Article

Portable multilateral measurement system employing Optical Particle Counter and one-stage Quartz Crystal Microbalance to measure PM10

Authors:
To read the full-text of this research, you can request a copy directly from the authors.

Abstract

Air pollutants can cause a variety of environmental and health problems, and several epidemiological and clinical studies have investigate the association of diseases with air pollution. Air pollutants include fine particles and ultrafine particles, which show complex aspects depending on time and space. Therefore, a portable system for measuring fine particles is required. In this study, we developed a portable system to measure the number concentration, mass concentration, and effective density of PM10, which are important measures of fine particles. Current devices used to measure the effective density of particles are either large or only able to measure target particles at the nanoscale. In this study, an Optical Particle Counter (OPC) and a one-stage Quartz Crystal Microbalance (QCM) impactor were used to compose a PM10 multilateral measurement system to calculate the effective density of PM10. OPC is a small device that measures the number concentration of particles, and the QCM impactor measures the mass concentration of particles. Currently available QCM impactors for particle measurement are large devices. Therefore, we miniaturized it in the form of a one-stage impactor. The QCM was installed on an impaction plate to collect the particles. Through the developed system, the number and mass concentrations of input particles were simultaneously measured, and their effective density was calculated using the measured concentrations. Finally, outdoor air monitoring was performed, and the obtained measurements were validated by comparing them with the measurements of reference devices. A difference of 4.7% and 11% were obtained for mass and number concentrations, respectively. Therefore, the effective density of PM10 was successfully calculated.

No full-text available

Request Full-text Paper PDF

To read the full-text of this research,
you can request a copy directly from the authors.

... Using them together can provide even more comprehensive insights. As described in the research paper by Kyeong-Rak Lee et al. [29], an OPC and QCM can be used together in certain applications to provide complementary information about the properties and behaviour of particles. ...
... The OPC is able to detect particles using light scattering and faces a fundamental limitation in differentiating the physical state of the particles. While it provides valuable information about particle size in aerosols, it cannot distinguish between solid and liquid particles solely based on light scattering [25,29]. ...
Article
Full-text available
Aerosols, as well as suspended particulate matter, impact atmospheric pollution, the climate, and human health, directly or indirectly. Particle size, chemical composition, and other aerosol characteristics are determinant factors for atmospheric pollution dynamics and more. In the last decade, low-cost devices have been widely used in instrumentation to measure aerosols. However, they present some issues, such as the problem of discriminating whether the aerosol is composed of liquid particles or solid. This issue could lead to errors in the estimation of mass concentration in monitoring environments where there is fog. In this study, we investigate the use of an optical particle counter (OPC) coupled to a quartz crystal microbalance with an integrated microheater (H-QCM) to enhance measurement performances. The H-QCM was used not only to measure the collected mass on its surface but also, by using the integrated microheater, it was able to heat the collected mass by performing heating cycles. In particular, we tested the developed system with aerosolized saline solutions of sodium chloride (NaCl), with three decreasing concentrations of salt and three electronic cigarette solutions (e-liquid), with different concentrations of propylene glycol and glycerin mixtures. The results showed that the OPC coherently counted the salt dilution effects, and the H-QCM output confirmed the presence of liquid and solid particles in the aerosols. In the case of e-liquid aerosols, the OPC counted the particles, and the HQCM output highlighted that in the aerosol, there were no solid particles but a liquid phase only. These findings contribute to the refinement of aerosol measurement methodologies by low-cost sensors, fostering a more comprehensive understanding.
... Many such sensors and measuring systems are designed to measure PM. Although they do not guarantee the correctness of the results, their quality is improving [37][38][39]. One of the main goals of the low-cost sensor (LCS)-based networks has become civil protection. ...
Article
Full-text available
Particulate matter (PM) suspended in the air significantly impacts human health. Those of anthropogenic origin are particularly hazardous. Poland is one of the countries where the air quality during the heating season is the worst in Europe. Air quality in small towns and villages far from state monitoring stations is often much worse than in larger cities where they are located. Their residents inhale the air containing smoke produced mainly by coal-fired stoves. In the frame of this project, an air quality monitoring network was built. It comprises low-cost PMS7003 PM sensors and ESP8266 microcontrollers with integrated Wi-Fi communication modules. This article presents research results on the influence of the PM sensor location on their indications. It has been shown that the indications from sensors several dozen meters away from each other can differ by up to tenfold, depending on weather conditions and the source of smoke. Therefore, measurements performed by a network of sensors, even of worse quality, are much more representative than those conducted in one spot. The results also indicated the method of detecting a sudden increase in air pollutants. In the case of smokiness, the difference between the mean and median indications of the PM sensor increases even up to 400 µg/m³ over a 5 min time window. Information from this comparison suggests a sudden deterioration in air quality and can allow for quick intervention to protect people’s health. This method can be used in protection systems where fast detection of anomalies is necessary.
... They demonstrated that LES can be used in nanometers with a measurement size range of 5-100 nm, thereby facilitating the study of growth kinetics of particles. Particle measurement techniques based on 90 • light scattering have also been employed for aerosol measurement in the atmosphere and organisms due to their advantages of wide measurement range and real-time performance [5][6][7]. In addition, these techniques have been used to measure industrial aerosols in separation and purification processes, allowing for the determination of equipment separation efficiency and the concentration of particulate matter in flue gas [8,9]. ...
