixonIimage
andreassignedvoxelswithintensitylowerthanthemeanvoxelintensityoftheT1w
DixonIimageto0.Afterthisprocess,thebreastmaskbecomessymmetricinthe
breast/chestwallboundaryregion(maskforinvasivetumours).Tocloseanyholesleft
fromtheprocessofreassigningthevoxelsto0,weappliedSimpleITK’sBinaryFillholeI
mageFiltertothesymmetricbreastmask.
5. Step5:Segmentationofskin+breast/chestwallboundary
Weusedthebreastmaskcontourtoidentifytheskinandthebreast/chestwallbound
ary.Wescannedittoretrievethefirstwhitevoxelfromlefttoright,righttoleft,andtop
tobottominthesagittalplane.Theresultingimagecorrespondedtoa1voxelthickskin
contour,wheresomeareasinthesagittalcentreofthebody,betweenthebreasts,were
notincluded.A1voxelthickbreast/chestwallboundarycontourcorrespondedtothe
largestconnectedcomponentresultingfromthesubtractionbetweenthebreastmaskcon
tourandtheskincontour,followedbyblackingoutthevoxelsintheanteriorpartofthe
body,abovethesternum.
Sensors2021,21,82658of27
Thefinalskincontourcorrespondedtothelargestconnectedcomponentofthesub
tractionbetweenbreastmaskcontourandthe1voxelthickbreast/chestwallboundary
contour.Weobtainedthefinalbreast/chestwallboundarycontourbysubtractingthefinal
skincontourfromthebreastmaskcontour.
AsmentionedinSection2.3.1,wedilatedthefatmaskobtainedfromapplyingregion
growingtotheT1wDixonFimage,usingastructuringelementofradius3.Asaresult,
itisnecessarytodilatethecontoursbythesamestructuringelementtoestimatetheskin
andbreast/chestwallboundarytissues.Afterthedilation,wemultipliedtheresultingim
agebytheoriginalmasktoremovethe“excessive”breastarea.
Foraninvasivetumourexam,weadjustedthemethodtoidentifythebreast/chest
wallboundarytissuesbybuildinguponthebreastregionmaskthatwasmadesymmetric
inthesagittalplane.Weobtainedthebreast/chestwallboundarytissuesbysubtracting
themaskforinvasivetumoursandthe“original”mask(themaskobtainedbeforeitsad
ditionwithitsflippedimage,asobtainedinStep4),followedbydilationwithastructur
ingelementofradius3.Althoughthebreast/chestwallboundaryispredominantlymus
cle,itmayincludeothernearbytissues.
6. Step6:Skinevaluation
Sincetheskinhasvaryingthicknessthroughoutthebreast—rangingfrom2.35mm
intheareolarregionto1.52mminthelateralquadrant[53]—weneededtoadjusttheskin
masktoportrayanaccurateskinthickness.Firstly,wemultipliedtheT1wDixonWim
agebythenegatedfatmasktoobtainanimagewithskinandfibroglandulartissue.Then,
webinarisedtheresultingimagebythresholding,andmultipliedthebinarisedimageby
thedilatedskincontour.
7. Step7:Fibroglandulartissuesegmentation
Withthefattissue,skin,andbreast/chestwallboundaryseparatelysegmented,the
fibroglandulartissuecanbeidentifiedbysubtractingthosetissuesfromthewholebreast
mask.Inthiswork,wefurtherappliedtheGaussianMixtureModeldescribedin[53]to
segmentbothfatandfibroglandulartissuesintosubcategories(low,median,andhigh),
allowingtoincorporatetissueheterogeneity,asreportedin[54].
2.3.2.TumourSegmentation
Accuratetumoursegmentationisofutmostimportancefortumourevaluationand
extractionofitscharacteristics.Thistaskisverychallengingasbreastlesionswidelyvary
inshapeandintensitydistribution.Strategiesbasedondataclustering,particularlyunsu
pervisedclusteringmethodssuchasKmeansandFuzzyCmeans,havebeenusedfor
breasttumoursegmentationusingMRIexams[55–58].Suchmethodsgroupasetofdata
objectsofthewholeimage/volumeintoclustersbymaximizingintraclasssimilarityand
minimizinginterclasssimilarity.TheproposedapproachesusingKmeansin[55,56]and
FuzzyCmeansin[57,58]outperformedstandardtechniquesandshowedhighaccuracy
insegmentingbreasttumours.Asemiautomaticalgorithmusingamarkercontrolledwa
tershedmethodproposedin[59]wasprovenmoreefficientinconnectingdisjointareasin
lesionscomparedtoclassicalKmeansclusteringandGaussianMixtureModelclustering
[60].Thakranetal.[61]developedanautomaticmethodologyforbreasttumoursegmen
tationbasedonOtsuthresholding.
Allpreviousmethodologiesrelyonintensityvaluesofthewholeimagetoobtainthe
regionofinterest(tumour),astheyweredevelopedundertheassumptionthat,generally,
biologicaltissuesarefairlywellseparatedwithinagrayscaleimage.However,inthecase
ofheterogeneousstructurescomprisingawiderangeofintensityvalues,suchashetero
geneousmalignanttumours,thesemethodscannotincludeallvoxelscomprisingthetu
mourwithinthesamecluster,leadingtopoorsegmentationofthetumourvolume.
Inthiswork,weuseda3Dregiongrowingalgorithm,basedon[62],toaddresstu
mourswithvoxelsspreadingoverawiderangeofintensityvalues.Aspreviouslymen
tionedinStep1,thismethodusesaseedtogrowtheregiontoadjacentpointsbasedon
Sensors2021,21,82659of27
anintensitythresholdcriterion.Suchcriteriondefinestheintensityrangeofthevoxelsin
thegrowingregionastheseedintensityvalue±threshold.
InSUBDCEfl3Dimages,tumourregionsgenerallypresenthigherintensitieswhen
comparedtoneighbouringtissues,soweusedthehighestintensityvoxelastheseedin
theregiongrowingalgorithm.Forthat,onemustselectaslice(pertumour)inwhichthe
algorithmshouldchoosetheseedvoxel.Although,mostofthetime,thehighestintensity
voxelcorrespondstothetumour,itispossiblethatinsomecasesthiswillnotbetrue—a
manualassignmentmayberequired.Forthechoiceofthethresholdvalue,oneshould
confirmthattheseedvalueminusthethresholdcorrespondstotheminimumintensity
valueofthetumourvoxels;henceonlyvoxelsbelongingtothetumourwillbeincluded
inthegrowingregion.Experimentsusingourdatasetshowedthatalowerboundof
thresholddefinedbythemeanminusthreetimesthestandarddeviationofallbodyvoxels
providedgoodresults.
Oftentimes,the3Dregiongrowingalgorithmwasunabletosegmentthetumourex
clusively,especiallyforheterogenoustumourswithawiderangeofvoxels’intensities.
Instead,otherbodytissueswereincludedinthegrowingregion.Hence,inordertoseg
mentonlythetumour,theHoshenKopelmanalgorithmwasapplied[63]toretrievethe
largestconnectedcomponent.Aschematicofthemethodologyusedforbreasttumour
segmentationisshowninFigure2.
Figure2.Simplifiedschematicsoftheprocessingstepstoobtainthemaskofthebreasttumours.
2.4.DielectricPropertiesEstimation
Weperformedthedielectricpropertiesestimationbyassigningthevoxelintensities
ofthedifferenttissuesofthebreast(fat,fibroglandular,skin,muscle,andtumour),inthe
T1wDixonIimage,tothecorrespondingdielectricpropertiesreportedintheliterature
viapiecewiselinearmapping[21,64,65].
RelativepermittivityandconductivitycurvesofsinglepoleDebyemodelhavebeen
described[21,64,65]foreachtissuetypeofthebreast(fat,fibroglandular,tumour,skin,
andmuscle).Inaddition,wefurtherseparatedthefatandfibroglandulartissuesintosix
categorieswiththecorrespondingdielectricpropertycurve:fibroglandularlow,fibro
glandularmedium,fibroglandularhigh,fatlow,fatmedium,andfathigh.Toobtainan
appropriatemappingbetweenthevoxelintensitiesandthecorrespondingdielectric
Sensors2021,21,826510of27
properties,wefittedatwocomponentGaussianMixtureModeltothehistogramofthe
preprocessedimages,adaptedfrom[21].Thehistogramcontainsthecontributionoffat
andfibroglandulartissuesasdefinedinEquation(4),forfat,andEquation(5),forfibro
glandulartissue,bytheGaussianMixtureModelmethod,
𝛾 𝜇,𝛿(4)
𝛾 𝜇,𝛿, (5)
where𝜇and𝛿representthemeanandvarianceofeachdistribution.Theremaining
parametersaredefinedinTable1.Skinalsohasspecificdielectriccurvesreportedinthe
literature[64,65].
Table1.Linearpiecewisemappingbetweenthevoxelintensitiesandthecorrespondingdielectric
propertycurveforthehistogramofanexamwherethecontributionofthegaussiancurvesoffat
andfibroglandulartissueareseparated.
DielectricPropertyCurvesVoxelIntensity
Minimum0
Fibroglandular_low𝜇 𝜎

