ArticlePDF Available

Abstract

Nematode-trapping fungi, such as Duddingtonia flagrans , are fascinating carnivorous microorganisms. In a nutrient-rich environment they live as saprotrophs, but if nutrients are scarce and in the presence of nematodes, they can switch to a predatory lifestyle. The switch is characterized by the formation of complex, adhesive trap structures. The interaction requires a sophisticated interspecies communication with pheromones, secondary metabolites, and virulence factors.
686 WISSENSCHAFT
BIOspektrum | 07.21 | 27. Jahrgang
Nematoden Schädlinge von Tieren oder
Pfl anzen sind, haben NFP ein großes Poten-
zial als biologische Schädlingsbekämpfungs-
mittel [2]. D. fl agrans bildet resistente Chla-
mydosporen, die sehr gut für die Anwendung
der Pilze geeignet sind, und wurde bereits
erfolgreich in Feldversuchen mit Nutztieren
eingesetzt (Abb. 1, [3]). D. fl agrans ist auch
eng mit Pfl anzenwurzeln assoziiert und ver-
bessert deren Versorgung mit Phosphat,
sodass dieser Pilz auch Potenzial zur nach-
haltigen Produktion von Lebens- und Futter-
mitteln hat [4]. Neben dem großen Anwen-
dungspotenzial ist D. fl agrans ein attraktives
Modellsystem, um verschiedene biologische
Phänomene auf molekularer, zellbiologischer
oder biochemischer Ebene zu untersuchen.
Pilz-Fadenwurm-Kommunikation
durch fl üchtige Substanzen
Die Interaktion zwischen NFP und Nemato-
den gilt als evolutionäre Anpassung an eine
stickstoffarme Umgebung und geht auf eine
über 419 Millionen Jahre andauernde Ko-
Evolution zurück, in der sich eine ausgepräg-
te Interspezies-Kommunikation entwickelt
hat [5]. Die Pilze locken ihre Beute mit fl üch-
tigen Stoffen in die Fallen, die für die Nema-
toden nach Paarungs- und Nahrungssignalen
riechen. Nematodeneigene Pheromone, die
Ascaroside, die Prozesse wie die Entwicklung
der verschiedenen Larvenformen steuern,
werden wiederum von den Pilzen wahrge-
nommen [6, 7].
Regulation der Fallenbildung durch
pilzliche Sekundärmetabolite und
nematodeneigene Pheromone
Eine interessante Frage betrifft die Regula-
tion der Fallenbildung. Voraussetzung zur
Einleitung des Entwicklungsprogramms ist
eine Limitierung der Nährstoffe, und zusätz-
lich müssen Nematoden vorhanden sein. Die
Fallenbildung sollte allerdings erst ab einer
bestimmten Anzahl von Nematoden initiiert
werden, damit die Fallen, die einige Stunden
nach dem Kontakt mit den Nematoden gebil-
det wurden, auch erfolgreich eingesetzt wer-
VALENTIN WERNET, NICOLE WERNET, REINHARD FISCHER
INSTITUT FÜR ANGEWANDTE BIOWISSENSCHAFTEN, KARLSRUHER INSTITUT FÜR
TECHNOLOGIE (KIT)
Nematode-trapping fungi, such as
Duddingtonia fl agrans
, are fascina-
ting carnivorous microorganisms. In a nutrient-rich environment they
live as saprotrophs, but if nutrients are scarce and in the presence of
nematodes, they can switch to a predatory lifestyle. The switch is
characterized by the formation of complex, adhesive trap structures.
The interaction requires a sophisticated interspecies communication
with pheromones, secondary metabolites, and virulence factors.
DOI: 10.1007/s12268-021-1668-3
© Die Autorinnen und Autoren 2021
ó Nematodenfangende Pilze (NFP) wie
Dudding tonia agrans sind eine besonders
faszinierende Gruppe karnivorer Mikroorga-
nismen. In einer nährstoffreichen Umgebung
ernähren sie sich von totem, organischem
Material. Sind die Nährstoffe jedoch limitiert
und befi nden sich Nematoden in der Nähe,
können die Pilze zu einem räuberischen
Lebensstil wechseln, der durch die Ausbil-
dung komplexer, klebriger Fallenstrukturen
gekennzeichnet ist. Die Interaktion der bei-
den Organismen beruht auf einer ausge-
klügelten Interspezies-Kommunikation mit
Phero monen, Sekundärmetaboliten und
Virulenz faktoren.