Article
Full-text available
An optimization model for the parameters of the pressure-resistant lens of an optical particle counter, based on Gaussian optics theory, was established to increase the measurement accuracy of the counter for high-pressure natural gas. Comparing the experimental and calculated values of the calibrated model, when the pressure-resistant lens is displaced by 2 mm under atmospheric pressure, the relative error of the measured body deformation is 0.15%. When the air pressure varies in the range 0.10–5.09 MPa, the maximum relative error of optical measurement volume deformation with the change of refractive index is 0.13%, which shows that the model has high reliability and accuracy.
Article
Full-text available
This article presents the results of a study of the ability of the vibrating membranes, such as quartz crystal microbalances, to measure particulate matter. This study builds on the feasibility study previously presented using a low-cost commercial product suitable for research and development purposes. This work shows the results of the treatment of the vibrating surfaces of the membranes, which significantly amplifies their sensitivity. The study provides an analysis of the impedance spectra of the membranes during their exposure to known concentrations of particulate matter. The results of the study show electronic features highly correlated with the concentration of particulate matter in the air.
Article
Full-text available
Quartz crystal microbalance (QCM) is a versatile sensing platform that has gained increasing attention for its use in bioapplications due to its high sensitivity, real-time measurement capabilities, and label-free detection. This article presents a portable QCM system for liquid biosensing that uses a modified Hartley oscillator to drive 14 mm-diameter commercial QCM sensors. The system is designed to be low-cost, easy to use, and highly sensitive, making it ideal for various bioapplications. A new flow cell design to deliver samples to the surface of the sensor has been designed, fabricated, and tested. For portability and miniaturization purposes, a micropump-based pumping system is used in the current system. The system has a built-in temperature controller allowing for accurate frequency measurements. In addition, the system can be used in benchtop mode. The capability of the present system to be used in liquid biosensing is demonstrated through an experimental test for sensitivity to changes in the viscosity of glycerol samples. It was found to have a sensitivity of 263.51 Hz/mPa.s using a 10 MHz QCM sensor. Future work regarding potential applications was suggested. Graphical Abstract
Article
Full-text available
Increasing public concern regarding air quality has led to the development of efficient aerosol-monitoring techniques. Among the various aerosol measurement instruments based on electrical methods, in this study, an electrical cascade impactor (ECI) was designed and fabricated in our laboratory and was used to measure the real-time size distribution of submicron-sized aerosols. In the study by Park et al. (2007), it was assumed that the size distribution of incoming particles follows a unimodal lognormal distribution. However, in this study, the distribution of particles captured at each stage (including the Faraday cage) was assumed to be a unimodal lognormal distribution; hence, the incoming particles may follow any size distribution. After the particle charging characteristics were obtained for different particle sizes, experiments were performed with monodisperse test particles to determine the collection efficiency of each stage. The current measured in each stage was converted into a number based size distribution of aerosols by using the data inversion algorithm, which utilized the experimentally obtained collection efficiency. Then, a performance evaluation was performed, both in the laboratory and in the field. The results obtained by our ECI were in agreement with the scanning mobility particle sizer (SMPS) data.
Article
Full-text available
Building environmental audit and the assessment of indoor air quality (IAQ) in typical residential buildings is necessary process to ensure users' health and well-being. The paper deals with the concentrations on indoor dust particles (PM10) in the context of hygrothermal microclimate in indoor environment. The indoor temperature, relative humidity and air movement are basic significant factors determining the PM10 concentration [μg/m³]. The experimental measurements in this contribution represent the impact of indoor physical parameters on the concentration of particulate matter mass concentration. The occurrence of dust particles is typical for the almost two-thirds of interiors of the buildings. Other parameters indoor environment, such as air change rate, volume of the room, roughness and porosity of the building material surfaces, static electricity, light ions and others, were set constant and they are not taken into account in this study. The mass concentration of PM10 is measured during summer season in apartment of residential prefabricated building. The values of global temperature [°C] and relative humidity of indoor air [%] are also monitored. The quantity of particulate mass matter is determined gravimetrically by weighing according to CSN EN 12 341 (2014). The obtained results show that the temperature difference of the internal environment does not have a significant effect on the concentration PM10. Vice versa, the difference of relative humidity exhibits a difference of the concentration of dust particles. Higher levels of indoor particulates are observed for low values of relative humidity. The decreasing of relative air humidity about 10% caused 10µg/m³ of PM10 concentration increasing. The hygienic limit value of PM10 concentration is not exceeded at any point of experimental measurement.
