Article

A novel tin based hydroxamic acid complex induces apoptosis through redox imbalance and targets Stat3/JNK1/MMP axis to overcome drug resistance in cancer

Authors:
Article

A novel tin based hydroxamic acid complex induces apoptosis through redox imbalance and targets Stat3/JNK1/MMP axis to overcome drug resistance in cancer

If you want to read the PDF, try requesting it from the authors.

Abstract

Undesired toxicity and emergence of multidrug resistance (MDR) are the major impediments for the successful application of organotin-based compounds against cancer. Since oxalyl-bis(N-phenyl)hydroxamic acid (OBPHA) exerts significant efficacy against cancer, we believe that derivatives of OBPHA including organotin molecule can show a promising effect against cancer. Herein, we have selected three previously characterized OBPHA derivatives viz., succinyl-bis(N-phenyl)hydroxamic acid (SBPHA), diphenyl-tin succinyl-bis(N-phenyl)hydroxamic acid (Sn-SBPHA), malonyl-bis(N-phenyl)hydroxamic acid (MBPHA) and evaluated their antiproliferative efficacy against both drug resistant (CEM/ADR5000; EAC/Dox) and sensitive (CCRF-CEM; HeLa; EAC/S) cancers. Data revealed that Sn-SBPHA selectively targets drug resistant and sensitive cancers without inducing any significant toxicity to normal cells (Chang Liver). Moreover, shortening of the backbone of SBPHA enhances the efficacy of the newly formed molecule MBPHA by targeting only drug sensitive cancers. Sn-SBPHA induces caspase3-dependent apoptosis through redox-imbalance in both drug resistant and sensitive cancer. Sn-SBPHA also reduced the activation and expression of both MMP2 and MMP9 without altering the expression status of TIMP1 and TIMP2 in drug resistant cancer. In addition, Sn-SBPHA reduced the activation of both STAT3 and JNK1, the transcriptional modulator of MMPs, in a redox-dependent manner in CEM/ADR5000 cells. Thus, Sn-SBPHA targets MMPs by modulating STAT3 and JNK1 in a redox-dependent manner. However, MBPHA and SBPHA fail to target drug resistance and both drug resistant and sensitive cancer respectively. Furthermore, Sn-SBPHA significantly increases the lifespan of doxorubicin resistant and sensitive Ehrlich Ascites Carcinoma bearing mice without inducing any significant systemic-toxicity. Therefore, Sn-SBPHA has the therapeutic potential to target and overcome MDR in cancer.

No full-text available

Request Full-text Paper PDF

To read the full-text of this research,
you can request a copy directly from the authors.

... For example, GSK3β expression promotes ESCC cell progression through STAT3 (38), and GSK3β inhibition could block STAT3 signaling, reducing pro-inflammatory responses (39). STAT3 activation could lead to MMP2 expression through MAPK8, affecting cell migration and viability (40,41). In addition, the stability of crucial factors in regulatory pathways may affect signal transduction. ...
Article
Full-text available
Background Risperidone is an atypical antipsychotic that can cause substantial weight gain. The pharmacological targets and molecular mechanisms related to risperidone-induced lipogenesis (RIL) remain to be elucidated. Therefore, network pharmacology and further experimental validation were undertaken to explore the action mechanisms of RIL. Methods RILs were systematically analyzed by integrating multiple databases through integrated network pharmacology, transcriptomics, molecular docking, and molecular experiment analysis. The potential signaling pathways for RIL were identified and experimentally validated using gene ontology (GO) enrichment and Kyoto encyclopedia of genes and genomes (KEGG) analysis. Results Risperidone promotes adipocyte differentiation and lipid accumulation through Oil Red O staining and reverse transcription-polymerase chain reaction (RT-PCR). After network pharmacology and GO analysis, risperidone was found to influence cellular metabolism. In addition, risperidone influences adipocyte metabolism, differentiation, and lipid accumulation-related functions through transcriptome analysis. Intersecting analysis, molecular docking, and pathway validation analysis showed that risperidone influences the adipocytokine signaling pathway by targeting MAPK14 (mitogen-activated protein kinase 14), MAPK8 (mitogen-activated protein kinase 8), and RXRA (retinoic acid receptor RXR-alpha), thereby inhibiting long-chain fatty acid β-oxidation by decreasing STAT3 (signal transducer and activator of transcription 3) expression and phosphorylation. Conclusion Risperidone increases adipocyte lipid accumulation by plausibly inhibiting long-chain fatty acid β-oxidation through targeting MAPK14 and MAPK8.
Article
A new strategy based on online hyphenation of magnetism-enhanced in-tube solid phase microextraction (ME-SPME) and HPLC was developed for speciation of organotin compounds (OTCs) in water and seafood samples. Task specific porous polymer embedded magnetic nanoparticles (TPM) was fabricated in capillary and utilized as the microextraction column (MEC) of ME-SPME. The implement of magnetic field during extraction duration obviously improved extraction efficiencies of prepared TPM/MEC towards studied TOCs from 48.0-77.0% to 84.2–99.7%. Under the optimized extraction parameters, sensitive and automatic approach for the quantification of TOCs was developed by online hyphenation of ME-SPME and HPLC with fluorescence detection. The limits of detection for water and seafood samples were in the ranges of 0.0030–1.5 μg/L and 0.71–14 μg/kg, respectively. The established method was employed to measure low contents of studied OTCs in actual samples, and the recoveries at different fortified contents varied from 80.2% to 116% with satisfactory reproducibility (RSDs below 10%). In addition, confirmation experiments were adopted to inspect the accuracy of introduced method.
Article
Full-text available
T cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematological malignancy with a high incidence of relapse in pediatric ALL. Although most T-ALL patients exhibit activating mutations in NOTCH1, the cooperating genetic events required to accelerate the onset of leukemia and worsen disease progression are largely unknown. Here, we show that the gene encoding the transcription factor KLF4 is inactivated by DNA methylation in children with T-ALL. In mice, loss of KLF4 accelerated the development of NOTCH1-induced T-ALL by enhancing the G1-to-S transition in leukemic cells and promoting the expansion of leukemia-initiating cells. Mechanistically, KLF4 represses the gene encoding the kinase MAP2K7. Our results showed that in murine and pediatric T-ALL, loss of KLF4 leads to aberrant activation of MAP2K7 and of the downstream effectors JNK and ATF2. As a proof-of-concept for the development of a targeted therapy, administration of JNK inhibitors reduced the expansion of leukemia cells in cell-based and patient-derived xenograft models. Collectively, these data uncover a novel function for KLF4 in regulating the MAP2K7 pathway in T-ALL cells, which can be targeted to eradicate leukemia-initiating cells in T-ALL patients.