Fibroglandular_median𝜇
Fibroglandular_high𝜇 𝜎

Fat_low𝜇 𝜎

Fat_median𝜇
Fat_high𝜇 𝜎

MaximumMaximumintensityoftheimage
WhenahistogramdoesnotshowsufficientseparationbetweentheGaussiancurves
correspondingtothecontributionsofthefatandfibroglandulartissues,weusedthepa
rametersinTable2,whereδisauserdefinedpositivescalar[21].Inourwork,wedefine
𝛿asinEquation(6),
𝛿𝐹𝑎𝑡_𝑙𝑜𝑤 𝐹𝑖𝑏𝑟𝑜𝑔𝑙𝑎𝑛𝑑𝑢𝑙𝑎𝑟_ℎ𝑖𝑔ℎ
2(6)
Table2.Linearpiecewisemappingbetweenthevoxelintensitiesandthecorrespondingdielectric
propertycurveforahistogramofanexamwherethefattissueispredominantoverthefibroglan
dulartissueandthecontributionsofthegaussiancurvesoffatandfibroglandulartissuesarenot
clearlyseparated.
DielectricPropertyCurvesVoxelIntensity
Minimum0
Fibroglandular_low2𝜇
 𝑀

Fibroglandular_median𝜇
Fibroglandular_high𝑀 𝜇
 𝜎
 𝛿
Fat_low𝜇 𝜎

Fat_median𝜇
Fat_high𝜇 𝜎

MaximumMaximumintensityoftheimage
Foreachsegmentedtissuetype,theminimumandthemaximumvalueoftheinten
sityvoxelsoftheMRIexamareassociatedwiththelower‐andupperboundcurveofeach
tissue,respectively.Ateachfrequency,theremainingvoxelsarelinearlymappedtoa
valuebetweenthecurvesofthattissueusingapiecewiselinearinterpolation.
Table3containssinglepoleDebyeparameters(permittivityathighfrequency—𝜀,
thedifferencebetweenstaticpermittivityandpermittivityathighfrequency— ∆𝜀 ,
Sensors2021,21,826511of27
relaxationtime—𝜏,andstaticconductivity—𝜎)ofthedielectriccurvesforeachtissuetype
[64,65].Asreportedin[64,65],Debyeparametersareonlyvalidforfrequenciesbetween
3and10GHz.Weassumedthatthebreast/chestwallboundarywascomposedofmuscle.
Table3.SinglepoleDebyeparametersforthedielectricpropertycurvesforeachtissuetype[64].
𝜺∆𝜺𝝉󰇛𝒑𝒔󰇜𝝈𝒔󰇛𝑺/𝒎󰇜
Minimum2.3090.09213.000.005
Fibroglandular_low12.9924.4013.000.397
Fibroglandular_median13.8135.5513.000.738
Fibroglandular_high14.2040.4913.000.824
Fat_low2.8481.10413.000.005
Fat_median3.1161.59213.000.050
Fat_high3.9873.54513.000.080
Maximum23.2046.0513.001.306
Skin15.9323.8313.000.831
Muscle21.6633.2413.000.886
AccordingtoLazebniketal.[15],thedielectricpropertiesofbenigntissuesaresimilar
tothepropertiesofloweradiposecontentnormalbreasttissues,hence,weusedthesame
linearinterpolationobtainedfromthewholeimagetoestimatethedielectricpropertiesof
benigntissues.Regardingmalignantbreasttumours,the1poleColeColeparametersof
thedielectricpropertycurvesarereported[15].Twocurveslimitingthelower‐andupper
boundswereobtainedfromparametersofthe25thand75thpercentilescurves,respec
tively.The1poleColeColeparametersarevalidforafrequencyrangefrom0.5–20GHz.
Inordertocomparethedielectricpropertiesoftumourstootherbreasttissues,we
convertedthe1poleColeColemodeltotheDebyemodel.Fromthereporteddielectric
propertycurves,wegeneratedaDebyemodelfittedtothedatapointsandextractedthe
Debyeparametersformalignanttumours.ThefittedparametersaredetailedinTable4.
Table4.FittedDebyeparametersforthedielectricpropertycurvesofmalignantbreasttumours.
Percentile𝜺∆𝜺𝝉󰇛𝒑𝒔󰇜𝝈𝒔󰇛𝑺/𝒎󰇜
25th12.933.913.01.38
75th 14.647.213.01.60
Figure3representsthebehaviourofthedielectricproperties(relativepermittivity
andconductivity)asafunctionoffrequencyfornontumoroustissuetypes.Figure4rep
resentsthedielectricpropertiesofmalignanttumourtissuesfordifferentfrequencies.
2.5.CreationofBreastRegionModels
WederivedanthropomorphicbreastcomputationalmodelsfromMRIexams.Such
modelsaretheresultoftheapplicationoftheproposedpreprocessingandsegmentation
pipelines,detailedabove.Thesemodelsincludeskin,fat,fibroglandular,andmuscletissues,
aswellasbenignandmalignanttumours,segmentedfromtheMRimages.Microwave
frequencypropertiesofbreasttissuesat3,6,and9GHzarealsoavailableinourmodels.
Sensors2021,21,826512of27
(a)
(b)
Figure3.Relativepermittivity(a)andeffectiveconductivity(b)curvesofnontumoroustissues
adaptedfrom[64,65]forthefrequencyrangeof3–10GHz.
Sensors2021,21,826513of27
(a)
(b)
Figure4.Relativepermittivity(a)andeffectiveconductivity(b)curvesobtainedfromthefittedDe
byeparametersshowninTable4.
3.Results
Thissectionshowstheresultsofthedevelopedsegmentationpipelineappliedto
breastMRIexamsforbreasttissuesegmentationandtheestimationofthedielectricprop
ertiesofthesegmentedtissuesfromMRIexams.Inthispaper,wedepictedtheresultsof
thestepspreviouslydescribedfortwoexams(onewithabenigntumourandtheother
withanextremelyheterogeneousmalignanttumour).Bothmodelsincludethedielectric
propertiesestimatedfor6GHz.Additionally,therepositorycontainsmorebreastmodels,
includingbenignandmalignanttumours,withtheestimateddielectricpropertiesalsofor
3GHzand9GHz.
3.1.PreProcessingPipeline
3.1.1.Registration
ThetransverseSUBDCEfl3Dsequenceusedfortumoursegmentationwasinitially
registeredtothecoronalT1wDixonsequence.Figure5showstheresultingimagesofthe
alignmentofthetwoimagesinT1wDixonspatialreference.
Sensors2021,21,826514of27
(a)(b)
Figure5.ResultingimagesfromtheregistrationofthetransverseSUBDCEfl3Dimage(moving
image)tothecoronalT1wDixonWimage(staticimage),inabreastexamwitha(a)benignand
(b)amalignanttumour.
3.1.2.BiasFieldCorrection
ThecorrectionofthebiasfieldisacommonsteptoT1wDixonI,T1wDixonW,
andT1wDixonFimages,aswellasSUBDCEfl3Dimages.Figure6illustrates(a,d)the
originalT1wDixonIimages,(b,e)thebiasfieldpresentineachimage,and(c,f)thecor
rectedimages,foranexamwithabenigntumour(top)andamalignanttumour(bottom).
(a)(b)(c)
(d)(e)(f)
Figure6.BiasfieldcorrectionperformedonabreastMRIexamwithabenigntumour(top)andamalignanttumour
(bottom).Figures(a,d)showoneslicefromeachexambeforetheapplicationofthebiasfieldcorrectionfilter.Figures(b,e)
showtheinhomogeneitybetweenthevoxelintensities.Redregionsrepresentareaswheretheinhomogeneitybetween
voxelintensitiesislarger.Figures(c,f)showthesameslicesaftercorrectionofthebiasfield.
3.1.3.ImageFiltering
Theapplicationofamedianfiltertothepreprocessedimage,withatumourlarger
than1cm,smoothstheedges,facilitatingthebreasttumoursegmentationprocess.Figure
7depictstheapplicationofamedianfilterforedgesmoothing.
Sensors2021,21,826515of27
(a)(b)
Figure7.Medianfilterforedgesmoothing:(a)imageprefilteringand(b)imagepostfiltering.
3.2.ImageSegmentation
3.2.1.BreastRegion
Step1:Fatmask+removaloforgansinsidethethoraciccavity
Figure8showsarepresentationofthenumberofvoxelswithanintensityhigherthan
themeanintensityoftheT1wDixonWimagecountedatthecentreofthebody,starting
outsidethepatient’sbody,andfinishingatthepatient’sspine.Thecoordinatesofthester
numcorrespondtotheoutermosthighlightedvoxel.Thecoordinatesofthecentreofthe
bodyareselected,andthenwesweepthecoordinatealongthecoronalplane.Thecoordi
nateforthecoronalplanethatindicatesthefirststernumvoxelisidentifiedinFigure8by
adarkbluecircle.
(a)(b)
Figure8.Thenumberofvoxelswithintensityhigherthanthemeanintensityoftheinputimage
(T1wDixonWimage)wascountedtodetectthecoordinatesofthesternumin(a)theexamwith
thebenigntumour,andin(b)theexamwiththemalignanttumour.
Figure9showstheresultoftheregiongrowingalgorithmappliedtotheT1wDixon
Fimages.Forbothexams,theregiongrowingalgorithmseparatesthefattissueofthe
breastregionfromthefattissueinthethoraciccavity,andthewatershedtransformfrom
markerswasnotnecessary.
Sensors2021,21,826516of27
(a)(b)
Figure9.Outputoftheregiongrowingalgorithmappliedto(a)theexamwiththebenigntumour
andto(b)theexamwiththemalignanttumour.
Step2:Skin+Fibroglandular+Fatmask
InFigure10,wedepicttheseveralstepsfollowedtoobtainabreastmaskwithfat,
skin,andfibroglandulartissuesdescribedinStep2fortheexamwiththemalignanttu
mour.Figure10arepresentsthefatmaskresultingfromStep1.Afterdilatingthefatmask