Der erste nematodenfangende Pilz Arthro-
botrys superba wurde bereits 1839 beschrie-
ben, wobei die Fähigkeit, Nematoden zu fan-
gen, jedoch erst 36 Jahre später von Wilhelm
Zopf entdeckt und 1994 von Donald H. Pfi ster
mit der Gattung Orbilia in Verbindung
gebracht wurde [1]. Da eine Vielzahl von
Interspezies-Kommunikation
Räuberische Pilze mit
Anwendungspotenzial
¯ Abb. 1: Anwendung von
Duddingtonia
agrans
in der Tierhaltung. Die Pilzsporen kei-
men auf dem Dung aus und reduzieren dort die
Zahl der Nematoden (
Caenorhabditis elegans
)
wie in den Bildern unten gezeigt. Dadurch wird
die Reinfektion beim Grasen reduziert. Bild
oben: Freepik.com; Bilder unten aus [13].
Content courtesy of Springer Nature, terms of use apply. Rights reserved.
BIOspektrum | 07.21 | 27. Jahrgang
687
des Zelldialogmodells beschrieben wurde.
Hier fungieren die mitogenaktivierte Pro-
teinkinase (MAPK) MAK-2, sowie das Soft-
Protein als Vermittler des Zelldialogs, indem
sie abwechselnd an die Plasmamembran der
Hyphenspitzen lokalisieren [10]. So wech-
seln die Hyphen koordiniert den Zustand
zwischen Signalsender und Empfänger. Eine
Besonderheit der Fallenbildung von NFP
liegt darin, dass die interagierenden Kompar-
timente im Gegensatz zur Keimlingsfusion
nur vier bis fünf Hyphensegmente voneinan-
der entfernt sind. Die Pilze müssen somit die
intrazelluläre Selbststimulation durch die
gleichzeitige Generierung und Wahrneh-
mung chemotroper Signale verhindern. Tat-
sächlich ist das Zellkommunikationsmodell
in D. fl agrans konserviert (Abb. 3). Intra-
zellulär wird der evolutionär konservierte
STRIPAK-Signalkomplex für die Signalver-
arbeitung benötigt (Abb. 3, [11, 12]). Wie die
Zell-Zell-Kommunikation und intrazelluläre
Signalverarbeitung mit dem Cytoskelett, das
letztlich die Ringbildung und den Ringschluss
bewirkt, verbunden ist, ist noch nicht geklärt.
Intermediat, 6-Methylsalicylsäure (6-MSA),
entsteht. Dieses Molekül dient als Lockstoff
für Caenorhabditis elegans [7]. Methylsalicyl-
säure ist ein wichtiges Pheromon in Pilz-
Pfl anze-Interaktionen. Allerdings handelt es
sich hier um einen Methylester von Salicyl-
säure (Shikimatweg), während D. fl agrans
6-MSA über den Polyketidweg produziert.
Perfekte Krümmung: Wie wird ein
Ring gebildet?
Die Fallenbildung stellt eine zellbiologisch
komplexe morphologische Veränderung dar,
an der verschiedene Signalwege sowie das
Cytoskelett beteiligt sind. Die Fallenringe
entstehen durch die Abzweigung einer vege-
tativen Hyphe, die sich während des Wachs-
tums krümmt, um mit der ursprünglichen
Hyphe zu fusionieren. Schon vor physischem
Kontakt zwischen den beiden Hyphen ent-
steht von der basalen Hyphe ausgehend eine
weitere Hyphe, die der ersten entgegen-
wächst. Dies deutet auf eine interzelluläre
Kommunikation hin, wie sie bei der Keim-
lingsfusion von Neurospora crassa anhand
den können. Die Nematoden, die zuerst mit
dem Myzel in Kontakt kamen, sind dann
wahrscheinlich in der Umgebung verschwun-
den. Zur zeitlichen und räumlichen Steue-
rung der Fallenbildung werden pilzliche
Sekundärmetabolite und die oben genannten
Ascaroside eingesetzt [8, 9]. D. fl agrans nutzt
eine Polyketidsynthase zusammen mit eini-
gen modifi zierenden Enzymen zur Bildung
von Arthrosporol, was die Fallenbildung
unterdrückt [7]. Wenn eine große Anzahl
Nematoden vorhanden ist, steigt die Ascaro-
sidkonzentration über einen Schwellenwert
und hemmt die Arthrosporolsynthese – d. h.
die Fallenbildung wird durch die Hemmung
eines negativen Faktors eingeleitet. Da
sowohl Arthrosporol als auch Ascaroside
konzentrationsabhängig wirken, ist damit
eine Populationsdichtebestimmung möglich
(Abb. 2).