Article
Full-text available
Purpose: One likely cause of treatment failure in glioblastoma is the persistence of glioma stem-like cells (GSLCs), highly resistant to therapies currently employed. We found that CXCL12 has highest expression in glioma cells derived from neural progenitor cells (NPCs). The development and molecular signature of NPC-derived GBMs were analyzed and the therapeutic effect of blocking CXCL12 was tested. Experimental design: Tumors were induced by injecting DNA into the lateral ventricle of neonatal mice, using the Sleeping Beauty transposase method. Histology and expression of GSLC markers were analyzed during disease progression. Survival upon treatment with pharmacologic (Plerixafor) or genetic inhibition of CXCR4 was analyzed. Primary neurospheres were generated and analyzed for proliferation, apoptosis and expression of proteins regulating survival and cell cycle progression. Results: Tumors induced from NPCs display histological features of human GBM and express markers of GSLC. In vivo, inhibiting the CXCL12/CXCR4 signaling axis results in increased survival of tumor-bearing animals. In vitro, CXCR4 blockade induces apoptosis and inhibits cell cycle progression, downregulates molecules regulating survival and proliferation and also blocks the hypoxic-induction of HIF-1α and CXCL12. Exogenous administration of CXCL12 rescues the drug-induced decrease in proliferation. Conclusions: This study demonstrates that the CXCL12/CXCR4 axis operates in GBM cells under hypoxic stress via an autocrine positive feedback mechanism, which promotes survival and cell cycle progression. Our study brings new mechanistic insight and encourages further exploration of the use of drugs blocking CXCL12 as adjuvant agents to target hypoxia-induced GBM progression, prevent resistance to treatment and recurrence of the disease.
Article
Full-text available
Here we demonstrated, by RT-PCR analysis, the expression of both angiotensin II (Ang II) receptor sub-types, AT1 and AT2, in a breast cancer epithelial cell line, MCF-7. Ang II was not able to affect the intracellular Ca 2+ concentration in Fura-2 loaded cells suggesting that AT1-mediated phospholipid hydrolysis is not involved in its intracellular transduction pathway. Ang II modulated the activity of the Na + /K + ATPase in a dose-and time-dependent manner and was mitogenic, with a dose-dependent (1–1000 nM) proliferative effect and a maximal response at 100 nM. Both Na + /K + ATPase activation and stimulation of proliferation were mediated by binding of Ang II to AT1, as the effects were completely blocked by DuP 753, a specific AT1 antagonist. CGP 42112, an AT2 antagonist, did not affect Ang II actions. The main conclusion of this study is that Ang II exerts its effects on cell proliferation and Na + /K + ATPase in breast cancer epithelial cells, MCF-7, via AT1 activation independently of the Ca 2+ signalling mechanism.
Article
Full-text available
Rounded-amoeboid cancer cells use actomyosin contractility driven by Rho-ROCK and JAK-STAT3 to migrate efficiently. It has been suggested that rounded-amoeboid cancer cells do not require matrix metalloproteinases (MMPs) to invade. Here we compare MMP levels in rounded-amoeboid and elongated-mesenchymal melanoma cells. Surprisingly, we find that rounded-amoeboid melanoma cells secrete higher levels of several MMPs, including collagenase MMP-13 and gelatinase MMP-9. As a result, rounded-amoeboid melanoma cells degrade collagen I more efficiently than elongated-mesenchymal cells. Furthermore, using a non-catalytic mechanism, MMP-9 promotes rounded-amoeboid 3D migration through regulation of actomyosin contractility via CD44 receptor. MMP-9 is upregulated in a panel of rounded-amoeboid compared with elongated-mesenchymal melanoma cell lines and its levels are controlled by ROCK-JAK-STAT3 signalling. MMP-9 expression increases during melanoma progression and it is particularly prominent in the invasive fronts of lesions, correlating with cell roundness. Therefore, rounded-amoeboid cells use both catalytic and non-catalytic activities of MMPs for invasion.
Article
Full-text available
Anticancer drugs induce apoptosis to cancer cells and also exhibit undesired toxicity to normal cells. Therefore development of novel agents triggering apoptosis and have low toxicity towards normal cells is most important. Hydroxamic acids suppress tumor cell growth through apoptosis but the underlying mechanism is poorly understood. Herein, we describe the apoptotic potential of a dibasic hydroxamic acid derivative, viz., oxayl bis (Nphenyl) hydroxamic acid (OBPHA), which induces apoptosis through generation of both ROS and NO in doxorubicin resistant T-lymphoblastic leukemia, CEM/ADR5000 cells. Present study discloses that OBPHA selectively kills cancerous cells irrespective of their drug resistant phenotype. We also determined the crystal structure of OBPHA to understand the structural requirements for apoptosis; the study reveals that the presence of substituted hydroxamic acid groups (-CO-NH-OH) favors the generation of NO possibly through auto degeneration. Along with the induction of caspase 3 mediated intrinsic apoptosis; OBPHA also activates p53 dependent signaling cascade and downregulates HDAC3 expression in a time dependent manner possibly due to increased ROS and NO production and simultaneous decrease in cellular GSH level. Thus ROS and NO mediated downstream signalling are essential for the anticancer effect of OBPHA. Therefore OBPHA, having a structurally relevant pharmacophore provides important insight into the development of new ROS and RNS generating chemicals inducing p53 dependent apoptosis.
Article
Full-text available
The local microenvironment, or niche, of a cancer cell plays important roles in cancer development. A major component of the niche is the extracellular matrix (ECM), a complex network of macromolecules with distinctive physical, biochemical, and biomechanical properties. Although tightly controlled during embryonic development and organ homeostasis, the ECM is commonly deregulated and becomes disorganized in diseases such as cancer. Abnormal ECM affects cancer progression by directly promoting cellular transformation and metastasis. Importantly, however, ECM anomalies also deregulate behavior of stromal cells, facilitate tumor-associated angiogenesis and inflammation, and thus lead to generation of a tumorigenic microenvironment. Understanding how ECM composition and topography are maintained and how their deregulation influences cancer progression may help develop new therapeutic interventions by targeting the tumor niche.
Article
Full-text available
Relapse of childhood T-cell acute lymphoblastic leukemia (T-ALL) often occurs during treatment, but in some cases, leukemia re-emerges off therapy. On the basis of previous analyses of T-cell receptor (TCR) gene rearrangement patterns, we hypothesized that some late recurrences of T-ALL might in fact represent second leukemias. In 22 patients with T-ALL who had late relapses (at least 2.5 years from diagnosis), we studied TCR gene rearrangement status at first and second presentation, NOTCH1 gene mutations, and the presence of the SIL-TAL1 gene fusion. We performed genome-wide copy number and homozygosity analysis by using oligonucleotide- and single nucleotide polymorphism (SNP) -based arrays. We found evidence of a common clonal origin between diagnosis and relapse in 14 patients (64%). This was based on concordant TCR gene rearrangements (12 patients) or concordant genetic aberrations, as revealed by genome-wide copy number analysis (two patients). In the remaining eight patients (36%), TCR gene rearrangement sequences had completely changed between diagnosis and relapse, and gene copy number analysis showed markedly different patterns of genomic aberrations, suggesting a second T-ALL rather than a resurgence of the original clone. Moreover, NOTCH1 mutation patterns were different at diagnosis and relapse in five of these eight patients. In one patient with a second T-ALL, SNP analysis revealed a germline del(11)(p12;p13), a known recurrent aberration in T-ALL. More than one third of late T-ALL recurrences are, in fact, second leukemias. Germline genetic abnormalities might contribute to the susceptibility of some patients to develop T-ALL.
