ArticlePDF Available

Re-evaluation of the Lower Miocene (Burdigalian, Ottnangian) elasmobranch fauna (Elasmobranchii, Neoselachii) from Upper Austria (Allerding, near Schärding, Austria) with comments on the palaeogeographic distribution of the recorded squaliform sharks

Authors:
  • University Museum of Bergen

Abstract and Figures

The newly collected shark and ray tooth fossils from the marine sediments of the Upper Marine Molasse close to Allerding (4.8 km SE of Schärding, Austria) allow for a review of the hitherto known diversity comprising a taxonomic update and the documentation of additional taxa. Besides ten taxa already known from the area, the following taxa were collected for the first time from the site: Galeocerdo aduncus Agassiz, 1835, Rhizoprionodon sp., Hemipristis serra Agassiz, 1835, Apristurus sp., Pseudoapristurus nonstriatus Pollerspöck & Straube, 2017, Scyliorhinus sp., Keasius sp., Mitsukurina lineata (Probst, 1879), Odontaspis molassica Probst, 1879, Otodus (Megaselachus) chubutensis (Ameghino, 1901), Chlamydoselachus bracheri Pfeil, 1983, Hexanchidae indet., Paraheptranchias repens (Probst, 1879), Notorynchus primigenius (Agassiz, 1843), Deania sp., Isistius triangulus (Probst, 1879), Euprotomicrus sp., Etmopterus sp., Pristiophorus sp., Nanocetorhinus tuberculatus Underwood & Schlögl, 2013, Raja gentili Joleaud, 1912, Rajidae sp. indet., Rhinobatos sp., Aetobatus arcuatus (Agassiz, 1843), and Dasyatis rugosa (Probst, 1877). Fossil teeth of Euprotomicrus represent the first fossil evidence of this taxon ever. Our results indicate a typical Miocene coastal shallow and continental shelf associated diversity. In addition, we reviewed the paleogeographic distribution ranges of the squaliform genera listed herein to test, if we can identify the origin of specific squaliform genera.
Content may be subject to copyright.
Ann. Naturhist. Mus. Wien, Serie A 122 87–163 Wien, 31 Jan. 2022
Re-evaluation of the Lower Miocene (Burdigalian, Ottnangian)
elasmobranch fauna (Elasmobranchii, Neoselachii) from
Upper Austria (Allerding, near Schärding, Austria)
with comments on the palaeogeographic distribution
of the recorded squaliform sharks
Jürgen PollersPöck1*, Thomas Güthner2 & Nicolas straube3
(with 9 gures and 2 tables)
Manuscript submitted on May 7th 2019,
the revised manuscript on July 7th 2019.
Abstract
The newly collected shark and ray tooth fossils from the marine sediments of the Upper Marine
Molasse close to Allerding (4.8 km SE of Schärding, Austria) allow for a review of the hith-
erto known diversity comprising a taxonomic update and the documentation of additional taxa.
Besides ten taxa already known from the area, the following taxa were collected for the rst
time from the site: Galeocerdo aduncus aGassiz, 1835, Rhizoprionodon sp., Hemipristis serra
aGassiz, 1835, Apristurus sp., Pseudoapristurus nonstriatus PollersPöck & straube, 2017,
Scyliorhinus sp., Keasius sp., Mitsukurina lineata (Probst, 1879), Odontaspis molassica Probst,
1879, Otodus (Megaselachus) chubutensis (ameGhino, 1901), Chlamydoselachus bracheri Pfeil,
1983, Hexanchidae indet., Paraheptranchias repens (Probst, 1879), Notorynchus primigenius
(aGassiz, 1843), Deania sp., Isistius triangulus (Probst, 1879), Euprotomicrus sp., Etmopterus
sp., Pristiophorus sp., Nanocetorhinus tuberculatus underwood & schlöGl, 2013, Raja gen-
tili Joleaud, 1912, Rajidae sp. indet., Rhinobatos sp., Aetobatus arcuatus (aGassiz, 1843), and
Dasyatis rugosa (Probst, 1877). Fossil teeth of Euprotomicrus represent the rst fossil evidence
of this taxon ever. Our results indicate a typical Miocene coastal shallow and continental shelf
associated diversity. In addition, we reviewed the palaeogeographic distribution ranges of the
squaliform genera listed herein to test, if we can identify the origin of specic squaliform genera.
Keywords: Chondrichthyes, Upper Marine Molasse, Central Paratethys, Ottnangian Formation,
Neogene.
1
Benediktinerring 34, 94569 Stephansposching, Germany; e-mail: juergen.pollerspoeck@shark-references.com
2 Graf-Rapoto-Strasse 2, 83308 Trostberg, Germany; e-mail: thomas.guethner@freenet.de
3 University Museum of Bergen, Realfagbygen, Allègaten 41, 5007 Bergen, Norway; email: nicolas.
straube@uib.no
* Corresponding author
ZooBank LSID: urn:lsid:zoobank.org:pub:54FC5B8F-7189-430A-94F2-4A2A0AAA4950
88 Annalen des Naturhistorischen Museums in Wien, Serie A, 122
Zusammenfassung
Die neu aufgesammelten Hai- und Rochenzähne aus den marinen Sedimenten der Oberen Meeres-
molasse von Allerding (4,8 km südöstlich von Schärding, Österreich) erlauben es, die bisher in
der Literatur bekannte Artenliste zu aktualisieren und zu erweitern. Neben den bisher dokumen-
tierten und beschriebenen zehn Haiarten konnten erstmals für diese Fundstelle folgende Taxa
neu nachgewiesen werden: Galeocerdo aduncus aGassiz, 1835, Rhizoprionodon sp., Hemipristis
serra aGassiz, 1835, Apristurus sp., Pseudoapristurus nonstriatus PollersPöck & straube,
2017, Scyliorhinus sp., Keasius sp., Mitsukurina lineata (Probst, 1879), Odontaspis molassica
Probst, 1879, Otodus (Megaselachus) chubutensis (ameGhino, 1901), Chlamydoselachus bra-
cheri Pfeil, 1983, Hexanchidae indet., Paraheptranchias repens (Probst, 1879), Notorynchus
primigenius (aGassiz, 1843), Deania sp., Isistius triangulus (Probst, 1879), Euprotomicrus sp.,
Etmopterus sp., Pristiophorus sp., Nanocetorhinus tuberculatus underwood & schlöGl, 2013,
Raja gentili Joleaud, 1912, Rajidae sp. indet., Rhinobatos sp., Aetobatus arcuatus (aGassiz,
1843), und Dasyatis rugosa (Probst, 1877). Euprotomicrus wurde erstmals fossil nachgewiesen.
Die Ergebnisse weisen auf eine typische miozäne küstennahe Flachwasser- bzw. Schelffauna mit
Nähe zu Tiefseebereichen hin. Darüber hinaus wurde die paläogeographische Verbreitung der
nachgewiesenen squaliformen Gattungen aktualisiert und überprüft, ob es anhand der aktuellen
Datenlage möglich ist, den bisher angenommenen Ursprung der squaliformen Haie zu bestätigen.
Schlüsselwörter: Chondrichthyes, Obere Meeresmolasse, Zentrale Paratethys, Ottnangian-
Formation, Neogen.
Introduction
The fossils presented herein were collected from sediments of the lower marine Miocene
of the Upper Marine Molasse located in South Eastern Bavaria (Passau) to Upper Austria
(Schärding). These sediments overlie discordant on the crystalline part of the Bohe-
mian Massif (ruPP et al. 2011). Already by the end of the 19th century, tausch (1896)
reported on multiple fossil remains of marine mammals and sharks from granite pits in
the area around Schärding. suess (1891), stadler (1916), and marian (1926) reported
on similar ndings.
The aforementioned publications did not identify the collected fossils to species level and
only little is known of the whereabouts of the reported fossils. Some of them are deposited
in the Haus der Natur of natural history museum located in Salzburg (Austria), however.
In the museum’s geological collection, some fossil shark teeth collected in Allerding 1913
are deposited and assigned to the “Freiherr von Schwarz’schen Mineralien sammlung”,
which is the basis of the contemporary museum’s collection (pers. comment. Dr. Anna
bieniok, curator of geosciences). schultz (1972) was the rst to document the partial
mass accumulations of sh tooth fossils of both bony and cartilaginous sh systemati-
cally. This work plus amendments mentioned in schultz (2013) form the basis for the
diversity known to date. In addition, several publications deal with the rich invertebrate
fauna of the area (carriol & schneider 2008, 2016; bitner & schneider 2009;
frielinG et al. 2009; JäGer & schneider 2009; schneider et al. 2009; harzhauser
et al. 2014; Hyžný et al. 2015).
PollersPöck et al.: Elasmobranchs from the Burdigalian of Upper Austria 89
In this study, we review and report on the overall elasmobranch diversity of the Upper
Marine Molasse close to Allerding including several rst records of species in the area
as well as the rst fossil record of the enigmatic extant deep-sea shark Euprotomicrus.
Geological settings
The analyzed material was collected from excavation sites in the granite pit of the
Schärdinger Granit Industrie AG close to Allerding (Upper Austria, 4.8 km SE of
Schärding), which were only accessible for a short period of time due to the ongoing
mining. harzhauser et al. (2014) documents granite blocks of the former coastline,
which served as a base for marine gastropods. Especially sediments between the almost
globular granite blocks contain a diverse macrofauna, whereas the overlying marly clay
is almost free of macrofossils (Figs 1.2, 1.3). The Allerding sediments representing the
Upper Marine Molasse are bluish-grey mica-rich silts, which are characterized by being
hardly sorted and clayey to sandy. They are attributed to the Ottnanger Schlier (Ottnan-
gian-Formation, Lower Ottnangian, Burdigalian) (ruPP et al. 2011). The sampled sedi-
ments were mostly indistinctly deposited (5 –10 cm depositions) or fully admixed.
The fully marine sediments of the Upper Marine Molasse are mica-rich and poorly
sorted clayey sandy silts. When wet, the colour is dark gray. ruPP et al. (2011) estimate
the chalk contents of these marly clays as 25 %. Occurring minerals are quartz crystals,
Fig. 1. Geological and geographical settings. 1: overview of the geological situation; 2: sampling
area of Sample 3a/3c; 3: sampling area of Sample 2. Images show the globular granite blocks in
the lower area and the ne, gray marl of the “Ottnanger Schlier”.
90 Annalen des Naturhistorischen Museums in Wien, Serie A, 122
calcite, dolomite, feldspar, and silicate deposits, which are dominating. Heavy minerals
comprise garnet, rutile, and tourmaline excluding epidote and zoisite. The composition
of the heavy minerals hints to a non-alpine origin of the marly clays, i. e., an origin in
the granite areas of the Bohemian Massif. These fully marine sediments of the upper
Austrian Molasse basin are part of the Central Paratethys and ca. 17.6 –18.5 mio years
in age.