Kürzlich wurde ein weiterer Level an Kom-
plexität entschlüsselt und gezeigt, dass nicht
in allen Bereichen des Myzels der komplette
Arthrosporolbiosyntheseweg abläuft, son-
dern in den Hyphenspitzen nur das erste
Content courtesy of Springer Nature, terms of use apply. Rights reserved.
BIOspektrum | 07.21 | 27. Jahrgang
688 WISSENSCHAFT
Pilzattacke benötigt lytische Enzyme
und kleine, sekretierte Proteine
Nach der Fallenbildung kommt es zur Adhä-
sion und Penetration der Fadenwürmer,
wozu Druck und lytische Enzyme nötig sind.
Darüber hinaus spielen aber vermutlich
Virulenzfaktoren eine Rolle, die in vielen
Wirts-Pathogen-Interaktionen beschrieben
wurden. Sie manipulieren beispielsweise das
Immunsystem, verhindern die Erkennung
des Pathogens durch den Wirt oder könnten
im Falle von NFP an der Aufl ösung des Zell-
verbands oder der Paralyse beteiligt sein.
Tatsächlich codiert das D. fl agrans Genom
638 Proteine (6,4 %) mit einem N-terminalen
Signalpeptid für die Sekretion. Davon waren
249 kleiner als 300 Aminosäuren, gehören
also zu den small secreted proteins (SSPs), die
häufi g mit Virulenz in Verbindung gebracht
werden [13]. Mit dem cysteinreichen Protein,
CyrA, wurde ein erster potenzieller Virulenz-
faktor charakterisiert [14]. Das CyrA-Protein
lokalisierte vor allem im Infektionsbulbus,
einer von der pilzlichen Infektionshyphe aus-
gebildeten Struktur im inneren der Nemato-
den (Abb. 3). Der cyrA-Deletionsstamm zeig-
te eine verringerte Virulenz, gemessen an
der Zeit, die der Pilz benötigt, um die Faden-
würmer zu paralysieren. Die Expression des
pilzlichen Gens in C. elegans verringerte die
Lebensdauer der Nematoden. CyrA ist somit
vermutlich als eines von vielen Proteinen an
der Virulenz von D. fl agrans beteiligt. Um
eine verhältnismäßig große Beute wie einen
Fadenwurm zu „erlegen“, bedarf es jedoch
˚ Abb. 3: Zellbiologie der Fallenbildung und der Penetration. Oben: Eine Zell-Zell-Kommunikation
mittels des SofT-Proteins und der STRIPAK-Komponente SipC ist für den Ringschluß nötig. Die
Zellwände sind mit Calcofl uor White (CFW) gefärbt. Unten: Der Virulenzfaktor CyrA lokalisiert in
leeren Fallen in vesikelartigen Strukturen an der Falleninnenseite (links) und akkumuliert nach
Eindringen der Hyphen in den Fadenwurm am Infektionsbulbus (Mitte und rechts). Die Zellwände
des Pilzes (links) sind mit Calcofl uor blau und die Zellkerne des Fadenwurms (Mitte und rechts)
mit GFP grün gefärbt. Bilder entnommen aus [11, 14].
¯ Abb. 2: Regulation der Fallenbildung. Der
pilzliche Sekundärmetabolit Arthrosporol
hemmt die Fallenbildung. Die Ascaroside
(
Cae-
norhabitis elegans
-Pheromone) unterdrücken
die Arthrosporolbildung. Hyphenspitzen expri-
mieren nur die Polyketidsynthase, ArtA, sodass
6-MSA gebildet wird. 6-MSA ist ein Lockstoff für
C. elegans
. Die hinteren Kompartimente bilden
auch die anderen Enzyme, sodass 6-MSA zu
Arthrosporol umgesetzt wird. So werden Fallen
nur gebildet, wenn genügend Nematoden und
somit eine hohe Konzentration von Ascarosiden
in der Umgebung vorhanden sind. Für die Fal-
lenbildung ist die Krümmung der Hyphe mithilfe
des Cytoskeletts notwendig, sodass der Ring-
schluss durch Fusion mit der ursprünglichen
Hyphe stattfi nden kann. Die Expression der
Gene (GOI =
gene of interest
) wurde durch
einen Promotor-Reporter-Assay mittels mCherry
untersucht. mCherry ist durch die Histon-
2B(H2B)-Sequenz mit einem Kernlokalisierungs-
signal fusioniert, sodass das Protein (mCherry)
die Zellkerne rot färbt, wenn der Promotor aktiv
ist. Bilder entnommen aus [7]. Maßstab: 20 μm.