Article
Full-text available
Doxorubicin is one of the few chemotherapeutic drugs able to exert both cytotoxic and pro-immunogenic effects against cancer cells. Following the drug administration, the intracellular protein calreticulin is translocated with an unknown mechanism onto the plasma membrane, where it triggers the phagocytosis of tumour cells by dendritic cells. Moreover doxorubicin up-regulates the inducible nitric oxide (NO) synthase (iNOS) gene in cancer cells, leading to huge amounts of NO, which in turn acts as a mediator of the drug toxicity and as a chemosensitizer agent in colon cancer. Indeed by nitrating tyrosine on the multidrug resistance related protein 3, NO decreases the doxorubicin efflux from tumour cells and enhances the drug toxicity. It is not clear if NO, beside playing a role in chemosensitivity, may also play a role in doxorubicin pro-immunogenic effects. To clarify this issue, we compared the doxorubicin-sensitive human colon cancer HT29 cells with the drug-resistant HT29-dx cells and the HT29 cells silenced for iNOS (HT29 iNOS-). In both HT29-dx and HT29 iNOS- cells, doxorubicin did not induce NO synthesis, had a lower intracellular accumulation and a lower toxicity. Moreover the drug failed to promote the translocation of calreticulin and the phagocytosis of HT29-dx and HT29 iNOS-cells, which resulted both chemoresistant and immunoresistant. However, if NO levels were exogenously increased by sodium nitroprusside, the chemosensitivity to doxorubicin was restored in HT29 iNOS-cells. In parallel the NO donor per se was sufficient to induce the exposure of calreticulin and to increase the phagocytosis of HT29 iNOS- cells by DCs and their functional maturation, thus mimicking the pro-immunogenic effects exerted by doxorubicin in the parental drug-sensitive HT29 cells. Our data suggest that chemo- and immuno-resistance to anthracyclines are associated in colon cancer cells and rely on a common mechanism, that is the inability of doxorubicin to induce iNOS. Therefore NO donors might represent a promising strategy to restore both chemosensitivity and immunosensitivity to doxorubicin in resistant cells.
Article
Full-text available
Glutathione (GSH) plays an important role in a multitude of cellular processes, including cell differentiation, proliferation, and apoptosis, and as a result, disturbances in GSH homeostasis are implicated in the etiology and/or progression of a number of human diseases, including cancer, diseases of aging, cystic fibrosis, and cardiovascular, inflammatory, immune, metabolic, and neurodegenerative diseases. Owing to the pleiotropic effects of GSH on cell functions, it has been quite difficult to define the role of GSH in the onset and/or the expression of human diseases, although significant progress is being made. GSH levels, turnover rates, and/or oxidation state can be compromised by inherited or acquired defects in the enzymes, transporters, signaling molecules, or transcription factors that are involved in its homeostasis, or from exposure to reactive chemicals or metabolic intermediates. GSH deficiency or a decrease in the GSH/glutathione disulfide ratio manifests itself largely through an increased susceptibility to oxidative stress, and the resulting damage is thought to be involved in diseases, such as cancer, Parkinson's disease, and Alzheimer's disease. In addition, imbalances in GSH levels affect immune system function, and are thought to play a role in the aging process. Just as low intracellular GSH levels decrease cellular antioxidant capacity, elevated GSH levels generally increase antioxidant capacity and resistance to oxidative stress, and this is observed in many cancer cells. The higher GSH levels in some tumor cells are also typically associated with higher levels of GSH-related enzymes and transporters. Although neither the mechanism nor the implications of these changes are well defined, the high GSH content makes cancer cells chemoresistant, which is a major factor that limits drug treatment. The present report highlights and integrates the growing connections between imbalances in GSH homeostasis and a multitude of human diseases.
Article
Full-text available
We have previously reported the cytotoxicity and antitumor activity of bis(diphenylphosphino)ethane (DPPE) and a variety of its transition metal complexes. During studies of the chemistry of a gold complex of this group [(AuCl)2(DPPE)], it was observed that this complex readily underwent ring closure on reaction with DPPE to form the tetrahedral complex [Au(DPPE)2]+. Various counterion forms (e.g., Cl-) of this cation were isolated and were found to exhibit a remarkably high stability in solution. Evaluation of [Au(DPPE)2]Cl in mice bearing i.p. P388 leukemia demonstrated that the compound produced an average of 87% increase in life span at its maximally tolerated dose (2-3 mumol/kg/day for 5 days). Activity was also seen in i.p. M5076 reticulum cell sarcoma (60% increase in life span) and s.c. mammary adenocarcinoma 16/c. Modest activity was evident in i.p. B16 melanoma and L1210 leukemia. A subline of P388 leukemia resistant to cisplatin was not cross-resistant to [Au(DPPE)2]Cl. In addition, combination therapy of [Au(DPPE)2]Cl and cisplatin against i.p. P388 demonstrated an advantage over single-agent therapy. In vitro studies of [Au(DPPE)2]Cl showed that the compound: is cytotoxic to tumor cell lines; is only minimally inhibited in its cytotoxic activity by the presence of serum; produces DNA protein cross-links and DNA strand breaks in cells; and inhibits macromolecular synthesis with a preferential inhibitory effect on protein synthesis relative to DNA and RNA synthesis. 31P nuclear magnetic resonance spectroscopy indicated that the compound is stable in the presence of serum proteins, thiols, or disulfides and that it reacts with Cu(II) resulting in the formation of a Cu(I)DPPE complex. The results of these in vivo and in vitro experiments suggest that the contrasting pharmacological profile of [Au(DPPE)2]Cl with respect to other gold(I) phosphine complexes may be related to both the kinetic stability of the complex and its stability in the presence of thiols.
Article
Full-text available
Colorectal cancer is the second leading cause of death from cancer in the United States. Continuous use of aspirin and other nonsteroidal anti-inflammatory drugs (NSAIDs) has been shown to reduce the risk of colorectal cancer in humans by 40-50%. Patients with familial adenomatous polyposis who take NSAIDs, such as sulindac, undergo a regression of intestinal adenomas. Rodents exposed to carcinogens that cause colon cancer have a 50-60% reduction in the size and number of colonic tumors when treated continuously with NSAIDs. One common target for these drugs is prostaglandin endoperoxide synthase, also referred to as cyclooxygenase (COX). We and others have shown recently that COX-2 levels are increased dramatically in 85-90% of human colorectal adenocarcinomas and in 40-50% of colonic adenomas. We prepared intestinal epithelial cells that express the COX-2 gene permanently and found that they have altered adhesion properties and resist undergoing apoptosis. We report here that these cells also have a 3-fold increase in the duration of G1, lower levels of cyclin D1 protein, and a marked decrease in retinoblastoma kinase activity associated with cyclin-dependent kinase 4. The delay in G1 transit may relate to the resistance of these cells to undergo programmed cell death, which could affect their tumorigenic potential.