obtainedfromregiongrowing(Figure10b)andwhitingouttheanteriorsideofthebody
(Figure10c),wemultipliedtheresultingmaskandtheT1wDixonWimage(Figure10d).
Afterthresholding,weobtainamaskofthebreastregion(Figure10e).
(a)(b)
(c)(d)
(e)
Figure10.StepbystepimagesobtainedinStep2.(a)Maskrepresentingthefattissueobtainedfrom
theregiongrowingalgorithm.(b)Maskobtainedfromregiongrowing,dilatedbyastructuring
elementofradius3,toincludetheskin.(c)Dilatedmaskwiththeanteriorregionofthebodywhited
out.(d)Imageobtainedbymultiplyingtheimagein(c)andtheoriginalT1wDixonWimage.(e)
Resultingmaskafterthresholdingtheimagerepresentedin(d).
Sensors2021,21,826517of27
Figure11showsthebreastmaskobtainedafterconcludingStep2fortheexamwith
thebenigntumour.
Figure11.MaskobtainedafterStep2ofourmethodologyfortheexamwiththebenigntumour.
Step3:Maskevaluation
Fortheexamwiththebenigntumour,themeansquarederrorvaluebetweenthe
originalmaskanditsflippedimage,is4.8%.Fortheexamwiththemalignanttumour,the
meansquarederrorvalueis11.1%.AsobservedinFigure11,themaskfortheexamwith
thebenigntumouriscomplete,andthemaskfortheexamwiththemalignanttumour
(Figure10e)hasaholewherethetumourinvadesthepectoralismuscle.
Step4:Maskforanexamwithaninvasivetumour(optional)
Tocompletethemaskfortheexamwiththemalignanttumour,themethoddescribed
inStep4wasfollowed.Figure12ashowsthesuperimpositionofthemaskobtainedfrom
Step2anditsflippedimage.Figure12bcorrespondstothebinarisedT1wDixonIimage
usingthemeanvoxelsintensityasthreshold.Figure12ccorrespondstotheresultingout
putofStep4.
(a)(b)(c)
Figure12.(a)SuperimpositionoftheoriginalmaskfromStep2anditsflippedimage.(b)BinarisedT1wDixonIimage
usingthemeanvoxelsintensityasthreshold.(c)Resultingmaskoftheintersectionof(a,b),aftertheapplicationofSim
pleITK’sBinaryFillholeImageFilter.
Step5:Segmentationofskinandbreast/chestwallboundary
Figure13shows,indetail,thestepsfollowedtoobtaintheskinandbreast/chestwall
boundariesfortheexamwiththemalignanttumour.Afterscanningthevoxelsinthe
breastcontour(Figure13a),weobtaineda1voxelthickskincontour(Figure13b).An
artefactcorrespondingtothebreast/chestwallboundaryappearsinFigure13bsincepart
oftheskinintheoriginalT1wDixonWimagewasnotvisible.The1voxelthickchest
wallboundarycontourisshowninFigure13c.Thefinalskincontour,representedinFig
ure13d,correspondstothelargestconnectedcomponentofthesubtractionbetweenFig
ure13a,c.Thefinalcontourofthebreast/chestwallboundary,inFigure13e,corresponds
tothesubtractionbetweenFigure13a,d.
Sensors2021,21,826518of27
(a)(b)
(c)(d)
(e)
Figure13.(a)Contourofthebreastmask.(b)Skincontour(1voxelthick)afterscanningthevoxelsof
thecontourbreastmaskfromlefttoright,toptobottomandrighttoleft.(c)Breast/chestwallboundary
contour(1voxelthick)obtainedaftersubtractingthecontourrepresentedin(b)fromthecontourrep
resentedin(a).Final(d)skinand(e)breast/chestwallboundarycontoursobtainedafterStep5.
Theskinandbreast/chestwallboundariesobtainedafterfollowingStep5arepre
sentedinFigure14,fortheexamwiththemalignanttumour.
(a)(b)
Figure14.(a)Skincontourobtainedfortheexamwiththemalignanttumour,andcorresponding
(b)breast/chestwallboundaryobtainedafterfollowingStep5.
InFigure15,theskinandbreast/chestwallboundariesobtainedafterfollowingStep
5arepresentedfortheexamwiththebenigntumour.
Sensors2021,21,826519of27
(a)(b)
Figure15.(a)Skincontourfortheexamwiththebenigntumour,andthecorresponding(b)
breast/chestwallboundaryobtainedafterfollowingStep5.
Step6:Skinevaluation
Figure16showstheoutputofStep6fortheexamswiththebenignandthemalignant
tumours.
(a)(b)
Figure16.Skinmaskobtainedafterstep6for(a)theexamwiththebenigntumour,andfor(b)the
examwiththemalignanttumour.
Figure17showsthefinallabelmapobtainedfromthesegmentationpipeline,aspre
viouslydescribed.Thelabelsforeachcomponentareasfollows:0forthebackground,1
fortheforeground(includingfatandfibroglandulartissues),−2fortheskinand−1forthe
chest/breastwallboundary.
(a)(b)
Figure17.Labelmapobtainedfromtheprocessingpipeline.Backgroundislabelledas0,fore
ground,whichincludesfatandfibroglandulartissues,arelabelledas1,theskinislabelledas−2
andthebreast/chestwallboundaryislabelledas−1.Labelmapsfor(a)theexamwiththebenign
tumour,andfor(b)theexamwiththemalignanttumour.
3.2.2.TumourSegmentation
Figure18showsthelocationoftheseedmarkedwitharedcrossfor(a)thebenign
tumourand(b)themalignanttumour,whichisthestartingpointofthe3Dregiongrow
ingalgorithms.Thechoiceoftheseedwasautomaticfor(a)andmanualfor(b).
Sensors2021,21,826520of27
(a)(b)
Figure18.Locationofthe3Dregiongrowingalgorithmseedmarkedwitharedcrossin(a)theexam
withthebenigntumourand(b)theexamwiththemalignanttumour.
Figure19illustratestheoutputoftheregiongrowingalgorithmfortheexamwith
thebenigntumour,inthethreeanatomicalplanes.
(a)(b)(c)
(d)(e)(f)
Figure19.Outputoftheregiongrowingalgorithmfortheexamwiththebenigntumour:(ac)correspondtotransverse,
coronal,andsagittalplanesofthepreprocessedSUBDCEfl3Dimagefortumoursegmentation,respectively;(df),illus
tratethesuperimpositionofthetumourmask(yellow)tothepreprocessedSUBDCEfl3Dimageinthetransverse,coro
nal,andsagittalplanes.
Figure20illustratestheoutputoftheregiongrowingalgorithmfortheexamwith
themalignanttumour,inthethreeanatomicalplanes.
(a)(b)(c)
Sensors2021,21,826521of27
(d)(e)(f)
Figure20.Outputoftheregiongrowingalgorithmfortheexamwiththemalignanttumour:(ac)correspondtotrans
verse,coronal,andsagittalplanesofthepreprocessedSUBDCEfl3Dimagefortumoursegmentation,respectively;(d
f)illustratethesuperimpositionofthetumourmask(yellow)tothepreprocessedSUBDCEfl3Dimageinthetransverse,
coronal,andsagittalplanes.
Figure21illustratestheoutputoftheHoshenKopelmanalgorithmplusmanualcor
rectionofthetumourmask,inthethreeanatomicalplanes.HoshenKopelmanisolates
tumoursbyremovingregionsthatdonotbelongtothetumourtissue.However,forex
tremelyheterogenouscasessuchastheonepresentedinthispaper,theHoshenKopel
manalgorithmwasnotenoughtoisolatethetumoursincenearbybloodvesselsarepre
sentincontiguousregions;therefore,manualcorrectionwasrequiredtoobtainabinary
maskofthetumour.
(a)(b)(c)
Figure21.OutputoftheHoshenKopelmanalgorithmplusmanualcorrectionofthetumourmask:(ac)correspondto
transverse,coronal,andsagittalplanes.
Thefinallabelmaps,includingthetumoursegmentationareshowninFigure22.
Tumourlabelcorrespondsto−3.
(a)(b)
Figure22.Finallabelmapfor(a)theexamwiththebenigntumourandfor(b)theexamwiththemalignanttumour.
Sensors2021,21,826522of27
3.3.DielectricProperties
Thehistogramsofthebreastdataofthefatandfibroglandulartissues(labelledas1
inthelabelmaps)forbothexamsarerepresentedinFigure23.Forthebenigntumour,it
ispossibletoseparatefatandfibroglandulartissuesthroughthehistogram(Figure23a)
usingparametersdescribedinTable1.Thevoxelintensitiescorrespondingtofatandfi
broglandulartissuescanbeseparatedinthehistogramoftheexamwiththemalignant
tumour(Figure23b)usingparametersdescribedinTable2.Table5includesalistofthe
parametersextractedfromtheGaussianMixtureModelusedtoobtainthepiecewiselin
earmappingcurvebetweentheMRIvoxelintensityandthedielectricproperties.
(a)(b)
Figure23.HistogramofMRIvoxelintensitiesfor(a)theexamwiththebenigntumourandfor(b)theexamwiththe
malignanttumour.
Table5.ParametersoftheGaussianMixtureModelfortheexamwiththebenigntumourandtheexamwiththemalignant
tumour(roundedtothenearestunit).
ExamwiththeBenignTumourExamwiththeMalignantTumour
VoxelIntensity
EquationsVoxelIntensityVoxelIntensity
EquationsVoxelIntensity
Minimum0000
Fibroglandular_low𝜇

