Available via license: CC BY 4.0
Content may be subject to copyright.
Axioms2021,10,332.https://doi.org/10.3390/axioms10040332www.mdpi.com/journal/axioms
Article
ANewApproachonTransforms:FormableIntegralTransform
andItsApplications
RaniaZohairSaadeh*andBayanfu’adGhazal
DepartmentofMathematics,FacultyofScience,ZarqaUniversity,Zarqa13110,Jordan;20209128@zu.edu.jo
*Correspondence:rsaadeh@zu.edu.jo
Abstract:Inthispaper,weintroduceanewintegraltransformcalledtheFormableintegraltrans‐
form,whichisanewefficienttechniqueforsolvingordinaryandpartialdifferentialequations.We
introducethedefinitionofthenewtransformandgivethesufficientconditionsforitsexistence.
Someessentialpropertiesandexamplesareintroducedtoshowtheefficiencyandapplicabilityof
thenewtransform,andweprovethedualitybetweenthenewtransformandothertransformssuch
astheLaplacetransform,Sumudutransform,Elzakitransform,ARAtransform,Naturaltransform
andShehutransform.Finally,weusetheFormabletransformtosolvesomeordinaryandpartial
differentialequationsbypresentingfiveapplications,andweevaluatetheFormabletransformfor
somefunctionsandpresenttheminatable.Acomparisonbetweenthenewtransformandsome
well‐knowntransformsismadeandillustratedinatable.
Keywords:Laplacetransform;Shehutransform;Naturaltransform;ARAtransform;Fourier
transform;Elzakitransform;Sumudutransform;ordinarydifferentialequation;partialdifferential
equation;integraltransform
1.Introduction
Differentialequationsrepresentafieldofmathematicsthathasgreatapplicationsin
science,sincetheyareusedinmathematicalmodeling[1–9]andhenceaidinfindingso‐
lutionsinphysicalandengineeringproblemsinvolvingfunctionsofoneorseveralvaria‐
bles,suchasthepropagationofheatorsound,fluidflow,elasticity,electrostatics,electro‐
dynamics,etc.
Fordecades,methodsforsolvingdifferentialequationshavebeenimportantsubjects
forresearchers,[10–19]becauseoftheirimportantapplicationsinvariousfieldsofscience.
Thetechniqueofusingintegraltransformshasproveditsefficiencyandapplicabilityin
solvingordinaryandpartialdifferentialequations.
Forthefunction𝑔𝑡and𝑡 ∈ ∞,∞ ,theintegraltransformisobtainedbycom‐
putingtheimproperintegral
where𝑘𝑠,𝑡iscalledthekerneloftheintegraltransformandsisthevariableofthetrans‐
form,whichmightberealorcomplexnumberandisindependentofthevariablet.The
theoryofintegraltransformsgoesbacktotheworkofP.S.Laplacein1780[19,20]and
Fourierin1822.Recently,theideaofusingintegraltransformsinsolvingdifferential
equationsandintegralequationshasbeencommonlyusedbymanyresearchersinthe
literature[21–30].
TheLaplacetransformisdefinedas:
Citation:Saadeh,R.Z.;Ghazal,B.f.G.
ANewApproachonTransforms:
FormableIntegralTransformandIts
Applications.Axioms2021,10,332.
https://doi.org/10.3390/
axioms10040332
AcademicEditor:
PalleE.T.Jorgensen
Received:25September2021
Accepted:5November2021
Published:1December2021
Publisher’sNote:MDPIstaysneu‐
tralwithregardtojurisdictional
claimsinpublishedmapsandinstitu‐
tionalaffiliations.
Copyright:©2021bytheauthors.
LicenseeMDPI,Basel,Switzerland.
Thisarticleisanopenaccessarticle
distributedunderthetermsand
conditionsoftheCreativeCommons
Attribution(CCBY)license
(https://creativecommons.org/license
s/by/4.0/).
£ 𝑔𝑡𝑠 𝑘 𝑠,𝑡 𝑔𝑡𝑑𝑡,
(1)
Axioms2021,10,3322of22
£ 𝑔𝑡𝐺𝑠 exp𝑠𝑡𝑔𝑡𝑑𝑡
,(2)
anditshowshighefficiencyinsolvingaclassofdifferentialequations.Byreplacingthe
variable𝑠by𝑖𝑤andmultiplyingEquation(2)by
√weobtainthewell‐knownFourier
integraltransform,definedas𝐹 𝑔𝑡𝑔𝑤
1
√
2𝜋exp𝑖𝑤𝑡𝑔𝑡𝑑𝑡 .
(3)
Thesetransformsarebasicinthestudyofintegraltransforms,butthedifferencebe‐
tweenthemisthattheLaplacetransformisapplicableforbothstableandunstablesys‐
tems,buttheFouriertransformisonlydefinedforstablesystems.
Formanyyears,thetheoryofintegraltransformshasbeenverywidelystudiedin
themathematicalliterature,andmanyresearchershaveinvestigatednewtransformssuch
asthez‐transform[29],theMellinintegraltransform[30],theLaplace–Carsontransform
[31]andtheHankeltransform[32,33].
TheSumuduintegraltransform[34]wasintroducedin1993.Itshowedapplicability
insolvingreal‐lifeproblemsandwasusedforsolvingdifferentialequations.TheSumudu
integraltransformisdefinedas:
𝑆𝑔𝑡𝑢𝐺𝑢 1
𝑢exp 𝑡
𝑢𝑔𝑡𝑑𝑡 .
(4)
In2008,BelgacemandSilambarasanintroducedtheNaturaltransform,asfollows:
𝑁𝑔𝑡𝑠,𝑢𝑅𝑠,𝑢 1
𝑢exp 𝑠𝑡
𝑢𝑔𝑡𝑑𝑡,𝑠,𝑢0.
(5)
TheElzakiintegraltransformwasobtainedin2011,withthedefinition
𝐸𝑔𝑡 𝑢𝑇𝑢 𝑢exp 𝑡
𝑢𝑔𝑡𝑑𝑡 .
(6)
ThisiscloselyrelatedtotheLaplaceandSumuduintegraltransforms.
TheShehuintegraltransformisgivenby
𝕊𝑔𝑡𝑠,𝑢𝑉𝑠,𝑢exp 𝑠𝑡
𝑢𝑔𝑡𝑑𝑡,𝑠,𝑢0
.(7)
Thisalsoshowstheabilitytosolveaclassofdifferentialequationsand,combined
withothernumericalmethodsofsolvingdifferentialequations,toofferanewapproach
indealingwithfractionaldifferentialequations.
In2020,theARAtransformwasintroducedbySaadehetal.andwasimplemented
tosolveawiderangeoffractionalordinaryandpartialdifferentialequations.
TheARAintegraltransformisgivenby
𝒢𝑔𝑡𝑠𝐺𝑛,𝑠 𝑠𝑡exp𝑠𝑡𝑔𝑡𝑑𝑡,𝑠0 .
(8)
Recently,theabovetransformsandothershavebeencombinedwithotheranalytical
methodsinmathematicstosolveawiderangeoflinearandnonlinearfractionalandor‐
dinarydifferentialequations,andothermethodsareshownin.
Inthispaper,weproposeanewintegraltransformcalledtheFormabletransform.
WeintroducethedefinitionandsomepropertiesofthenewtransforminSection2.The
Axioms2021,10,3323of22
dualitiesbetweentheFormableandothertransformsareillustratedinSection3withsome
examples.InSection4,weapplytheFormabletransforminsomeordinaryandpartial
differentialequationstoshowitsefficiencyandaccuracythroughapplications.Finally,
thevaluesoftheFormabletransformforsomespecialfunctionsarepresentedinatable.
2.DefinitionsandTheorems
InthissectionweintroducethedefinitionofthenewtransformcalledtheFormable
transform,togetherwithsometheoremsandpropertiesofthenewtransform.