Content courtesy of Springer Nature, terms of use apply. Rights reserved.
BIOspektrum | 07.21 | 27. Jahrgang
offensichtlich eines Zusammenspiels vieler
Pro teine. Man darf gespannt sein, welche
weiteren Erkenntnisse aus dieser Räuber-
Beute-Beziehung gewonnen werden kön-
nen. ó
Literatur
[1] Pfi ster DH (1994) Orbilia fi micola, a nematophagous
discomycete and its Arthrobotrys anamorph. Mycologia 86:
451–453
[2] Ahmad G, Khan A, Khan AA et al. (2021) Biological
control: a novel strategy for the control of the plant parasit-
ic nematodes. Antonie Van Leeuwenhoek 114: 885–912
[3] Healey K, Lawlor C, Knox MR et al. (2018) Field evalua-
tion of Duddingtonia fl agrans IAH 1297 for the reduction of
worm burden in grazing animals: tracer studies in sheep.
Vet Parasitol 253: 48–54
[4] Monteiro TSA, Valadares SV, Kramer de Mello IN et al.
(2018) Nematophagus fungi increasing phosophorus
uptake and promoting plant growth. Biol Contr 123: 71–75
[5] Yang E, Xu L, Yang Y et al. (2012) Origin and evolution
of carnivorism in the Ascomycota (fungi). Proc Natl Acad
Sci USA 109: 10960-5
[6] Vidal-Diez de Ulzurrun G, Hsueh YP (2018) Predator-
prey interactions of nematode-trapping fungi and nema-
todes: both sides of the coin. Appl Microbiol Biotechnol
102: 3939–3949
[7] Yu X, Hu X, Mirza M et al. (2021) Fatal attraction of
Caenorhabditis elegans to predatory fungi through
6-methyl-salicylic acid. Nat Commun 12: 5462
[8] Niu XM, Zhang KQ (2011) Arthrobotrys oligospora:
a model organism for understanding the interaction
between fungi and nematodes. Mycology 2: 59–78
[9] Xu ZF, Wang BL, Sun HK et al. (2015) High trap forma-
tion and low metabolite production by disruption of the
polyketide synthase gene involved in the biosynthesis of
arthrosporols from nematode-trapping fungus Arthrobotrys
oligospora. J Agric Food Chem 63: 9076–9082
[10] Fischer MS, Glass NL (2019) Communicate and fuse:
how fi lamentous fungi establish and maintain an intercon-
nected mycelial network. Front Microbiol 10: 619
[11] Wernet V, Wäckerle J, Fischer R (2021) The STRIPAK
component SipC is involved in morphology and cell-fate
determination in the nematode-trapping fungus
Duddingtonia fl agrans. Genetics, im Druck
[12] Kück U, Radchenko D, Teichert I (2019) STRIPAK, a
highly conserved signaling complex, controls multiple
eukaryotic cellular and developmental processes and is
linked with human diseases. Biol Chem 400: 1005–1022
[13] Youssar L, Wernet V, Hensel N et al. (2019)
Intercellular communication is required for trap formation
in the nematode-trapping fungus Duddingtonia fl agrans.
PLoS Genet 15: e1008029
[14] Wernet N, Wernet V, Fischer R (2021) The small-
secreted cysteine-rich protein CyrA is a virulence factor of
Duddingtonia fl agrans during the Caenorhabditis elegans
attack. PLoS Path 17:e1010028
Funding note: Open Access funding enabled and organized by Projekt DEAL.
Open Access: Dieser Artikel wird unter der Creative Commons
Namensnennung 4.0 International Lizenz veröffentlicht, welche die Nutzung,
Vervielfältigung, Bearbeitung, Verbreitung und Wiedergabe in jeglichem
Medium und Format erlaubt, sofern Sie den/die ursprünglichen Autor(en)
und die Quelle ordnungsgemäß nennen, einen Link zur Creative Commons
Lizenz beifügen und angeben, ob Änderungen vorgenommen wurden. Die in
diesem Artikel enthaltenen Bilder und sonstiges Drittmaterial unterliegen
ebenfalls der genannten Creative Commons Lizenz, sofern sich aus der
Abbildungslegende nichts anderes ergibt. Sofern das betreffende Material
nicht unter der genannten Creative Commons Lizenz steht und die
betreffende Handlung nicht nach gesetzlichen Vorschriften erlaubt ist, ist für
die oben aufgeführten Weiterverwendungen des Materials die Einwilligung
des jeweiligen Rechteinhabers einzuholen. Weitere Details zur Lizenz
entnehmen Sie bitte der Lizenzinformation auf http://creativecommons.org/
licenses/by/4.0/deed.de.