Material and methods
In the years 2014 to 2017, we sampled ve times at the northern part of the granite pit
(48.419612° N, 13.481296° E) (Fig. 1.1). In this area of the pit, regular blasts were con-
ducted for granite mining. The larger part of sampling was conducted in the overlaying
marly clays of the granite blocks (ca. 0 – 50 cm, Figs 1.2, 1.3) and additionally from
lling material between the blocks. In detail, the following samples were taken: sample
1 (S1, collected by Thomas Güthner): mixed sample (ca. 200 kg) of sediments from the
range limit of the granite blocks and the marly clays of the overlaying Ottnanger Schlier.
Here microfossil-rich layers characterized by echinoderm fossils were preferred. Sample
2 (S2, collected by Jürgen PollersPöck): mixed sample from sediments collected from
lling material in gaps between granite blocks (ca. 35 kg) as well as the overlaying lay-
ers of the Ottnanger Schlier (ca. 65 kg, Fig. 1.3).
Sample 3a/3c (S3a/3c, collected by Jürgen PollersPöck): sample collected from the
layers of the Ottnanger Schlier (600 kg, Fig. 1.2) overlaying the granite blocks. Sample
3b (S3b, collected by Jürgen PollersPöck): sample taken from sediments lling gaps
between granite blocks (20 kg).
The collected material (Table 1) was completely dried and thereafter wetted in water and
a hydrogen peroxide solution (concentration 0.1 % –1 %). This was on average repeated
two times until sediments were fully disaggregated. The residing material was washed
through 1 mm and 0.3 mm mesh widths. Fossils were recovered using binoculars (Wild
M3Z) and are listed in Table 1. Findings comprise 137 tooth fossils (partially broken)
as well as 15 fossil dermal denticles. Fossils were further cleaned using a 2 % hydro-
gen peroxide solution and ultrasonic sound (MEC 300 VAP, Motor, Jewelry Cleaner).
Sample S1 was washed out mechanically to reduce weight at the sampling location and
thereafter ltered, dried, sieve fractionated and fossils extracted using binoculars (Zeiss
Stemi 305). Recovered fossils were subsequently cleaned using ultrasonic sound, par-
tially pre-cleaned with Rewoquat® surfactant. Tooth fossils ranging in size from 1.5
to 22.5 mm were photographed using a binocular camera (Leica IC80 HD, Software
Leica Application Suite). Where appropriate, three to seven images were stacked using
CombineZP (hadley 2010). GIMP2 (https://www.gimp.org/) was used to excise images
and standardize a scale for the gures. Twelve smaller sized fossil teeth and denticles
(<1 mm) were mounted on Scanning Electron Microscopy (SEM) stubs and prepared for
SEM imaging using a Polaron E5100 SEM coating system. Subsequently, SEM images
were taken using a LEO 1430 VP (Carl Zeiss, Jena).
PollersPöck et al.: Elasmobranchs from the Burdigalian of Upper Austria 91
Table 1. Fauna list of Allerding, Upper Austria, Ottnangian, Upper Marine Molasse. Abbreviation column “private collector”: Haus der Natur
Salzburg (HdN), Stefan hiermann (SH), Thomas Güthner (TG), Wolfgang danninGer (WD). Numbers in brackets are the number of
specimens studied in each collection.
Species
total this
study
(NHMW)
Schultz
1972
private collector/
museums
collections Remarks, References, and Repository Numbers
Galeocerdo aduncus AgAssiz, 1835 WD (1)
Rhizoprionodon sp. WD, TG (4)
Carcharhinus priscus (AgAssiz, 1843) 11 WD, schultz 2013 (p. 82)
Hemipristis serra AgAssiz, 1835 SH (1)
Apristurus sp. 1
Pseudoapristurus nonstriatus PollersPöck & strAube, 2017
1
Scyliorhinus sp. 3 TG (9)
Pachyscyllium distans (Probst, 1879) 1 NHM, WD schultz 2013 (p. 94), NHMW 2011/0174/0002
Anotodus retroexus (AgAssiz, 1838) 1 WD, SH schultz 2013 (p. 39)
Keasius sp. 1
Carcharodon hastalis (AgAssiz, 1843) 230 WD, SH schultz 2013 (p. 45)
Mitsukurina lineata (Probst, 1879) 4 WD, SH, TG (27)
Araloselachus cuspidatus (AgAssiz, 1843)
180 WD, SH schultz 2013 (p. 64)
Carcharias acutissimus (AgAssiz, 1843) 10 2690 WD, SH, TG (16) schultz 2013 (p. 58)
Odontaspis molassica Probst, 1879 WD SMNS 96995-1, SMNS 96995-2, and SMNS 96995-3
Otodus (Megaselachus) megalodon (AgAssiz, 1837)
see: Otodus (Megaselachus) chubutensis (Ameghino, 1901)
Otodus (Megaselachus) chubutensis (Ameghino, 1901) SH, HdN, WD schultz 2013 (p. 73) as Otodus (Megaselachus)
megalodon (Agassiz, 1837)
Lamniformes indet. SH schultz 2013 (p. 37); mAriAn 1926 (pp. 15, 17)
Chlamydoselachus bracheri Pfeil, 1983 1
Hexanchidae indet. TG (1)
Paraheptranchias repens (Probst, 1879) 1 TG (2)
92 Annalen des Naturhistorischen Museums in Wien, Serie A, 122
Species
total this
study
(NHMW)
Schultz
1972
private collector/
museums
collections Remarks, References, and Repository Numbers
Notorynchus primigenius (AgAssiz, 1843) WD (1), SH (2)
Centrophorus sp. 32 NHM, WD, TG (64) schultz 2013 (p. 31), NHMW 2011/0174/0001,
2018/0309/0003 (Fig. 2.3), 2018/0309/0004 (Fig. 2.4),
2018/0309/0005 (Fig. 2.5), 2018/0309/0006
Deania sp. 5
Isistius triangulus (Probst, 1879) 12 WD, TG (19)
Euprotomicrus sp. 8
Etmopterus sp. 2 TG (1)
Pristiophorus sp. oral 1 TG (2)
Pristiophorus sp. rostral 3 WD, SH, TG (16)
Squatina subserrata (münster, 1846) 28 WD schultz 2013 (p. 33)
Nanocetorhinus tuberculatus underwood & schlögl, 2013 1
Raja gentili JoleAud, 1912 5 WD, TG (10)
Rajidae sp. indet. 1
Rhinobatos sp. 1 TG (1)
Aetobatus arcuatus (AgAssiz, 1843) SH, WD, TG (2)
Dasyatis rugosa (Probst 1877) 5 TG (12)
Denticles 15 TG (1)
Elasmobranchii indet. 38 TG (51)
Total: 152 3140
PollersPöck et al.: Elasmobranchs from the Burdigalian of Upper Austria 93
Further, two private collections (Wolfgang danninGer, Austria; Stefan hiermann, Aus-
tria), as well as the collection of the “Haus der Natur Salzburg” were reviewed regarding
hitherto unknown species (Table 1).
For the identication of taxa, morphological characters described in caPPetta (2012)
were used. Measurements were taken using the width and height of teeth at homologous
landmark sites. Damaged teeth are subsequently marked with the symbol “+”.
All fossils analyzed and discussed herein are deposited in the Museum of Natural His-
tory Vienna (collection numbers NHMW 2018/0309/0001 to 2018/0309/0044) and in
the State Museum of Natural History Stuttgart (only additional material of Odontaspis
molassica, collection numbers SMNS 96995-1, SMNS 96995-2, and SMNS 96995-3).
Palaeogeographic distribution
For preparing palaeogeographic distribution maps of the ve collected fossil squali-
form shark genera Centrophorus, Deania, Isistius, Squaliolus (replacing Euproto-
micrus, which collection in this study represents the rst fossil record of the genus),
and Etmopterus appropriate literature was consulted using the bibliographic database
www.shark-references.com (PollersPöck & straube 2019), where synonyms were
taken into account. The identied publications were checked for completeness using the
database www.fossilworks.org as well as caPPetta (2012). Subsequently, the resulting
literature was checked for further occurrences of the ve genera (Table 2, Supplement
Table S1). Based on the aforementioned information two distribution maps per genus
were established, one for the Cretaceous/Paleogene and one for the Neogene distribu-
tions of taxa.
Results
Systematic palaeontology
Cohort Euselachii hay, 1902
Subcohort Neoselachii comPaGno, 1977
Order Hexanchiformes de buen, 1926
Family Chlamydoselachidae Garman, 1884
Genus Chlamydoselachus Garman, 1884
Type species: Chlamydoselachus anguineus Garman, 1884, type by monotypy.
94 Annalen des Naturhistorischen Museums in Wien, Serie A, 122
Chlamydoselachus bracheri Pfeil, 1983
(Figs 2.1a, 2.1b)
* 1983 Chlamydoselachus bracheriPfeil: 84 – 99; gs 49 – 54.
1991 Chlamydoselachus bracheribarthelt et al.: 198; pl. 1, g. 1.
2001 Chlamydoselachus sp. indet. – takakuwa et al.: 22 – 25; gs 4 – 7.
2004 Chlamydoselachus bracheriGoto et al.: 365 – 369; gs 13 –15.
2006 Chlamydoselachus bracheri takakuwa: 28; gs 3-1, 4-1.
2007 Chlamydoselachus bracheribracher & unGer: 15 –16; pl. 1– 2.
2012 Chlamydoselachus brachericaPPetta: 90. [name only]
2013 Chlamydoselachus bracheri schultz: 21– 22; pl. 8, gs 6a – d, 7a – d, 8a – d.
M a t e ri al : single tooth fragment (NHMW 2018/0309/0001, Figs 2.1a, 2.1b).
S i z e : Height: +3.7 mm; Width: +1.1 mm.
D e s c ri pt i o n : The fossil is a single cusp. Characteristic features of C. bracheri are
distinct, the cusp is slightly curved sigmoid and display an apical turning. The mesial
and distal cutting edge reaches to the basis of the crown with the crown only slightly
pointing basal. Longitudinal and irregular enameloid folds on the mesial and distal sides
are clearly developed and reaching up to two thirds of the crown’s height. The crown is
labially and lingually convex, making a cross-section at the basis almost circular. The
root is missing.
Remarks: To date C. bracheri was documented from Paratethys deposits in several
Austrian locations (schultz 2013) and a single locality in Germany (barthelt
et al. 1991). Outside of Europe, the species was reported from the Miocene of Japan
(takakuwa et al. 2001; Goto et al. 2004; takakuwa et al. 2006).
Family Hexanchidae Gray, 1851
Genus Paraheptranchias Pfeil, 1981
Type species: Notidanus repens Probst, 1879, type by monotypy.
Paraheptranchias repens (Probst, 1879)
(Figs 2.2a, 2.2b.)
* 1879 Notidanus repens n. sp. – Probst: 163 –166; pl. 3, gs 19 – 21, 22a.
1912 Notidanus avenionensisJoleaud: 255 – 256; pl. 4, g. 4.
1981 Paraheptranchias repensPfeil: 361.
1991 Paraheptranchias repensbarthelt et al.: 198; pl. 1, gs 4 – 5.
2007 Paraheptranchias repensbracher & unGer: 23 – 24; pl. 5, 5a.
2011 Paraheptranchias repensVialle et al.: 243.
2012 Paraheptranchias repenscaPPetta: 99; g. 87.
2013 Paraheptranchias repensschultz: 23; pl. 9, gs 1a – c, 2a – c, 3a + b, 4a + b.
M a t e ri al : single tooth fragment (NHMW 2018/0309/0002, ex collection Güthner,
Figs 2.2a – b).