Definition1.TheFormableintegraltransformofafunction𝑔𝑡ofexponentialorderisdefined
overthesetoffunctions
𝑊𝑔𝑡:∃ 𝑁∈0, ∞,𝜏0
𝑓
𝑜𝑟 𝑖1,2 , |𝑔𝑡| 𝑁exp
,ift ∈0, ∞,
inthefollowingform:
𝑅𝑔𝑡𝐵𝑠,𝑢 𝑠 exp 𝑠𝑡
𝑔𝑢𝑡𝑑𝑡(9)
Thisisequivalentto𝑅𝑔𝑡
exp
𝑔𝑡𝑑𝑡 (10)
𝑅𝑔𝑡 𝑠𝑢lim
→exp 𝑠𝑡
𝑢𝑔𝑡𝑑𝑡
, s 0, 𝑢0
where𝑠 and 𝑢aretheFormabletransform’svariables,𝑥isarealnumberandtheintegral
istakenalongtheline 𝑡 𝑥.Afunctiong(t)issaidtobeofexponentialorder𝑐ifthere
existconstants𝑀and𝑇suchthat|𝑔𝑡|𝑀 𝑒 for all 𝑡𝑇.Here,wementionthatwe
chosethename“Formable”forthisnewtransformbecauseofitsflexibilityinsolvingor‐
dinaryandpartialdifferentialequations.Inaddition,ithasadualitywithotherwell‐
knowntransformsthatwillbeconsideredlater.ToshowtheapplicabilityoftheFormable
transform,wecomputethetransformforseveralfunctionsinSection3.Wecomparethe
resultswithothervaluesfromsomewell‐knowntransformsandillustratetheminatable
intheAppendixA.
TheinverseFormabletransformofafunction𝑔𝑡isgivenby
𝑅𝐵𝑠,𝑢𝑔𝑡 1
2𝜋𝑖 1
𝑠
exp 𝑠𝑡
𝑢 𝐵𝑠,𝑢𝑑𝑠.
Thatis,fromthedefinitionoftheFouriertransform,weknow
𝐹 𝑔𝑡𝐹 𝑤 1
√
2𝜋 𝑒
𝑔𝑡
𝑑𝑡
𝐹𝐹𝑤𝑔𝑡1
√
2𝜋 𝑒
𝐹𝑤
𝑑𝑤.
Then
𝑔𝑡1
√2𝜋 𝑒
1
√2𝜋 𝑒
𝑔𝑡
𝑑𝑡
𝑑𝑤
1
2𝜋 𝑒
𝑒
𝑔𝑡
𝑑𝑡
𝑑𝑤,
(11)
where𝑔𝑡 isafunctiondefinedonthedomain ∞,∞ ,sothatfor𝑡 ∈∞,0weas‐
sumethat𝑔𝑡0.Hencefort 0,let𝑔𝑡𝑔𝑡 𝑢(t) 𝑒,where𝑢𝑡istheunitstep
functionand𝑐isanyconstant,sothatEquation(11)becomes
Axioms2021,10,3324of22
𝑔𝑡 𝑢𝑡𝑒
𝑒 𝑒 𝑔𝑡
𝑑𝑡
𝑑𝑤.(12)
MultiplyingbothsidesofEquation(12)by 𝑒,weobtain
𝑔𝑡𝑢𝑡
𝑒 𝑒 𝑔𝑡
𝑑𝑡
𝑑𝑤 (13)
Substituting
𝑐𝑖𝜔,
𝑖𝑑𝑤 and 𝑑𝑤
𝑑𝑠inEquation(13),weobtain
𝑔𝑡 𝑢 𝑡
𝑒
𝑒
𝑔𝑡
𝑑𝑡
𝑑𝑠
1
2𝜋𝑖 1
𝑠𝑒
𝑠𝑢 𝑒
𝑔𝑡
𝑑𝑡
𝑑𝑠
1
2𝜋𝑖 1
𝑠𝑒
𝐵𝑠,𝑢
𝑑𝑠.
Defining𝑔𝑡on0, ∞,weobtain
𝑔𝑡1
2𝜋𝑖 1
𝑠𝑒
𝐵𝑠,𝑢
𝑑𝑠.
Hence,
𝑅𝐵𝑠,𝑢 1
2𝜋𝑖 1
𝑠
exp 𝑠𝑡
𝑢 𝐵𝑠,𝑢𝑑𝑠,(14)
and𝑅𝑅𝑔𝑡𝑔𝑡.
Theorem1.SufficientconditionsfortheexistenceoftheFormabletransform.
Ifthefunction𝑔𝑡isapiecewisecontinuousfunctionineveryfiniteinterval𝑡 ∈
0, 𝛼and isofexponentialorder𝛽for 𝑡𝛽,thentheFormabletransform𝐵𝑠,𝑢of
𝑔𝑡 exists.
Proof.Let𝛼beanypositivenumber,thenwehave
𝐵𝑠,𝑢 𝑠𝑢exp 𝑠𝑡
𝑢
𝑔𝑡𝑑𝑡
𝑠𝑢exp 𝑠𝑡
𝑢
𝑔𝑡 𝑑𝑡𝑠𝑢exp 𝑠𝑡
𝑢
𝑔𝑡𝑑𝑡
Sincethefunction𝑔𝑡isapiecewisecontinuousfunctionineveryfiniteinterval
0, 𝛼,theintegral
exp
𝑔𝑡 𝑑𝑡exists,andsince𝑔 𝑡isofexponentialorder𝛽we
have
exp
𝑔𝑡𝑑𝑡
exp
𝑔𝑡
𝑑𝑡
𝑠𝑢 exp 𝑠𝑡
𝑢|𝑔𝑡|
𝑑𝑡
𝑠𝑢 exp 𝑠𝑡
𝑢𝑁 exp
𝛽𝑡𝑑𝑡
=
𝑁exp 𝑡
𝛽
𝑑𝑡
𝑠𝑢 𝑁 exp 𝑡 𝑠𝑢𝛽
𝑑𝑡
Axioms2021,10,3325of22
𝑁lim
→
𝑠𝑢 𝑁 1
𝑠𝑢 𝛽
𝑠𝑁/𝑠𝛽𝑢.
Theproofiscomplete.Now,weintroducesomebasicpropertiesandresultsconcern‐
ingtheFormabletransformwhichenableustosolvemoreapplicationsviathetransform.
Property1(linearityproperty).Let𝛼𝑔𝑡and𝛽𝑔𝑡 betwofunctionsinaset 𝑊,then
( 𝛼𝑔𝑡 𝛽𝑔𝑡 ∈𝑊,where𝛼 and 𝛽arenonzeroarbitraryconstants,and
𝑅𝛼𝑔𝑡 𝛽𝑔𝑡𝛼𝑅𝑔𝑡 𝛽𝑅𝑔𝑡.(15)
ProofofProperty1.UsingthedefinitionoftheFormabletransform,wehave
𝑅𝛼𝑔𝑡 𝛽𝑔𝑡𝑠𝑢exp 𝑠𝑡
𝑢
𝛼𝑔𝑡 𝛽𝑔𝑡 𝑑𝑡
𝑠𝑢 exp 𝑠𝑡
𝑢
𝛼𝑔𝑡 𝑑𝑡𝑠𝑢 exp 𝑠𝑡
𝑢
𝛽𝑔𝑡 𝑑𝑡
𝛼 𝑠𝑢 exp 𝑠𝑡
𝑢
𝑔𝑡 𝑑𝑡𝛽𝑠𝑢 exp 𝑠𝑡
𝑢
𝑔𝑡 𝑑𝑡
𝛼𝑅𝑔𝑡 𝛽𝑅𝑔𝑡.
Theproofiscomplete.
Property2(changeofscale).Letthefunction𝑔(𝛼𝑡beintheset 𝑊,where𝛼isanarbitrary
constant,then𝑅 𝑔𝛼𝑡𝐵
,𝑢𝐵𝑠,𝛼𝑢.(16)
ProofofProperty2.
𝑅 𝑔𝛼𝑡 𝑠𝑢exp 𝑠𝑡
𝑢
𝑔𝛼𝑡𝑑𝑡(17)
Substituting𝛿 𝛼𝑡inEquation(17)wehave
𝑅 𝑔𝛼𝑡 𝑠𝑢exp 𝑠𝛿
𝑢𝛼
𝑔𝛿𝑑𝛿
𝛼
𝑠
𝛼𝑢exp 𝑠𝛿
𝑢𝛼
𝑔𝛿 𝑑𝛿
𝐵
,𝑢
= 𝐵𝑠,𝛼𝑢.
Property3(Formabletransformofthederivative).Ifthefunction𝑔 𝑡isthen‐th
derivativeofthefunction 𝑔 𝑡,where𝑔 𝑡∈𝑊, for 𝑛0,1, 2, …withrespectto 𝑡,then
𝑅 𝑔𝑡
𝐵𝑠,𝑢 ∑
𝑔0
. (18)
ProofofProperty3.For𝑛 1,wehave
Axioms2021,10,3326of22
𝑅 𝑔𝑡 𝑠𝑢 exp 𝑠𝑡
𝑢
𝑔𝑡 𝑑𝑡
𝑠𝑢 lim
→exp 𝑠𝑡
𝑢𝑔𝑡
𝑠𝑢exp 𝑠𝑡
𝑢
𝑔𝑡 𝑑𝑡
𝑔0 𝐵𝑠,𝑢.