Korrespondenzadresse:
Prof. Dr. Reinhard Fischer
Institut für Angewandte Biowissenschaften
Karlsruher Institut für Technologie (KIT)
Fritz-Haber-Weg 4
D-76131 Karlsruhe
Reinhard.fi scher@kit.edu
www.iab.kit.edu/microbio
AUTORINNEN UND AUTOREN
Valentin Wernet
2011–2017 Biologiestudium am Karlsruher Institut für Technologie (KIT). 2018–2021 Promotion
unter Anleitung von Prof. Fischer. Seit August 2021 Postdoc in der gleichen Gruppe.
Nicole Wernet
2012–2015 Biologiestudium (Bachelor), Universität Marburg. 2015–2018 Masterstudium am
Karlsruher Institut für Technologie (KIT). 2018–2021 Promotion unter Anleitung von Prof. Dr. R.
Fischer. Seit August 2021 Postdoc in der gleichen Gruppe.
Reinhard Fischer
Biologiestudium und Promotion in Mikrobiologie. Anschließend Postdoc, Universität Marburg und
Uni versity of Georgia, USA. 1994–2004 Research Associate, Universität Marburg und MPI für ter-
restrische Mikrobiologie, Marburg. 1998 Habilitation. Seit 2004 Professor für Mikrobiologie, Insti-
tut für Angewandte Biowissenschaften, KIT. Weitere Arbeitsgebiete: Zellbiologie von Aspergillus
nidulans, Phytochromantwort in A. nidulans und Alternaria alternata, Sekundärmetabolismus i n A.
alternata.
Valentin Wernet, Nicole Wernet und Reinhard Fischer (v.l.n.r.)
Content courtesy of Springer Nature, terms of use apply. Rights reserved.
1.
2.
3.
4.
5.
6.
Terms and Conditions
Springer Nature journal content, brought to you courtesy of Springer Nature Customer Service Center GmbH (“Springer Nature”).
Springer Nature supports a reasonable amount of sharing of research papers by authors, subscribers and authorised users (“Users”), for small-
scale personal, non-commercial use provided that all copyright, trade and service marks and other proprietary notices are maintained. By
accessing, sharing, receiving or otherwise using the Springer Nature journal content you agree to these terms of use (“Terms”). For these
purposes, Springer Nature considers academic use (by researchers and students) to be non-commercial.
These Terms are supplementary and will apply in addition to any applicable website terms and conditions, a relevant site licence or a personal
subscription. These Terms will prevail over any conflict or ambiguity with regards to the relevant terms, a site licence or a personal subscription
(to the extent of the conflict or ambiguity only). For Creative Commons-licensed articles, the terms of the Creative Commons license used will
apply.
We collect and use personal data to provide access to the Springer Nature journal content. We may also use these personal data internally within
ResearchGate and Springer Nature and as agreed share it, in an anonymised way, for purposes of tracking, analysis and reporting. We will not
otherwise disclose your personal data outside the ResearchGate or the Springer Nature group of companies unless we have your permission as
detailed in the Privacy Policy.
While Users may use the Springer Nature journal content for small scale, personal non-commercial use, it is important to note that Users may
not:
use such content for the purpose of providing other users with access on a regular or large scale basis or as a means to circumvent access
control;
use such content where to do so would be considered a criminal or statutory offence in any jurisdiction, or gives rise to civil liability, or is
otherwise unlawful;
falsely or misleadingly imply or suggest endorsement, approval , sponsorship, or association unless explicitly agreed to by Springer Nature in
writing;
use bots or other automated methods to access the content or redirect messages
override any security feature or exclusionary protocol; or
share the content in order to create substitute for Springer Nature products or services or a systematic database of Springer Nature journal
content.
In line with the restriction against commercial use, Springer Nature does not permit the creation of a product or service that creates revenue,
royalties, rent or income from our content or its inclusion as part of a paid for service or for other commercial gain. Springer Nature journal
content cannot be used for inter-library loans and librarians may not upload Springer Nature journal content on a large scale into their, or any
other, institutional repository.