PollersPöck et al.: Elasmobranchs from the Burdigalian of Upper Austria 95
S i z e : Height: +6.0 mm; Width: +2.5 mm.
D e s c ri pt i o n : The fragment is a secondary or following main cusp of a lower jaw
tooth, as distinctive rudimentary secondary cusps at the mesial side are present (barthelt
et al. 1991: g. 4). The slender cusp is sigmoid and upright. The mesial edge of the
crown reaches to the tooth basis and merges with the typical small secondary cusps.
Remarks: P. repens is exclusively known from Miocene sediments of the Paratethys
from Austria (schultz 2013), Germany (Probst 1879; barthelt et al. 1991), Switzer-
land (Jordan et al. 2011; Graf et al. 2012; Jost et al. 2016) and France (Vialle et al.
2011). The presence of secondary cusps in lower teeth is characteristic for the genus
Paraheptranchias and separates it from its assumed sister taxon Heptranchias.
Order Squaliformes comPaGno, 1973
Family Centrophoridae bleeker, 1859
Genus Centrophorus müller & henle, 1837
Type species: Squalus granulosus bloch & schneider, 1801, type by monotypy.
Centrophorus sp.
(Figs 2.3a, 2.3b, 2.4a, 2.4b, 2.5a, 2.5b)
1879 Acanthias radicans n. sp. – Probst: 173 –174; pl. 3, gs 31– 32.
1879 Acanthias serratus n. sp. – Probst: 174; pl. 3, g. 33.
1930 Centrophorus spec. – fischli: 148; pl. 1, g. 7.
1972 Centrophorus granulosusledoux: 145 –148; g. 5.
1991 Centrophorus cf. granulosusbarthelt et al.: 199; pl. 1, g. 7.
1995 Squalus sp.holec et al.: 39; pl. 9, gs 3, 4.
2009 Centrophorus cf. granulosusbrisswalter: 22; pl. 2, gs 3 – 7.
2011 Centrophorus aff. granulosusVialle et al.: 243; g. 2-1.
2013 Centrophorus sp. (2) schultz: 30 – 31; pl. 9, gs 10a + b–16a + b.
2014 Centrophorus cf. granulosusPollersPöck & beaury: 26; pl. 2, gs 1 a, b.
2017 Centrophorus sp. – PollersPöck & straube: 90; g. 8.
M a t e ri al : 32 teeth/tooth fragments (NHMW 2018/0309/0003 – 0005, Figs 2.3 – 2.5;
NHMW 2018/0309/0006).
S i z e (only Figs): NHMW 2018/0309/0003 – 0005: Height: 2.2 mm (Fig. 2.3), 5.3 mm
(Fig. 2.4), 2.3 mm (Fig. 2.5); Width: 3.2 mm (Fig. 2.3), 4.8 mm (Fig. 2.4), 1.4 mm
(Fig. 2.5).
D e s c ri pt i o n : The lower jaw tooth shown in Figs 2.4a, 2.4b is marked by the distinct
serration of the mesial cutting edge. The rst two thirds of the edge show a remarkably
rough serration, which directly transfers in a more smooth serration within the upper
third of the edge. Further distinct characters are lingual bulge of the root ruptured by the
infundibulum (central lingual foramina), only weakly developed lingual root grooves
96 Annalen des Naturhistorischen Museums in Wien, Serie A, 122
and a crown, which is distinctly more upright compared to Deania. The upper jaw tooth
shown in Figs 2.5a, 2.5b is a parasymphysial tooth, recognizable by the upright, slender,
and almost symmetrical smooth crown, the absence of a distal talon, the square root and
the absence of overlapping areas.
Remarks: de schutter & wiJnker (2012) documented a lower lateral tooth with
a similar rough serration of the mesial cutting edge. Fossil teeth from the Miocene of
the Paratethys and the Pliocene of the Mediterranean, respectively, are usually assigned
to Centrophorus granulosus (e. g., barthelt et al. 1991; caPPetta & caVallo 2006;
ciGala-fulGosi et al. 2009; Vialle et al. 2011; PollersPöck & beaury 2014). Today,
13 extant species of Centrophorus are described (PollersPöck & straube 2019), the
genus is under taxonomic revision (white et al. 2013, 2017) and until now no detailed
tooth morphological studies have been published, which show that species can be distin-
guished based on dental characters. Therefore, the fossil teeth herein cannot be assigned
to an extant species.
Genus Deania Jordan & snyder, 1902
Type species: Deania eglantina Jordan & snyder, 1902, type by monotypy.
Deania sp.
(Figs 2.6a, 2.6b, 2.7a, 2.7b)
2013 Deania sp. schultz: 31.
M a t e ri al : 5 teeth/teeth fragments (NHMW 2018/0309/0007– 0008, Figs 2.6. 2.7;
NHMW 2018/0309/0009).
S i z e (only Figs): NHMW 2018/0309/0007– 0008: Height: 2.2 mm (Fig. 2.6), 2.5 mm
(Fig. 2.7); Width: 2.5 mm (Fig. 2.6), 1.7 mm (Fig. 2.7).
D e s c ri pt i o n : Figs 2.6a, 2.6b show a well-preserved lower jaw tooth, which is
labio-lingually compressed. The mesial cutting edge is weakly serrated. The crown’s
cusp is oblique pointing distally. The lingual side of the root shows two central foramina,
one of each above and below the lingual bulge of the root running along the complete
width of the root. The distinct basal groove reaches from the central foramen to the root’s
basis. The upper jaw tooth shown in Figs 2.7a, 2.7b is an anterior tooth, due to its almost
symmetrical shape.
R e m a rk s: Lower teeth of the genus Deania can be distinguished from Centrophorus
in having two lingual central foramina, one of each above and below the lingual bulge
of the root running along the complete width of the root (vs. Centrophorus showing
only one lingual central foramen at the level of the lingual bulge). Upper jaw teeth of
the genus can be distinguished by broadly developed aprons, which ows around single
foramina (Fig. 2.7b) and the absence of overlapping areas (Fig. 2.7a). Extant Deania
PollersPöck et al.: Elasmobranchs from the Burdigalian of Upper Austria 97
comprises four described species (PollersPöck & straube 2019). Studies based on
DNA sequence data show that a taxonomic revision of the genus is required (straube
et al. 2013). No studies exist, which show how the four species could be distinguished
based on dental characters alone. Deania calcea (lowe, 1839) is the only species for
which a detailed description of its dentition is available (herman et al. 1989).
Family Dalatiidae Gray, 1851
Genus Isistius Gill, 1865a
Type species: Scymnus brasiliensis Quoy & Gaimard, 1824, type by monotypy.
Isistius triangulus (Probst, 1879)
(Figs 2.8a, 2.8b)
* 1879 Scymnus triangulus n. sp. – Probst: 175 –176; pl. 3, gs 35, 36.
1930 Isistius trituratusfischli: 148; pl. 1, g. 7.
1972 Isistius triangulusledoux: 161–163; g. 13.
1991 Isistius triangulusbarthelt et al.: 199; pl. 1, g. 10.
1995 Isistius triangulusholec et al.: 39; pl. 9, gs 1, 2.
2007 Isistius cf. trianguluskocsis: 29; g. 3.6.
2009 Isistius triangulusbrisswalter: 24; pl. 2, g. 8.
2011 Isistius triangulusVialle et al.: 243 – 244; g. 2-4.
2012 Isistius trianguluscaPPetta: 136; gs 125E – L.
2013 Isistius triangulusschultz: 31; pl. 9, gs 7– 9.
2014 Isistius triangulusPollersPöck & beaury: 26 – 27; pl. 2, gs 3 a, b.
2017 Isistius triangulusPollersPöck & straube: 39 – 40; g. 10.
M a t e ri al : 12 teeth/teeth fragments (NHMW 2018/0309/0010, Figs 2.8a – b, NHMW
2018/0309/0011).
S i z e (only Fig. 2.8): NHMW 2018/0309/0010: Height: 2.2 mm; Width: 2.5 mm.
D e s c ri pt i o n : Our ndings comprise multiple mostly fragmented lower jaw teeth
(Figs 2.8a, 2.8b). Teeth including a well-preserved root were not found, however, Isis-
tius can be recognized by its upright labio-lingually compressed triangular symmetrical
crown. Further, the mesial and distal cutting edge is distinctly serrated.
R e m a rk s: Genus-rich Dalatiidae comprise seven extant genera (PollersPöck &
straube 2019). Molecular phylogenetic analyses showed the presence of two intra-
familiar clades, one comprising the Dalatias/Isistius lineages and the sister clade includ-
ing mainly Squaliolus and Euprotomicrus (naylor et al. 2012b; straube et al. 2015;
flammensbeck et al. 2018). The genus Isistius is, in comparison with other taxa from
the family, not only the most frequent dalatiid fossil, but also the most widely distributed
in the Miocene (Table S1). A reason for these patterns may be its predatory behaviour,
which assumes a gathering of Isistius along with larger sh species as well as marine
mammals (e. g., reddacliff 1988; souto et al. 2009). Especially marine mammals
98 Annalen des Naturhistorischen Museums in Wien, Serie A, 122
PollersPöck et al.: Elasmobranchs from the Burdigalian of Upper Austria 99
are well documented from the excavation site (Güthner pers. comm., tausch 1896;
marian 1926). Further reasons could be the vertical movement of Isistius (e .g., Parin
1966; nakano & tabuchi 1990) and schooling activities (widder 1986; Parin 1966).
The aforementioned factors may be causing the high frequency of fossils in coastal
sediments (e. g., brisswalter 2009; carrillo-briceño et al. 2015). Besides teeth of
Centrophorus, Isistius teeth are the most frequent squaliform teeth.
Genus Euprotomicrus Gill, 1865a
Type species: Scymnus (Laemargus) labordii müller & henle, 1839, type by
monotypy.
Euprotomicrus sp.
(Figs 3.1– 3.4)
M a t e ri al : single complete lower tooth, ex. collection Güthner (NHMW
2018/0309/0012, Fig. 3.4), single lower tooth (NHMW 2018/0309/0013, Fig. 3.3),
2 upper teeth (NHMW 2018/0309/0014 – 0015, Figs 3.1– 3.2), 4 fragment of lower teeth
(NHMW 2018/0309/0016).
S i z e (only Figs): NHMW 2018/0309/0012 – 0015: Height: 0.7 mm (Fig. 3.3), 1.6 mm
(Fig. 3.4), 1.3 mm (Fig. 3.1); 1.3 mm (Fig. 3.2); Width: 0.5 mm (Fig. 3.3), 1.0 mm
(Fig. 3.4), 0.5 mm (Fig. 3.1), 0.8 mm (Fig. 3.2).