Thus𝑅 𝑔𝑡 𝑠𝑢 𝐵𝑠,𝑢 𝑠𝑢𝑔0 . (19)
AssumingthatEquation(18)istruefor𝑛𝑘,thenweshowthatitistruefor𝑛
𝑘 1,byusingthefactthatinEquation(19)wehave
R[𝑔(k+1)(t)]R[𝑔t
𝑅 𝑔t
𝑔0
𝐵𝑠,𝑢 ∑
𝑔0
𝑔0
𝐵𝑠,𝑢 ∑
𝑔0
.
ThisimpliesthatEquation(17)holdsfor𝑛 𝑘 1,sotheproofiscomplete.
ThefollowingimportantpropertiesareobtainedusingtheLeibnizruleand
Equation(18):
(i) 𝑅[,
exp
,
𝑑𝑡
exp
𝑔𝑥,𝑡 𝑑𝑡
𝐵𝑥,𝑠,𝑢.
(ii) 𝑅[,
exp
,
𝑑𝑡
exp
𝑔𝑥,𝑡 𝑑𝑡
𝐵𝑥,𝑠,𝑢.
(iii) 𝑅[,
exp
,
𝑑𝑡
exp
𝑔𝑥,𝑡 𝑑𝑡
𝐵𝑥,𝑠,𝑢.
(20)
Property4(Formabletransformoftheconvolution).If𝐹𝑠,𝑢 and 𝐺𝑠,𝑢 aretheFormable
transformsofthefunctions𝑓 𝑡and𝑔𝑡,respectively,then
𝑅
𝑓
𝑡∗𝑔𝑡
𝐹𝑠,𝑢 𝐺𝑠,𝑢, (21)
where𝑓𝑡∗𝑔𝑡istheconvolutionofthefunctions𝑓𝑡and𝑔𝑡definedby
𝑓
𝑡∗𝑔𝑡
𝑓
𝜏 𝑔𝑡𝜏𝑑𝜏
(22)
ProofofProperty4.UsingthedefinitionoftheFormabletransforminEquation(9),we
obtain
𝑅
𝑓
𝑡∗𝑔𝑡𝑠exp𝑠𝑡
𝑓
∗𝑔𝑢𝑡 𝑑𝑡
𝑠exp𝑠𝑡
𝑓
𝜏 𝑔𝑢𝑡𝜏 𝑑𝜏
𝑑𝑡.
(23)
Letting𝜏𝑢𝑥 and 𝑑𝜏𝑢𝑑𝑥inEquation(23),weobtain
𝑅
𝑓
𝑡∗𝑔𝑡𝑠exp𝑠𝑡
𝑓
𝑢𝑥 𝑔𝑢𝑡𝑢𝑥𝑑𝑢𝑥
𝑑𝑡(24)
Axioms2021,10,3327of22
𝑠exp𝑠𝑡
𝑓
𝑢𝑥 𝑔𝑢𝑡𝑥𝑢 𝑑𝑥
𝑑𝑡
Letting𝑦𝑡𝑥 and 𝑑𝑦𝑑𝑡 inEquation(24),weobtain
𝑅
𝑓
𝑡∗𝑔𝑡𝑠∬exp𝑠𝑥𝑦
𝑓
𝑢𝑥 𝑔𝑢𝑦 𝑢 𝑑𝑥 𝑑𝑦
𝑠𝑢exp𝑠𝑥𝑦
𝑓𝑢𝑥 𝑔𝑢𝑦 𝑑𝑥 𝑑𝑦
𝑠𝑢exp𝑠𝑥𝑓𝑢𝑥 𝑑𝑥
exp𝑠𝑦 𝑔𝑢𝑦𝑑𝑦
𝑢𝑠𝑠exp𝑠𝑥𝑓𝑢𝑥𝑑𝑥
𝑠exp𝑠𝑦𝑔𝑢𝑦𝑑𝑦
𝐹𝑠,𝑢𝐺𝑠,𝑢 .
Corollary1.TheFormabletransformof 𝑓∗𝑔 isgivenby
𝐵
𝑓
∗𝑔𝐹𝑠,𝑢 𝐺𝑠,𝑢 (25)
ProofofCorollary1.Applyingthefactsinproperties(3)and(4),weobtain
𝐵
𝑓
∗𝑔 𝑠𝑢𝑅
𝑓
𝑡∗𝑔𝑡𝑠𝑢
𝑓
∗𝑔0.
But 𝑓∗𝑔00,andhence
𝐵
𝑓
∗𝑔𝑠𝑢 𝑢𝑠𝐹𝑠,𝑢 𝐺𝑠,𝑢
𝐹𝑠,𝑢 𝐺𝑠,𝑢.
Here,ifweput𝑔𝑡 𝑓𝑡inEquation(25)wehave
𝐵
𝑓
∗
𝑓
𝐹𝑠,𝑢. (26)
Property5(shiftingons‐domain).Ifthefunction𝑔𝑡inaset𝑊ismultipliedwiththeshift
function𝑡,then
𝑅𝑡𝑔𝑡 𝑢𝑠𝜕
𝜕𝑠𝑅𝑔𝑡
𝑠 . (27)
ProofProperty5.WeshowthatEquation(27)istruefor 𝑛 1.
Putting𝑛 1inEquation(27),wehave
𝑅𝑡𝑔𝑡𝑢𝑠 𝜕
𝜕𝑠𝑅𝑔𝑡
𝑠
𝑢
𝑠𝑠𝜕𝑅𝑔𝑡
𝜕𝑠 𝑅𝑔𝑡
𝑢𝜕𝑅𝑔𝑡
𝜕𝑠 𝑢𝑠 𝑅𝑔𝑡
(28)
Equation(28)becomes
Axioms2021,10,3328of22
𝜕𝑅𝑔𝑡
𝜕𝑠 1
𝑢𝑅𝑡𝑔𝑡1
𝑠𝑅𝑔𝑡 (29)
IfweproveEquation(29),wearefinished.Westartwiththeleft‐handsideofEqua‐
tion(29)andusingtheLeibnizruleweobtain
𝜕𝑅𝑔𝑡
𝜕𝑠 𝜕
𝜕𝑠 𝑠𝑢 exp 𝑠𝑡
𝑢𝑔𝑡𝑑𝑡
𝑠𝑢𝜕
𝜕𝑠𝑒𝑥𝑝
𝑠𝑡
𝑢𝑔𝑡𝑑𝑡1
𝑢𝑒𝑥𝑝
𝑠𝑡
𝑢𝑔𝑡 𝑑𝑡
𝑠𝑢𝑡
𝑢𝑒𝑥𝑝
𝑠𝑡
𝑢𝑔𝑡𝑑𝑡1
𝑢𝑒𝑥𝑝
𝑠𝑡
𝑢𝑔𝑡 𝑑𝑡
1
𝑢 𝑠𝑢𝑡 𝑒𝑥𝑝
𝑠𝑡
𝑢𝑔𝑡𝑑𝑡1
𝑢𝑒𝑥𝑝
𝑠𝑡
𝑢𝑔𝑡 𝑑𝑡
𝑅𝑡𝑔𝑡
𝑅𝑔𝑡.
Theproofiscompletefor 𝑛 1.
AssumethatEquation(27)istruefor𝑛suchthat
𝑅𝑡𝑔𝑡 𝑢𝑠 𝜕
𝜕𝑠𝑅𝑔𝑡
𝑠.
Weshowthat
𝑅𝑡𝑔𝑡𝑢𝑠 𝜕
𝜕𝑠𝑅𝑔𝑡
𝑠.(30)
UsingthefactsinEquations(28)and(31),wehave
𝑅𝑡𝑔𝑡𝑅𝑡 𝑡𝑔𝑡
𝑢𝑠 𝜕
𝜕𝑠𝑅𝑡𝑔𝑡
𝑠
𝑢𝑠 𝜕
𝜕𝑠𝑢 𝑠 𝜕
𝜕𝑠𝑅𝑔𝑡
𝑠
𝑠
𝑢𝑠 ⎣
⎢
⎢
⎢
⎡
𝑠𝑢𝑠.𝜕
𝜕𝑠𝑅𝑔𝑡
𝑠𝑢𝜕
𝜕𝑠𝑅𝑔𝑡
𝑠𝑢𝜕
𝜕𝑠𝑅𝑔𝑡
𝑠
𝑠⎦
⎥
⎥
⎥
⎤
𝑢 𝑠 𝜕
𝜕𝑠
𝑅𝑔𝑡
𝑠
.