Article
Full-text available
Apoptosis is orchestrated by a family of cysteine proteases known as the caspases. Fourteen mammalian caspases have been identified, three of which (caspase-3, -6, and -7) are thought to coordinate the execution phase of apoptosis by cleaving multiple structural and repair proteins. However, the relative contributions that the "executioner" caspases make to the demolition of the cell remains speculative. Here we have used cell-free extracts immuno-depleted of either caspase-3, -6, or -7 to examine the caspase requirements for apoptosis-associated proteolysis of 14 caspase substrates as well as nuclear condensation, chromatin margination, and DNA fragmentation. We show that caspase-3 is the primary executioner caspase in this system, necessary for cytochrome c/dATP-inducible cleavage of fodrin, gelsolin, U1 small nuclear ribonucleoprotein, DNA fragmentation factor 45 (DFF45)/inhibitor of caspase-activated DNase (ICAD), receptor-interacting protein (RIP), X-linked inhibitor of apoptosis protein (X-IAP), signal transducer and activator of transcription-1 (STAT1), topoisomerase I, vimentin, Rb, and lamin B but not for cleavage of poly(ADP-ribose) polymerase (PARP) or lamin A. In addition, caspase-3 was also essential for apoptosis-associated chromatin margination, DNA fragmentation, and nuclear collapse in this system. Surprisingly, although caspase-6 and -7 are considered to be important downstream effector caspases, depletion of either caspase had minimal impact on any of the parameters investigated, calling into question their precise role during the execution phase of apoptosis.
Article
Full-text available
Recent evidence suggests that one mechanism whereby cytotoxic drugs, such as doxorubicin, kill tumors is the induction or up-regulation of Fas ligand (FasL) expression on the tumor cell surface. The ensuing engagement of Fas by FasL on adjacent cells leads to apoptosis. However, despite cytotoxic drug-induced FasL expression, Fas-sensitive tumors frequently resist chemotherapy, suggesting that they may possess a mechanism that prevents or inactivates Fas-FasL interactions. In the present work, we addressed the involvement of the FasL/Fas signaling pathway in doxorubicin-induced apoptosis and the ability of matrix metalloproteinases (MMPs) to proteolytically cleave FasL in tumor cells. Doxorubicin-induced apoptosis was inhibited by expression of soluble Fas or incubation of the tumor cells with MMP-7 but not with MMP-2 or MMP-9. Resistance to doxorubicin was also induced by expression in the tumor cells of constitutively active MMP-7 but not of a catalytically inactive mutant. Conversely, inhibition of MMP-7 expression in tumor cells by transfection of MMP-7 cDNA in antisense orientation resulted in sensitization to doxorubicin. MMP-7 efficiently cleaved recombinant FasL in vitro and reduced cell surface FasL expression. Our observations provide evidence that one mechanism whereby MMP-7 may promote tumor survival and resistance to doxorubicin is by cleaving FasL and reducing its effectiveness in triggering Fas-mediated apoptosis.
Article
Full-text available
The primary objective of this study was to determine the sequence of biochemical signaling events that occur after modulation of the cellular redox state in the B cell lymphoma line, PW, with emphasis on the role of mitochondrial signaling. L-Buthionine sulphoximine (BSO), which inhibits gamma glutamyl cysteine synthetase (gammaGCS), was used to modulate the cellular redox status. The sequence and role of mitochondrial events and downstream apoptotic signals and mediators was studied. After BSO treatment, there was an early decline in cellular glutathione (GSH), followed by an increase in reactive oxygen species (ROS) production, which induced a variety of apoptotic signals (detectable at different time points) in the absence of any external apoptotic stimuli. The sequence of biochemical events accompanying apoptosis included a 95% decrease in total GSH and a partial (25%) preservation of mitochondrial GSH, without a significant increase in ROS production at 24h. Early activation and nuclear translocation of the nuclear factor kappa B subunit Rel A was observed at approximately 3h after BSO treatment. Cytochrome c release into the cytosol was also seen after 24h of BSO treatment. p53 protein expression was unchanged after redox modulation for up to 72 h, and p21waf1 independent loss of cellular proliferation was observed. Surprisingly, a truncated form of p53 was expressed in a time-dependent manner, beginning at 24h after BSO incubation. Irreversible commitment to apoptosis occurred between 48 and 72 h after BSO treatment when mitochondrial GSH was depleted, and there was an increase in ROS production. Procaspase 3 protein levels showed a time-dependent reduction following incubation with BSO, notably after 48 h, that corresponded with increasing ROS levels. At 96 h, caspase 3 cleavage products were detectable. The pan-caspase inhibitor zVADfmk, partially blocked the induction of apoptosis at 48 h, and was ineffective after 72 h. PW cells could be rescued from apoptosis by removing them from BSO after up to 48, but not 72 h incubation with BSO. Mitochondrial transmembrane potential (DeltaPsi(m)) remained intact in most of the cells during the 72 h observation period, indicating that DeltaPsi(m) dissipation is not an early signal for the induction of redox dependent apoptosis in PW cells. These data suggest that a decrease in GSH alone can act as a potent early activator of apoptotic signaling. Increased ROS production following mitochondrial GSH depletion, represents a crucial event, which irreversibly commits PW cells to apoptosis.
Article
Full-text available
The expression of matrix metalloproteinase-2 (MMP-2) has been linked with tumor invasion, angiogenesis, and metastasis. However, the molecular basis for MMP-2 overexpression in tumor cells remains unclear. In this study, by using K-1735 melanoma system, we demonstrated that highly metastatic C4, M2, and X21 tumor cells express elevated MMP-2 mRNA and enzymatic activity, whereas poorly metastatic C10, C19, and C23 tumor cells express much lower levels. Moreover, a concomitant elevated Stat3 activity has been detected in these metastatic tumor cells that overexpress MMP-2. Transfection of constitutively activated Stat3 into poorly metastatic C23 tumor cells directly activated the MMP-2 promoter, whereas the expression of a dominant-negative Stat3 in highly metastatic C4 tumor cells inhibited the MMP-2 promoter. A high-affinity Stat3-binding element was identified in the MMP-2 promoter and Stat3 protein bound directly to the MMP-2 promoter. Blockade of activated Stat3 through expression of a dominant-negative Stat3 significantly suppressed MMP-2 expression in the metastatic tumor cells. Therefore, overexpression of MMP-2 in the metastatic melanoma cells can be attributed to elevated Stat3 activity, and Stat3 upregulates the transcription of MMP-2 through direct interaction with the MMP-2 promoter. Furthermore, blockade of activated Stat3 in highly metastatic C4 cells significantly suppressed the invasiveness of the tumor cells, inhibited tumor growth, and prevented metastasis in nude mice. Collectively, these studies suggest that Stat3 signaling directly regulates MMP-2 expression, tumor invasion, and metastasis, and that Stat3 activation might be a crucial event in the development of metastasis.