D e s c ri pt i o n : Lower jaw teeth are labio-lingually compressed; the cusp is very
strongly distally inclined, a well developed distal talon is present. A single central fora-
men is available on the lingual side. The labial overlapping area is reaching to the basis
of the square root (Fig. 3.3). On the labial side, a large, central foramen is present, which
is anked by a bilobed apron. A dalatiid character is the splitting of the apron based
on the aforementioned situation. The labial side of the root may show additional small
foramina, which are anking the central foramen or are present at in the overlapping area
(Figs 3.3, 3.4).
Fig. 2. 1: Chlamydoselachus bracheri Pfeil, 1983 (NHMW 2018/0309/0001; a: prole view, b:
labial view); 2: Paraheptranchias repens (Probst, 1879) (NHMW 2018/0309/0002; lower tooth;
a: labial view, b: lingual view); 3: Centrophorus sp. (NHMW 2018/0309/0003; lower tooth; a:
lingual view, b: labial view); 4: Centrophorus sp. (NHMW 2018/0309/0004; lower tooth; a: lin-
gual view, b: labial view); 5: Centrophorus sp. (NHMW 2018/0309/0005; upper tooth; a: lingual
view, b: labial view); 6: Deania sp. (NHMW 2018/0309/0007; lower tooth, a: labial view, b: lin-
gual view); 7: Deania sp. (NHMW 2018/0309/0008; upper tooth; a: lingual view, b: labial view);
8: Isistius triangulus (Probst, 1879) (NHMW 2018/0309/0010; lower tooth; a: lingual view, b:
labial view).
100 Annalen des Naturhistorischen Museums in Wien, Serie A, 122
Both upper jaw teeth shown in Figs 3.1– 3.2 show a split labial apron, which is charac-
teristic for the genus along with the large central foramen. The anterior teeth display an
upright crown (Figs 3.1a, 3.1b, herman et al. 1989), while lateral crowns are pointing
distally (Figs 3.2a, 3.2b). In lateral upper teeth both the apron as well as the root lobes
are differentially developed in length.
R e m a rk s: Fossil teeth presented in this study mark the rst fossil record for this
genus. Morphologically similar fossil teeth of the genus Squaliolus were only rarely
observed (Table S1). The French Eocene and the Slovakian Miocene are the only two
locations so far, where multiple teeth were recovered allowing for the description of the
morphological variation within the genus (Squaliolus gasconensis, adnet, 2006; Squal-
iolus cf. schaubi, underwood & schlöGl, 2013) (Table S1). herman et al. (1989) state
that extant teeth of Euprotomicrus, Squaliolus, and Heteroscymnoides are highly similar.
In Euprotomicrus bispinatus and Squaliolus laticaudus herman et al. (1989) report on
a sexual dimorphism of tooth morphologies: the mesial cutting edge of the cusp of male
teeth is sigmoid and the cusp is more slender compared to females. In contrast, females
show a straight mesial cutting edge and more strongly cusps (herman et al. 1989).
Even though this is supported in smith (1912) and seiGel (1978), more detailed stud-
ies and enlarged sampling are necessary for conrmation. herman et al. (1989) ana-
lysed only a single male and four female specimens. Further, seiGel (1978) display a
single tooth without the sigmoid curvature. Besides that, herman et al. (1989) show
a lower jaw tooth of a female, which carries the potential male character of a sigmoid
cutting edge (herman et al. 1989: pl. 21, tooth of the latero-posterior position, marked
with “lp”).
herman et al. (1989) display teeth of E. bispinatus from a 200 mm total length male
and from a 115 mm female, which are suggested to document the lower jaw teeth sex-
ual dimorphism. In contrast to the images shown in herman et al. (1989), hubbs &
mchuGh (1951) show the jaws from a 223 mm female, which shows a distinct sigmoid
crown edge as well. This may indicate that this type of differences between specimens
may in fact be an ontogenetic heterodonty, as all E. bispinatus is assumed to reach matu-
rity at a total length of 170 –190 mm for males and 220 – 230 mm for females (ebert
2016). Ontogenetic heterodonty is known from several extant and extinct taxa (e. g.,
adnet et al. 2006; ciGala-fulGosi et al. 2009; delPiani et al. 2012; moyer & bemis
2016; Voris & heckert 2017).
Based on the gured teeth in herman et al. (1989) teeth of Euprotomicrus can be
distinguished from Squaliolus and Heteroscymnoides using the following characteristics:
lower jaw teeth of Euprotomicrus differ by an enlarged distance between both
labial apron lobes, which covers a third of the root;
the mesial lower part of the apron is distinct, conical and is clearly separated
from the root;
presence of a symmetrical symphyseal tooth with an upright crown in the
lower jaw (see also hubbs et al. 1967);
PollersPöck et al.: Elasmobranchs from the Burdigalian of Upper Austria 101
crown of anterior upper jaw teeth are upright and almost symmetrical;
lateral upper jaw teeth do not show a decrease in size and the crown is only
slightly bent distally;
the distance of labial apron lobes of upper jaw teeth is remarkably larger
compared to Squaliolus and Heteroscymnoides.
Due to the aforementioned characteristics documented for the fossils described herein,
we assign these fossil teeth to Euprotomicrus.
Family Etmopteridae fowler, 1941
Genus Etmopterus rafinesQue, 1810
Type species: Etmopterus aculeatus rafinesQue, 1810, type by monotypy.
Etmopterus sp.
(Figs 3.5, 3.6)
M a t e ri al : single lower tooth (NHMW 2018/0309/0017, Fig. 3.6), single upper
tooth (NHMW 2018/0309/0018, Fig. 3.5), single fragment of lower tooth (NHMW
2018/0309/0019).
S i z e (only Figs): NHMW 2018/0309/0017– 0018: Height: 1.5 mm (Fig. 3.6), 1.3 mm
(Fig. 3.5); Width: 1.1 mm (Fig. 3.6), 0.7 mm (Fig. 3.5).
D e s c ri pt i o n : Three fossil teeth were collected, two lower and a single upper jaw
tooth. The teeth indicate the typical dignathic heterodonty of etmopterids. The upper
jaw tooth is multicuspid and asymmetrical; the main cusp is upright and anked by two
cusplets on one and only a single cusplet on the other side. The cusplets next to the main
cusp are larger and reach up to the middle of the main cusp. The labial basis of the crown
shows strongly vertical enameloid folds, the basal edge of the crown is sickle-shaped
and reaches as a conus to the middle of the root lobes. The labio-lingually compressed
lower jaw tooth shows distally an overlapping depression to former neighboring teeth,
which reaches down to the basis of the root and is s-shaped. Further, the cusp is bent
distally, a distal talon is present as well as four foramen at the crown basis, a large central
one and three smaller, anking ones.
R e m a rk s: This large extant genus comprises 44 described species (PollersPöck &
straube 2019) and is separated into four subclades (straube et al. 2010). Due to miss-
ing information on potential specic dental features characterizing the species and/ or
subclades, the fossil teeth presented herein can only be assigned to the genus. In com-
parison to the teeth collected in the deep-sea in Mitterdorf (PollersPöck & straube
2017), we did not nd distinct differences and therefore regard the teeth found here as
conspecic.
102 Annalen des Naturhistorischen Museums in Wien, Serie A, 122
Order Carcharhiniformes comPaGno, 1977
Family Scyliorhinidae Gill, 1862
R e m a rk s to the family Scyliorhinidae Gill, 1862: Phylogenetic studies by iGlésias
et al. (2005) and naylor et al. (2012a) have shown that the family is polyphyletic.
Family Pentanchidae sensu iGlésias et al., 2005
or Scyliorhinidae I sensu naylor et al., 2012a
Genus Apristurus Garman, 1913
Type species: Scylliorhinus indicus brauer, 1906, type by original designation.
Apristurus sp.
(Fig. 3.7)
M a t e ri al : single tooth (NHMW 2018/0309/0023, Fig. 3.7)
S i z e : Height: 0.8 mm; Width: 1.0 mm.
D e s c ri pt i o n : The fossil tooth shown in Fig. 3.7 almost completely lacks the charac-
teristic lingual reticulate (golf ball-like) ornamentation present in Apristurus. Only the
mesial edge of the mesial cusplet displays the ornamentation. The distinct angular ridges
of the crown starts already at the lower third of the cusp and consists of several parallel
striations of different lengths – especially notable for the main cusp. Only inner cusplets
show striations. Both main cusp and cusplets are strongly convex. The typically present
thin and wide enameloid edged is damaged likely due to extensive usage displaying
undamaged parts only at the mesial lower part of the main cusp. Two distinct cusplets
are present mesially, distally only a single cusplet is present. The root has two lobes – a
typical character for scyliorhinid teeth – and reaches lingually far up, shows a V-shape
and the lobes are arranged in a pointed angle. The lingual root protuberance displays a
central foramen.
R e m a rk s: Today, there are 39 extant species described (PollersPöck & straube
2019), which are distinguished in three morphological groups (nakaya & sato 1999;
iGlésias et al. 2005; flammanG et al. 2007). Dental morphological descriptions are only
available for a single species, A. laurussonii (herman et al. 1990). The extant genus is
not reported from the Mediterranean Sea. Six species are known from the North Atlantic,
two of which are assigned to the brunneus-group (A. laurussonii, A. melanoasper) and
four species are designated as members of the spongiceps-group (A. microps, A. manis,
A. aphyodes, and A. profundorum) (ebert & stehmann 2013).
The extant genus Apristurus is distributed worldwide at sea mounts and continental
shelves excluding the polar regions and species occur in depths of 400 – 2000 m (nakaya
PollersPöck et al.: Elasmobranchs from the Burdigalian of Upper Austria 103
et al. 2008). The fossil teeth shown in this study are not differing in morphology from
fossils collected in the Neuhofener Beds (Lower Ottnangian, Bavaria) (PollersPöck &
straube 2017) and are therefore the second record for this genus within the Northern
Alpine Molasse and the rst record for Austria.
Genus Pseudoapristurus PollersPöck & straube, 2017
Type species: Pseudoapristurus nonstriatus PollersPöck & straube, 2017, type
by monotypy.
Pseudoapristurus nonstriatus PollersPöck & straube, 2017
(Fig. 3.8)
* 2017 Pseudoapristurus nonstriatusPollersPöck & straube: 34; g. 7.
M a t e ri al : single tooth, (NHMW 2018/0309/0024, Fig. 3.8)
S i z e : Height: 0.63 mm; Width: 0.65 mm.
D e s c ri pt i o n : The fossil described herein is characterized by distinctly high cusplets
typical for the genus. The tooth is approximately 0.6 mm in height and width. Here, the
rst mesial cusplet is almost reaching the distally bent main cusp in height. The rst dis-
tal cusplet is signicantly lower in height and triangular. The thin and wide enameloid
edge is distinct and present at both the main cusp as well as the cusplets. This type of
fold is typical for scyliorhinid teeth of genera Pseudoapristurus, Apristurus, or Galeus
(herman et al. 1990; PollersPöck & straube 2017). No folds are present on the lin-
gual and labial sides. We suggest that the tooth is of posterior lower jaw origin, as the
main cusp is strongly bent distally and widely resembles the type 2 morphology shown
in PollersPöck & straube (2017).