Remark1.Ifthefunction𝑔𝑡hasthenumericalexpansion
𝑔 𝑡 ∑𝑎 𝑡
,
thentheFormabletransform(seeTableA1inAppendixA)of𝑡𝑔𝑡 isgivenby
𝑅𝑡𝑔𝑡∑!
𝑢𝑠𝑛1!𝑎𝑢
𝑠
𝑢𝑠𝜕
𝜕𝑢 𝑛!𝑎𝑢
𝑠
Axioms2021,10,3329of22
𝑢𝑠 𝜕
𝜕𝑢𝑢 𝑛!𝑎𝑢
𝑠
𝑢𝑠 𝜕
𝜕𝑢𝑢 𝐵𝑠,𝑢.
Thegeneralizationofthepreviousremarkundertheconditionon𝑔𝑡givesusan
equivalentformofproperty(5)asfollows:
𝑅𝑡𝑔𝑡 𝑢
𝑠 𝜕
𝜕𝑢 𝑢 𝐵𝑠,𝑢 (31)
Remark2.If𝑔𝑡isthen‐thderivativeofthefunction𝑔𝑡thatismultipliedwiththeshift
function𝑡,then
𝑅𝑡𝑔𝑡𝑢𝜕
𝜕𝑢𝐵𝑠,𝑢 (32)
ProofofRemark2.Considertheright‐handsideofEquation(32).UsingtheLeibnizrule,
weobtain
𝑢 𝜕
𝜕𝑢𝐵𝑠,𝑢𝑢 𝜕
𝜕𝑢 𝑠exp𝑠𝑡
𝑔𝑢𝑡𝑑𝑡
𝑢 𝑠exp𝑠𝑡
𝜕
𝜕𝑢𝑔𝑢𝑡𝑑𝑡
𝑢 𝑠exp𝑠𝑡
𝑡𝑔𝑢𝑡𝑑𝑡
𝑠exp𝑠𝑡
𝑢𝑡𝑔𝑢𝑡𝑑𝑡
𝑅
𝑡𝑔𝑡
.
Property6.Ifthefunction𝑔𝑡inaset𝑊isdividedbythemultipleshiftfunction𝑡,then
𝑅𝑔𝑡
𝑡 𝑠
𝑢⋯𝐵𝑠,𝑢
𝑠
𝑑𝑠 (33)
ProofofProperty6.Startingwithright‐handsideofEquation(33),weobtain
𝑠
𝑢⋯𝐵𝑠,𝑢
𝑠
𝑑𝑠 𝑠
𝑢⋯exp𝑠𝑡𝑔𝑢𝑡 𝑑𝑡
𝑑𝑠
𝑠
𝑢𝑔
𝑢𝑡
⋯exp 𝑠𝑡𝑑𝑠
𝑑𝑡
𝑠
𝑢𝑔𝑢𝑡
𝑡exp𝑠𝑡𝑑𝑡
𝑠 𝑔𝑢𝑡
𝑢𝑡exp𝑠𝑡𝑑𝑡
𝑅
𝑔𝑡
𝑡
.
Axioms2021,10,33210of22
Property7.Letthefunction𝑔𝑡bemultipliedwiththeweightfunction 𝑒𝑥𝑝 𝛼𝑡),then
𝑅exp𝛼𝑡𝑔𝑡𝑠
𝑠𝛼𝑢𝐵𝑠,𝑢
𝑠𝛼𝑢 (34)
ProofofProperty7.
𝑅exp𝛼𝑡𝑔𝑡𝑠exp𝑠𝑡
exp𝛼𝑢𝑡 𝑔𝑢𝑡 𝑑𝑡
𝑠exp 𝑠𝛼𝑢𝑡
𝑔𝑢𝑡 𝑑𝑡
(35)
Letting 𝑠𝛼𝑢𝑡𝑠𝑤,and𝑑𝑡
𝑑𝑤 inEquation(36),wehave
𝑠exp𝑠𝑤
𝑔𝑢𝑠𝑤
𝑠𝛼𝑢 𝑠
𝑠𝛼𝑢 𝑑𝑤
𝑠
𝑠𝛼𝑢𝑠exp 𝑠𝑤
𝑔𝑢𝑠𝑤
𝑠𝛼𝑢𝑑𝑤
𝑠
𝑠
𝛼𝑢
𝐵 𝑠,𝑢𝑠
𝑠
𝛼𝑢
.
3.DualitywithTransformsandSomeExamples
Inthissection,weillustratetherelationbetweenthenewtransformandotherwell‐
knowntransforms.AlsowecomputetheFormabletransformforsomefunctionstoshow
itsapplicabilityandsimplicityduringthecomputations.
3.1.DualitiesbetweenFormableTransformandOtherIntegralTransforms
Formable–Laplaceduality:let𝐵𝑠,𝑢betheFormabletransformand𝐹𝑠)bethe
Laplacetransformofthesamefunction𝑔𝑡,thenitisclearthat
𝐵 𝑠,1
𝑠𝐹𝑠 . (36)
Formable–Elzakiduality:let𝐸 𝑢betheElzakitransformof𝑔𝑡,then
𝐵 1, 𝑢
𝐸 𝑢 (37)
Formable–Sumududuality:let𝐺𝑢betheSumudutransformof𝑔𝑡,then
𝐵1, 𝑢𝐺𝑢 (38)
𝐵𝑠,𝑢 𝑠𝑢exp 𝑠𝑡
𝑢
𝑔𝑡𝑑𝑡 .
𝐵1, 𝑢1
𝑢𝑒𝑥𝑡
𝑡
𝑢 𝑔𝑡𝑑𝑡
𝐺𝑢.
Formable–Naturalduality:let𝑅𝑠,𝑢betheNaturaltransformof𝑔𝑡,then
𝐵𝑠,𝑢𝑠𝑅𝑠,𝑢 . (39)
Formable–Shehuduality:letV(s,u)betheShehutransformof𝑔𝑡,then,
𝐵𝑠,𝑢𝑠𝑢𝑉𝑠,𝑢 . (40)
Formable–ARAduality:let𝒢(s)betheARAtransformof𝑔𝑡,then
𝐵𝑠,1
𝒢𝑠 . (41)
Axioms2021,10,33211of22
Furthermore,substituting𝑢 1in𝑅 𝑡𝑔 𝑡 ,weobtain
𝑅 𝑡𝑔 𝑡 𝒢 𝑔 𝑡 (s).(42)
3.2.ExamplesofFormableTransformforSomeFunctions
Inthefollowingarguments,wecomputetheFormabletransformforsomefunctions
todemonstrateitssimplicityandapplicabilitythroughcomputations.
Example1.Letthefunction𝑔𝑡1,
Then𝑅𝑔𝑡 1, (43)
ProofofExample1.
𝑅[1]
exp
𝑑𝑡
lim
→
exp
1.
Example2.Letthefunction𝑔𝑡𝑡,then
𝑅𝑔𝑡
. (44)
ProofofExample2.
𝑅[t]
exp
𝑑𝑡
lim
→
𝑡exp
exp
.
Example3.Letthefunction𝑡
,then
𝑅 𝑔𝑡
.(45)
ProofofExample3.
𝑅[
]
exp
𝑑𝑡
lim
→
𝑡exp
2
t exp
2
exp
.
Example4.Letthefunction𝑔𝑡
!,then
𝑅 𝑔𝑡
. (46)
Axioms2021,10,33212of22
ProofofExample4.
𝑅[
!]
exp
!
𝑑𝑡
𝑠
𝑢 𝑛!exp 𝑠𝑡
𝑢 𝑡
𝑑𝑡
1
𝑛1!exp 𝑠𝑡
𝑢 𝑡
𝑑𝑡
⋮
exp
𝑡
𝑑𝑡
.
Example5.Letthefunction𝑔𝑡 exp(𝛼𝑡,then
𝑅 𝑔𝑡
. (47)
ProofofExample5.
𝑅𝑒𝑥𝑝(𝛼𝑡]
exp
exp𝛼𝑡
𝑑𝑡
𝑠𝑢exp 𝛼𝑢𝑠𝑡
𝑢
𝑑𝑡
lim
→
exp
.
Example6.Letthefunction𝑔𝑡texp(𝛼𝑡,then
𝑅 𝑔𝑡
.(48)
ProofofExample6.