Article
Full-text available
This study demonstrates that verapamil and a newly synthesized verapamil derivative, NMeOHI(2), behave as apoptogens in multidrug resistance protein 1 (MRP1)-expressing cells. When treated with either verapamil or NMeOHI(2), surprisingly, baby hamster kidney-21 (BHK) cells transfected with human MRP1 were killed. Because parental BHK cells were not, as well as cells expressing an inactive (K1333L) MRP1 mutant, this indicated that cell death involved functional MRP1 transporter. Cell death was identified as apoptosis by using annexin V-fluorescein labeling and was no longer observed in the presence of the caspase inhibitor Z-Val-Ala-Asp(OMe)-CH(2)F (Z-VAD-FMK). In vitro, both verapamil and its derivative inhibited leukotriene C4 transport by MRP1-enriched membrane vesicles in a competitive manner, with a K(i) of 48.6 microm for verapamil and 5.5 microm for NMeOHI(2,) and stimulated reduced glutathione (GSH) transport 3-fold and 9-fold, respectively. Treatment of MRP1-expressing cells with either verapamil or the derivative quickly depleted intracellular GSH content with a strong decrease occurring in the first hour of treatment, which preceded cell death beginning at 8-16 h. Furthermore, addition of GSH to the media efficiently prevented cell death. Therefore, verapamil and its derivative trigger apoptosis through stimulation of GSH extrusion mediated by MRP1. This new information on the mechanism of induced apoptosis of MDR cells may represent a novel approach in the selective treatment of MRP1-positive tumors.
Article
Full-text available
Complete synthetic, structural, and biomedical studies of two Pd complexes as well as Au and Ag complexes of 1-benzyl-3-tert-butylimidazol-2-ylidene are reported. Specifically, trans-[1-benzyl-3-tert-butylimidazol-2-ylidene]Pd(pyridine)Cl2 (1a) was synthesized from the reaction of 1-benzyl-3-tert-butylimidazolium chloride (1) with PdCl2 in the presence of K2CO3 as a base. The other palladium complex, [1-benzyl-3-tert-butylimidazol-2-ylidene]2PdCl2 (1b), and a gold complex, [1-benzyl-3-tert-butylimidazol-2-ylidene]AuCl (1c), were synthesized by following a transmetallation route from the silver complex, [1-benzyl-3-tert-butylimidazol-2-ylidene]AgCl (1d), by treatment with (COD)PdCl2 and (SMe2)AuCl, respectively. The silver complex 1d in turn was synthesized by the reaction of 1 with Ag2O. The molecular structures of 1a-d have been determined by X-ray diffraction studies. Biomedical studies revealed that, while the palladium complexes 1a and 1b displayed potent anticancer activity, the gold (1c) and silver (1d) complexes exhibited significant antimicrobial properties. Specifically, 1b showed strong antiproliferative activity against three types of human tumor cells, namely, cervical cancer (HeLa), breast cancer (MCF-7), and colon adenocarcinoma (HCT 116), in culture. The antiproliferative activity of 1b was found to be considerably stronger than that of cisplatin. The 1b complex inhibited tumor cell proliferation by arresting the cell cycle progression at the G2 phase, preventing the mitotic entry of the cell. We present evidence suggesting that the treated cells underwent programmed cell death through a p53-dependent pathway. Though both the gold (1c) and silver (1d) complexes showed antimicrobial activity toward Bacillus subtilis, 1c was found to be ca. 2 times more potent than 1d.
Article
Organotins(IV) exhibit significant in vitro anti-proliferative activity, while the in vivo tests are encouraging. The recent reports on the anti-proliferative activity of organotin(IV) compounds are summarized in this review. The period covered by this work goes back to 2009 until late 2018, while the earlier ones, are included over the previous review of our group published by S.K. Hadjikakou, N. Hadjiliadis, in Coord Chem Rev, 253 (2009) 235–249. During the last decade (2009–2018), >300 organotin(IV) derivatives with oxygen-donor ligands, such as carboxylic acids, amino-acids, Non Steroidal Anti-inflammatory Drugs (NSAIDs), biological active derivatives or natural products, organotins(IV) with sulfur containing ligands such as thiones, thiosemicarbazones, dithiocarbamates, organotin(IV) compounds of oximes and organotins(IV) with amines or semicarbazones were screened for their anti-proliferative effect against various cancer cell lines and their results are included in numerous reports over this period. Although much work has been carried out on organotin(IV) derivatives with O-donor ligands, however significant fewer reports are found on organotins(IV) with oximes as ligands.
Article
: Tumor progression is a complex, multistage process by which a normal cell undergoes genetic changes that result in phenotypic alterations and the acquisition of the ability to spread and colonize distant sites in the body. Although many factors regulate malignant tumor growth and spread, interactions between a tumor and its surrounding microenvironment result in the production of important protein products that are crucial to each step of tumor progression. The matrix metalloproteinases (MMPs) are a family of degradative enzymes with clear links to malignancy. These enzymes are associated with tumor cell invasion of the basement membrane and stroma, blood vessel penetration, and metastasis. They have more recently been implicated in primary and metastatic tumor growth and angiogenesis, and they may even have a role in tumor promotion. This review outlines our current understanding of the MMP family, including the association of particular MMPs with malignant phenotypes and the role of MMPs in sp...
Article
The molecular mechanisms by which arsenic (As ( 3+) ) causes human cancers remain to be fully elucidated. Enhancer of zeste homolog 2 (EZH2) is the catalytic subunit of polycomb-repressive complexes 2 (PRC2) that promotes trimethylation of lysine 27 of histone H3, leading to altered expression of tumor suppressors or oncogenes. In the present study, we determined the effect of As ( 3+) on EZH2 phosphorylation and the signaling pathways important for As ( 3+) -induced EZH2 phosphorylation in human bronchial epithelial cell line BEAS-2B. The involvement of kinases in As ( 3+) -induced EZH2 phosphorylation was validated by siRNA-based gene silencing. The data showed that As ( 3+) can induce phosphorylation of EZH2 at serine 21 in human bronchial epithelial cells and that the phosphorylation of EZH2 requires an As ( 3+) -activated signaling cascade from JNK and STAT3 to Akt. Transfection of the cells with siRNA specific for JNK1 revealed that JNK silencing reduced serine727 phosphorylation of STAT3, Akt activation and EZH2 phosphorylation, suggesting that JNK is the upstream kinase involved in As ( 3+) -induced EZH2 phosphorylation. Because As ( 3+) is capable of inducing miRNA-21 (miR-21), a STAT3-regulated miRNA that represses protein translation of PTEN or Spry2, we also tested the role of STAT3 and miR-21 in As ( 3+) -induced EZH2 phosphorylation. Ectopic overexpression of miR-21 promoted Akt activation and phosphorylation of EZH2, whereas inhibiting miR-21 by transfecting the cells with anti-miR-21 inhibited Akt activation and EZH2 phosphorylation. Taken together, these results demonstrate a contribution of the JNK, STAT3 and Akt signaling axis to As ( 3+) -induced EZH2 phosphorylation. Importantly, these findings may reveal new molecular mechanisms underlying As ( 3+) -induced carcinogenesis.
Article
Epidermal growth factor receptor (EGFR) has been detected in the nucleus in many tissues and cell lines. However, the potential functions of nuclear EGFR have largely been overlooked. Here we demonstrate that nuclear EGFR is strongly correlated with highly proliferating activities of tissues. When EGFR was fused to the GAL4 DNA-binding domain, we found that the carboxy terminus of EGFR contained a strong transactivation domain. Moreover, the receptor complex bound and activated AT-rich consensus-sequence-dependent transcription, including the consensus site in cyclin D1 promoter. By using chromatin immunoprecipitation assays, we further demonstrated that nuclear EGFR associated with promoter region of cyclin D1 in vivo. EGFR might therefore function as a transcription factor to activate genes required for highly proliferating activities.