R e m a rk s: This second record of P. nonstriatus from another locality further aligns
with the suggestion by PollersPöck & straube (2017) that there are morphological
differences between upper and lower jaw teeth and generally, how posterior teeth in this
species are shaped.
Family Scyliorhinidae sensu iGlésias et al., 2005
or Scyliorhinidae III sensu naylor et al., 2012a
Genus Pachyscyllium reinecke, moths, Grant & breitkreuz, 2005
Type species: Pachyscyllium albigensis reinecke, moths, Grant & breitkreuz,
2005, by original designation.
104 Annalen des Naturhistorischen Museums in Wien, Serie A, 122
PollersPöck et al.: Elasmobranchs from the Burdigalian of Upper Austria 105
Pachyscyllium distans (Probst, 1879)
(Fig. 4.1)
* 1879 Scyllium distans n. sp. – Probst: 170; pl. 3, gs 24, ?23 and ?25, non 26.
1971 Scyliorhinus distansschultz: 325. [name only]
1978 Scyliorhinus distansBrzoBoHa & ScHultz: 442. [name only]
1991 Scyliorhinus distansbarthelt et al.: 202; pl. 3, gs 2, 4.
1995 Scyliorhinus distanshiden: 62; pl. 5, g. 3.
1995 Scyliorhinus distansbolliGer et al.: 892 – 893; pl. 1, g. 12.
1998 Scyliorhinus distansschultz: 297; pl. 1, gs 4 – 9.
2003 Scyliorhinus distansschultz: 187. [name only]
2004 Scyliorhinus distansdaxner-höck et al.: 192. [name only]
2004 Scyliorhinus distansschultz: 258; pl. 1, gs 7, 8.
2007 Premontreia (Oxyscyllium) distansbracher & unGer: 100; g. 60, pl. 36.
2011 Pachyscyllium aff. dachiardiiVialle et al.: 250; gs 3-8, 3-9.
2012 Pachyscyllium dachiardiicaPPetta: 267; g. 247.
2013 Pachyscyllium dachiardiischultz: 94; pl. 10, gs 14a, b, 15a, b.
2014 Pachyscyllium aff. distansreinecke et al.: 28; pl. 11, gs 4 – 5.
2016 Premontreia distansJost et al.: g. 8 c.
2016 Scyliorhinus distanssach: 105. [name only]
2016 Scyliorhinus (Pachyscyllium) cf. distansschluneGGer et al.: 22. [name only]
M a t e ri al : single tooth, (NHMW 2018/0309/0025, Figs 4.1a, 4.1b)
S i z e : Height: 2.4 mm; Width: 2.0 mm.
D e s c ri pt i o n : The tooth shows a massive main cusp, which is only slightly bent dis-
tally. The labial and lingual crown area is strongly convex and show labial and lingual
distinct enameloid folds reaching a third of the main cusp’s total height and almost the
full height in the cusplets. The crown’s cutting edge covers the whole main cusp as well
as the mesial and distal sides of cusplets. The root is only fragmentarily preserved. The
former lingual bulge and the nutritive groove are still recognizable.
Remarks: reinecke et al. (2005) described the genus Pachyscyllium based on the
type species Pachyscyllium albigensis, and placed the teeth of P. distans in the “distans”
group of the genus Scyliorhinus, as the excavated material was not sufcient for a revi-
sion of the “Scyliorhinus” distans group. Later, caPPetta (2006) assigned the species
to the genus Premontreia (Oxyscyllium) and suggested that P. (Oxyscyllium) distans is a
synonym to the Pliocene species P. (Oxyscyllium) dachiardii (lawley, 1876) collected in
Fig. 3. 1: Euprotomicrus sp. (NHMW 2018/0309/0014; upper tooth; a: lingual view, b: labial
view); 2: Euprotomicrus sp. (NHMW 2018/0309/0015; upper tooth; a: lingual view, b: labial
view); 3: Euprotomicrus sp. (NHMW 2018/0309/0013; lower tooth; labial view); 4: Euproto-
micrus sp. (NHMW 2018/0309/0012; lower tooth; lingual view); 5: Etmopterus sp. (NHMW
2018/0309/0018; upper tooth; labial view); 6: Etmopterus sp. (NHMW 2018/0309/0017; lower
tooth; lingual view); 7: Apristurus sp. (NHMW 2018/0309/0023; lingual view); 8: Pseudoapris-
turus nonstriatus PollersPöck & straube, 2017 (NHMW 2018/0309/0024; upper tooth; lingual
view).
106 Annalen des Naturhistorischen Museums in Wien, Serie A, 122
Italy. reinecke et al. (2011) concluded, after comparing the original syntypes collected
by Probst (1879), that the species “distans” is valid, but doubted their assignation to
the genus Premontreia. caPPetta (2012) nally suggested that the “dachiardii-distans”
group belongs to the genus Pachyscyllium, neglecting reinecke et al. (2011) and placed
the “distans” species as a synonym to Pachyscyllium dachiardii. Here, we follow
reinecke et al. (2011) and consider the species as valid based on the aforementioned
dental morphological differences (i. e., morphology of cusplets, distally bent lateral and
commissural teeth).
Genus Scyliorhinus blainVille, 1816
Type species: Squalus canicula linné, 1758, type by subsequent designation.
Scyliorhinus sp.
(Figs 4.2a, 4.2b)
M a t e ri al : 3 tooth (mostly fragments), (NHMW 2018/0309/0026, Figs 4.2a, 4.2b;
NHMW 2018/0309/0027)
S i z e (only Fig.): NHMW 2018/0309/0026: Height: 1.6 mm; Width: 1.2 mm (Fig. 4.2).
D e s c ri pt i o n : The larger part of teeth is only preserved fragmentary or strongly pol-
ished, which does not allow for identication to species level. Exclusively the tooth
shown in Fig. 4.2. allows a description. The crown is almost smooth labially and does
not show enameloid folds. On its lingual side, the folds are prominently developed and
cover the cusplets completely. The crown is upright. Both crown and cusplets are convex
lingually, while only weakly convex on its labial side. The root displays two lobes, is
rather wide and reaches far up lingually. reinecke (2014) discusses a sexual dimorphism
and places teeth of the aforementioned morphology to males of Scyliorhinus biformis.
According to reinecke (2014), teeth of male origin do not show labial enameloid folds,
while females display such folds.
R e m a rk s: Morphologically highly similar teeth were also reported in PollersPöck
& straube (2017) from the geographically nearby site Neuhofener Beds (Ottnangian,
Upper Marine Molasse). The gured tooth shows typical morphological character of the
genus Scyliorhinus, like the shape of the poorly developed cusplets, the cusp which is
weakly convex in labial and strongly convex in lingual view, and the lingual striae.
Order Pristiophoriformes comPaGno, 1973
Family Pristiophoridae bleeker, 1859
Genus Pristiophorus müller & henle, 1837
Type species: Pristis cirratus latham, 1794, type by monotypy.
PollersPöck et al.: Elasmobranchs from the Burdigalian of Upper Austria 107
Pristiophorus sp.
(Figs 4.3, 4.4)
M a t e ri al : 1 oral tooth (NHMW 2018/0309/0020, Fig. 4.3), 2 rostral teeth (NHMW
2018/0309/0021, Fig. 4.4, NHMW 2018/0309/0022).
S i z e (only Figs): NHMW 2018/0309/0020 – 0021): Height: 1.4 mm (Fig. 4.3), 10.8 mm
(Fig. 4.4); Width: 1.6 mm (Fig. 4.3), 2.7 mm (Fig. 4.4).
D e s c ri pt i o n : Three collected oral teeth are roundish, do not show any kind of enam-
eloid structures and miss roots. The gured tooth shows a triangular cusp anked by
laterally heels. The labial surface is smooth, shows a axial ridge in the apical part of the
crown, and a pointed, triangular apron. No rostral teeth including a root were collected.
R e m a rk s: Fossil records of Pristiophorus, which are in many cases rostral teeth found
in remains of the Miocene Paratethys, are mostly assigned to P. suevicus Jaekel, 1890
(fischli 1930; barthelt et al. 1991; brisswalter 2009; Vialle et al. 2011; schultz
2013; PollersPöck & beaury 2014). The species was exclusively described based on
the rostral teeth. If the rostral teeth carry characters allowing for a species-level identi-
cation is questionable. underwood & schlöGl (2013) described P. striatus from the
early Miocene of Slovakia (Burdigalian, Central Paratethys) based on three oral teeth
and suggested conspecicity with P. suevicus. Further, the authors suggested to mention
Pristiophorus species described exclusively on rostral teeth as nomina dubia.
Order Lamniformes berG, 1937
Family Cetorhinidae Gill, 1862
Genus Keasius welton, 2013
Type species: Keasius taylori welton, 2013, type by subsequent designation.
Keasius sp.
(Fig. 4.5)
M a t e ri al : single gill raker fragment (NHMW 2018/0309/0028, Fig. 4.5)
S i z e : 8.3 mm Length.
D e s c ri pt i o n : The single specimen is part of a gill raker consisting of a partial base
and its connected lament. Distinctive characters for identication such as the distal pro-
tuberance, the mesial and basal edge, and the medial process are missing. The rounded
bight and the low base height are well recognizable.
R e m a rk s: An identication of Keasius species is only possible, if oral teeth are
available. Today, the following species are described: K. taylori (Eocene of Oregon,
USA) (welton 2013), K. septemtrionalis (Late Oligocene, Chattian, Germany) and K.
108 Annalen des Naturhistorischen Museums in Wien, Serie A, 122
Fig. 4. 1: Pachyscyllium distans (Probst, 1879) (NHMW 2018/0309/0025; a: labial view, b: lin-
gual view); 2: Scyliorhinus sp. (NHMW 2018/0309/0026; a: labial view, b: lingual view); 3: Pris-
tiophorus sp. (NHMW 2018/0309/0020; oral tooth; labial view); 4: Pristiophorus sp. (NHMW
2018/0309/0021; rostral tooth); 5: Keasius sp. (NHMW 2018/0309/0028; fragment of gill raker).
rhenanus (Early Miocene, Burdigalian, Germany) (reinecke et al. 2015), as well as K.
parvus (Early Oligocene, Rupelian; Belgium and Germany) (leriche 1908; reinecke
et al. 2015).
Family Mitsukurinidae Jordan, 1898
Genus Mitsukurina Jordan, 1898
Type species: Mitsukurina owstoni Jordan, 1898, type by monotypy.
Mitsukurina lineata (Probst, 1879)
(Figs 5.1a, 5.1b, 5.1c)
* 1879 Lamna (Odontaspis) lineata n. sp. – Probst: 147–149; pl. 2, gs 40 – 46.
