Available via license: CC BY-ND 4.0
Content may be subject to copyright.
387
.
The Impact of Re-engineering Administrative Processes in Enhancing the
Quality of Education in University: Field Study of a Sample of Universities
*
b.khalffallah@cu-aflou.dz
ayache.zoubeir@univ-oeb.dz
Abstract :
This study aimed to highlight the effect of re-engineering on the quality of university
education, and in order to achieve this goal a questionnaire was designed for the purpose
of collecting data, as it was distributed to the individuals of the study sample, and the
results were analyzed using the simple and multiple linear regression analysis method,
and this is in order to reveal the relationship between Study variables and provide the
ideal model for them. The study concluded with several results, the most important of
which are: Re-engineering administrative processes has an effective impact on the
quality of university education, The application of re-engineering in university
institutions has a positive impact on the quality of university education.
Key Words: Re-engineering ; Quality; University education; Administrative operations ;
JEL Classification: I23.
*(b.khalffallah@cu-aflou.dz)
388
.
M.Humer & James champi
.
SPSS
389
.
I
1.1
(jamescham,1993
(j-parkes,1993)
.
390
.
391
.
392
.
II
1
1.1
%
%
%
%
%
%
%
3.1
y
Xi
β
393
.
X1
X2
X3
Β1
Β1
Β
Β
Β3
Β
:
0.956
0.899
0.810
SPSS
Malhotra, 2010
394
.
X1
X2
X3
Y
Z
X1
1,000
,511**
,478**
,927**
,984**
.
,000
,001
,000
,000
45
45
45
45
45
X2
,511**
1,000
,708**
,625**
,481**
,000
.
,000
,000
,001
45
45
45
45
45
X3
,478**
,708**
1,000
,641**
,428**
,001
,000
.
,000
,003
45
45
45
45
45
Y
,927**
,625**
,641**
1,000
,922**
,000
,000
,000
.
,000
45
45
45
45
45
Z
,984**
,481**
,428**
,922**
1,000
,000
,001
,003
,000
.
45
45
45
45
45
spss
α
395
.
%
4.4
35.6
17.8
22.2
8.9
spss
%
396
.
X1
X2
X3
X1
1
**
529,
**
592,
,000
,000
45
45
45
X2
**
529,
1
,099
,000
,519
45
45
45
X3
**
592,
,099
1
,000
,519
45
45
45
spss
spss
) (R=
)0.970
2
R(
97%
2
R
%%
R
R2
R2
1
,985
,970
,968
,07180
, x3, x2, x1y
397
.
7
1
6,916
3
2,305
447,183
000,
0,211
41
,005
7,127
44
y. :
., X3, X2, X1
spss
7
Sig=0.000
T
B
Bêta
1
,775
,076
10,173
,000
X1
,680
,036
,932
19,131
,000
X2
,088
,027
,110
3,212
,003
X3
,054
,011-
0,218
,828
: y
spss
) (
y= 0.501+ 0.680X1+0.088X2
Β1
0. 680
398
.
Β
0.088
T – test
1.3 H0) ≥ (α
9
SPSS
R=0.981
1
,
1
,
,
0,000
,
0,
,
SPSS
2
R
%
2
R
%
%
Sig=0.000
R
R2
R2
1
,981
0,962
0,961
0,07930
, x1y
399
.
SPSS
11t33.022t
≥α(
)≥α(
(β)
) (a)
.
1
X y =0. 864+0.715
2.3 H0) 0.05 ≥
(α
R
R2
R2
1
,596
,355
0,340
,32699
x2,
spss
12
R=0.596
T
B
Bêta
1
,058
14,976
0,000
X1
,022
,981
33,022
,000
: y
400
.
spss
)
2
R(
%
2
R
%
%
Sig=0.000
spss
tt
≥α(
)≥α(
(β) (a)
1
,
1
,
,
,000
,
0,
,
: y
, x2
T
B
Bêta
1
0,
,
0,
X2
,
0,
0,
,
0,000
401
.
y = + X2
2.3 H0) ≥
(α
R
R2
R2
1
,834
,695
,688
0,22488
, x3
spss
14
R=0.834
1
4,953
1
4,953
97,935
0,000
2,175
43
0,051
7,127
44
: y
x3,
spss
14 )
2
R(
%
2
R
%
%
Sig=0.000
402
.
T
B
Bêta
1
0,
,
0,
X3
0,0
0,
,
0,000
: y
spss
tt
≥α(
)0.05≥α
((β) (a)
y = + X3
403
.
0.05≥α
≥α
≥ α
o
o
o
o
404
.
Champy.J, (1993) : Le re-engineering de l’entreprise pour une amélioration
spectaculaire & -Michael hammer.de ses performances, Dunod ,Paris .