Article
Gastric cancer (GC) is associated with chronic inflammation; however, the molecular mechanisms promoting tumorigenesis remain ill defined. Using a GC mouse model driven by hyperactivation of the signal transducer and activator of transcription (STAT)3 oncogene, we show that STAT3 directly upregulates the epithelial expression of the inflammatory mediator Toll-like receptor (TLR)2 in gastric tumors. Genetic and therapeutic targeting of TLR2 inhibited gastric tumorigenesis, but not inflammation, characterized by reduced proliferation and increased apoptosis of the gastric epithelium. Increased STAT3 pathway activation and TLR2 expression were also associated with poor GC patient survival. Collectively, our data reveal an unexpected role for TLR2 in the oncogenic function of STAT3 that may represent a therapeutic target in GC.
Article
The cJun NH(2)-terminal kinase (JNK) signal transduction pathway has been implicated in the growth of carcinogen-induced hepatocellular carcinoma. However, the mechanism that accounts for JNK-regulated tumor growth is unclear. Here we demonstrate that compound deficiency of the two ubiquitously expressed JNK isoforms (JNK1 and JNK2) in hepatocytes does not prevent hepatocellular carcinoma development. Indeed, JNK deficiency in hepatocytes increased the tumor burden. In contrast, compound JNK deficiency in hepatocytes and nonparenchymal cells reduced both hepatic inflammation and tumorigenesis. These data indicate that JNK plays a dual role in the development of hepatocellular carcinoma. JNK promotes an inflammatory hepatic environment that supports tumor development, but also functions in hepatocytes to reduce tumor development.
Article
The mechanisms by which the strong antitumor diorganotin(IV) compound di-n-butyl-di-(4-chlorobenzohydroxamato)tin(IV) (DBDCT) induces apoptosis of SGC-7901 cells were first investigated. Inhibition of proliferation of four cancer cell lines compared with normal human hepatic L-O2 cells, cancer cell apoptosis, and expression of related mRNA and protein were detected using the methyl thiazolyl tetrazolium (MTT), flow cytometry, reverse transcription polymerase chain reaction (RT-PCR), Western blot, and DNA ladder assays, and electron microscopy and immunocytochemistry. DBDCT decreased cancer cell proliferation rates in a dose- and time-dependent manner and changed the cycle distribution of SGC-7901 cells; the proportion of cells in G(0)-G(1) phase was increased, whereas the numbers in S and G(2)-M phases were decreased. Blockade of the cell cycle was perhaps associated with increased levels of p21, p27, p53 and the decreased level of proliferating cell nuclear antigen (PCNA). Apoptosis was characterized by DNA fragmentation, chromosomal condensation, apoptotic bodies, sub-G(1) peaks, and an increased apoptotic rate, as shown using the annexin V-FITC method. Pretreatment of cells with N-acetylcysteine and caspase-9 inhibitor could reduce growth inhibition and DBDCT-induced apoptosis. The results showed that DBDCT-mediated cell-cycle arrest might occur through the induction of p21 in a p53-dependent manner and that DBDCT induction of the mitochondrial apoptotic signaling pathway is perhaps mediated by increasing Bax/Bcl-2 ratios, which result in the loss of DeltaPsi(m), release of cytochrome c into the cytoplasm, activation of caspase-3 and -9, and increased reactive oxygen species (ROS) generation.
Article
We sought to identify altered transcription factors (Stat, AP1, and NF-kB) or signal proteins (Erk1/2, p38, Akt, Jnk, Jak, and c-Src) in cancer cell lines whose growth was arrested by doxorubicin (DOX) treatment. Jnk1 was the only signal protein to be activated. DOX increased Stat3 phosphorylation, nuclear localization, and transcriptional activity. Jnk1 activation appeared to be required for Stat3 activity. Stat3 activity via the Jnk pathway was conserved in other cell lines originating from other organs. Transcriptional activity of Stat3 was increased in cells surviving DOX treatment suggesting that Stat3 activation contributed to the resistance to cytotoxicity. To better understand the role of Stat3 in Jnk1 activation, we investigated its effect on the viability of DOX-treated cells. Co-treatment with DOX and Jnk inhibitor negatively correlated with the viability of cancer cells and reduced Stat3 activity. Taken together, these results indicate that Stat3 activation via the Jnk pathway promotes the resistance of cancer cells to DOX.
Article
When cancer cells develop resistance to chemotherapeutics, it is frequently conferred by the ATP-dependent efflux pump P-glycoprotein (MDR1, P-gp, ABCB1). P-gp can efflux a wide range of cancer drugs; its expression confers cross-resistance, termed "multidrug resistance" (MDR), to a wide range of drugs. Strategies to overcome this resistance have been actively sought for more than 30 years, yet clinical solutions do not exist. A less understood aspect of MDR is the hypersensitivity of resistant cancer cells to other drugs, a phenomenon known as "collateral sensitivity" (CS). This review highlights the extent of this effect for the first time, and discusses hypotheses (e.g. generation of reactive oxygen species) to account for the underlying generality of this phenomenon, and proposes exploitation of CS as a strategy to improve response to chemotherapy.
Article
Increased generation of reactive oxygen species (ROS) and an altered redox status have long been observed in cancer cells, and recent studies suggest that this biochemical property of cancer cells can be exploited for therapeutic benefits. Cancer cells in advanced stage tumours frequently exhibit multiple genetic alterations and high oxidative stress, suggesting that it might be possible to preferentially eliminate these cells by pharmacological ROS insults. However, the upregulation of antioxidant capacity in adaptation to intrinsic oxidative stress in cancer cells can confer drug resistance. Abrogation of such drug-resistant mechanisms by redox modulation could have significant therapeutic implications. We argue that modulating the unique redox regulatory mechanisms of cancer cells might be an effective strategy to eliminate these cells.
Article
Considering the possibility to overcome drug resistance by other treatment strategies than chemotherapy we investigated the susceptibility of three independently selected multidrug-resistant sublines of the T-lymphoblastoid leukemic cell line CCRF-CEM to lymphokine-activated killer (LAK) cells. We found that two of the multidrug-resistant sublines were significantly less susceptible targets to LAK cells. A third one, however, was as susceptible as the parental CCRF-CEM cell line. Moreover, a multidrug-resistant subline that reverted to an almost drug-sensitive phenotype was observed to be also revertant for resistance against LAK cells. We found an inverse relationship between the expression of the mdr1 gene (P-glycoprotein) and the susceptibility to LAK cells. Verapamil, a calcium channel blocker, while increasing the drug sensitivity of a multidrug-resistant subline, did not induce a reversal of the suppression of LAK susceptibility. The possibility of enhanced resistance to LAK cells of multidrug-resistant cells should be taken into account when one is looking for therapy strategies to overcome multidrug resistance.