These terms of use are reviewed regularly and may be amended at any time. Springer Nature is not obligated to publish any information or
content on this website and may remove it or features or functionality at our sole discretion, at any time with or without notice. Springer Nature
may revoke this licence to you at any time and remove access to any copies of the Springer Nature journal content which have been saved.
To the fullest extent permitted by law, Springer Nature makes no warranties, representations or guarantees to Users, either express or implied
with respect to the Springer nature journal content and all parties disclaim and waive any implied warranties or warranties imposed by law,
including merchantability or fitness for any particular purpose.
Please note that these rights do not automatically extend to content, data or other material published by Springer Nature that may be licensed
from third parties.
If you would like to use or distribute our Springer Nature journal content to a wider audience or on a regular basis or in any other manner not
expressly permitted by these Terms, please contact Springer Nature at
onlineservice@springernature.com
ResearchGate has not been able to resolve any citations for this publication.
Article
Full-text available
Nematode-trapping fungi (NTF) are a diverse and intriguing group of fungi that live saprotrophically but can switch to a predatory lifestyle when starving and in the presence of nematodes. NTF like Arthrobotrys oligospora or Duddingtonia flagrans produce adhesive trapping networks to catch and immobilize nematodes. After penetration of the cuticle, hyphae grow and develop inside the worm and secrete large amounts of hydrolytic enzymes for digestion. In many microbial pathogenic interactions small-secreted proteins (SSPs) are used to manipulate the host. The genome of D. flagrans encodes more than 100 of such putative SSPs one of which is the cysteine-rich protein CyrA. We have chosen this gene for further analysis because it is only found in NTF and appeared to be upregulated during the interaction. We show that the cyrA gene was transcriptionally induced in trap cells, and the protein accumulated at the inner rim of the hyphal ring before Caenorhabditis elegans capture. After worm penetration, the protein appeared at the fungal infection bulb, where it is likely to be secreted with the help of the exocyst complex. A cyrA-deletion strain was less virulent, and the time from worm capture to paralysis was extended. Heterologous expression of CyrA in C. elegans reduced its lifespan. CyrA accumulated in C. elegans in coelomocytes where the protein possibly is inactivated. This is the first example that SSPs may be important in predatory microbial interactions.
Article
Full-text available
The striatin-interacting phosphatase and kinase complex (STRIPAK) is a highly conserved eukaryotic signaling hub involved in the regulation of many cellular processes. In filamentous fungi, STRIPAK controls multicellular development, hyphal fusion, septation and pathogenicity. In this study we analyzed the role of the STRIPAK complex in the nematode-trapping fungus Duddingtonia flagrans which forms three-dimensional, adhesive trapping networks to capture Caenorhabditis elegans. Trap networks consist of several hyphal loops which are morphologically and functionally different from vegetative hyphae. We show that lack of the STRIPAK component SipC (STRIP1/2/HAM-2/PRO22) results in incomplete loop formation and column-like trap structures with elongated compartments. The misshapen or incomplete traps lost their trap identity and continued growth as vegetative hyphae. The same effect was observed in the presence of the actin cytoskeleton drug cytochalasin A. These results could suggest a link between actin and STRIPAK complex functions.
Article
Full-text available
Salicylic acid is a phenolic phytohormone which controls plant growth and development. A methyl ester (MSA) derivative thereof is volatile and involved in plant-insect or plant-plant communication. Here we show that the nematode-trapping fungus Duddingtonia flagrans uses a methyl-salicylic acid isomer, 6-MSA as morphogen for spatiotemporal control of trap formation and as chemoattractant to lure Caenorhabditis elegans into fungal colonies. 6-MSA is the product of a polyketide synthase and an intermediate in the biosynthesis of arthrosporols. The polyketide synthase (ArtA), produces 6-MSA in hyphal tips, and is uncoupled from other enzymes required for the conversion of 6-MSA to arthrosporols, which are produced in older hyphae. 6-MSA and arthrosporols both block trap formation. The presence of nematodes inhibits 6-MSA and arthrosporol biosyntheses and thereby enables trap formation. 6-MSA and arthrosporols are thus morphogens with some functions similar to quorum-sensing molecules. We show that 6-MSA is important in interkingdom communication between fungi and nematodes. Methyl salicylate ester is a plant metabolite involved in plant-insect and plant-plant interactions. Here, Yu et al. show that a nematode-trapping fungus has potential to produce a related compound, 6-methyl salicylate, which attracts its prey (nematodes) and modulates spore germination and trap formation in the fungus.