Article
Full-text available
An intensive aerosol characterization experiment was performed at the Taipei Aerosol and Radiation Observatory (TARO, 25.02° N, 121.53° E) in the urban area of Taipei, Taiwan, during July 2012. Number concentration and size distribution of aerosol particles were measured continuously, which were accompanied by concurrent measurements of mass concentration of submicron particles, PM1 (d ≤ 1 μm), and photolysis rate of ozone, J(O1D). The averaged number concentrations of total (Ntotal), accumulation mode (Nacu), Aitken mode (NAitken), and nucleation mode (Nnuc) particles were 13.9 × 103 cm−3, 1.2 × 103 cm−3, 6.1 × 103 cm−3, and 6.6 × 103 cm−3, respectively. Accordingly, the ultrafine particles (UFPs, d ≤ 100 nm) accounted for 91% of the total number concentration of particles measured in this study (10 ≤ d ≤ 429 nm), indicating the importance of UFPs to the air quality and radiation budget in Taipei and its surrounding areas. An averaged Nnuc / NOx ratio of 192.4 cm−3 ppbv−1 was derived from nighttime measurements, which was suggested to be the characteristic of vehicle emissions that contributed to the "urban background" of nucleation mode particles throughout a day. On the contrary, it was found that the number concentration of nucleation mode particles was independent of NOx and could be elevated up to 10 times of the "urban background" levels during daytime, suggesting a substantial amount of nucleation mode particles produced from photochemical processes. Averages (± 1σ) of the diameter growth rate (GR) and formation rate of nucleation mode particles, J10, were 11.9 ± 10.6 nm h−1 and 6.9 ± 3.0 cm−3 s−1, respectively. Consistency in the time series of the nucleation mode particle concentration and the proxy of H2SO4 production, UVB · SO2/CS, for new particle formation (NPF) events suggested that photooxidation of SO2 was likely one of the major mechanisms for the formation of new particles in our study area. Moreover, it was revealed that the particle growth rate correlated exponentially with the photolysis of ozone, implying that the condensable vapors were produced mostly from photooxidation reactions. In addition, this study also revealed that Nnuc exhibited a quadratic relationship with J10. The quadratic relationship was inferred as a result of aerosol dynamics and featured NPF processes in urban areas.
Article
Full-text available
A new instrument, Density monitor (DENSMO), for aerosol particle size distribution characterization and monitoring has been developed. DENSMO is operationally simple and capable of measuring the effective density as well as the aerodynamic and the mobility median diameters with a time resolution of one second, from unimodal particle size distributions. The characterization is performed with a zeroth order mobility analyzer in series with a low pressure impactor and a filter stage. The operation of DENSMO was investigated with sensitivity analysis and, based on the results, optimal operation parameters were determined. DENSMO was also compared, in lab test measurements, against a reference method with several particle materials with bulk densities from 0.92 to 10.5 g/cm3. The results show that the deviation from the reference method was less than 25% for suitable materials.
Article
Full-text available
Dust particle size distributions in Yinchuan, China, were measured during March and April 2014, using APS-3321 sampler. The distributions were measured under different dust conditions (background, floating dust, blowing dust, and dust storm) and statistical analyses were performed. The results showed that, under different dust conditions, the instantaneous number concentrations of dust particles differed widely. For example, during blowing sand and dust storm conditions, instantaneous dust particles concentrations varied substantially, while, under floating dust conditions, concentration differences were relatively small. The average dust particles size distributions were unimodal under all dust conditions, but the average surface area and mass size distributions were all bimodal. These distributions had peaks in different locations under different dust conditions. Under different dust conditions, wind speed and humidity were very important factors for particles size distributions. With increasing wind speed and decreasing humidity, fine particles were dominant in the atmosphere and the number and mass distributions of the coarse particles were indicative of long-range transport from surrounding deserts. Different dust conditions had different influences on PM 1 , PM 2.5 , and PM 10 concentrations.
Article
Full-text available
In this work, we have used scanning mobility particle sizer (SMPS) and quartz crystal microbalance (QCM) to estimate the effective density of aerosol particles. This approach is tested for aerosolized particles generated from the solution of standard materials of known density, i.e. ammonium sulfate (AS), ammonium nitrate (AN) and sodium chloride (SC), and also applied for ambient measurement in New Delhi. We also discuss uncertainty involved in the measurement. In this method, dried particles are introduced in to a differential mobility analyzer (DMA), where size segregation was done based on particle electrical mobility. At the downstream of DMA, the aerosol stream is subdivided into two parts. One is sent to a condensation particle counter (CPC) to measure particle number concentration, whereas other one is sent to QCM to measure the particle mass concentration simultaneously. Based on particle volume derived from size distribution data of SMPS and mass concentration data obtained from QCM, the mean effective density (ρeff) with uncertainty of inorganic salt particles (for particle count mean diameter (CMD) over a size range 10 to 478 nm), i.e. AS, SC and AN is estimated to be 1.76 ± 0.24, 2.08 ± 0.19 and 1.69 ± 0.28 g cm−3, which are comparable with the material density (ρ) values, 1.77, 2.17 and 1.72 g cm−3, respectively. Among individual uncertainty components, repeatability of particle mass obtained by QCM, QCM crystal frequency, CPC counting efficiency, and equivalence of CPC and QCM derived volume are the major contributors to the expanded uncertainty (at k = 2) in comparison to other components, e.g. diffusion correction, charge correction, etc. Effective density for ambient particles at the beginning of winter period in New Delhi is measured to be 1.28 ± 0.12 g cm−3. It was found that in general, mid-day effective density of ambient aerosols increases with increase in CMD of particle size measurement but particle photochemistry is an important factor to govern this trend. It is further observed that the CMD has good correlation with O3, SO2 and ambient RH, suggesting that possibly sulfate secondary materials have substantial contribution in particle effective density. This approach can be useful for real-time measurement of effective density of both laboratory generated and ambient aerosol particles, which is very important for studying the physico-chemical property of particles.