Article
A possible approach to the immunotherapy of tumors is to stimulate either specific or nonspecific immune responses in vivo. We recently found that provision of a mitogenic signal to PBMC, by incubation with the oxidizing mitogens, enhanced the effect of IL-2 in generating cytolytic activity. We therefore searched for a mitogen that might safely be administered to patients. The present study is an investigation of the mitogenic properties of iron and tin (Sn)-protoporphyrin and their capacity to induce cytotoxicity in human PBMC. These agents have been administered to humans with little toxicity. Both iron- (hemin) and Sn-protoporphyrin induce mitogenicity in peripheral T cells. This effect is markedly enhanced by low concentrations of IL-2. Hemin and Sn-protoporphyrin, in combination with IL-2, increase IL-2R on PBMC. Hemin alone, and to a greater extent in combination with IL-2, induces cytotoxicity for NK-sensitive and NK-resistant cell lines. Sn-protoporphyrin, a more potent mitogen than hemin, fails to induce cytotoxicity, and has a marked inhibitory effect on cytotoxicity induced by IL-2. Hemin and Sn-protoporphyrin stimulate TNF-alpha and IFN-gamma production by PBMC. IL-2 is synergistic with the metalloporphyrins in eliciting this effect. Metalloporphyrin-induced mitogenesis has a stringent requirement for macrophages. Scavengers of oxygen-free radicals and inhibitors of peroxidase inhibit mitogenicity induced by hemin but not that induced by Sn-protoporphyrin. Hence, an oxidative event may mediate the mitogenic effect of hemin. Our results indicate that hemin is an immunostimulatory agent in vitro and the data warrant further evaluation of its in vivo immunostimulatory and antitumor effect.
Article
Latent collagenase was activated by brief exposure to SDS and resolved by acrylamide slab gel electrophoresis in the presence of this detergent. Specific collagenase activity in the SDS-electrophoretogram was demonstrated by an overlay technique after removal of SDS by Triton X-100. Clostridial collagenase (Mr = 126,000) and active collagenase harvested from bovine gingival organ culture (Mr = 65,000) migrated as single bands whereas human fibroblast collagenase was resolved into two distinct double bands at Mr 65,000/55,000 and 50,000/45,000. Preincubation with trypsin led to activation of latent enzyme and to concomitant disappearance of the larger doublet. The data suggest a precursor-product relationship between the two sets of double bands.
Article
A new technique is described for the electrophoretic analysis of plasminogen activators in sodium dodecyl sulfate-polyacrylamide gels containing copolymerized plasminogen and gelatin. The method depends upon the fact that the zymogen and gelatin, when incorporated into the polyacrylamide matrix at the time of casting, are retained during subsequent electrophoresis of enzyme samples, and serve as satisfactory sequential, in situ substrates for the localization of plasminogen activator bands by negative staining. The nonionic detergent, Triton X-100, is used to remove sodium dodecyl sulfate and restore enzyme activity. The method can be used to detect as little as 1 mU of urokinase and effectively distinguishes between melanoma- and urokinase-type plasminogen activators. Plasminogen-independent proteases are detected by omission of plasminogen from the gel.
Article
Growth factors have been shown to play a role in intestinal epithelial growth regulation and transformation. Utilizing standard differential cloning techniques, we have isolated a growth factor-inducible gene (RS-2) from rat intestinal epithelial cells that has approximately 95% homology to the mouse mitogen-inducible cyclooxygenase (COX-2) at the amino acid level. This cDNA hybridizes to a approximately 4.5-kb mRNA from transforming growth factor (TGF)-alpha-stimulated rat intestinal epithelial (RIE-1) cells and is constitutively expressed in vivo in adult rat kidney and brain. Nuclear run-on experiments demonstrate that the increase of RS-2 mRNA after TGF-alpha stimulation is in part due to an increased transcription rate of the gene. The coding region for RS-2 was subcloned into a pCMV-2 expression vector, and the RS-2 protein was expressed in COS-1 cells. Microsomal fractions isolated from the COS-1 cells transfected with the RS-2 expression vector contained cyclooxygenase activity. In addition to the production of prostaglandins, the recombinant RS-2 protein also catalyzed the formation of three other eicosanoid products. In summary, we have cloned a mitogen-inducible cyclooxygenase gene from rat intestinal cells that is induced following growth factor stimulation.
Article
The greater affinity of electrophiles for thiol groups than for hydroxyl or amine groups provides a teleological basis for the evolution of this mechanism to assist in the maintenance of cellular homeostasis. As the most abundant cellular non-protein thiol, glutathione (GSH) is pivotal in the protection of cells from electrophiles created during normal respiration and protection after exposure to environmental mutagens. Mutagens and many anti-cancer drugs, e.g. cisplatin and alkylating agents, have the same target, i.e. DNA. This suggested that one mechanism by which cancer cells might circumvent the action of cancer chemotherapeutic agents would be by increasing their cellular GSH and/or enhanced conjugation of these drugs to this abundant tripeptide. This chapter describes the abundant preclinical data that support this mechanism of resistance to platinum drugs and alkylating agents. This data was the rationale for the development of pharmacologic strategies to lower GSH and inactivate the gluathione-S-transferases to make anti-cancer drugs more effective. The positive outcome of preclinical studies to lower GSH and enhance the activity of melaphalan are described as is the status of on going clinical trials built around this data.
Article
A large number of endogenous compounds are able to conjugate with GSH. The binding of GSH to endogenous compounds is known to serve important biological functions besides detoxification. GSH conjugation serves to limit and regulate the reactivity of the chemicals; it facilitates their membrane transport and elimination from the cell and organism; and in many cases, it leads to the formation of essential biological intermediates. Some of the endogenous GSH conjugates have not been well characterized, and it is likely that there are many others that have yet to be discovered.
Article
A drug-resistant cell line (EAC/Dox) was developed by repeated exposure of Ehrlich ascites carcinoma cells to Doxorubicin (Dox) in vivo in male albino Swiss mice (6-8 weeks old). The weekly i.p. injections of Dox to mice (2 or 4 mg/kg/week for 4 months) gave rise to Dox-resistant cell line EAC/Dox, which displayed typical multidrug resistant (MDR) features of cross-resistance to a number of structurally and functionally unrelated drugs like doxorubicin, vinblastine and cisplatin. Moreover, the EAC/Dox cell line had lower drug accumulation than drug-sensitive (EAC/S) cells. Study of Western blots and immunofluorescence revealed that P-glycoprotein 170 kDa (P-gp) was absent in EAC/Dox cells. The drug resistance appeared to be due to the presence of a higher level of reduced glutathione (GSH) and glutathione S-transferase (GST) in EAC/Dox cells than in drug-sensitive (EAC/S) cells. The two structurally similar hydroxamic acid derivatives, i.e. oxalyl bis(N-phenyl)hydroxamic acid (X1) and succinyl bis(N-phenyl)hydroxamic acid (X2), having very low in vitro toxicity (IC50 value 250 microg/ ml), were investigated for their efficacy to reverse MDR. The compound X1 was able to reverse the effect of MDR and reduce GST in EAC/Dox cells. The compound X2 had no ability to reverse the effect of MDR. Further study on the mechanism of glutathione depletion and the resistance modifying property of X1 on other cell lines is warranted.