𝜎

552𝜇

𝑀

104
Fibroglandular_median𝜇

80𝜇

115
Fibroglandular_high𝜇

𝜎

104𝑀

𝜇

𝜎

𝛿127
Fat_low𝜇

𝜎

113𝜇

𝛿

134
Fat_median𝜇

129𝜇

143
Fat_high𝜇

𝜎

144𝜇

𝛿

152
MaximumMaximumintensityof
theimage221Maximumintensityof
theimage255
Anexampleofapiecewiselinearmapbetweentherelativepermittivity/effective
conductivityatthefrequency6GHzandtheMRIvoxelintensityfortheexamwiththe
benigntumourisrepresentedinFigure24.
Sensors2021,21,826523of27
(a)(b)
Figure24.Exampleofthepiecewiselinearmappingobtainedat6GHz(a)oftherelativepermittivity
and(b)effectiveconductivityfortheexamwiththebenigntumour.
Figures25and26showthedielectricpropertymapsfortherelativepermittivityand
effectiveconductivity(S/m)at6GHzfortheexamswiththebenignandmalignanttu
mours,respectively.Wewouldliketonotethedifferentcolourscalesinbothfigures;for
thebenigntumour,therelativepermittivityandconductivityvaluesvarybetween0and
60.3,and0and7.37(S/m),respectively;forthemalignanttumour,therelativepermittivity
andconductivityvaluesvarybetween0and60.3,and0and7.82(S/m),respectively.
(a)(b)
Figure25.Mapofthedielectricpropertiesfortheexamwiththebenigntumour:(a)relativepermittivityat6GHzand(b)
effectiveconductivity(S/m)at6GHz.
Sensors2021,21,826524of27
(a)(b)
Figure26.Mapofthedielectricpropertiesfortheexamwiththemalignanttumour:(a)relativepermittivityat6GHzand
(b)effectiveconductivity(S/m)at6GHz.
3.4.BreastRegionModelsRepository
TherepositoryisavailablefordownloadinGitHub(https://github.com/acpeli
cano/breast_models_repository,createdon27October2021).Initially,itonlyincluded
twobreastmodels,asportrayedinthispaper:oneofabenigninfracentimetrictumourof
roundedshape;andtheotherofamalignantinvasivetumourofirregularshape,with
approximately8cmalongitsmajoraxis,andextremelyheterogenousregardingvoxels
intensities.Themodelsincludethedielectricpropertiesofthebreasttissuesestimatedat
frequenciesof3,6,and9GHz.Modelsfromthefulldatasetcollectedfrompatients,as
describedinSection2.1,willbeaddedastheprocessingofeachiscompleted.
4.DiscussionandConclusions
Wepresentedanimageprocessingpipelinetosegmenthealthybreasttissuesand
tumoursinspiredbytheavailableliterature.Mostmodelsforthebreastregionarebased
onclusteringalgorithmsortheidentificationofair/breastandbreast/chestwallbounda
ries.However,thefattissueinsidethethoraciccavity,withnoclearseparationfromother
tissuesinsidethebreast,hindersthecorrectidentificationofthebreastregion.Addition
ally,theidentificationofthebreast/chestwallboundaryisespeciallydifficultinthepres
enceofaheterogeneousmalignanttumourthatisinvadingthepectoralismuscle,asisthe
casepresentedinthispaper.
Theproposedsegmentationpipelinecanseparatethefattissuesinthebreastand
insidethethoraciccavitybyapplyingtheregiongrowingalgorithm.Inaddition,wesug
gestedusingthewatershedtransformfrommarkerswhentheregiongrowingalgorithm
failstoprovideagoodseparationbetweenbothfattissues.Ifthereisnopriorknowledge
ofwhetheraninvasivetumourispresentintheMRIimage,andtoaccountforthearea
whereitinvadesthepectoralismuscle,weproposedamethodthatautomaticallyevalu
atesthebreastmaskafterregiongrowing/watershedtransformandfillsthatarea.
Wedevelopedasemiautomaticsegmentationpipelineparticularlyrobustwhenseg
mentingbreasttumourswithavaryinglevelofheterogeneityregardingvoxelintensity.
Theproposedpipelineisflexiblesinceitdoesnotoperateundertheassumptionthat,gen
erally,biologicaltissuesarewellseparatedwithinagrayscaleimage.Forthetumourseg
mentationpipeline,weuseda3Dregiongrowingalgorithm.Althoughnotfullyauto
matic,itsuggestsusingthehighestintensitypointinaslicecontainingthetumourasthe
seedpointandusing,asthelowerthreshold,themeanminusthreetimesthestandard
deviationofallbodyvoxelsintensityvalues.Thismethodologyprovidedbetterresults
Sensors2021,21,826525of27
whencomparedtowidelyusedsegmentationmethods,suchasKmeans.TheHoshen
Kopelmanalgorithmeliminatedvoxelsincludedinthegrowingregionofthetumourthat
didnotbelongtothattissue.Forthemalignanttumourpresentedinthispaper,wealso
performedmanualcorrectionofthetumourmask.
Weestimatedthedielectricpropertiesforthemalignanttumourtissuefromthere
portedDebyeparameters.Forthebenigntumourtissue,literaturereportsthatthedielec
tricpropertiesofthesetissuesaresimilartothepropertiesofloweradiposecontentnor
malbreasttissues;hence,weestimatedthedielectricpropertiesusinginterpolationbe
tweenthecurvesofhealthybreasttissues.
Inthispaper,wepresentedtworealisticbreastmodelswhereskin,muscle,fat,fibro
glandular,andtumourtissues(malignantandbenign)areidentified.Inaddition,the
modelsinourpaperincludethedielectricpropertiescalculatedforthefrequencyof6
GHz.Anatomicallyrealisticbreastandtumour(benignandmalignant)models,portray
ingtherealisticshapesofthesetissues,areavailabletoallwithestimateddielectricprop
ertiesforfrequenciesof3,6,and9GHzinapublicrepository.
AuthorContributions:Conceptualization,R.C.C.andE.P.;methodology,A.C.P.,M.C.T.G.and
D.M.G.;validation,A.C.P.,M.C.T.G.andD.M.G.;formalanalysis,A.C.P.,M.C.T.G.,R.C.C.andE.P.;
investigation,A.C.P.,M.C.T.G.andD.M.G.;resources,T.C.andM.L.O.;datacuration,A.C.P.and
M.C.T.G.;writing—originaldraftpreparation,A.C.P.andM.C.T.G.;writing—reviewandediting,
allauthors;supervision,R.C.C.,E.P.,N.A.M.A.;projectadministration,R.C.C.;fundingacquisition,
R.C.C.,E.P.Allauthorshavereadandagreedtothepublishedversionofthemanuscript.
Funding:ThisresearchwasfundedbyFundaçãoparaaCiênciaeTecnologia(FCT)underthefel
lowshipUI/BD/150762/2020and2021.07228.BD(grantawardedonthe21October2021),FCT/MET
(PIDDAC)undertheStrategicProgramUIDB/00645/2020andUIDP/00645/2020,andunderCon
tractsno.PTDC/FISMAC/28146/2017(LISBOA010145FEDER028146),UIDB/00618/2020,and
UIDP/00618/2020.
InstitutionalReviewBoardStatement:ThestudywasapprovedbytheComissãodeÉticaparaaSaúde
ofHospitaldaLuz(referencesCES/44/2019/ME(19/09/2019)andCES/34/2020/ME(6November2020)).
InformedConsentStatement:Informedconsentwasobtainedfromallsubjectsinvolvedinthestudy.
DataAvailabilityStatement:Anatomicallyrealisticbreastandtumour(benignandmalignant)
modelswiththeestimateddielectricpropertiesatfrequenciesof3,6and9GHzareavailableonline
athttps://github.com/acpelicano/breast_models_repository(createdon27October2021).
ConflictsofInterest:Theauthorsdeclarenoconflictofinterest.
References
1. GLOBOCAN2020:EstimatedCancerIncidence,MortalityandPrevalenceWorldwidein2020.Availableonline:
http://gco.iarc.fr/(accessedon8April2021).
2. AmericanCancerSociety.CancerFacts&Figures2021;AmericanCancerSociety:Atlanta,GA,USA,2021.
3. AmericanCancerSociety.BreastCancerFacts&Figures2019–2020;AmericanCancerSociety:Atlanta,GA,USA,2020;pp.1–43.
4. Jaglan,P.;Dass,R.;Duhan,M.BreastCancerDetectionTechniques:IssuesandChallenges.J.Inst.Eng.Ser.B2019,100,379–
386.
5. Carney,P.;Miglioretti,D.;Yabkaskas,B.;Kerlikowske,K.;Rosenberg,R.;Rutter,C.;Geller,B.;Abraham,L.;Taplin,S.;Dignan,
M.;etal.IndividualandCombinedEffectsofAge,BreastDensity,andHormoneReplacementTherapyUseontheAccuracyof
ScreeningMammography.Ann.Intern.Med.2003,138,168–175.
6. Wang,L.EarlyDiagnosisofBreastCancer.Sensors2017,17,1572.
7. Nikolova,N.MicrowaveImagingforBreastCancer.IEEEMicrow.Mag.2011,12,78–94.
8. Fear,E.C.;Li,X.;Hagness,S.C.;Stuchly,M.A.ConfocalMicrowaveImagingforBreastCancerDetection:LocalizationofTumors
inThreeDimensions.IEEETrans.Biomed.Eng.2002,49,812–822.
9. FloresTapia,D.;Pistorius,S.RealTimeBreastMicrowaveRadarImageReconstructionUsingCircularHolography:AStudy
ofExperimentalFeasibility.Med.Phys.2011,38,5420–5431.
10. Preece,A.W.;Craddock,I.;Shere,M.;Jones,L.;Winton,H.L.MARIAM4:Clinicalevaluationofaprototypeultrawideband
radarscannerforbreastcancerdetection.J.Med.Imaging2016,3,033502.
11. Aldhaeebi,M.;Alzoubi,K.;Almoneef,T.;Bamatra,S.;Attia,H.;Ramahi,O.Reviewofmicrowavestechniquesforbreastcancer
detection.Sensors2020,20,2390.
Sensors2021,21,826526of27
12. Joines,W.T.;Zhang,Y.;Li,C.;Jirtle,R.L.TheMeasuredElectricalPropertiesofNormalandMalignantHumanTissuesfrom50
to900MHz.Med.Phys.1994,21,547–550.
13. Pethig,R.DielectricPropertiesofBiologicalMaterials:BiophysicalandMedicalApplications.IEEETrans.Electr.Insul.1984,EI
19,453–474.
14. Sha,L.;Renee,E.;Stroy,B.AReviewofDielectricPropertiesofNormalandMalignantBreastTissue.InProceedingsofthe
IEEESoutheastCon2002,Columbia,SC,USA,5–7April2002.
15. Lazebnik,M.;Popovic,D.;McCartney,L.;Watkins,C.B.;Lindstrom,M.J.;Harter,J.;Sewall,S.;Ogilvie,T.;Magliocco,A.;Breslin,
T.M.;etal.ALargeScaleStudyoftheUltrawidebandMicrowaveDielectricPropertiesofNormal,BenignandMalignantBreast
TissuesObtainedfromCancerSurgeries.Phys.Med.Biol.2007,52,6093–6115.
16. Datta,N.R.;Ordóñez,S.G.;Gaipl,U.S.;Paulides,M.M.;Crezee,H.;Gellermann,J.;Marder,D.;Puric,E.;Bodis,S.Localhyper
thermiacombinedwithradiotherapyand/orchemotherapy:Recentadvancesandpromisesforthefuture.CancerTreat.Rev.
2015,41,742–753.