Article
Full-text available
http://www.mdpi.com/1660-4601/12/7/7667 Epidemiological studies have reported adverse associations between long-term exposure to ambient particulate matter (PM2.5) and several health outcomes. One issue in this field is exposure assessment and, in particular, the role of secondary PM2.5, often neglected in environmental and health risk assessment. Thus, the aim of this work was to evaluate the long-term environmental and health impact of primary and secondary PM2.5 concentrations originating from a single industrial source. As a case study, we considered a coal power plant which is a large emitter of both primary PM2.5 and secondary PM2.5 precursors. PM2.5 concentrations were estimated using the Calpuff dispersion model. The health impact was expressed in terms of number of non-accidental deaths potentially attributable to the power plant. Results showed that the estimated secondary PM2.5 extended over a larger area than that related to primary PM2.5 with maximum concentration values of the two components well separated in space. Exposure to secondary PM2.5 increased significantly the estimated number of annual attributable non-accidental deaths. Our study indicates that the impact of secondary PM2.5 may be relevant also at local scale and ought to be considered when estimating the impact of industrial emissions on population health.
Article
Full-text available
The measured mass concentrations of particulate matter less than 10 μm in diameter (PM 10) by β-ray absorption method (BAM) and gravimetric method (GMM) at Gosan, Republic of Korea have shown consistent difference. By using a gas/particle equilibrium model, positive error by the absorption of water at the filter in BAM during the measurements were quantified. The positive error occupied about 50% of the measurement difference. The contributions from the volatilization of ionic species to the difference were minor. However, this estimated water content difference could fully explain the concentration difference by the two methods. Multiple regression analysis was applied to the PM 10 mass concentration to find out the major factors that affected the concentration difference. Relative humidity, dust storm event and wind direction were identified as other major factors in addition to water absorption i.e., positive error. Still these factors could not fully account for the difference. Thus, it is advised that when using the PM 10 concentration at Gosan, a supersite in Northeast Asia, possible difference should be considered for the data till June 2008 by BAM.
Article
Full-text available
The alveolar epithelium of the lung is by far the most permeable epithelial barrier of the human body. The risk for adverse effects by inhaled nanoparticles (NPs) depends on their hazard (negative action on cells and organism) and on exposure (concentration in the inhaled air and pattern of deposition in the lung). With the development of advanced in vitro models, not only in vivo, but also cellular studies can be used for toxicological testing. Advanced in vitro studies use combinations of cells cultured in the air-liquid interface. These cultures are useful for particle uptake and mechanistic studies. Whole-body, nose-only, and lung-only exposures of animals could help to determine retention of NPs in the body. Both approaches also have their limitations; cellular studies cannot mimic the entire organism and data obtained by inhalation exposure of rodents have limitations due to differences in the respiratory system from that of humans. Simulation programs for lung deposition in humans could help to determine the relevance of the biological findings. Combination of biological data generated in different biological models and in silico modeling appears suitable for a realistic estimation of potential risks by inhalation exposure to NPs.
Article
Full-text available
Effective densities of atmospheric aerosols in various locations of the Los Angeles Basin were determined by a DMA-APM technique. Effective density was calculated by comparing voltage distributions of sampled atmospheric aerosols with PSL particles of known density. The five sites chosen for field experiments were: (1) Interstate-710 Freeway, impacted by heavy-duty diesel vehicles; (2) State Route CA-110, open only to gasoline vehicles; (3) Riverside, a receptor site known for secondary particle formation; (4) University of Southern California, a typical urban and industrial environment; and (5) Coast for marine aerosol. The size range selected for this study was from 50 nm to 414 nm. While 50 nm particles exhibited a single effective density multiple effective densities were measured for each of the other particle sizes as significant fractions of these particles are transported from background sources. Regardless of location, 322–414 nm particle effective densities were considerably lower than unity. The lowest effective densities (∼ 0.1 g cm) were reported for I-710, confirming that diesel combustion aerosols are rich in chain agglomerates with large void spaces. Riverside exhibited high effective densities (∼ 1.2–1.5 g cm) for 50–202 nm particles, which we hypothesize is due to transformations that occur during advection from Los Angeles. Measurements of diurnal variation of effective density at Riverside support this hypothesis. Overall, our results suggest that effective density declines as the particle mobility diameter increases irrespective of location. Fractal dimensions calculated from average effective densities were lowest for I-710 (Df = 2.41) and CA-110 (Df = 2.54) aerosols, presumably due to the influence of vehicular combustion emission on these sites. By contrast, average fractal dimensions at USC, Riverside and Coast were found to be 2.79, 2.83, and 2.92, respectively. High fractal dimensions at these sites may be the effects of aging, moisture absorption and/or organic vapor condensation on the particles, which fills void space and makes particles more spherical.