Article
Full-text available
Plant parasitic nematodes (Root-knot nematodes, Meloidogyne spp.) are rounded worms, microscopic, and cause many agricultural economic losses. Their attacks have a direct impact on the productivity of cultivated crops by reducing their fruit quantity. Chemical control is widespread all over the world, but biological control is the most effective way to reduce the number of pests that infect crops, particularly by the use of microorganisms like fungi and bacteria. Biological control is rapidly evolving, and more products are being sold worldwide over time. They can be produced by fungi, bacteria, or actinomycetes that can destruct plant parasite nematodes and feed on them. Nematophagous microorganisms as the natural enemies of nematodes have a promising way of controlling nematodes. Some of them create net-like substances and traps to take the worms from outside and finally kill them. Other parasites serve as internal parasites in order to produce toxins and to produce virulence to kill nematodes. Comprehension of the molecular basis for microbial nematode interactions gives important insights into how successful biological nematode control agents can be created. We discuss recent advances in our understanding of nematodes and nematophagous microorganisms, with an emphasis on molecular mechanisms that infect nematodes with nematophagous microorganisms and on nematode safety from pathogenic attacks. Finally, we addressed numerous key areas for future research and development, including possible approaches to the application of our recent expertise in the development of successful biocontrol strategies.
Article
Full-text available
The striatin-interacting phosphatases and kinases (STRIPAK) complex is evolutionary highly conserved and has been structurally and functionally described in diverse lower and higher eukaryotes. In recent years, this complex has been biochemically characterized better and further analyses in different model systems have shown that it is also involved in numerous cellular and developmental processes in eukaryotic organisms. Further recent results have shown that the STRIPAK complex functions as a macromolecular assembly communicating through physical interaction with other conserved signaling protein complexes to constitute larger dynamic protein networks. Here, we will provide a comprehensive and up-to-date overview of the architecture, function and regulation of the STRIPAK complex and discuss key issues and future perspectives, linked with human diseases, which may form the basis of further research endeavors in this area. In particular, the investigation of bi-directional interactions between STRIPAK and other signaling pathways should elucidate upstream regulators and downstream targets as fundamental parts of a complex cellular network.
Article
Full-text available
Cell-to-cell communication and cell fusion are fundamental biological processes across the tree of life. Survival is often dependent upon being able to identify nearby individuals and respond appropriately. Communication between genetically different individuals allows for the identification of potential mating partners, symbionts, prey, or predators. In contrast, communication between genetically similar (or identical) individuals is important for mediating the development of multicellular organisms or for coordinating density-dependent behaviors (i.e., quorum sensing). This review describes the molecular and genetic mechanisms that mediate cell-to-cell communication and cell fusion between cells of Ascomycete filamentous fungi, with a focus on Neurospora crassa. Filamentous fungi exist as a multicellular, multinuclear network of hyphae, and communication-mediated cell fusion is an important aspect of colony development at each stage of the life cycle. Asexual spore germination occurs in a density-dependent manner. Germinated spores (germlings) avoid cells that are genetically different at specific loci, while chemotropically engaging with cells that share identity at these recognition loci. Germlings with genetic identity at recognition loci undergo cell fusion when in close proximity, a fitness attribute that contributes to more rapid colony establishment. Communication and cell fusion also occur between hyphae in a colony, which are important for reinforcing colony architecture and supporting the development of complex structures such as aerial hyphae and sexual reproductive structures. Over 70 genes have been identified in filamentous fungi (primarily N. crassa) that are involved in kind recognition, chemotropic interactions, and cell fusion. While the hypothetical signal(s) and receptor(s) remain to be described, a dynamic molecular signaling network that regulates cell-cell interactions has been revealed, including two conserved MAP-Kinase cascades, a conserved STRIPAK complex, transcription factors, a NOX complex involved in the generation of reactive oxygen species, cell-integrity sensors, actin, components of the secretory pathway, and several other proteins. Together these pathways facilitate the integration of extracellular signals, direct polarized growth, and initiate a transcriptional program that reinforces signaling and prepares cells for downstream processes, such as membrane merger, cell fusion and adaptation to heterokaryon formation.