17. Brace,C.Microwavetissueablation:Biophysics,technology,andapplications.Crit.Rev.Biomed.Eng.2010,38,65–78.
18. D’Orsi,C.;Sickles,E.;Mendelson,E.;Morris,E.ACRBIRADS®Atlas,BreastImagingReportingandDataSystem;AmericanCol
legeofRadiology:Reston,VA,USA,2013.
19. Rangayyan,R.M.;ElFaramawy,N.M.;Desautels,J.E.L.;Alim,O.A.MeasuresofAcutanceandShapeforClassificationofBreast
Tumors.IEEETrans.Med.Imaging1997,16,799–810.
20. Winters,D.W.;Shea,J.D.;Madsen,E.L.;Frank,G.R.;VanVeen,B.D.;Hagness,S.C.EstimatingtheBreastSurfaceUsingUWB
MicrowaveMonostaticBackscatterMeasurement.IEEETrans.Biomed.Eng.2008,55,247–256.
21. Zastrow,E.;Davis,S.K.;Lazebnik,M.;Kelcz,F.;VanVeen,B.D.;Hagness,S.C.DevelopmentofAnatomicallyRealisticNumer
icalBreastPhantomswithAccurateDielectricPropertiesforModelingMicrowaveInteractionswiththeHumanBreast.IEEE
Trans.Biomed.Eng.2008,55,2792–2800.
22. Reimer,T.;Krenkevich,S.;Pistorius,S.AnOpenaccessExperimentalDatasetforBreastMicrowaveImaging.InProceedingsof
the14thEuropeanConferenceonAntennasandPropagation(EuCAP),Copenhagen,Denmark,15–20March2020;pp.1–5.
23. Omer,M.;Fear,E.AnthropomorphicBreastModelRepositoryforResearchandDevelopmentofMicrowaveBreastImaging
Technologies.Sci.Data2018,5,180257.
24. Shea,J.;Kosmas,P.;VanVeen,B.D.;Hagness,S.ContrastEnhancedMicrowaveImagingofBreastTumours:AComputational
StudyUsing3DRealisticNumericalPhantoms.InverseProbl.2010,26,074009.
25. Zhu,X.;Zhao,Z.;Wang,J.;Chen,G.;Liu,Q.ActiveAdjointModelingMethodinMicrowaveInducedThermoacusticTomog
raphyforBreastTumor.IEEETrans.Biomed.Eng.2014,61,1957–1966.
26. Amdaouch,I.;Aghzout,O.;Naghar,A.;Alejos,A.;Falcone,F.BreastTumorDetectionSystemBasedonaCompactUWBAn
tennaDesign.PIERM2018,64,123–133.
27. Chen,B.;Shorey,J.;Saunders,R.,Jr.;Richard,S.;Thompson,J.;Nolte,L.;Samei,E.AnAnthropomorphicBreastModelfor
BreastImagingSimulationandOptimization.Acad.Radiol.2011,18,536–546.
28. Felício,J.;BioucasDias,J.;Costa,J.;Fernandes,C.MicrowaveBreastImagingUsingaDrySetup.IEEETrans.Comput.Imaging
2020,6,167–180.
29. Khoshdel,V.;Asefi,M.;Ashraf,A.;LoVetri,J.Full3DMicrowaveBreastImagingUsingaDeepLearningTechnique.J.Imaging
2020,6,80.
30. Porter,E.;Fakhoury,J.;Oprisor,R.;Coates,M.;Popovic,M.ImprovedTissuePhantomsforExperimentalValidationofMicro
waveBreastCancerDetection.InProceedingsofthe4thEuropeanConferenceonAntennasandPropagation(EuCAP),Barce
lona,Spain,12–16April2010.
31. Salvador,S.;Vecchi,G.ExperimentalTestsofMicrowaveBreastCancerDetectiononPhantoms.IEEETrans.AntennasPropag.
2009,57,1705–1712.
32. Fasoula,A.;Duchesne,L.;Cano,J.D.G.;Lawrence,P.;Robin,G.;Bernard,J.G.OnSiteValidationofaMicrowaveBreastImaging
System,beforeFirstPatientStudy.Diagnostics2018,8,53.
33. Conceição,R.;Medeiros,H.;Godinho,D.;O’Halloran,M.;RodriguezHerrera,D.;FloresTapia,D.;Pistorius,S.Classification
ofBreastTumourModelswithaPrototypeMicrowaveImagingSystem.Med.Phys.2020,47,1860–1870.
34. Oliveira,B.;O’Loughlin,D.;O’Halloran,M.;Porter,E.;Glavin,M.;Jones,E.MicrowaveBreastImaging:ExperimentalTumour
PhantomsfortheEvaluationofNewBreastCancerDiagnosisSystems.Biomed.Phys.Eng.Express2018,4,025036.
35. Godinho,D.;Felício,J.;Castela,T.;Silva,N.;Orvalho,M.;Fernandes,C.;Conceição,R.DevelopmentofMRIbasedAxillary
NumericalModelsandEstimationofAxillaryLymphNodesDielectricPropertiesforMicrowaveImaging.Med.Phys.2021,48,
5974–5990.
36. Yaniv,Z.;Lowekamp,B.;Johnson,H.;Beare,R.SimpleITKImageAnalysisNotebooks:ACollaborativeEnvironmentforEdu
cationandReproducibleResearch.J.Digit.Imaging2018,31,290–303.
37. Wang,L.;Chitiboi,T.;Meine,H.;Gunther,M.;Hahn,H.PrinciplesandMethodsforAutomaticandSemiautomaticTissue
SegmentationinMRIData.Magn.Reson.Mater.Phys.Biol.Med.2016,29,95–110.
38. Juntu,J.;Sijbers,J.;VanDyck,D.;Gielen,J.BiasFieldCorrectionforMRIImages;Kurzynski,M.,Puchała,E.,Woźniak,M.,
żołnierek,A.,Eds.;ComputerRecognitionSystems;Springer:Berlin/Heidelberg,Germany,2005.
39. Sled,J.;Zijdenbos,A.;Evans,A.AnonparametricmethodforautomaticcorrectionofintensitynonuniformityinMRIdata.
IEEETrans.Med.Imaging1998,17,87–97.
Sensors2021,21,826527of27
40. Tustison,N.;Avants,B.;Cook,P.;Zheng,Y.;Egan,A.;Yushkevich,P.;Gee,J.N4ITK:ImprovedN3biascorrection.IEEETrans.
Med.Imaging2010,29,1310–1320.
41. Lu,M.;Xiao,X.;Song,H.;Liu,G.;Lu,H.;Kikkawa,T.Accurateconstructionof3Dnumericalbreastmodelswithanatomical
informationthroughMRIscans.Comp.Biol.Med.2021,130,104205.
42. Patro,S.;Sahu,K.Normalization:Apreprocessingstage.arXiv2015,arXiv:1503.06462.
43. Ali,H.MRImedicalimagedenoisingbyfundamentalfilters.SCIREAJ.Comput.2017,2,12–26.
44. Gonzalez,R.;Woods,R.DigitalImageProcessing;PrenticeHall:Hoboken,NJ,USA,2002.
45. Lenchik,L.;Heacock,L.;Weaver,A.;Boutin,R.;Cook,T.;Itri,J.;Filippi,C.;Gullapalli,T.;Godwin,K.;Nicholson,J.;etal.
AutomatedSegmentationofTissuesUsingCTandMRI:ASystematicReview.Acad.Radiol.2019,26,1695–1706.
46. GubernMérida,A.;Kallenberg,M.;Mann,R.;Martí,R.;Karssemeijer,N.BreastSegmentationandDensityEstimationinBreast
MRI:AFullyAutomaticFramework.IEEEJ.Biomed.HealthInform.2015,19,349–357.
47. Wang,L.;Platel,B.;Ivanovskaya,T.;Harz,M.;Hahn,H.FullyAutomaticBreastSegmentationin3DBreastMRI.InProceedings
ofthe9thIEEEInternationalSymposiumonBiomedicalImaging(ISBI),Barcelona,Spain,2–5May2012;pp.1024–1027.
48. Tunçay,A.;Akduman,I.RealisticMicrowaveBreastModelsThroughT1Weighted3DMRIData.IEEETrans.Biomed.Eng.
2015,62,688–698.
49. Omer,M.;Fear,E.Automated3DMethodfortheConstructionofFlexibleandReconfigurableNumericalBreastModelsfrom
MRIScans.Med.Biol.Eng.Comput.2018,56,1027–1040.
50. Song,H.;Cui,X.;Sun,F.BreastTissue3DSegmentationandVisualizationonMRI.Int.J.Biomed.Imaging2013,2013,20.
51. AlFaris,A.;Ngah,U.;MatIsa,N.;Shuaib,I.MRIBreastSkinlineSegmentationandRemovalusingIntegrationMethodof
LevelSetActiveContourandMorphologicalThinningAlgorithms.J.Med.Sci.2013,12,286–291.
52. TheWatershedTransforminITK—DiscussionandNewDevelopments.Availableonline:https://www.insightjour
nal.org/browse/journal/4(accessedon10June2021).
53. Sendur,H.;Gultekin,S.;Salimli,L.;Cindil,E.;Cerit,M.;Sendur,A.DeterminationofNormalBreastandAreolarSkinElasticity
UsingShearWaveElastography.J.UltrasoundMed.2019,38,1815–1822.
54. Lazebnik,M.;McCartney,L.;Popovic,D.;Watkins,C.B.;Lindstrom,M.J.;Harter,J.;Sewall,S.;Magliocco,A.;Booske,J.H.;
Okoniewski,M.;etal.ALargeScaleStudyoftheUltrawidebandMicrowaveDielectricPropertiesofNormalBreastTissue
ObtainedfromReductionSurgeries.Phys.Med.Biol.2007,52,2637–2656.
55. Moftah,H.;Azar,A.;AlShammari,E.;Ghali,N.;Hassanien,A.;Shoman,M.AdaptiveKmeansClusteringAlgorithmforMR
BreastImageSegmentation.NeuralComput.Appl.2013,24,1917–1928.
56. Arjmand,A.;Meshgini,S.;Afrouzian,R.;Farzamnia,A.BreastTumorSegmentationUsingKMeansClusteringandCuckoo
SearchOptimization.InProceedingsofthe9thInternationalConferenceonComputerandKnowledgeEngineering(ICCKE),
Mashhad,Iran,24–25October2019;pp.305–308.
57. Chen,W.;Giger,M.;Bick,U.AFuzzyCmeans(FCM)basedApproachforComputerizedSegmentationofBreastLesionsin
DynamicContrastEnhancedMRImages.Acad.Radiol.2006,13,63–72.
58. Kannan,S.;Sathya,A.;Ramathilagam,S.EffectiveFuzzyClusteringTechniquesforSegmentationofBreastMRI.SoftComput.
2011,15,483–491.
59. Vesal,S.;DiazPinto,A.;RaviKumar,N.;Ellman,S.;Davari,A.;Maier,A.SemiAutomaticAlgorithmforBreastMRILesion
SegmentationUsingMarkerControlledWatershedTransformation.InProceedingsoftheIEEENuclearScienceSymposium
andMedicalImagingConference,Atlanta,GA,USA,21–28October2017.
60. Vesal,S.;RaviKumar,N.;Ellman,S.;Maier,A.ComparativeAnalysisofUnsupervisedAlgorithmsforBreastMRILesionSeg
mentation;InBildverarbeitungfürdieMedizin2018;Maier,A.,Deserno,T.M.,Handels,H.,MaierHein,K.H.,Palm,C.,Tolxdorff,
T.,Eds.;Springer:Berlin/Heidelberg,Germany,2018.
61. Thakran,S.;Chatterjee,S.;Singhal,M.;Gupta,R.;Singh,A.AutomaticOuterandInnerBreastTissueSegmentationUsingMulti
parametricMRIImagesofBreastTumorPatients.PLoSONE2018,13,e0190348.
62. RegionGrowing.Availableonline:https://www.mathworks.com/matlabcentral/fileexchange/19084regiongrowing(accessed
on1April2021).
63. Hoshen,J.;Kopelman,R.Percolationandclusterdistribution.I.Clustermultiplelabelingtechniqueandcriticalconcentration
algorithm.Phys.Rev.B1976,14,3438–3445.
64. Databaseof3DGridBasedNumericalBreastPhantomsforUseinComputationalElectromagneticsSimulations.Available
online:http://uwcem.ece.wisc.edu/home.htm(accessedon7June2010).
65. Burfeindt,M.J.;Colgan,T.J.;Mays,R.O.;Shea,J.D.;Behdad,N.;VanVeen,B.D.;Hagness,S.C.MRIderived3Dprintedbreast
phantomformicrowavebreastimagingvalidation.IEEEAntennasWirel.Propag.Lett.2012,11,1610–1613.
... Early detection and intervention have been shown to significantly reduce the mortality rate and improve the quality of life and survival rates of breast cancer patients. Therefore, these factors are considered crucial for successful treatment outcomes [9]. ...