Article
Full-text available
In many large cities of Europe standard air quality limit values of particulate matter (PM) are exceeded. Emissions from road traffic and biomass burning are frequently reported to be the major causes. As a consequence of these exceedances a large number of air quality plans, most of them focusing on traffic emissions reductions, have been implemented in the last decade. In spite of this implementation, a number of cities did not record a decrease of PM levels. Thus, is the efficiency of air quality plans overestimated? Do the road traffic emissions contribute less than expected to ambient air PM levels in urban areas? Or do we need a more specific metric to evaluate the impact of the above emissions on the levels of urban aerosols? This study shows the results of the interpretation of the 2009 variability of levels of PM, Black Carbon (BC), aerosol number concentration (N) and a number of gaseous pollutants in seven selected urban areas covering road traffic, urban background, urban-industrial, and urban-shipping environments from southern, central and northern Europe. The results showed that variations of PM and N levels do not always reflect the variation of the impact of road traffic emissions on urban aerosols. However, BC levels vary proportionally with those of traffic related gaseous pollutants, such as CO, NO2 and NO. Due to this high correlation, one may suppose that monitoring the levels of these gaseous pollutants would be enough to extrapolate exposure to traffic-derived BC levels. However, the BC/CO, BC/NO2 and BC/NO ratios vary widely among the cities studied, as a function of distance to traffic emissions, vehicle fleet composition and the influence of other emission sources such as biomass burning. Thus, levels of BC should be measured at air quality monitoring sites. During morning traffic rush hours, a narrow variation in the N/BC ratio was evidenced, but a wide variation of this ratio was determined for the noon period. Although in central and northern Europe N and BC levels tend to vary simultaneously, not only during the traffic rush hours but also during the whole day, in urban background stations in southern Europe maximum N levels coinciding with minimum BC levels are recorded at midday in all seasons. These N maxima recorded in southern European urban background environments are attributed to midday nucleation episodes occurring when gaseous pollutants are diluted and maximum insolation and O3 levels occur. The occurrence of SO2 peaks may also contribute to the occurrence of midday nucleation bursts in specific industrial or shipping-influenced areas, although at several central European sites similar levels of SO2 are recorded without yielding nucleation episodes. Accordingly, it is clearly evidenced that N variability in different European urban environments is not equally influenced by the same emission sources and atmospheric processes. We conclude that N variability does not always reflect the impact of road traffic on air quality, whereas BC is a more consistent tracer of such an influence. However, N should be measured since ultrafine particles (<100 nm) may have large impacts on human health. The combination of PM10 and BC monitoring in urban areas potentially constitutes a useful approach for air quality monitoring. BC is mostly governed by vehicle exhaust emissions, while PM10 concentrations at these sites are also governed by non-exhaust particulate emissions resuspended by traffic, by midday atmospheric dilution and by other non-traffic emissions.
Article
Full-text available
Epidemiologic studies have demonstrated an association between acute exposure to ambient fine particles and both mortality and morbidity. Less is known about the relative impacts of the specific chemical constituents of particulate matter<2.5 microm in aerodynamic diameter (PM2.5) on hospital admissions. This study was designed to estimate the risks of exposure to PM2.5 and several species on hospital admissions for respiratory diseases among children. We obtained data on daily counts of hospitalizations for children<19 and <5 years of age for total respiratory diseases and several subcategories including pneumonia, acute bronchitis, and asthma for six California counties from 2000 through 2003, as well as ambient concentrations of PM2.5 and its constituents, including elemental carbon (EC), organic carbon (OC), and nitrates (NO3). We used Poisson regression to estimate risks while controlling for important covariates. We observed associations between several components of PM2.5 and hospitalization for all of the respiratory outcomes examined. For example, for total respiratory admissions for children<19 years of age, the interquartile range for a 3-day lag of PM2.5, EC, OC, NO3, and sulfates was associated with an excess risk of 4.1% [95% confidence interval (CI), 1.8-6.4], 5.4% (95% CI, 0.8-10.3), 3.4% (95% CI, 1.1-5.7), 3.3% (95% CI, 1.1-5.5), and 3.0% (95% CI, 0.4-5.7), respectively. We also observed associations for several metals. Additional associations with several of the species, including potassium, were observed in the cool season. Components of PM2.5 were associated with hospitalization for several childhood respiratory diseases including pneumonia, bronchitis, and asthma. Because exposure to components (e.g., EC, OC, NO3, and K) and their related sources, including diesel and gasoline exhaust, wood smoke, and other combustion sources, are ubiquitous in the urban environment, it likely represents an identifiable and preventable risk factor for hospitalization for children.
Article
Full-text available
The contribution of air particles in human cardio-respiratory diseases has been enlightened by several epidemiological studies. However the respective involvement of coarse, fine and ultrafine particles in health effects is still unclear. The aim of the present study is to determine which size fraction from a chemically characterized background aerosol has the most important short term biological effect and to decipher the determinants of such a behaviour. Ambient aerosols were collected at an urban background site in Paris using four 13-stage low pressure cascade impactors running in parallel (winter and summer 2005) in order to separate four size-classes (PM0.03-0.17 (defined here as ultrafine particles), PM0.17-1 (fine), PM1-2.5(intermediate) and PM2.5-10 (coarse)). Accordingly, their chemical composition and their pro-inflammatory potential on human airway epithelial cells were investigated. Considering isomass exposures (same particle concentrations for each size fractions) the pro-inflammatory response characterized by Granulocyte Macrophage-Colony Stimulating Factor (GM-CSF) release was found to decrease with aerosol size with no seasonal dependency. When cells were exposed to isovolume of particle suspensions in order to respect the particle proportions observed in ambient air, the GM-CSF release was maximal with the fine fraction. In presence of a recombinant endotoxin neutralizing protein, the GM-CSF release induced by particles is reduced for all size-fractions, with exception of the ultra-fine fraction which response is not modified. The different aerosol size-fractions were found to display important chemical differences related to the various contributing primary and secondary sources and aerosol age. The GM-CSF release was correlated to the organic component of the aerosols and especially its water soluble fraction. Finally, Cytochrome P450 1A1 activity that reflects PAH bioavailability varied as a function of the season: it was maximal for the fine fraction in winter and for the ultrafine fraction in summer. In the frame of future regulations, a particular attention should thus be paid to the ultrafine/fine (here referred to as PM1) fraction due to their overwhelming anthropogenic origin and predominance in the urban aerosol and their pro-inflammatory potential.