1930 Odontaspis acutissimafischli: 150; pl. 3, g. 1.
1991 Mitsukurina lineatabarthelt et al.: 200; pl. 2, g. 6.
PollersPöck et al.: Elasmobranchs from the Burdigalian of Upper Austria 109
1992 Mitsukurina lineatascholz & bienerth: 12; pl. 2, gs 5, 6.
1995 Mitsukurina lineatabolliGer et al.: 893; pl. 2, g. 9.
2004 Mitsukurina lineatabaier et al.: 365; pl. 1, g. 1.
2007 Mitsukurina lineatabracher & unGer: 82 – 83; pl. 30.
2011 Mitsukurina lineataVialle et al.: 247; g. 2-12.
2012 Mitsukurina lineatacaPPetta: 186; gs 175A – C.
2013 Mitsukurina lineataschultz: 51; pl. 5, gs 1– 3.
2014 Mitsukurina lineataPollersPöck & beaury: 28; pl. 1, gs 3a, b.
2016 Mitsukurina lineataJost et al.: g. 8e.
M a t e ri al : 4 teeth, (NHMW 2018/0309/0029, Figs 5.1a – c, NHMW 2018/0309/0030)
S i z e (only Figs): NHMW 2018/0309/0029: Height: 10.0 mm; Width: 10.6 mm (Figs
5.1a – c).
Description: M. lineata is characterized by distinct parallel enameloid folds, which
are only present at the lingual side of the crown. Lateral teeth display pointed triangular
cusps, which are upright in lower jaw teeth, while they are distally bent in upper jaw
teeth. Figs 5.1a – 5.1c shows a completely preserved lateral upper jaw tooth. Projections
of mesial and distal cusplets are further visible, typically small and bent inwards in this
species. The basis of the mesial cusplet is visible, while the distal cusplet is broken. Root
lobes are widespread and attened at the outer edges. Labially, the root lobes show mul-
tiple small foramina, the lingual sides carry a single large central foramen.
Remarks: M. lineata is a common and frequently reported species from the Molasse
Basin (Probst 1879). The genus comprises only a single extant species, M. owstoni
Jordan, 1898, which is rarely recorded from tropical and subtropical deep waters
(100 – 960 m depth) of the Atlantic, Indian and Pacic Oceans (orloV et al. 2017).
Family Odontaspididae müller & henle, 1839
Genus Odontaspis cuVier, 1816
Type species: Squalus ferox risso, 1810, type by monotypy.
Odontaspis molassica (Probst, 1879)
(Figs 5.2a, 5.2b)
* 1879 Lamna (Odontaspis) molassica n. sp. – Probst: 150; pl. 2. gs 47– 52.
1907 Odontaspis molassicaJoleaud: 139.
1912 Odontaspis molassicaJoleaud: 266; pl. 4, gs 29 – 31.
1991 Odontaspis molassicabarthelt et al.: 200; pl. 2, g. 2.
2006 Carcharias sternbergensiscaPPetta: 208. [name only]
2007 Odontaspis molassicabracher & unGer: 65 – 66; pl. 23.
2011 Carcharias sternbergensisVialle et al.: 247
2013 Carcharias acutissimusschultz: 67.
2016 Odontaspis molassicasach: 107. [name only]
110 Annalen des Naturhistorischen Museums in Wien, Serie A, 122
M a t e ri al : single tooth (incomplete tooth, NHMW 2018/0309/0031, Figs 5.2a – b), ex.
collection danninGer.
A d d i ti on a l ma te ri a l : 3 teeth of Walbertsweiler, Germany (Ottnangian, ex. coll.
Unger, now SMNS 96995-1, SMNS 96995-2, and SMNS 96995-3, Figs 5.3 – 5.5).
S i z e : NHMW 2018/0309/0031: Height: +7.4 mm; Width: +6.5 mm (Fig. 5.2); addi-
tional material: SMNS 96995-1: Height: 25.2 mm; Width: 16.0 mm (Fig. 5.3), SMNS
96995-2: Height: 14.5 mm; Width: 11.6 mm (Fig. 5.4), SMNS 96995-3: Height:
+14.4 mm; Width: 14.5 mm (Fig. 5.5).
D e s c ri pt i o n : This fossil is a lateral lower jaw tooth displaying an erect central cusp
and three mesially anking cusplets. The cusplet directly neighbouring the central main
cusp is broken. The tooth shows the typical features characterizing O. molassica, i. e., a
labially linear running basal crown edge with small vertical enameloid folds at its basis
(Fig. 5.2). The mesial and distal cutting edge reaches almost to the crown’s basis, the
cusplets do not show a cutting edge and are therefore almost circular in cross section.
The two root lobes are not well-preserved, foramina etc. are not recognizable. Three
well-preserved teeth are documented from Walbertsweiler (Ottnangian, Upper Marine
Molasse) (Figs 5.3 – 5.5), which display all characteristics of this species.
Differential diagnosis: Following
comPaGno & follett (1986) and caPPetta
(2012) the genus Odontaspis can be distinguished from the genus Carcharias in having
no or only a weakly sigmoidal prole of anterior teeth (caPPetta 2012: g. 192), up
to three pairs of lateral cusplets (vs. up to two pairs in Carcharias), a distinctly con-
cave basal edge of the root, a distinctly reduced upper parasymphysial tooth, an upper
symphyseal tooth (usually absent in Carcharias), two rows of upper anterior teeth on
either side of symphysis (vs. three rows in Carcharias), lateral teeth slightly compressed
and not blade-like, with cusps slightly attened (vs. lateral teeth compressed and blade-
like, with attened cusps in Carcharias), and cusplets on anterior teeth with a long and
straight or weakly curved morphology, not hooked, and cusps slender and narrow-tipped
(vs. short and strongly hooked, and cusps stout and broad-tipped in Carcharias).
Remarks: caPPetta (2006) synonymized the species described in Probst (1879) with
Carcharias acutissimus. Additional specimens attributed to C. molassica by Joleaud (1907,
1912) were attributed to Carcharias sternbergensis described in reinecke et al. (2005)
from the Oligocene (Chattian) without discussing the reason. Vialle et al. (2011) followed
this suggestion. Comparing the original description of O. molassica (Probst, 1879) and C.
sternbergensis (reinecke et al. 2005) a massive size difference gets obvious. While teeth
of C. sternbergensis are of 3
–13 mm in height (reinecke et al. 2005), teeth of O. molassica
can reach heights of more than 30 mm (bracher & unGer 2007; Probst 1879). Further,
cusplets of O. molassica are larger, without a cutting edge and circular in cross-section. In
addition, teeth may show both mesially and distally several cusplets. The transition from the
enameloid of the crown to root on the labial side is straight and shifted downwards. We sug-
gest that O. molassica can be distinguished from C. sternbergensis, as well as further sym-
patric odontaspids as e.
g., C. acutissima and must be therefore considered as valid species.
PollersPöck et al.: Elasmobranchs from the Burdigalian of Upper Austria 111
Family Otodontidae Glikman, 1964
Genus Otodus aGassiz, 1838
Type species: Squalus auriculatus blainVille, 1818 non aGassiz, 1835 [1843],
type by subsequent designation.
Otodus (Megaselachus) chubutensis (ameghino, 1901)
(Figs 5.6a, 5.6b)
* 1901 Cacharodon chubutensis n. sp. – ameGhino: 83.
1927 Carcharodon megalodon var. chubutensisleriche: 80 – 81; pl. 12 –13, gs 1– 3.
1968 Carcharodon megalodon megalodonschultz: 83 – 84; pl. 3, gs 50, 51.
1968 Carcharodon megalodon chubutensisschultz: 84 – 85; pl. 2, gs 39, 40.
1971 Carcharodon megalodon chubutensisBrzoBoHa & ScHultz: 730; pl. 4, g. 5.
1973 Carcharodon megalodon chubutensisBrzoBoHa & ScHultz: 664; pl. 2, g. 14.
1975 Procarcharodon megalodon chubutensisBrzoBoHatý et al.: 462.
1991 Procarcharodon megalodonbarthelt et al.: 202; pl. 2, gs 9 –10.
1995 Procarcharodon chubutensisholec et al.: 44 – 45; pl. 14, g. 3, pl. 15, gs 1, 2.
2012 Otodus (Megaselachus) chubutensiscaPPetta: 227.
M a t e ri al : single tooth (P 00367 Haus der Natur, Salzburg, Figs 5.6a – b).
Additional material: 4 teeth collection
Güthner, 24 teeth collection danninGer
and hiermann (Supplement Table 2).
D e s c ri pt i o n : Several teeth of Otodus are documented from Allerding especially
from private collectors (Table S2, Fig. 5.6). The teeth can reach 100 mm in height and
display typical characters such as a triangular serrated crown. A detailed analysis of
the collections by danninGer, hiermann, and Güthner regarding the presence or
absence of cusplets (24 teeth in total) resulted in 13 teeth (54.2 %) with cusplets, seven
teeth without cusplets (29.2 %), and four teeth (16.6 %) which conditions prevented
collecting data. (Table S2). The size of teeth with cusplets ranges from 55 mm to 100 mm,
teeth without cusplets are 60 mm to 95 mm. Therefore an ontogenetic heterodonty as
described for O. megalodon (Pimiento et al. 2010), can be excluded. A dignathic hetero-
donty can be excluded as well, as upper (Supplement Table 2: Figs 2, 5, 9, 12, 15) and
lower jaw teeth (Supplement Table 2: Figs 1, 14) show or do not show cusplets. A dis-
junct heterodonty can further not be taken into account, as anterior (Supplement Table 2:
Fig. 1) as well as posterior teeth (Supplement Table 2: Fig. 5) show cusplets.
Remarks: schultz (1968) described both putative Otodus species, O. (Megasela-
chus) chubutensis and O. (Megaselachus) megalodon from Plesching (Upper Austria,
Ottnangian, Molasse Basin), as well as teeth with lateral cusplets from the putative (sub-)
species O. chubutensis. Teeth without cusplets were assigned to O. megalodon. This
view was later shared by several authors such as BrzoBoHa & ScHultz (1971, 1973),
BrzoBoHa et al. (1975), whereas holec et al. (1995) already discussed the possi-
bility that the lower Miocene O. (Megaselachus) chubutensis may be the direct ances-
tor of O. (Megaselachus) megalodon. caPPetta (2012) notes that O. (Megaselachus)
112 Annalen des Naturhistorischen Museums in Wien, Serie A, 122
PollersPöck et al.: Elasmobranchs from the Burdigalian of Upper Austria 113
chubutensis specimens with or without cusplets exist. This suggestion is shared by
bracher et al. (2019), which report that 60 % of teeth collected at the deposits in the
lower Miocene deposits Rengetsweiler and Ursendorf show well-developed lateral cus-
plets. Remaining 30 % do not have cusplets and 10 % were in poor condition. The strati-
graphic distribution of O. (Megaselachus) chubutensis ranges from the early to middle
Miocene, while O. (Megaselachus) megalodon ranges from the middle Miocene to the
Pliocene (Pimiento et al. 2010, 2013). Sexual dimorphism as explanation for the occur-
rence of teeth with and without cusplets seems unlikely when reviewing the morpholog-
ical changes in Otodus teeth over time showing a shift from teeth exclusively showing
cusplets to absence of those (Oligocene to Pliocene).
caPPetta (2012) suggests the existence of different populations with different pheno-
types, i. e., populations differing in the presence or absence of cusplets. Regarding the
fact that cusplets seem to disappear in younger fossils (caPPetta 2012), this hypothesis
seems more likely compared to sexual dimorphism. Migration of individuals carrying a
dominant character, i. e., no cusplets, may have gradually replaced the recessive pheno-
type with cusplets. A migration between different geographically distant populations
would have been possible, as connections to the Mediterranean as well as Atlantic Ocean
existed (röGl 1998) and large-scale migration is widely documented in the extant top
predator Carcharodon carcharias (bonfil et al. 2005; wenG et al. 2007; domeier &
nasby-lucas 2008; JorGensen et al. 2010; del raye et al. 2013), which may have
formed a similar ecological niche as O. (Megaselachus) chubutensis (Pimiento et al.