... In this study, a segmentation pipeline proposed by Pelicano et al. [9] was used to segment highly heterogeneous tumors from MRI exams. However, this study presented two limitations: 1) the need for manual selection of the seed point; and 2) the inability to segment multiple tumors, as the 3D region growing algorithm is only capable of identifying one tumor per seed of high intensity. ...
... Similarly, Al-Faris et al. in [2] studied the segmentation of tumors in MRI images using a modified version of the automatic seeded region growing algorithm, incorporating variations in seed point and threshold selection for improved performance compared to previous methods. More recently, Pelicano et al. [9] proposed a method to segment tumors in MRI images using a 3D version of the region growing technique. This method is similar to seeded region growing but operates in three dimensions. ...
Chapter
Breast tumor is one of the most prominent indicators for diagnosis of breast cancer. Magnetic Resonance Imaging (MRI) is a relevant imaging modality tool for breast cancer screening. Moreover, an accurate 3D segmentation of breast tumors from MRI scans plays a key role in the analysis of the disease. This paper presents a pipeline to automatically segment multiple tumors in breast MRI scans, following the methodology proposed by one previous study, addressing its limitations in detecting multiple tumors and automatically selecting seed points using a 3D region growing algorithm. The pre-processing includes bias field correction, data normalization, and image filtering. The segmentation process involved several steps, including identifying high-intensity points, followed by identifying high-intensity regions using k-means clustering. Then, the centers of the regions were used as seeds for the 3D region growing algorithm, resulting in a mask with 3D structures. These masks were then analyzed in terms of their volume, compactness, and circularity. Despite the need for further adjustments in the model parameters, the successful segmentation of four tumors proved that our solution is a promising approach for automatic multi-tumor segmentation with the potential to be combined with a classification model relying on the characteristics of the segmented structures.
... Region growing [53] and Hoshen-Kopelman [54] algorithms were applied to pre-processed subtraction images from the DCE-fl3D sequence for tumor segmentation. Details regarding breast model processing are described in [55]. ...
... The 1-pole Cole-Cole parameters of the malignant tumors dielectric property curves are available in [32]. These parameters were subsequently converted into Debye parameters, as detailed in [55]. Benign breast tumors and breast tissues with low adipose content exhibit similar dielectric properties [32]. ...
Article
Full-text available
The diagnosis of breast cancer through MicroWave Imaging (MWI) technology has been extensively researched over the past few decades. However, continuous improvements to systems are needed to achieve clinical viability. To this end, the numerical models employed in simulation studies need to be diversified, anatomically accurate, and also representative of the cases in clinical settings. Hence, we have created the first open-access repository of 3D anatomically accurate numerical models of the breast, derived from 3.0T Magnetic Resonance Images (MRI) of benign breast disease and breast cancer patients. The models include normal breast tissues (fat, fibroglandular, skin, and muscle tissues), and benign and cancerous breast tumors. The repository contains easily reconfigurable models which can be tumor-free or contain single or multiple tumors, allowing complex and realistic test scenarios needed for feasibility and performance assessment of MWI devices prior to experimental and clinical testing. It also includes an executable file which enables researchers to generate models incorporating the dielectric properties of breast tissues at a chosen frequency ranging from 3 to 10 GHz, thereby ensuring compatibility with a wide spectrum of research requirements and stages of development for any breast MWI prototype system. Currently, our dataset comprises MRI scans of 55 patients, but new exams will be continuously added.
... Conversely, exploiting images acquired by magnetic resonance imaging (MRI) examination has the potential to enrich the available cohort of breast models in terms of both dimensional and anatomical variability. The use of an MRI-based approach to make anthropomorphic breast phantoms has been demonstrated by others to be a valid approach for applications dedicated to microwave imaging diagnosis and biomechanical finite element models (7)(8)(9) . The creation of physical anthropomorphic breast phantoms for use in X-ray breast imaging investigations needs proper manufacturing technology, suitable materials, and validation of the results, as well as an assessment of time and costs. ...
... A different approach directly relates a parameter of the MRI signal, as e.g. the longitudinal relaxation time (T1), to the corresponding tissue and then assigns to that tissue the dielectric properties reported in public databases (Hasgall et al 2022, Andreuccetti et al 1997. Using this approach, models of breast (Pelicano et al 2021) and of axillary lymph nodes were developed. In this procedure however, as in the w-EPT method, the properties assigned to a certain tissue are not the ones of the patient but are average values taken from the literature and mostly derived from animal samples. ...
Article
Full-text available
Objective. Aim of this work is to illustrate and experimentally validate a model to evaluate the dielectric properties of biological tissues on a wide frequency band using the magnetic resonance imaging (MRI) technique. Approach. The dielectric behaviour of biological tissues depends on frequency, according to the so-called relaxation mechanisms. The adopted model derives the dielectric properties of biological tissues in the frequency range 10 MHz–20 GHz considering the presence of two relaxation mechanisms whose parameters are determined from quantities derived from MRI acquisitions. In particular, the MRI derived quantities are the water content and the dielectric properties of the tissue under study at the frequency of the MR scanner. Main results. The model was first theoretically validated on muscle and fat using literature data in the frequency range 10 MHz–20 GHz. Results showed capabilities of reconstructing dielectric properties with errors within 16%. Then the model was applied to ex vivo muscle and liver tissues, comparing the MRI-derived properties with data measured by the open probe technique in the frequency range 10 MHz–3 GHz, showing promising results. Significance. The use of medical techniques based on the application of electromagnetic fields (EMFs) is significantly increasing. To provide safe and effective treatments, it is necessary to know how human tissues react to the applied EMF. Since this information is embedded in the dielectric properties of biological tissues, an accurate and precise dielectric characterization is needed. Biological tissues are heterogenous, and their characteristics depend on several factors. Consequently, it is necessary to characterize dielectric properties in vivo for each specific patient. While this aim cannot be reached with traditional measurement techniques, through the adopted model these properties can be reconstructed in vivo on a wide frequency band from non-invasive MRI acquisitions.
... Due to the dielectric characteristics of malignant and healthy breast tissue at microwave frequencies, MWI devices have been researched in recent years for early-stage breast cancer diagnostics [6][7][8]. Cancerous tissue differs from healthy tissue because the permeability of the cancer cell membrane changes, allowing more water to pass into the cell [9]. As a result, malignant cells have more water and dissolved ions inside them with respect to healthy cells of exactly the same type of tissue. ...
Article
Full-text available