Article
Full-text available
Associations have been found between day-to-day particulate air pollution and increased risk of various adverse health outcomes, including cardiopulmonary mortality. However, studies of health effects of long-term particulate air pollution have been less conclusive. To assess the relationship between long-term exposure to fine particulate air pollution and all-cause, lung cancer, and cardiopulmonary mortality. Vital status and cause of death data were collected by the American Cancer Society as part of the Cancer Prevention II study, an ongoing prospective mortality study, which enrolled approximately 1.2 million adults in 1982. Participants completed a questionnaire detailing individual risk factor data (age, sex, race, weight, height, smoking history, education, marital status, diet, alcohol consumption, and occupational exposures). The risk factor data for approximately 500 000 adults were linked with air pollution data for metropolitan areas throughout the United States and combined with vital status and cause of death data through December 31, 1998. All-cause, lung cancer, and cardiopulmonary mortality. Fine particulate and sulfur oxide--related pollution were associated with all-cause, lung cancer, and cardiopulmonary mortality. Each 10-microg/m(3) elevation in fine particulate air pollution was associated with approximately a 4%, 6%, and 8% increased risk of all-cause, cardiopulmonary, and lung cancer mortality, respectively. Measures of coarse particle fraction and total suspended particles were not consistently associated with mortality. Long-term exposure to combustion-related fine particulate air pollution is an important environmental risk factor for cardiopulmonary and lung cancer mortality.
Article
Full-text available
Analytic equations are developed for the single-scattering properties of a spherical particle embedded in an absorbing medium, which include absorption, scattering, extinction efficiencies, the scattering phase function, and the asymmetry factor. We derive absorption and scattering efficiencies by using the near field at the surface of the particle, which avoids difficulty in obtaining the extinction based on the optical theorem when the far field is used. Computational results demonstrate that an absorbing medium significantly affects the scattering of light by a sphere.
Article
Growing concerns related to the adverse health effects of airborne ultrafine particles (UFPs; particles smaller than 300 nm) have highlighted the need for field-portable, cost-efficient, real-time UFP dosimeters to monitor individual exposure. These dosimeters must measure both the particle density and size distribution as these parameters are essential to the determination of where and how many UFPs will be deposited in human lungs. However, though various kinds of laboratory-grade instruments and hand-held monitors have been developed, they are expensive and only capable of measuring particle size distribution. A microfluidic UFP dosimeter is proposed in this study to address these limitations. The proposed sensor, based on the electrical detection method with a machine-learning-aided algorithm, can simultaneously measure the size distribution (number concentration, mean mobility diameter, geometric standard deviation) and particle density, and is compact owing to the microelectromechanical systems (MEMS) technology. In a comparison test using physically synthesised Ag and di-ethyl-hexyl sebacate (DEHS) aerosols, the mean measurement errors of the proposed sensor compared to the reference system were 6.1%, 4.5%, and 7.3% for number concentration, mean mobility diameter, and particle density, respectively. Moreover, when the machine-learning aided algorithm was operated, the geometric standard deviation could be deduced with 7.6% difference. These results indicate that the proposed device can be successfully used as a field-portable UFP sensor to assess individual exposure, an on-site monitor for ambient air pollution, an analysis tool in toxicological studies of inhaled particles, for quality assurance of nanomaterials engineered via aerosol synthesis, etc.
Article
Determining the effective density of airborne nanoparticles (NPs; particles smaller than 100 nm in diameter) at a point of interest is essential for toxicology and environmental studies, but it currently requires complex analysis systems comprising several high-precision instruments as well as a specially trained operator. To address these limitations, a field-portable and cost-efficient microfluidic NP analysis device is presented, which provides quantitative information on the effective density and size distribution of NPs in real time. Unlike conventional analysis systems, the device can operate in a standalone mode because of the chip operating principle based on the electrostatic/inertial classification and electrical detection methods. Moreover, the device is both compact (16.0 × 10.9 × 8.6 cm3) and light (950 g) owing to the hardware strip down enabled by integrating the essential functions for effective density analysis on a single chip. Quantitative experiments performed to simulate real-life applications utilizing effective density (i.e., effective density-based morphology analysis on engineered NPs and multi-parametric NP monitoring in ambient air) demonstrate that the developed device can be used as an analysis tool in toxicological studies as an on-site sensor for the monitoring of individual NP exposure and environments, for quality monitoring of engineered NPs via aerosol synthesis, and other applications.
Article
Researchers studying the biological effects of combustion particles typically rely on suspending particles in de-ionized (DI) water, buffer, and/or media prior to in vitro or in vivo experiments. However, the hydrophobic nature of combustion particles makes it difficult to obtain well-suspended, evenly dispersed mixtures, which also makes it difficult to obtain equivalent dosing and endpoint comparisons. This study explored the use of a quartz crystal microbalance (QCM) to measure the mass concentration of combustion particle suspensions. It compared the QCM mass concentration to that estimated by placing a known mass of combustion particles in DI water. It also evaluated the effect of drop volume and combustion particle type on QCM measurements. The results showed that QCM is a promising direct method for measuring suspended combustion particle mass concentrations, and it is particularly effective for quantifying concentrations of difficult-to-suspend particles and for combustion particles placed in polystyrene containers, which can lead to substantial particle losses.