2010; ferrón 2017).
Neoselachii incertae sedis
Genus Nanocetorhinus underwood & schlöGl, 2013
Type species: Nanocetorhinus tuberculatus underwood & schlöGl, 2013, type by
monotypy.
Fig. 5: 1: Mitsukurina lineata (Probst, 1879) (NHMW 2018/0309/0029; upper tooth; a: lin-
gual view, b: prole view, c: labial view); 2: Odontaspis molassica Probst, 1879 (NHMW
2018/0309/0031; lower tooth; a: lingual view, b: labial view); 3: Odontaspis molassica Probst,
1879 (SMNS 96995-1; lower tooth; a: lingual view, b: prole view, c: labial view; Walbertswei-
ler, Ottnangian, ex. coll. Elmar unGer); 4: Odontaspis molassica Probst, 1879 (SMNS 96995-
2; lower tooth; a: lingual view, b: prole view, c: labial view; Walbertsweiler, Ottnangian, ex.
coll. Elmar unGer); 5: Odontaspis molassica Probst, 1879 (SMNS 96995-3; upper tooth; a:
lingual view, b: prole view, c: labial view; Walbertsweiler, Ottnangian, ex. coll. Elmar unGer).
6: Otodus (Megaselachus) chubutensis (ameGhino, 1901) (P 00367; Haus der Natur Salzburg; a:
lingual view, b: labial view).
114 Annalen des Naturhistorischen Museums in Wien, Serie A, 122
Nanocetorhinus tuberculatus underwood & schlögl, 2013
(Fig. 6.1)
1995 Cetorhinus sp. – bolliGer et al.: pl. 2, g. 7.
2005 Elasmobranch dermal denticle or possible tooth, Form I – Johns et al.: 39; g. 37.
* 2013 Nanocetorhinus tuberculatusunderwood & schlöGl: 502 – 504; gs 9 A – H.
2017 Nanocetorhinus tuberculatusPollersPöck & straube: 42 – 43; g. 11 no. 7– 9.
2018 Nanocetorhinus tuberculatusPollersPöck et al.: name only (suppl. tab. 1).
M a t e ri al : single tooth, (NHMW 2018/0309/0032, Fig. 6.1)
S i z e : Height: 1.45 mm; Width: 0.6 mm.
D e s c ri pt i o n : Fig. 6.1 shows a characteristic tooth of that species in labial view with
its distinct ornamentation. The dental enamel is strongly structured without any recog-
nizable patterns. Enameloid folds are absent. Contrasting, the lingual side is smooth. The
basis of the crown is circular in cross-section, the crown is upright and slender. The root
consists of two lobes and does not show a foramen labially.
R e m a rk s: After the species was rst described from the central Paratethys (Slovakia,
Latest Burdigalian (Karpatian)) in underwood & schlöGl (2013), we report this species
from another locality in Austria. This suggests that the species was both geographically
(Switzerland, Austria, Germany and Slovakia) as well as stratigraphically at least from
the Egerian (PollersPöck et al. 2018), during the Ottnangian (PollersPöck & straube
2017; bracher et al. 2019, this study) to the Karpatian (underwood & schlöGl 2013)
widespread.
Order Rajiformes berG, 1940
Family Rajidae blainVille, 1816
Genus Raja linné, 1758
Type species: Raja miraletus linné, 1758, type by subsequent designation.
Raja gentili Joleaud, 1912
(Figs 6.2a, 6.2b)
* 1912 Raja gentiliJoleaud: pl. 8, gs 37– 44, non gs 45 – 46.
1930 Raja gentilifischli: 157; g. 4.
1970 Raja gentilicaPPetta: 84 – 85; pl. 20, gs 28 – 32.
2001 Raja gentiliward & bonaVia: 143; pl. 2, gs f, g.
2007 Raja cf. gentilibracher & unGer: 147–149; pl. 53.
2009 Raja gentilibrisswalter: 44; pl. 9, g. 3.
2011 Raja gentiliVialle et al.: 252; gs 4-3, 4-4.
2012 Raja gentilicaPPetta: 360.
2017 Raja gentiliPollersPöck & straube: 44; g. 12 no. 1– 5.
M a t e ri al : 5 teeth (female/male morphotyps, NHMW 2018/0309/0033, Figs 6.2a – b;
NHMW 2018/0309/0034),
PollersPöck et al.: Elasmobranchs from the Burdigalian of Upper Austria 115
S i z e (only Fig.): NHMW 2018/0309/0033: Height: 1.25 mm; Width: 1.8 mm (Fig. 6.2).
D e s c ri pt i o n : Figs 6.2a and 6.2b shows a female morphotype (feduccia & slauGh-
ter 1974; herman et al. 1995; castillo-Géniz et al. 2007) characterized by smooth
dental enameloid, a low crown, which chewing area is separated into a labial and a lingual
side by a distinct transverse crest. The wide root, which often projects beyond the crown,
is separated into two root lobes by a deep nutritive groove showing a central foramen.
R e m a rk s: This species, along with other rajids is an example for a sexual dental
dimorphism (PollersPöck & straube 2017). Male dental morphotypes show in con-
trast to the female morphotype described above pointed erect crowns (feduccia &
slauGhter 1974; herman et al. 1995; castillo-Géniz et al. 2007).
Rajidae sp. indet.
(Fig. 6.3)
M a t e ri al : single tooth (NHMW 2018/0309/0035, Fig. 6.3).
S i z e : Width: 0.5 mm.
D e s c ri pt i o n : This single tooth fossil displays an almost oval chewing area without
any structuring. Its edge appears bent downward. The crown is low, a cusp is not devel-
oped. A transverse keel and an apron is lacking. The root shows two distinct foramina, it
is not projecting beyond the crown.
R e m a rk s: This single tooth does not allow a further more detailed identication.
Comparing with herman et al. (1994, 1995, 1996), we can only preliminary assign the
tooth to Rajidae. This is based on lacking a median lingual ridge in the lingual face of the
crown, the smooth crown with absence of any ornamentation, the absence of a transverse
crest and the form of the bilobed root.
Order Myliobatiformes comPaGno, 1973
Family Aetobatidae aGassiz, 1858
Genus Aetobatus blainVille, 1816
Type species: Raja aquila linné, 1758, type by subsequent designation
Aetobatus arcuatus agassiz, 1843
(Fig. 6.4)
* 1843 Aetobatis arcuatusaGassiz: 327– 328.
1877 Aetobates arcuatusProbst: 84; pl. 1, g. 28.
1930 Aetobates arcuatusfischli: 160; pl. 5, g. 9.
1968 Aetobatis arcuatusschultz: 91; pl. 4, g. 82.
1971 Aetobatis arcuatusschultz: 332 – 333; pl. 4, g. 24.
1991 Aetobatus arcuatusbarthelt et al.: 206. [name only]
1995 Aetobatus arcuatushiden: 73 – 74; pl. 7, gs 3, 9.
116 Annalen des Naturhistorischen Museums in Wien, Serie A, 122
2003 Aetobatus arcuatus – schultz: 187.
2007 Aetobatus arcuatusbracher & unGer: 167– 168; pl. 62.
2010 Aetobatus arcuatusschultz et al.: 495; pl. 3, g. 4.
2012 Aetobatus arcuatuscaPPetta: 445.
2013 Aetobatus arcuatusschultz: 106 –109; pl. 11, gs 9 –13.
2016 Aetobatus arcuatussach: 105. [name only]
M a t e ri al : single teeth (part of the dental plate), ex. collection danninGer (NHMW
2018/0309/0036, Fig. 6.4).
S i z e : Width: +16.8 mm.
D e s c ri pt i o n : The studied fossil (Fig. 6.4) is a piece of the lower dental plate of
Aetobatus arcuatus. The crown is low, the occlusal face of the crown is smooth and
shows several furrows. The polyaulacorhize and lingually bent root is long and shows
numerous parallel grooves.
Remarks: aGassiz (1858) described the family Aëtobatinae for the genus Aetobatis.
This family was changed to Aetobatinae in Gill (1865b). Poey (1868) assigned the
genus to the Myliobatidae and Aetobatinae were discarded. Recent molecular and mor-
phological analyses of Eagle Rays resulted in the resurrection of the family Aetobatidae
(white & naylor 2016). Today, this family comprises a single genus and ve species
(PollersPöck & straube 2019).
Characteristic for these dental plates are the chewing areas, which are touching each
other in a right angle at the middle of the chewing areas and a lingually weakly devel-
oped root area, which is marked by several parallel ridges and grooves. A. arcuatus is
only documented by few fossils and is hitherto the only evidence of large-toothed rays
at Allerding.
Family Dasyatidae Jordan & Gilbert, 1879
Genus Dasyatis rafinesQue, 1810
Type species: Dasyatis ujo rafinesQue, 1810, type by monotypy.
Dasyatis rugosa (Probst, 1877)
(Fig. 6.5)
* 1877 Raja rugosa n. sp. – Probst: 76; pl. 1, gs 5 – 7, ?8, ?9.
1970 Dasyatis rugosacaPPetta: 95 – 97; pl. 21, gs 1–14.
1991 Dasyatis rugosabarthelt et al.: 205; pl. 4, gs 5 – 8.
1995 Dasyatis rugosahiden: 71; pl. 6, gs 2 – 4.
2003 Dasyatis cf. rugosaschultz: 187. [name only]
2007 Dasyatis rugosabracher & unGer: 155; pl. 57.
2012 Dasyatis rugosacaPPetta: 417; g. 408.
2013 Dasyatis cf. rugosaschultz: 102.
2014 Dasyatis rugosaPollersPöck & beaury: 32; pl. 2, g. 8.
2015 Dasyatis cf. rugosareinecke: 20 – 21; g. 12.
PollersPöck et al.: Elasmobranchs from the Burdigalian of Upper Austria 117
M a t e ri al : 5 teeth, (NHMW 2018/0309/0037, Fig. 6.5, NHMW 2018/0309/0038).
Size (only Fig.): Width: 1.7 mm (Fig. 6.5).
D e s c ri pt i o n : All collected teeth are in bad condition and only fragmentarily pre-
served. The tooth shown in Fig. 6.5, however, displays all characters necessary to iden-
tify the species and further allows to identify the female type morphology. The at
labial crown area is heavily ornamented and marked by deep grooves and sharp ridges.
Contrasting, the lingual area is lacking any ornamentation. The root is not completely
preserved.