In this paper, a wideband antenna is proposed for ultra-wideband microwave imaging applications. The antenna is comprised of a tapered slot ground, a rectangular slotted patch and four star-shaped parasitic components. The added slotted patch is shown to be effective in improving the bandwidth and gain. The proposed antenna system provides a realized gain of 6 dBi, an efficiency of around 80% on the radiation bandwidth, and a wide impedance bandwidth (S11 < −10 dB) of 6.3 GHz (from 3.8 to 10.1 GHz). This supports a true wideband operation. Furthermore, the fidelity factor for face-to-face (FtF) direction is 91.6%, and for side by side (SbS) is 91.2%. This proves the excellent directionality and less signal distortion of the designed antenna. These high figures establish the potential use of the proposed antenna for imaging. A heterogeneous breast phantom with dielectric characteristics identical to actual breast tissue with the presence of tumors was constructed for experimental validation. An antenna array of the proposed antenna element was situated over an artificial breast to collect reflected and transmitted waves for tumor characterization. Finally, an imaging algorithm was used to process the retrieved data to recreate the image in order to detect the undesirable tumor object inside the breast phantom.
Article
The impact of breast cancer on public health is serious, and due to risk/benefit assessment, screening programs are usually restricted to women older than 49 years. Microwave imaging devices offer advantages such as non-ionizing radiation, low cost, and the ability to distinguish between cancerous and healthy tissues due to their electrical properties. Ensuring the safety of this technology is vital for its potential clinical application. To estimate the temperature increase in breast tissues from a microwave imaging scanner, cases of healthy, benign, and malignant breast tissues were analyzed using three digital models and adding two healthy breast models with varying densities. Virtual experiments were conducted using the Sim4Life software (version 7.2) with a system consisting of a horn antenna in transmission and a Vivaldi antenna in reception. Temperature increases were estimated based on the Specific Absorption Rate distributions computed for different configurations and frequencies. The highest temperature increase obtained in this analysis is lower than 60 μK in fibroglandular tissue or skin, depending on the frequency and breast density. The presence of a receiving antenna acting as a scatterer modifies the temperature increase, which is almost negligible. Microwave examination can be performed without harmful thermal effects due to electromagnetic field exposure.
Article
Mapping a nonlinear relationship between magnetic resonance imaging (MRI) intensity and the dielectric properties of body tissues is proposed using the microwave imaging. The main assumption in our approach is that in a specific tissue area a nonlinear mapping can be considered between the MRI intensity and the electromagnetic properties. Once this relationship is obtained, the MRI intensity information can be converted directly to the dielectric properties of tissues. The performance of the proposed method is evaluated using anatomically-realistic numerical breast phantoms. The results show that in the presence of different levels of noise, the relationship between MRI intensity and dielectric properties of tissues can be accurately retrieved.
Article
Full-text available
Purpose Microwave imaging (MWI) has been studied as a complementary imaging modality to improve sensitivity and specificity of diagnosis of axillary lymph nodes (ALNs), which can be metastasized by breast cancer. The feasibility of such a system is based on the dielectric contrast between healthy and metastasized ALNs. However, reliable information such as anatomically realistic numerical models and matching dielectric properties of the axillary region and ALNs, which are crucial to develop MWI systems, are still limited in the literature. The purpose of this work is to develop a methodology to infer dielectric properties of structures from magnetic resonance imaging (MRI), in particular, ALNs. We further use this methodology, which is tailored for structures farther away from MR coils, to create MRI‐based numerical models of the axillary region and share them with the scientific community, through an open‐access repository. Methods We use a dataset of breast MRI scans of 40 patients, 15 of them with metastasized ALNs. We apply image processing techniques to minimize the artifacts in MR images and segment the tissues of interest. The background, lung cavity, and skin are segmented using thresholding techniques and the remaining tissues are segmented using a K‐means clustering algorithm. The ALNs are segmented combining the clustering results of two MRI sequences. The performance of this methodology was evaluated using qualitative criteria. We then apply a piecewise linear interpolation between voxel signal intensities and known dielectric properties, which allow us to create dielectric property maps within an MRI and consequently infer ALN properties. Finally, we compare healthy and metastasized ALN dielectric properties within and between patients, and we create an open‐access repository of numerical axillary region numerical models which can be used for electromagnetic simulations. Results The proposed methodology allowed creating anatomically realistic models of the axillary region, segmenting 80 ALNs and analyzing the corresponding dielectric properties. The estimated relative permittivity of those ALNs ranged from 16.6 to 49.3 at 5 GHz. We observe there is a high variability of dielectric properties of ALNs, which can be mainly related to the ALN size and, consequently, its composition. We verified an average dielectric contrast of 29% between healthy and metastasized ALNs. Our repository comprises 10 numerical models of the axillary region, from five patients, with variable number of metastasized ALNs and body mass index. Conclusions The observed contrast between healthy and metastasized ALNs is a good indicator for the feasibility of a MWI system aiming to diagnose ALNs. This paper presents new contributions regarding anatomical modeling and dielectric properties' characterization, in particular for axillary region applications.
Article
Full-text available
A deep learning technique to enhance 3D images of the complex-valued permittivity of the breast obtained via microwave imaging is investigated. The developed technique is an extension of one created to enhance 2D images. We employ a 3D Convolutional Neural Network, based on the U-Net architecture, that takes in 3D images obtained using the Contrast-Source Inversion (CSI) method and attempts to produce the true 3D image of the permittivity. The training set consists of 3D CSI images, along with the true numerical phantom images from which the microwave scattered field utilized to create the CSI reconstructions was synthetically generated. Each numerical phantom varies with respect to the size, number, and location of tumors within the fibroglandular region. The reconstructed permittivity images produced by the proposed 3D U-Net show that the network is not only able to remove the artifacts that are typical of CSI reconstructions, but it also enhances the detectability of the tumors. We test the trained U-Net with 3D images obtained from experimentally collected microwave data as well as with images obtained synthetically. Significantly, the results illustrate that although the network was trained using only images obtained from synthetic data, it performed well with images obtained from both synthetic and experimental data. Quantitative evaluations are reported using Receiver Operating Characteristics (ROC) curves for the tumor detectability and RMS error for the enhancement of the reconstructions.
Article
Full-text available
Conventional breast cancer detection techniques including X-ray mammography, magnetic resonance imaging, and ultrasound scanning suffer from shortcomings such as excessive cost, harmful radiation, and inconveniences to the patients. These challenges motivated researchers to investigate alternative methods including the use of microwaves. This article focuses on reviewing the background of microwave techniques for breast tumour detection. In particular, this study reviews the recent advancements in active microwave imaging, namely microwave tomography and radar-based techniques. The main objective of this paper is to provide researchers and physicians with an overview of the principles, techniques, and fundamental challenges associated with microwave imaging for breast cancer detection. Furthermore, this study aims to shed light on the fact that until today, there are very few commercially available and cost-effective microwave-based systems for breast cancer imaging or detection. This conclusion is not intended to imply the inefficacy of microwaves for breast cancer detection, but rather to encourage a healthy debate on why a commercially available system has yet to be made available despite almost 30 years of intensive research.
Article
Full-text available