𝑅𝑡 𝑒𝑥𝑝(𝛼𝑡]
exp
texp
𝛼𝑡
𝑑𝑡
𝑠𝑢t exp 𝑠𝛼𝑢𝑡
𝑢
𝑑𝑡
lim
→
𝑡exp
exp
.
Example7.Letthefunction𝑔𝑡
!𝑒𝑥𝑝𝛼𝑡,then
𝑅𝑔𝑡
.(49)
ProofofExample7.
𝑅𝑡exp(𝛼𝑡]=
𝑡exp
𝑑𝑡
𝑠𝑛
𝑠𝛼𝑢𝑡
exp 𝑠𝛼𝑢𝑡
𝑢
𝑑𝑡
𝑠𝑢𝑛𝑛1
𝑠𝛼𝑢𝑡
exp 𝑠𝛼𝑢𝑡
𝑢
𝑑𝑡
Axioms2021,10,33213of22
⋮
𝑠𝑢𝑛!
𝑠𝛼𝑢
.
Example8.Letthefunction𝑔𝑡sin(𝛼𝑡,then
𝑅 𝑔𝑡
.(50)
ProofofExample8.𝑅sin𝛼𝑡]
exp
sin𝛼𝑡
𝑑𝑡
𝑠𝑢lim
→ exp 𝑠𝑡
𝑢
𝑠
𝑢 sin𝛼𝑡 𝛼cos𝛼𝑡
𝑠
𝑢 𝛼
𝑠𝑢 𝛼
𝑠
𝑢 𝛼
Example9.Letthefunction𝑔𝑡cos(𝛼𝑡,then
𝑅 𝑔𝑡
.(51)
ProofofExample9.
𝑅[cos(𝛼𝑡]
exp
cos𝛼𝑡
𝑑𝑡
𝑠𝑢lim
→ exp 𝑠𝑡
𝑢
𝑠
𝑢 cos𝛼𝑡 𝛼sin𝛼𝑡
𝑠
𝑢 𝛼
𝑠𝑢 𝑠𝑢
𝑠
𝑢 𝛼
.
Example10.Letthefunction𝑔𝑡,
,then
𝑅𝑔𝑡
.(52)
ProofofExample10.
𝑅[sinh(𝛼𝑡]
exp
sinh𝛼𝑡
𝑑𝑡
𝑠𝑢lim
→ exp 𝑠𝑡
𝑢
𝑠
𝑢 sinh𝛼𝑡 𝛼cosh𝛼𝑡
𝑠
𝑢 𝛼
Axioms2021,10,33214of22
𝑠𝑢 𝛼
𝑠
𝑢 𝛼
.
Example11.Letthefunction𝑔𝑡cosh(𝛼𝑡,then
𝑅 𝑔𝑡
(53)
ProofofExample11.
𝑅cosh𝛼𝑡
exp
cosh𝛼𝑡
𝑑𝑡
𝑠𝑢lim
→ exp 𝑠𝑡
𝑢
𝑠
𝑢 cosh𝛼𝑡 𝛼sinh𝛼𝑡
𝑠
𝑢 𝛼
𝑠𝑢 𝑠𝑢
𝑠
𝑢 𝛼
.
Example12.Letthefunction𝑔𝑡,
,then
𝑅𝑔𝑡
.(54)
ProofofExample12.
𝑅exp𝛽𝑡sin𝛼𝑡]
exp
exp𝛽𝑡sin𝛼𝑡
𝑑𝑡
𝑠𝑢exp 𝑠𝛽𝑢
𝑢 𝑡 𝑠𝑖𝑛𝛼𝑡
𝑑𝑡
lim
→
exp
𝑡 sin𝛼𝑡
+
𝛼𝑢
𝑠𝛽𝑢exp 𝑠𝛽𝑢
𝑢 𝑡 cos𝛼𝑡
𝑑𝑡
𝛼𝑠
𝑠𝛽𝑢exp 𝑠𝛽𝑢
𝑢 𝑡 cos𝛼𝑡
𝑑𝑡
lim
→
exp
𝑡 cos 𝛼𝑡
exp
𝑡sin𝛼𝑡
𝑑𝑡]
𝛼𝑠
𝑠𝛽𝑢𝑢
𝑠𝛽𝑢
𝛼𝑢
𝑠𝛽𝑢exp
𝑠𝛽𝑢
𝑢 𝑡
sin𝛼𝑡
𝑑𝑡.
Simplifyingtherequiredintegral,weobtain:
𝑅exp𝛽𝑡𝑠𝑖𝑛𝛼𝑡]
.(55)
Axioms2021,10,33215of22
Example13.Letthefunction𝑡exp𝛽𝑡𝑐𝑜𝑠𝛼𝑡,then
𝑅𝑔𝑡
.(56)
ProofofExample13.BysimilarcomputationstoExample12,weobtaintheresult.
4.Applications
Inthissection,weintroducesomeapplicationsusingtheFormabletransforminsolv‐
ingordinaryandpartialdifferentialequationsusingseveralpropertiesofthenewtrans‐
form,suchasthederivativeproperty,theconvolutionpropertyandtheshiftingtheorem
oftheFormabletransform.
Example1.Considerthefirstorderdifferentialequation
𝑦𝑡5𝑦𝑡0,(57)
subjecttotheinitialcondition𝑦02 .(58)
Solution.ApplyingtheFormabletransformonbothsidesofEquation(57).
𝑅 𝑦𝑡𝑅5𝑦𝑡𝑅0,
weobtain
𝐵𝑠,𝑢
𝑦05𝐵𝑠,𝑢0.(59)
Substitutingtheinitialconditionof(58)andsimplifyingEquation(59),wehave
5𝐵𝑠,𝑢2
.
𝐵𝑠,𝑢2𝑠
𝑠5𝑢 .(60)
TakingtheinverseFormabletransformofEquation(60),weobtainthesolution
𝑦𝑡2exp
5𝑡(61)
Example2.Considerthesecondorderdifferentialequation
𝑦𝑡2𝑦𝑡5𝑦𝑡exp𝑡sin𝑡,(62)
subjecttotheinitialconditions𝑦01, 𝑦00 . (63)
Solution.ApplyingtheFormabletransforminEquation(62)andusingproperty(3)and
theresultinEquation(55),weobtain
𝑅 𝑦𝑡𝑅2𝑦𝑡𝑅5𝑦𝑡𝑅exp𝑡sin𝑡,
𝐵𝑠,𝑢
𝑦0
𝑦02
𝐵𝑠,𝑢2
𝑦05𝐵𝑠,𝑢
(64)
Substitutingtheinitialconditionsof(63)andsimplifyingEquation(64),weobtain
Axioms2021,10,33216of22
𝑠2𝑠𝑢5𝑢
𝑢𝐵𝑠,𝑢𝑠𝑢
𝑠𝑢𝑢𝑠𝑢.
Hence,𝐵𝑠,𝑢
(65)
SimplifyingEquation(65),
𝐵𝑠,𝑢
. (66)
TakingtheinverseFormabletransformofEquation(66),weobtain
𝑦𝑡 1
3exp𝑡sin𝑡 2
3exp𝑡sin2𝑡 (67)
Example3:Considerthesecondorderdifferentialequation
𝑦𝑡3𝑦𝑡2𝑦𝑡exp3𝑡, (68)
subjecttotheinitialconditions
𝑦00, 𝑦01 (69)
Solution.ApplyingtheFormabletransformonbothsidesofEquation(68)andusingtheresultin
Equation(47),wehave
𝑅𝑦𝑡𝑅3𝑦𝑡𝑅2𝑦𝑡𝑅exp3𝑡.