Article
Full-text available
Nematode-trapping fungi (NTF) are a large and diverse group of fungi, which may switch from a saprotrophic to a predatory lifestyle if nematodes are present. Different fungi have developed different trapping devices, ranging from adhesive cells to constricting rings. After trapping, fungal hyphae penetrate the worm, secrete lytic enzymes and form a hyphal network inside the body. We sequenced the genome of Duddingtonia flagrans, a biotechnologically important NTF used to control nematode populations in fields. The 36.64 Mb genome encodes 9,927 putative proteins, among which are more than 638 predicted secreted proteins. Most secreted proteins are lytic enzymes, but more than 200 were classified as small secreted proteins (< 300 amino acids). 117 putative effector proteins were predicted, suggesting interkingdom communication during the colonization. As a first step to analyze the function of such proteins or other phenomena at the molecular level, we developed a transformation system, established the fluorescent proteins GFP and mCherry, adapted an assay to monitor protein secretion, and established gene-deletion protocols using homologous recombination or CRISPR/Cas9. One putative virulence effector protein, PefB, was transcriptionally induced during the interaction. We show that the mature protein is able to be imported into nuclei in Caenorhabditis elegans cells. In addition, we studied trap formation and show that cell-to-cell communication is required for ring closure. The availability of the genome sequence and the establishment of many molecular tools will open new avenues to studying this biotechnologically relevant nematode-trapping fungus.
Article
Full-text available
Nematode-trapping fungi develop complex trapping devices to capture and consume nematodes. The dynamics of these organisms is especially important given the pathogenicity of nematodes and, consequently, the potential application of nematode-trapping fungi as biocontrol agents. Furthermore, both the nematodes and nematode-trapping fungi can be easily grown in laboratories, making them a unique manipulatable predator-prey system to study their coevolution. Several different aspects of these fungi have been studied, such as their genetics and the different factors triggering trap formation. In this review, we use the nematode-trapping fungus Arthrobotrys oligospora (which forms adhesive nets) as a model to describe the trapping process. We divide this process into several stages; namely attraction, recognition, trap formation, adhesion, penetration, and digestion. We summarize the latest findings in the field and current knowledge on the interactions between nematodes and nematode-trapping fungi, representing both sides of the predator-prey interaction.
Article
Full-text available
The aim of these studies was to determine the reduction in pasture infectivity likely to be achieved by the supplementation of grazing sheep with BioWorma®, a product containing the chlamydospores of the nematophagous fungus Duddingtonia flagrans strain IAH 1297. Four placebo-controlled trials were conducted between 2009 and 2013 in sheep in different climatic regions of New South Wales and Queensland, Australia and across several seasons. The effectiveness of BioWorma was assessed by total worm counts in tracer sheep placed in paddocks grazed by parasitised sheep which were fed a daily supplement with and without BioWorma under group-feeding conditions. Further proof of concept was obtained by assessing the worm burdens and weight gains of the parasitised sheep, as well as the number of anthelmintic (“salvage”) treatments required when faecal egg counts exceeded a threshold level. Significant reductions ranging from 57 to 84% (P < 0.05) in worm burdens of the tracer sheep placed in the paddock grazed by BioWorma treated sheep were obtained in all four trials, compared to the Control group. In two of the studies the treatment effect was greater at the end of the trial, indicating that pasture infectivity in the Control paddocks had risen considerably. The main nematodes encountered were Haemonchus spp., Trichostrongylus spp., and Teladorsagia spp. (including multi-resistant strains) and significant reductions were demonstrated for each of these species. Given the results of the four trials it can be concluded that supplementation of pastured sheep with BioWorma was effective in reducing the numbers of parasitic nematode larvae ingested by tracer sheep. It is considered that these levels of reduced pasture larvae would result in productivity increases in grazing sheep and reduce the requirement for intervention with anthelmintic chemicals. Therefore, use of BioWorma will provide an alternative means for control of gastrointestinal nematode (GIN) parasites on pasture.
Article
Some nematophagous fungi control nematodes and are also able to compensate the damage they cause in plant roots. However, the effects of these fungi on plant growth promotion are still underexplored. Here, we evaluated if some nematophagus fungi (Pochonia chlamydosporia and Duddingtonia flagrans) may increase nutrient bioavailability and promote plant growth. A growth chamber assay and a greenhouse study (both without nematodes) were carried out to assess the effects of the fungi on growth and phosphorus uptake by tomato plants. The use of P. chlamydosporia and D. flagrans substantially increased growth and the uptake of nutrients by tomato plants (mainly phosphorus – up to 70% in the best treatments). We conclude that P. chlamydosporia and D. flagrans are potentially useful not just for nematode control but also for promoting plant growth and for increasing nutrient use efficiency.