Purpose The assessment of the size and shape of breast tumors is of utter importance to the correct diagnosis and staging of breast cancer. In this paper, we classify breast tumor models of varying sizes and shapes using signals collected with a monostatic ultra‐wideband radar microwave imaging prototype system with machine learning algorithms specifically tailored to the collected data. Methods A database comprising 13 benign and 13 malignant tumor models with sizes between 13 and 40 mm was created using dielectrically representative tissue mimicking materials. These tumor models were placed inside two breast phantoms: a homogeneous breast phantom and a breast phantom with clusters of fibroglandular mimicking tissue, accounting for breast heterogeneity. The breast phantoms with tumors were imaged with a monostatic microwave imaging prototype system, over a 1–6 GHz frequency range. The classification of benign and malignant tumors embedded in the two breast phantoms was completed, and tumor classification was evaluated with Principal Component Analysis as a feature extraction method, and tuned Naïve Bayes (NB), decision trees (DT), and k‐nearest neighbours (kNN) as classifiers. We further study which antenna positions are better placed to classify tumors, discuss the feature extraction method and optimize classification algorithms, by tuning their hyperparameters, to improve sensitivity, specificity and the receiver operating characteristic curve, while ensuring maximum generalization and avoiding overfitting and data contamination. We also added a realistic synthetic skin response to the collected signals and examined its global effect on classification of benign vs malignant tumors. Results In terms of global classification performance, kNN outperformed DT and NB machine learning classifiers, achieving a classification accuracy of 96.2% when classifying between benign and malignant tumor phantoms in a homogeneous breast phantom (both when the skin artifact is and is not considered). Conclusions We experimentally classified tumor models as benign or malignant with a microwave imaging system, and we showed a methodology that can potentially assess the shape of breast tumors, which will give further insight into the correct diagnosis and staging of breast cancer.
Article
Full-text available
The paper demonstrates for the first time, both numerically and experimentally, the feasibility of radar-based microwave imaging of anthropomorphic heterogeneously dense breasts in prone position, requiring no immersion liquid. The dry, contactless approach greatly simplifies the setup, favors patient comfort, and further avoids lengthy sanitation procedures after each exam. We use a radar-type technique with the antennas distributed in cylindrical configuration around the breast phantom. The reflectivity map is reconstructed using a wave-migration algorithm in the frequency domain. The paper presents new developed strategies to cope with the challenges of a dry setup, namely increased skin artifact due to the concomitant absence of matching liquid and non-uniform breast shape. We propose an iterative and adaptive algorithm based on singular value decomposition that effectively removes the skin backscattering under the above conditions. It is compatible with automatic processing, and computationally fast. One of its inputs is the breast three-dimensional surface information, and its distance to the antennas, all obtained automatically from a proposed low-cost procedure based on a webcam. The imaging method is reasonably resilient to the presence of fibroglandular tissues, and to uncertainties of tissue permittivity. Another tackled challenge is the miniaturization of the antenna in air, which is achieved with an optimized balanced antipodal Vivaldi of the same size as counterparts used in dense immersion liquids. Finally, all the building blocks are combined to demonstrate experimentally the overall dry system performance, with very good detection of the tumor at three different positions in the breast, even in low contrast scenarios.
Article
The realistic numerical breast model is an important tool for verifying algorithms, improving design concepts, and exploring new technologies related to microwave breast cancer detection. Recently, several numerical breast models have been developed. However, these models do not include the real breast boundary and the chest region, which causes the electromagnetic wave propagation in the breast models to deviate from the actual situation. The proposed breast models in this paper overcome the significant deficiencies of the recent breast models in terms of structure completeness and authenticity. The model construction based on magnetic resonance imaging (MRI) scans is a multistep approach. Firstly, intensity inhomogeneity in MRI images is corrected by an improved nonparametric nonuniform intensity normalization (N4) algorithm. Then, a dual threshold and morphological transformation (DTMT) method is developed to segment the real breast region. Subsequently, a modified maximum inter-class variance (MICV) method is employed to automatically divide the breast region into the fat and the fibroglandular clusters with desired complexity. Finally, the dielectric properties of breast tissues are calculated by a piecewise weighted mapping method. The applicability and effectiveness of the proposed method are verified by constructing four breast models with varying tissue density, shape, and size. The constructed models in this study are significant to achieve reliable and precise effects for microwave breast cancer detection due to the accurate expression of the breast anatomical information and electromagnetic characteristics.
Article
Rationale and objectives: The automated segmentation of organs and tissues throughout the body using computed tomography and magnetic resonance imaging has been rapidly increasing. Research into many medical conditions has benefited greatly from these approaches by allowing the development of more rapid and reproducible quantitative imaging markers. These markers have been used to help diagnose disease, determine prognosis, select patients for therapy, and follow responses to therapy. Because some of these tools are now transitioning from research environments to clinical practice, it is important for radiologists to become familiar with various methods used for automated segmentation. Materials and methods: The Radiology Research Alliance of the Association of University Radiologists convened an Automated Segmentation Task Force to conduct a systematic review of the peer-reviewed literature on this topic. Results: The systematic review presented here includes 408 studies and discusses various approaches to automated segmentation using computed tomography and magnetic resonance imaging for neurologic, thoracic, abdominal, musculoskeletal, and breast imaging applications. Conclusion: These insights should help prepare radiologists to better evaluate automated segmentation tools and apply them not only to research, but eventually to clinical practice.
Article
Breast cancer is the revelatory health problem among the world and becomes the most common malignancy in women. In the area of medical research, image processing is quite receptive in applications like mammography, computer-aided detection, breast ultrasound and breast MRI. The physician can examine and even diagnose the tumor with the help of the output in terms of an image produced by these techniques. The best way to improve the prognosis of breast cancer is early detection. X-ray mammography is the primary method used for early detection of the breast cancer. Although mammography is an effective screening tool, it does not provide certain and reliable results for women with dense breasts as well as in women having surgical interventions. Recent researches have shown that MRI proves to be a better alternative to mammography as it does not involve any radiation exposure. The main drawbacks of breast MRI are: Specificity is too low and interpretation is complex and not standardized, which recommended only the screening of high-risk women. The other imaging techniques like ductogram (galactogram), nuclear medicine studies, PET (positron emission tomography) scan, scintimammography (molecular breast imaging), electrical impedance imaging, thermography, optical imaging tests, molecular breast imaging, positron emission mammography are also available for breast cancer detection. So the main objectives of this paper are to represent the comparative analysis of different imaging modalities which are used for breast imaging for detection of cancerous cells and to represent various issues and challenges in the field of breast cancer detection.