𝐵𝑠,𝑢
𝑦0
𝑦03
𝐵𝑠,𝑢3
𝑦02𝐵𝑠,𝑢
,
(70)
Substitutingtheinitialconditionsof(69)andsimplifyingEquation(70),weobtain
𝐵𝑠,𝑢
. (71)
AftersimplifyingEquation(71)andtakingtheinverseFormabletransform,wehave
𝑦𝑡 5
2exp𝑡 2exp
2𝑡 1
2exp3𝑡. (72)
Example4.ConsidertheBesseldifferentialequation(withpolynomialcoefficients)
𝑡 𝑦𝑡 𝑦𝑡𝑡𝑦𝑡0, (73)
withtheinitialconditions.𝑦01, 𝑦01. (74)
Solution.Applying,theFormabletransformonbothsidesofEquation(73),weobtain
𝑅𝑡 𝑦𝑡𝑅 𝑦𝑡𝑅𝑡𝑦𝑡𝑅0 (75)
UsingthefactsinEquations(18)and(27) inEquation(75),weobtain
𝑢𝑠𝜕
𝜕𝑠𝑠
𝑢𝐵𝑠,𝑢𝑠
𝑢𝑦0𝑠𝑢 𝑦0
𝑠𝑠𝑢𝐵𝑠,𝑢𝑠𝑢𝑢𝑠𝜕
𝜕𝑠𝐵𝑠,𝑢
𝑠0
Axioms2021,10,33217of22
𝑢𝑠𝜕
𝜕𝑠𝑠
𝑢𝐵𝑠,𝑢𝑠
𝑢𝑦01
𝑢 𝑦0𝑠𝑢𝐵𝑠,𝑢𝑠𝑢𝑢𝑠𝜕
𝜕𝑠𝐵𝑠,𝑢
𝑠0
Substitutingtheinitialconditions,weobtain
𝑢𝑠
𝐵𝑠,𝑢
𝐵𝑠,𝑢
𝑢𝑠
,
0. (76)
Aftersimplecomputations,Equation(76)becomes
,
,
𝑑𝑠. (77)
IntegratingbothsidesofEquation(77),weobtain
ln 𝐵𝑠,𝑢 ln 𝑠1
2log𝑠𝑢ln𝑐,
𝐵𝑠,𝑢𝑐 𝑠
√
𝑠𝑢.
(78)
TakingtheinverseFormabletransformofEquation(78)andletting𝑐1,weobtain
𝑦𝑡
𝐽
𝑡. (79)
Example5.Considerthenonhomogeneouspartialdifferentialequation
𝑢𝑢sin 𝜋𝑥 , (80)
withtheinitialboundaryconditions
𝑢0, 𝑡𝑢1, 𝑡0
𝑢𝑥,0
𝑢𝑥,0
0 (81)
Solution.ApplyingtheFormabletransformonbothsidesofEquation(80)andusingthefactsin
Equations(18)and(20),weobtain
𝑠
𝑢𝐵𝑥,𝑠,𝑢𝑠
𝑢𝑢𝑥,0
𝑠𝑢𝑢𝑥,0𝜕
𝜕𝑥𝐵𝑥,𝑠,𝑢sin 𝜋𝑥(82)
Substitutingtheinitialconditionsof(81)inEquation(82),wehave
𝐵𝑥,𝑠,𝑢
𝐵𝑥,𝑠,𝑢sin 𝜋𝑥 . (83)
ThegeneralsolutionofthedifferentialEquation(83)canbewrittenas
𝐵𝑥,𝑠,𝑢𝐵𝑥,𝑠,𝑢𝐵𝑥,𝑠,𝑢, (84)
where𝐵𝑥,𝑠,𝑢𝐶exp
𝑥𝐶exp
𝑥isthehomogeneouspartofthegeneralso‐
lutionofEquation(83)and𝐵𝑥,𝑠,𝑢𝐴sin 𝜋𝑥𝐵cos 𝜋𝑥isthenonhomogeneouspart
ofthegeneralsolutionofEquation(83).
TofindAandBin𝐵𝑥,𝑠,𝑢,wesubstitute𝐵𝑥,𝑠,𝑢inEquation(83)togive
𝐵𝑥,𝑠,𝑢
sin 𝜋𝑥,
since
𝐴
𝑢
𝑠𝜋𝑢 ,and 𝐵0.
Hence,Equation(84)becomes
𝐵𝑥,𝑠,𝑢𝐶exp
𝑥 𝐶exp
𝑥
sin 𝜋𝑥. (85)
Axioms2021,10,33218of22
Substitutingtheboundaryconditionsof(81)inEquation(85),weobtain𝐶 𝐶0,
andtherefore𝐵𝑥,𝑠,𝑢
sin 𝜋𝑥.
𝐵𝑥,𝑠,𝑢𝑢𝑠 𝑢𝑠 𝑠
𝑠𝜋𝑢 sin 𝜋𝑥
(86)
InEquation(86),weconsider
𝐹𝑠,𝑢
→
𝑓
𝑡𝑡, and𝐺𝑠,𝑢
→𝑔𝑡 cos 𝜋𝑡 .
Hence,takingtheinverseFormabletransformofbothsidesofEquation(86),andus‐
ingtheconvolutionproperty,weobtain
𝑢𝑥,𝑡
𝑓
𝑡∗𝑔𝑡 sin 𝜋𝑥.
sin 𝜋𝑥𝜏 cos 𝜋𝑡𝜏𝑑𝜏
sin 𝜋𝑥
𝜋
1cos 𝜋𝑡.
Hence,thesolutionofEquation(80)withtheconditionsof(81)is
𝑢𝑥,𝑡 sin 𝜋𝑥
𝜋1cos 𝜋𝑡.(87)
5.Conclusions
Inthisarticle,wepresentedanewintegraltransformcalledtheFormabletransform.
Weintroducedthesufficientconditionsfortheexistenceofthenewtransform.Theduality
withothertransformswasexplained,andsomeessentialpropertieswereproved.Theap‐
plicabilityandaccuracyofthenewtransformwereshownbysolvingexamplesforboth
ordinaryandpartialdifferentialequations.Inaddition,wepresentedtablesintheAppen‐
dixAtocomparetheFormabletransformwithotherwell‐knowntransformsandtoillus‐
tratethesimplicityandabilityofthenewtransformthroughapplications.Inthefuture,
weintendtosolvefractionaldifferentialequationsandintegralequationsusingtheForm‐
abletransform.Furthermore,weplantocombinethetransformwithotheranalytical
methodstosolvenonlinearproblemssuchasDuffingoscillatorandMEMSoscillator
problemsandsomefractionaldifferentialequationsintheconformablesense.
AuthorContributions:Conceptualization,R.Z.S.andB.f.G.;methodologyR.Z.S.andB.f.G.;valida‐
tion,R.Z.S.andB.f.G.;formalanalysis,R.Z.S.;writing—originaldraftpreparation,R.Z.S.andB.f.G.;
writing—reviewandediting,R.Z.S.;supervision,R.Z.S.;projectadministration,R.Z.S.andB.f.G.
Allauthorshavereadandagreedtothepublishedversionofthemanuscript.
Funding:Thisresearchreceivednoexternalfunding.
DataAvailabilityStatement:Thereisnodataneeded.
ConflictsofInterest:Theauthorsdeclarenoconflictofinterest.
AppendixA
TableA1.Formabletransformofsomespecialfunctions.