Article
In this work, the effective density of soot particles was studied in burner-stabilized-stagnation premixed ethylene flames, at an equivalent ratio of 2.0 and over the maximum flame temperature of 1747 K < Tmax < 1837 K, using micro-orifice probe sampling in tandem with a centrifugal particle mass analyzer, a differential mobility analyzer (DMA) and a condensation particle counter. For a better understanding of the variation of effective density with mobility diameter, monodisperse soot particles between 10 and 50 nm were classified via the DMA and imaged by transmission electron microscopy (TEM). The particle size distribution functions and the C/H ratio of the particles were measured by a scanning mobility particle sizer and an elemental analyzer, separately. The results show that for all these flames, effective density first increases and then decreases with increasing mobility diameter, and the maximum occurs at the mobility diameter of ∼20 nm, which is consistent with the size for soot morphology changing from spherical-like to non-spherical shapes according to the TEM images. With the increase of flame temperature, the effective density decreases, which is caused by the slower particle growth rate at higher temperatures as shown by a series of evidences.
Article
We compared the performance of a low-cost (∼$500), compact optical particle counter (OPC, OPC-N2, Alphasense) to another OPC (PAS-1.108, Grimm Technologies) and reference instruments. We measured the detection efficiency of the OPCs by size from 0.5 to 5 µm for monodispersed, polystyrene latex (PSL) spheres. We then compared number and mass concentrations measured with the OPCs to those measured with reference instruments for three aerosols: salt, welding fume, and Arizona road dust. The OPC-N2 detection efficiency was similar to the PAS-1.108 for particles larger than 0.8 µm (minimum of 79% at 1 µm and maximum of 101% at 3 µm). For 0.5-µm particles, the detection efficiency of the OPC-N2 was underestimated at 78%, whereas PAS-1.108 overestimated concentrations by 183%. The mass concentrations from the OPCs were linear (r ≥ 0.97) with those from the reference instruments for all aerosols, although the slope and intercept were different. The mass concentrations were overestimated for dust (OPC-N2, slope = 1.6; PAS-1.108, slope = 2.7) and underestimated for welding fume (OPC-N2, slope = 0.05; PAS-1.108, slope = 0.4). The coefficient of variation (CV, precision) for OPC-N2 for all experiments was between 4.2% and 16%. These findings suggest that, given site-specific calibrations, the OPC-N2 can provide number and mass concentrations similar to the PAS-1.108 for particles larger than 1 µm. Copyright © 2016 American Association for Aerosol Research
Article
An in-line sampling and dilution system for droplet aerosols from medical nebulisers is described. The device has been designed to interface with a white light aerosol spectrometer (welas® 2070, Palas® GmbH, Germany) that allows measurements of highly concentrated aerosols. The performance of the sampling system in terms of the measured particle size distribution (PSD) is compared to EN 13544-1 approved measurement techniques as well as to techniques proposed for the European Pharmacopoeia (2.9.44). The measured PSD compares favourably to the ones measured by a Next Generation Impactor, cooled prior to measurement, and by laser diffraction analysed by the Mie theory. This study included three nebulisers (Pari LC Plus, Aeroneb Pro, Omron MicroAIR). The measuring system presented in this study offers a time saving alternative for the measurement of PSD as well as quantity of aerosols from medical nebulisers that is of interest for quality control in the pharmaceutical industry.
Article
Measurement methods for continuous monitoring of the mass concentration of particulate matter (PM) frequently yield data which diier from standardized manual gravimetric methods. The data set from a 1 year measurement period at four sites in Austria was used to analyze the results from gravimetric (high volume sampling) and automated methods (TEOM J and beta-attenuation). Grouping of the data according to season (average temperature) and chemical composition (in particular nitrate) showed good agreement of the various methods for summer and even better for low nitrate content. Correction for nitrate from experimental data and also from modeled nitrate improved the agreement also for winter data and higher nitrate concentrations. At least for the situation in Central Europe adequate conversion factors can be derived from information about the nitrate content of PM between data based on diierent measuring methods.
Article
A three-dimensional dispersion model has been implemented over the urban area of Stockholm (35×35 km) to assess the spatial distribution of number concentrations of particles in the diameter range 3–400 nm. Typical number concentrations in the urban background of Stockholm is 10 000 cm−3, while they are three times higher close to a major highway outside the city and seven times higher within a densely trafficked street canyon site in the city center. The model, which includes an aerosol module for calculating the particle number losses due to coagulation and dry deposition, has been run for a 10-day period. Model results compare well with measured data, both in levels and in temporal variability. Coagulation was found to be of little importance in terms of time averaged concentrations, contributing to losses of only a few percent as compared to inert particles, while dry deposition yield particle number losses of up to 25% in certain locations. Episodic losses of up to 10% due to coagulation and 50% due to deposition, are found some kilometers downwind of major roads, rising in connection with low wind speed and suppressed turbulent mixing. Removal due to coagulation and deposition will thus be more significant for the simulation of extreme particle number concentrations during peak episodes.The study shows that dispersion models with proper aerosol dynamics included may be used to assess particle number concentrations in Stockholm, where ultrafine particles principally originate from traffic emissions. Emission factors may be determined from roadside measurements, but ambient temperature must be considered, as it has a strong influence on particle number emissions from vehicles.