Article
A group of 9-substituted acridine and azacridine derivatives (m-AMSA analogues) were synthesised following classical procedures as potential antitumour agents with inhibitory effects on DNA topoisomerase II. Some were found to have noticeable cytotoxicity against human HL-60 and HeLa cells grown in culture. Their non-covalent interactions with calf thymus DNA have been studied using fluorescence quenching. We evaluated DNA damage produced by the tested compounds by means of DNA filter elution and protein precipitation techniques. Catalytic studies carried out with purified topoisomerase confirmed these agents as antitopoisomerase inhibitors. Chemotherapy of solid-tumour-bearing mice with tested compounds allowed an aza-analogue (compound IIIb), as potent as m-AMSA but less toxic towards the host, to be recognised.
Article
Metal complexes are gaining wider applications as enzyme inhibitors for disease treatments. Factors such as specificity, bioavailability, compensatory effects and complex stability are taken into account before such complexes function as therapeutic agents. The applications of metal complex enzyme inhibitors to normal and abnormal physiology, infections and toxicity are discussed.
Article
Multidrug resistant (MDR) cancer cells overexpressing P-glycoprotein (P-gp) display variations in invasive and metastatic behavior. We previously reported that these properties of MDR cancer cell lines overexpressing P-gp could be altered by chemotherapeutic drugs or MDR modulators (R. S. Kerbel et al., Cancer Surv., 7: 597-629, 1988). To attempt to clarify the mechanism(s) underlying these observations, we studied the expression of extracellular matrix metalloproteinase inducer (EMMPRIN), a glycoprotein enriched on the surface of tumor cells that can stimulate the production of matrix metalloproteinases (MMPs), in sensitive and MDR cancer cells. Using immunofluorescence staining and fluorescence-activated cell sorting analysis, we found that EMMPRIN expression was increased in MDR carcinoma cell lines, MCF-7/AdrR, KBV-1, and A2780Dx5, as compared to their parental counterparts. The MDR cell lines produced more matrix metalloproteinase-1 (MMP-1), matrix metalloproteinase-2 (MMP-2), and matrix metalloproteinase-9 (MMP-9), as determined by zymography, Western blot, and reverse transcription-PCR. Treatment of MDR cells with an anti-EMMPRIN antibody inhibited the activity of MMP-1, MMP-2, and MMP-9. In MDR cell line MCF-7/AdrR, an increased in vitro invasive ability was observed as compared with the sensitive line MCF-7, and EMMPRIN antibody could inhibit the in vitro invasion in drug-resistant cells. In addition, the expression and activity of MMP-1, MMP-2, and MMP-9 in MDR cells were decreased by treatment with U-0126, an inhibitor of mitogen-activated protein kinase/extracellular signal regulated kinase (MAPK/Erk). Our results suggest that during the development of MDR, the expression of EMMPRIN is responsible for the increased activity of MMP in MDR cell lines.
Article
JNK regulates matrix metalloproteinase (MMP) gene expression and joint destruction in rheumatoid arthritis (RA). Previous studies demonstrated that the 2 upstream MAPK kinases (MKK-4 and MKK-7) are phosphorylated in RA synovium and form a complex with JNK in fibroblast-like synoviocytes (FLS). However, the functional hierarchy of MKK-4 and MKK-7 in FLS has not been determined. We determined the relative contributions of these MKKs by evaluating the effect of MKK-4 and MKK-7 gene knockdown in cultured FLS. FLS were transfected with MKK-4 and/or MKK-7 small interfering RNA, and protein levels were determined by immunoblotting. After stimulation with interleukin-1/beta (IL-1beta), tumor necrosis factor alpha(TNFalpha, or anisomycin, kinase function was determined by in vitro kinase assay. Activator protein 1 (AP-1) binding and transcriptional activity were determined by electrophoretic mobility shift assay and AP-1-luciferase promoter assay, respectively. MMP-3 expression was determined by enzyme-linked immunosorbent assay and quantitative polymerase chain reaction. IL-1beta-induced JNK phosphorylation was dependent on MKK-7 but not on MKK-4; however, anisomycin-activated JNK required both kinases. In vitro kinase assay demonstrated that IL-1beta-or TNFalpha induced JNK activity was only MKK-7 dependent, while anisomycin-activated JNK was both MKK-4 and MKK-7 dependent. IL-1beta-induced AP-1 binding activity and AP-1-driven gene expression were strictly MKK-7 dependent. Finally, MMP-3 production only required MKK-7, and there was no effect of MKK-4 deficiency. These data indicate that only MKK-7 is required for JNK activation in FLS after cytokine stimulation; however, other forms of cellular stress utilize MKK-4. Thus, JNK function might be modulated by targeting MKK-7 to suppress cytokine-mediated FLS activation while leaving other stress responses intact.
Article
Apoptosis is a highly regulated form of cell death distinguished by the activation of a family of cysteine-aspartate proteases (caspases) that cleave various proteins resulting in morphological and biochemical changes characteristic of this form of cell death. Abundant evidence supports a role for mitochondria in regulating apoptosis. Specifically, it seems that a number of death triggers target these organelles and stimulate, by an unknown mechanism, the release of several proteins, including cytochrome c. Once released into the cytosol, cytochrome c binds to its adaptor molecule, apoptotic protease activating factor-1, which oligomerizes and then activates pro-caspase-9. Caspase-9 can signal downstream and activate pro-caspase-3 and -7. The release of cytochrome c can be influenced by different Bcl-2 family member proteins, including Bax, Bid, Bcl-2, and Bcl-X(L). Bax and Bid potentiate cytochrome c release, whereas Bcl-2 and Bcl-X(L) antagonize this event. Although toxicologists have traditionally associated cell death with necrosis, emerging evidence suggests that different types of environmental contaminants exert their toxicity, at least in part, by triggering apoptosis. The mechanism responsible for eliciting the pro-apoptotic effect of a given chemical is often unknown, although in many instances mitochondria appear to be key participants. Here, we provide an overview of our current understanding of the role of apoptosis in toxicant-induced cell death, using dioxin, organotin compounds, dithiocarbamates, as well as the chemotherapeutic agent etoposide, as specific examples.
Article
Studies in the past few years have provided compelling evidence for the critical role of aberrant Signal Transducer and Activator of Transcription 3 (STAT3) in malignant transformation and tumorigenesis. Thus, it is now generally accepted that STAT3 is one of the critical players in human cancer formation and represents a valid target for novel anticancer drug design. This review focuses on aberrant STAT3 and its role in promoting tumor cell survival and supporting the malignant phenotype. A brief evaluation of the current strategies targeting STAT3 for the development of novel anticancer agents against human tumors harboring constitutively active STAT3 will also be presented.
STAT3 as a target for inducing apoptosis in solid and hematological tumors
  • Kaz Siddiquee
  • J Turkson
STAT3 activation regulates the expression of matrix metalloproteinase-2 and tumor invasion and metastasis
  • T-X Xie
  • D Wei
  • M Liu
Coordination Complexes of Organo-tin Compounds with some selected ligands
  • S K Choudhuri
Guidelines for the Testing of Chemicals for Mutagenicity
  • Department
  • Health
Organotin derivatives of hydroxamic acids derived from dibasic carboxylic acid PhD thesis
  • S Das Dutta
Preparation and characterization of succinyl bis (N-phenyl) hydroxamic acid
  • N N Ghosh
  • D K Sarker
Nuclear localization of EGF receptor and its potential new role as a transcription factor
  • S-Y Lin
  • K Makino
  • W Xia