No.𝒈𝒕𝑩𝒔,𝒖
111
2𝑡𝑢
𝑠
3𝑡
𝑛
!;
𝑓
𝑜𝑟 𝑛0,1,2, …𝑢
𝑠
Axioms2021,10,33219of22
4exp 𝛼𝑡𝑠
𝑠
𝛼𝑢
5𝑡
𝑛!exp 𝛼𝑡𝑠𝑢
𝑠𝛼𝑢
6sin 𝛼𝑡
𝛼
𝑠𝑢
𝑠𝛼𝑢
7cos 𝛼𝑡𝑠
𝑠𝛼𝑢
8sinh 𝛼𝑡
𝛼
𝑠𝑢
𝑠𝛼𝑢
9cosh 𝛼𝑡𝑠
𝑠
𝛼
𝑢
10exp βtsin 𝛼𝑡
𝛼
𝑠𝑢
𝑠𝛽𝑢𝛼𝑢
11exp βtcos 𝛼𝑡𝑠𝑠𝛽𝑢
𝑠𝛽𝑢
𝛼𝑢
12exp βtsinh 𝛼𝑡
𝛼
𝑠𝑢
𝑠𝛽𝑢𝛼𝑢
13exp βtcosh 𝛼𝑡𝑠𝑠𝛽𝑢
𝑠𝛽𝑢𝛼𝑢
14𝑒𝑥𝑝𝛽𝑡𝑒𝑥𝑝𝛼𝑡
𝛽
𝛼 ; 𝛼𝛽𝑠𝑢
𝑠𝛽𝑢𝑠𝛼𝑢
15𝛽𝑒𝑥𝑝𝛽𝑡𝛼𝑒𝑥𝑝𝛼𝑡
𝛽𝛼 ; 𝛼𝛽𝑠
𝑠𝛽𝑢
𝑠𝛼𝑢
16𝑡 sin 𝛼𝑡
2𝛼𝑠𝑢
𝑠𝛼𝑢
17𝑡 sin 𝛼𝑡
2𝛼𝑠𝑢3𝑠𝛼𝑢
𝑠𝛼𝑢
18𝑡 cos 𝛼𝑡𝑠𝑢𝑠𝛼𝑢
𝑠𝛼𝑢
19𝑡cos𝛼𝑡
2𝑠𝑢𝑠3𝛼𝑢
𝑠𝛼𝑢
20𝑡 sinh 𝛼𝑡
2𝛼𝑠𝑢
𝑠𝛼𝑢
21𝑡 sinh 𝛼𝑡
2𝛼𝑠𝑢3𝑠𝛼𝑢
𝑠𝛼𝑢
22𝑡 cosh 𝛼𝑡𝑠𝑢 𝑠𝛼𝑢
𝑠𝛼𝑢
23𝑡cosh𝛼𝑡
2𝑠𝑢𝑠3𝛼𝑢
𝑠𝛼𝑢
24sin𝛼𝑡𝛼𝑡cos𝛼𝑡
2𝛼𝑠𝑢
𝑠𝛼𝑢
25sin𝛼𝑡𝛼𝑡cos𝛼𝑡
2𝛼𝑠𝑢
𝑠𝛼𝑢
26cos𝛼𝑡1
2𝛼𝑡sin𝛼𝑡𝑠
𝑠𝛼𝑢
27sinh𝛼𝑡𝛼𝑡cosh𝛼𝑡
2𝛼𝑠𝑢
𝑠𝛼𝑢
28𝛼𝑡cosh𝛼𝑡sinh𝛼𝑡
2𝛼𝑠𝑢
𝑠𝛼𝑢
29cosh𝛼𝑡1
2𝛼𝑡sinh𝛼𝑡𝑠
𝑠𝛼𝑢
30sinh𝛼𝑡sin𝛼𝑡
2𝛼𝑠𝑢
𝑠𝛼𝑢
Axioms2021,10,33220of22
31sinh𝛼𝑡sin𝛼𝑡
2𝛼𝑠𝑢
𝑠
𝛼
𝑢
32cosh𝛼𝑡cos𝛼𝑡
2𝛼𝑠𝑢
𝑠
𝛼
𝑢
33cosh𝛼𝑡cos𝛼𝑡
2𝑠
𝑠𝛼𝑢
34
𝐽
𝛼𝑡𝑠
√
𝑠𝛼𝑢
35𝐼𝛼𝑡𝑠
√
𝑠𝛼𝑢
36𝑡
𝐽
𝛼𝑡𝑠𝑢
𝑠𝛼𝑢
37𝑡 𝐼𝛼𝑡𝑠𝑢
𝑠𝛼𝑢
38𝐶𝑖𝛼𝑡1
2log 𝑠𝛼𝑢
𝛼
𝑢
39𝑆𝑖𝛼𝑡𝑡𝑎𝑛𝛼𝑢
𝑠
40𝛿𝑡𝑠
𝑢
41𝛿𝑡𝛼𝑠
𝑢
exp 𝛼𝑠
𝑢
42𝑈𝑡𝛼exp 𝛼𝑠
𝑢
TableA2.GeneralpropertiesofFormabletransform.
No.PropertyDefinition
1Definition𝐵𝑠,𝑢 𝑠𝑢exp 𝑠𝑡
𝑢
𝑔𝑡𝑑𝑡
2Inverse𝑔𝑡
exp
𝐵𝑠,𝑢𝑑𝑠
3Derivative𝑅𝑔𝑡𝑠
𝑢𝐵𝑠,𝑢 𝑠𝑢 𝑔0
4Productshift𝑅𝑡𝑔𝑡 𝑢
𝑠𝜕
𝜕𝑢𝑢𝐵𝑠,𝑢
𝑢𝑠𝜕
𝜕𝑠
𝑅𝑔𝑡
𝑠
5Productshiftand
derivative𝑅𝑡𝑔𝑡𝑢𝜕
𝜕𝑢𝐵𝑠,𝑢
6Divisionshift𝑅
𝑔𝑡
𝑡
𝑠
𝑢⋯𝐵𝑠,𝑢
𝑠
𝑑𝑠
7Convolution𝐵
𝑓
∗𝑔
𝐹𝑠,𝑢𝐺𝑠,𝑢
TableA3.Importantfunctionsanddefinitions.
No.Function Definition
1Besselfunction
𝐽
𝑥
1
.⋯
2ModifiedBessel
function𝐼𝑥𝑖
𝐽
𝑖𝑥
1
.⋯
3Sineintegral𝑆𝑖𝑡
𝑑𝑢
4Cosineintegral𝐶𝑖𝑡
𝑑𝑢
Axioms2021,10,33221of22
TableA4.Someintegraltransforms.
No.IntegralTransformDefinition
1Laplacetransform £ 𝑔𝑡𝐺𝑠 exp𝑠𝑡𝑔𝑡𝑑𝑡
2Fouriertransform𝐹 𝑔𝑡𝑔𝑤
√exp𝑖𝑤𝑡𝑔𝑡𝑑𝑡
3Mellintransform𝑀𝑔𝑠;𝑠𝑠𝑔∗𝑠𝑥 𝑔𝑥𝑑𝑥
4Elzakitransform 𝐸𝑔𝑡 𝑢𝑇𝑢 𝑢exp
𝑔𝑡𝑑𝑡
5Sumudutransform𝑆𝑔𝑡𝑢𝐺𝑢
exp
𝑔𝑡𝑑𝑡
6Naturaltransform𝑁𝑔𝑡𝑠,𝑢𝑅𝑠,𝑢
exp
𝑔𝑡𝑑𝑡,𝑠,𝑢0
7Shehutransform𝕊𝑔𝑡𝑠,𝑢𝑉𝑠,𝑢exp
𝑔𝑡𝑑𝑡,𝑠,𝑢0
8ARAtransform𝒢𝑔𝑡𝑠𝐺𝑛,𝑠 𝑠𝑡exp𝑠𝑡𝑔𝑡𝑑𝑡,𝑠0
TableA5.ComprehensivelistoftheFormabletransformsB(s,u)andtheirrelationshipwiththeNaturaltransforms𝑅𝑠,𝑢,
theShehutransforms𝑉𝑠,𝑢andtheARAtransforms𝐺𝑚,𝑠.
No.𝒈𝒕𝑩𝒔,𝒖𝑽𝒔,𝒖𝑹𝒔,𝒖𝑮𝒎,𝒔
111𝑢𝑠1
𝑠Γ𝑚
𝑠
2𝑡𝑢𝑠𝑢
𝑠
𝑢
𝑠Γ𝑚1
𝑠
3𝑡
𝑛!;
𝑓
𝑜𝑟 𝑛
0,1,2, …𝑢
𝑠𝑢
𝑠𝑢
𝑠𝑠 Γ𝑚𝑛
𝑛!