Article
The performance of an impactor can be accurately predicted, if design criteria which were numerically developed and experimentally proven, are adhered to. Based on these criteria, charts have been developed to aid in the design of round or rectangular impaction stages. In the case of round impactors, the desired cutoff size is related to the number and size of nozzles and to the total volumetric flow rate through the stage. In the case of rectangular impactors, the volumetric flow rate is expressed per unit length of the slot.
Article
Particulate matter is an important constituent of our atmosphere and has a critical impact on natural processes and human health. Although they are a minor component of the average global mass flux, anthropogenic particles are abundant in the urban environment, where they contribute substantially to air pollution. Particulate matter is routinely monitored in urban areas, but different particle types can be distinguished only by combining single-particle chemical analysis with bulk analysis of trace elements and measurement of isotope ratios. Such chemical tracers also allow for source identification and thus for targeted mitigation of anthropogenic particle pollution.
Article
There is a need to evaluate nanoparticle (< 100 nm) exposures in occupational settings. However, portable instruments do not size segregate particles in that size range. A proxy method for determining nanoparticle count concentrations involves subtracting counts made with a condensation particle counter (CPC) from those of an optical particle counter/sizer (OPC), resulting in an estimation of "very fine" particles < 300 nm, where 300 nm is the OPC lower detection limit. However, to determine size distributions from which particles < 100 nm may be estimated, the resulting count of particles < 300 nm can be used as an additional channel of count data in addition to those obtained from the OPC. To test these methods, the very fine number concentrations determined using a CPC and OPC were compared with those from SMPS measurements and were used to verify the accuracy of a very fine particle number concentration determined by an OPC and CPC. Two "size-distribution" methods, weighted-average and log-probit, were applied to reproduce particle size distributions from OPC and CPC data and were then evaluated relative to their ability to accurately estimate the nanoparticle number concentrations. Various engineered nanoparticles were used to create test aerosols, including titanium dioxide (TiO(2)), silicon dioxide (SiO(2)), and iron oxide (Fe(2)O(3)). These materials were chosen because of their different refractive indices and therefore may be measured differently by the OPC. The count-difference method was able to estimate very fine particle number concentrations with an error between 10.9 to 58.4%. In estimating nanoparticle number concentrations using the size-distribution methods, the log-probit method resulted in the lowest percent errors that ranged from -42% to 1023%. Percent error was lower than the instrument manufacturer's indicated level of accuracy when the test aerosol refractive index was similar to that used for OPC calibration standards. Accuracy could be increased if there was an increase in the size resolution for number concentrations measured by the CPC of very fine particles and mitigation of optical effects.
Article
There is increasing concern that airborne particles are critical risk factors for adverse health conditions in susceptible populations. The objective of this panel study is to investigate an association between particulate matter and the peak expiratory flow rate (PEFR) in the elderly and to compare estimated risks using PM10 or PM2.5 levels as a measure of exposure. During a 2-year longitudinal follow-up study, we contacted subjects living in an asylum for the elderly, provided them with a mini-Wright peak flow meter, and instructed to record all the flow readings, any respiratory symptoms, passive smoking activity, and hours spent outdoors for that given day. Daily levels of particulate matter were measured by two separate mini-volume air samplers (for PM10 and PM2.5) placed on the rooftop of the two-story residence asylum building. In our statistical models, we assumed that the expected response varied linearly for each participant with a slope and intercept that depended on fixed or time-varying covariates using a mixed linear model. The daily mean levels of PM10 and PM2.5 were 78 microg/m3 and 56 microg/m3, respectively. For every 10 microg/m3 increase in PM10 and PM2.5 levels, there was an estimated PEFR change of -0.39 l/min (95% CI, -0.63, -0.14) and -0.54 l/min (95% CI, -0.89, -0.19), respectively. These data also suggest that fine particles have a more adverse respiratory health impact for sensitive individuals such as the elderly and that more research and control strategies should focus on the smaller particles associated with air pollution.
Article
Investigations into the frequency-temperature behavior of AT-type quartz resonators have revealed differences between natural and synthetic quartz. The differences refer mainly to a shift of the optimum angle of orientation by a few minutes of arc and to a slight change of the frequency-temperature characteristic itself. To describe the frequency-temperature behavior analytically, the measured change of frequency vs temperature can be developed in a power series, determined by first, second, and third-order temperature coefficients. In the temperature range from -60 to +100°C. higher-order temperature coefficients can be neglected. For a large number of AT-type resonators of various angles made from natural and several kinds of synthetic quartz, the temperature coefficients, and their variation with the angle have been determined. It is possible to modify the properties of synthetic quartz by introducing other elements during the growing process. An example is quartz grown in an alkaline solution containing germanium dioxide. Measurements have been made on AT-type resonators cut from such synthetic quartz. The third-order temperature coefficient for the AT-type resonator is found noticeably reduced; the frequency-temperature curves are flattened over a wider temperature range.
Effective density measurement of ambient sub-micron aerosol using SMPS and 1 stage low-pressure impactor
  • Oh
dünner Schichten und zur Mikrowägung
  • Sauerbrey
Hinds. "Acceleration and curvilinear particle motion." Aerosol
  • William
Silke Stopper, Hans Puxbaum, Michael Kundi, and Othmar Preining. "On the equivalence of gravimetric PM data with TEOM and beta-attenuation measurements
  • Hauck
Urban aerosol number size distributions
  • Hussein
Acceleration and curvilinear particle motion
  • Hinds