4exp 𝛼𝑡𝑠
𝑠𝛼𝑢𝑢
𝑠𝛼𝑢1
𝑠𝛼𝑢𝑠 Γ𝑚
𝑠𝛼
5sin 𝛼𝑡
𝛼𝑠𝑢
𝑠𝛼𝑢𝑢
𝑠𝛼𝑢𝑢
𝑠𝛼𝑢𝑠
2𝛼𝑖 Γ𝑚1
𝑠𝑖𝛼
1
𝑠𝑖𝛼
6cos 𝛼𝑡𝑠
𝑠𝛼𝑢𝑠𝑢
𝑠𝛼𝑢𝑠
𝑠𝛼𝑢𝑠
2𝑖 Γ𝑚1
𝑠𝑖𝛼
1
𝑠𝑖𝛼
7sinh 𝛼𝑡
𝛼𝑠𝑢
𝑠𝛼𝑢𝑢
𝑠𝛼𝑢𝑢
𝑠𝛼𝑢𝑠
2𝛼 𝛼
𝑠𝑠Γ𝑚1𝛼𝑠
𝛼𝑠
𝑠
8cosh 𝛼𝑡𝑠
𝑠𝛼𝑢𝑠𝑢
𝑠𝛼𝑢𝑠
𝑠𝛼𝑢𝑠2 𝑠𝛼Γ𝑚𝑠|𝛼|
𝑠|𝛼|
9exp βtsin 𝛼𝑡
𝛼𝑠𝑢
𝑠𝛽𝑢𝛼𝑢𝑢
𝑠𝛽𝑢𝛼𝑢𝑢
𝑠𝛽𝑢𝛼𝑢𝑠𝛼 𝑠𝛽Γ𝑚1
𝛼
𝛽𝑠
sin𝑚tan 𝛼
𝑠𝛽
10exp βtcos 𝛼𝑡𝑠𝑠𝛽𝑢
𝑠𝛽𝑢𝛼𝑢𝑢𝑠𝛽𝑢
𝑠𝛽𝑢𝛼𝑢𝑠𝛽𝑢
𝑠𝛽𝑢𝛼𝑢𝑠 𝑠𝛽Γ𝑚1
𝛼
𝛽𝑠
cos𝑚tan 𝛼
𝛽𝑠
11exp βtsinh 𝛼𝑡
𝛼𝑠𝑢
𝑠𝛽𝑢𝛼𝑢𝑢
𝑠𝛽𝑢𝛼𝑢𝑢
𝑠𝛽𝑢𝛼𝑢
𝑠
2𝛼 𝑠𝛽Γ𝑚1𝛼
𝛽𝑠 1
𝛼
𝛽𝑠1
𝛼
𝑠
𝛽
12exp βtcosh 𝛼𝑡𝑠𝑠𝛽𝑢
𝑠𝛽𝑢𝛼𝑢𝑢𝑠𝛽𝑢
𝑠𝛽𝑢𝛼𝑢𝑠𝛽𝑢
𝑠𝛽𝑢𝛼𝑢𝑠2 𝑠𝛽Γ𝑚1
√
𝛼
𝛽𝑠 1
√
𝛼
𝑠
𝛽
Axioms2021,10,33222of22
References
1. Kilbas,A.A.;Srivastava,H.M.;Trujillo,J.J.TheoryandApplicationsofFractionalDifferentialEquations;Elsevier:Amsterdam,The
Netherlands,2006.
2. Roubíček,T.NonlinearPartialDifferentialEquationswithApplications;SpringerScience&BusinessMedia:Berlin,Germany,2013.
3. Gharib,G.;Saadeh,R.ReductionoftheSelf‐dualYang‐MillsEquationstoSinh‐PoissonEquationandExactSolutions.WSEAS
Interact.Math.2021,2021,20,540–546,doi:10.37394/23206.2021.20.57.
4. Debnath,L.NonlinearPartialDifferentialEquationsforScientistsandEngineers;Birkhäuser:Boston,MA,USA,2005.
5. Sobczyk,K.StochasticDifferentialEquations:WithApplicationstoPhysicsandEngineering;SpringerScience&BusinessMedia:Berlin,
Germany,2001.
6. Tian,D.;Ain,Q.T.;Anjum,N.;He,C.H.;Cheng,B.FractalN/MEMS:Frompull‐ininstabilitytopull‐instability.Fractals2021,
29,2150030.
7. Tian,D.;He,C.‐H.Afractalmicro‐electromechanicalsystemanditspull‐instability.J.LowFreq.NoiseVib.Act.Control2021,40,
1380–1388,doi:10.1177/1461348420984041.
8. He,C.‐H.;Tian,D.;Moatimid,G.M.;Salman,H.F.;Zekry,M.H.HybridRayleigh‐VanderPol‐DuffingOscillator(HRVD):
StabilityAnalysisandController.J.LowFreq.NoiseVib.Act.Control2021,doi:10.1177/14613484211026407.
9. Widder,D.V.TheLaplaceTransform;PrincetonUniversityPress:London,UK,1946.
10. Spiegel,M.R.TheoryandProblemsofLaplaceTransforms;SchaumsOutlineSeries;McGraw‐Hill:NewYork,NY,USA,1965.
11. Agwa,H.A.;Ali,F.M.;Kılıçman,A.Anewintegraltransformontimescalesanditsapplications.Adv.Differ.Equ.2012,2012,60.
12. Atangana,A.ANoteontheTripleLaplaceTransformandItsApplicationstoSomeKindofThird‐OrderDifferentialEquation.
Abstr.Appl.Anal.2013,2013,1–10.
13. Dattoli,G.;Martinelli,M.R.;Ricci,P.E.Onnewfamiliesofintegraltransformsforthesolutionofpartialdifferentialequations.
IntegralTransform.Spéc.Funct.2005,16,661–667.
14. Bulut,H.;Baskonus,H.M.;Belgacem,F.B.M.TheAnalyticalSolutionofSomeFractionalOrdinaryDifferentialEquationsbythe
SumuduTransformMethod.Abstr.Appl.Anal.2013,2013,1–6.
15. Weerakoon,S.TheSumudutransformandtheLaplacetransform:Reply.Int.J.Math.Educ.Sci.Technol.1997,28,159–160.
16. Srivastava,H.M.;Golmankhaneh,A.K.;Baleanu,D.;Yang,X.‐J.LocalFractionalSumuduTransformwithApplicationtoIVPs
onCantorSets.Abstr.Appl.Anal.2014,2014,1–7.
17. Albayrak,D.;Purohit,S.D.;Faruk,U.Ç.Certaininversionandrepresentationformulasforq‐Sumudutransforms.Hacet.J.Math.
Statistics.2014,43,699–713.
18. Yang,X.‐J.;Yang,Y.;Cattani,C.;Zhu,M.Anewtechniqueforsolvingthe1‐Dburgersequation.Therm.Sci.2017,21(Suppl.S1),
129–136.
19. Ahmed,S.A.;Elzaki,T.M.;Elbadri,M.;Mohamed,M.Z.Solutionofpartialdifferentialequationsbynewdoubleintegraltrans‐
form(Laplace‐Sumudutransform).AinShamsEng.J.2020,2020,https://doi.org/10.1155/2020/4725150.
20. Sullivan,D.M.Z‐transformtheoryandtheFDTDmethod.IEEETrans.AntennasPropag.1996,44,28–34.
21. Butzer,P.L.;Jansche,S.AdirectapproachtotheMellintransform.J.FourierAnal.Appl.1997,3,325–376.
22. Makarov,A.M.ApplicationoftheLaplace‐Carsonmethodofintegraltransformationtothetheoryofunsteadyvisco‐plastic
flows.J.Eng.Phys.Thermophys.1970,19,94–99.
23. Yu,L.;Huang,M.;Chen,M.;Chen,W.;Huang,W.;Zhu,Z.Quasi‐discreteHankeltransform.Opt.Lett.1998,23,409–411.
24. UlRahman,J.;Lu,D.;Suleman,M.;He,J.H.;Ramzan,M.He–Elzakimethodforspatialdiffusionofbiologicalpopulation.
Fractals2019,27,1950069.
25. Watugala,G.K.Sumudutransform:anewintegraltransformtosolvedifferentialequationsandcontrolengineeringproblems.
Int.J.Math.Educ.Sci.Technol.1993,24,35–43.
26. Khan,Z.H.;Khan,W.A.N‐transformpropertiesandapplications.NUSTJ.Eng.Sci.2008,1,127–133.
27. Elzaki,T.M.ThenewintegraltransformElzakitransform.Glob.J.PureAppl.Math.2011,7,57–64.
28. Maitama,S.;Zhao,W.Newintegraltransform:ShehutransformageneralizationofSumuduandLaplacetransformforsolving
differentialequations.arXiv2019,arXiv:1904.11370.Availableonline:https://arxiv.org/abs/1904.11370(accessedon15October
2021).
29. Cetinkaya,S.;Demir,A.;Sevindir,H.K.SolutionofSpace‐Time‐FractionalProblembyShehuVariationalIterationMethod.Adv.
Math.Phys.2021,2021,1–8.
30. Saadeh,R.;Qazza,A.;Burqan,A.Anewintegraltransform:Aratransformanditspropertiesandapplications.Symmetry2020,12,925.
31. Qazza,A.;Burqan,A.;Saadeh,R.ANewAttractiveMethodinSolvingFamiliesofFractionalDifferentialEquationsbyaNew
Transform.Mathematics2021.
32. Burqan,A.;El‐Ajou,A.;Saadeh,R.;Al‐Smadi,M.AnewefficienttechniqueusingLaplacetransformsandsmoothexpansions
toconstructaseriessolutionstothetime‐fractionalNavier‐Stokesequations.Alex.Eng.J.2021,inpress.
33. Saadeh,R.Numericalalgorithmtosolveacoupledsystemoffractionalorderusinganovelreproducingkernelmethod.Alex.
Eng.J.2021,60,4583–4591.
34. Saadeh,R.Numericalsolutionsoffractionalconvection‐diffusionequationusingfinite‐differenceandfinite‐volumeschemes.
J.Math.Comput.Sci.2021,11,7872–7891.