Fig. 6. 1: Nanocetorhinus tuberculatus underwood & schlöGl, 2013 (NHMW 2018/0309/0032;
labial view); 2: Raja gentili Joleaud, 1912 (NHMW 2018/0309/0033; female morphotyp; a:
lingual view, b: labial view); 3: Rajidae indet. (NHMW 2018/0309/0035; lingual view); 4:
Aetobatus arcuatus aGassiz, 1843 (NHMW 2018/0309/0036; lower tooth plate; lingual view);
5: Dasyatis rugosa (Probst, 1877) (NHMW 2018/0309/0037; female morphotyp; lingual view);
6: “scyliorhinid/pentanchid” denticle (NHMW 2018/0309/0039).
118 Annalen des Naturhistorischen Museums in Wien, Serie A, 122
Remarks: D. rugosa is a common and frequently collected species of stingray from
the Ottnangian sediments of the Paratethys (Probst 1877; bracher & unGer 2007).
The species is reported from the Chattian for the rst time and is then documented until
the Serravallian (reinecke 2015).
Dermal Denticles
M a t e ri al : 15 denticles (NHMW 2018/0309/0039, Fig. 6.6, NHMW 2018/0309/0040)
D e s c ri pt i o n : Only few fossilized dermal denticles were collected. The majority can
be assigned to the scyliorhinid type described in PollersPöck & straube (2017), i. e.,
smooth elongated denticles with three to ve parallel ridges and a typical bowl-like
shape at the basis as in extant scyliorhinid sharks (PollersPöck & straube 2017).
Distribution of the recorded squaliform sharks
Resulting from an extensive literature research, 108 studies were found (Supplement
Table 1) comprising 210 records containing records of the genera Centrophorus (73
records), Deania (24 records), Etmopterus (25 records), Isistius (72 records), and
Squaliolus (16 records) (Table 2). The majority of records stems from the Miocene
Fig. 7. Palaeogeographic distribution of the squaliform genus Etmopterus.
PollersPöck et al.: Elasmobranchs from the Burdigalian of Upper Austria 119
Table 2. Number of records and distribution of the following squaliform sharks genera: Centrophorus, Deania, Isistius, Squaliolus, and
Etmopterus.
Genus Continent Country
Epoch/number of records
Cretaceous Paleocene Eocene Oligocene Miocene Pliocene Pleistocene
Centrophorus
Antarctica Antarctica 2
Asia Japan 3
Australia New Zealand 1 2 1 2 2 1
Europa Belgium 1 1
Denmark 1
Austria 1 2
Switzerland 4
Czech Republic 1 1
Hungary 1
Germany 1 1 6
France 2 5 1
Italy 9 3
Spain 1
Central America Antilles 3
Panama 2
North America Britsh Columbia 1
California 1 1
Mexico 1
South America Chile 1
Colombia 1
Ecuador 1 1
Venezuela 3 1
120 Annalen des Naturhistorischen Museums in Wien, Serie A, 122
Genus Continent Country
Epoch/number of records
Cretaceous Paleocene Eocene Oligocene Miocene Pliocene Pleistocene
Deania
Antarctica Antarctica 1
Asia Japan 2
Europa Austria 3
Switzerland 1
Germany 2 (?) 1
France 1 2 1
Italy 3 1
Portugal 1
Spain 1
Central America Antilles 1
South America Argentina 1
Venezuela 1 1
Etmopterus
Asia Japan 5
Europa Netherland 1
Austria 4
Switzerland 1
Slovakia 1
Germany 2
France 1 2
Italy 2 1
Centralamerica Antilles 2
Southamerica Argentina 1
Venezuela 1 1
PollersPöck et al.: Elasmobranchs from the Burdigalian of Upper Austria 121
Genus Continent Country
Epoch/number of records
Cretaceous Paleocene Eocene Oligocene Miocene Pliocene Pleistocene
Isistius
Africa Algeria, Tunesia 1 1
Marocco 2 1
Asia Japan 1
Uzbekistan 1
Europa Netherland 2
Belgium 7 1
Denmark 1
Austria 2
Switzerland 4
Hungary 1
Slovakia 1
Germany 1 3 4
France 4 6
Portugal 4
Spain 1
United Kingdom 4
Central America Antilles 2
Cotsa Rica 2 1
Panama 1
North America California 1
Florida 1
Maryland 1
Mexico 1
North Carolina 2
Virginia 2
South America Ecuador 2 1
Venezuela 1 1
122 Annalen des Naturhistorischen Museums in Wien, Serie A, 122
Genus Continent Country
Epoch/number of records
Cretaceous Paleocene Eocene Oligocene Miocene Pliocene Pleistocene
Squaliolus
Asia Japan 1
Europa Austria 1 2
Switzerland 1
Slovakia 1
Germany 1
France 1 3
Spain 1
Central America Antilles 2 2
Total: 311 40 13 105 30 6
PollersPöck et al.: Elasmobranchs from the Burdigalian of Upper Austria 123
Fig. 8. Palaeogeographic distribution of the squaliform genera Isistius and Squaliolus.
124 Annalen des Naturhistorischen Museums in Wien, Serie A, 122
Fig. 9. Palaeogeographic distribution of the squaliform genera Centrophorus and Deania.
PollersPöck et al.: Elasmobranchs from the Burdigalian of Upper Austria 125
(5.33 – 23.03 myr, 105 records), followed by Eocene (33.9 – 56.0 myr, 40 records) and
Pliocene records (2.58 – 5.33 myr, 30 records). Only ve Cretaceous records (66.0 –145.0
myr) were found. In total 2218 articles dealing with Cretaceous to Holocene Elasmo-
branch diversities were analysed. The major part of records is reported from Europe
(Figs 7– 9) (131 records = 62.4 %), followed by South-America (19 records = 9.1 %),
Central-America (18 records = 8.6 %), and North-America (12 records = 5.7 %). The
oldest records are from genera Centrophorus (2 records, Cretaceous), Deania (2 records,
Cretaceous), and Etmopterus (1 record, Cretaceous). The genera Etmopterus and Isistius
are reported from the Palaeocene (56.0 – 66.0 myr) for the rst time.
Discussion
Palaeodiversity
Our ndings increase the diversity reported from Allerding by 25 species. The coastal
fauna discussed in schultz (1971) comprised only seven species and was expanded
herein with multiple taxa, which extant representatives are associated with the deep-
sea, as e. g., Chlamydoselachus, Etmopterus, Centrophorus, Deania, Isistius, Apristurus,
Odontaspis, Mitsukurina, or Pristiophorus. Further typical Ottnangian taxa of the North-
ern Alpine Molasse are documented (e. g., G. aduncus, Rhizoprionodon sp., H. serra).
Large-toothed coastal shark and ray species were exclusively found in the horizontal
transgression, which is marked in Allerding by macrofossil sediments in between the
globular granite. Deep-water representatives were collected from clayey marls, over-
laying the horizontal transgression, which indicates that the seabed has dropped signi-
cantly and rapidly (ruPP et al. 2011), the water depth has increased, and large amounts
of ne sediments were deposited.
The documented diversity largely overlaps in species composition with the geographi-
cally nearby Neuhofener Beds (PollersPöck & straube 2017).
Origin of the recorded squaliform sharks
All Cretaceous fossils of squaliform sharks are documented from the Upper Cretaceous,
i. e., the Campanian and Maastrichtian. None of the ve genera were reported from the
Lower Cretaceous. The occurrence of the genus Deania in the Lower Cretaceous is still
under debate (thies & müller 1993; adnet & caPPetta 2001; caPPetta 2012).
Centrophorus is documented from the Maastrichtian of New Zealand (keyes 1984),
which is considered valid in caPPetta (2012) and adnet & caPPetta (2001). hessin et
al. 2007 report on another fossil from the late Campanian to early Maastrichtian (North-
umberland Formation, Upper Cretaceous) on Hornby Island, British Columbia, Canada.
Older fossil evidence for Centrophoridae are unknown as of today indicating a splitting
of genera Deania and Centrophorus before the late Campanian.
126 Annalen des Naturhistorischen Museums in Wien, Serie A, 122
This is in accordance with results from adnet & caPPetta (2001), straube et al.
(2015) and flammensbeck et al. (2018), who estimated that the divergence happened in
the Upper Cretaceous.
Isistius is documented for the rst time from the Paleocene of Northern Africa, Germany
and California (Table 2, Supplement Table 1). Which of the records represents the oldest
record cannot be identied. Records from Northern Africa and Germany are assigned
to the Thanetian (Upper Paleocene), the Californian record is assigned to the Ynezian,
which comprises the Upper-Middle Paleocene (Thanetian/Selandian). The oldest fos-
sils of the phylogenetically close genus Dalatias (straube et al. 2015) are documented
from the Danian of New Zealand (mannerinG & hiller 2008), as well as the Danian of
Turkmenistan (Glikman 1964). The species Somniosus crenulatus (arambourG 1952)
from the Thanetian was later assigned to a genus morphologically close to Dalatias by
caPPetta (2012), which was also documented from Jordania (caPPetta 2012). Both the
record from New Zealand and Turkemnistan constitute crown tips, which do not allow
for a denite allocation to the genus Dalatias. Therefore, the oldest fossil evidence for
the Isistius/Dalatias-clade comes from the Thanetian. Latest studies estimating diver-
gence times from molecular data (straube et al. 2015) and a combination of fossil
morphological and molecular data (flammensbeck et al. 2018) suggest an Upper Cre-
taceous origin of the clade. The discrepancy of the fossil record and the divergence time
estimations may indicate a large fossil gap.
Van der bruGGhen et al. (1993) describe a shark and ray fauna from the Maastrichtian,
where the authors depict a tooth fossil identied as Etmopterus sp. carrying numerous
characters of Etmopterus lower jaw teeth. This supports the hypothesis that Etmopterus
split from the Trigonognathus/Centroscyllium/Aculeola-clade in the Upper Cretaceous.
Both straube et al. (2015) and flammensbeck et al. (2018) estimate the divergence
time to the Campanian.
The two oldest fossil records of Squaliolus were collected from Eocene deposits (Table
2, Supplement Table 1). adnet & caPPetta (2001) suggest a split from Euprotomicrus
already in the Eocene, while flammensbeck et al. (2018) estimate this divergence to the
Maastrichtian.
Based on our literature research, we cannot detect a clear geographic origin of squali-
form genera. Especially the fossil record of the Centrophoridae disagrees with recent
assumptions to its geographic origin. While adnet et al. (2008), kriwet & kluG (2009)
and maisey (2012) suggest a central or northern Tethys origin of all squaliform families,
including Centrophoridae, respectively, the oldest records of the family (genus Centro-
phorus) are documented from the North American Pacic coast as well as New Zealand
(Fig. 7; hessin et al. 2007; keyes 1984). We therefore suggest a more detailed analysis
of the geography of fossil ndings of squaliformes from their estimated time of origin,
i. e., fossils from the Cretaceous and Paleocene, to track geographic origins of taxa (work
in progress).
PollersPöck et al.: Elasmobranchs from the Burdigalian of Upper Austria 127
Acknowledgements
We would like to express our sincere thanks to the following persons for the help and support:
Stefan hiermann, Wolfgang danninGer, Dietmar stadlhuber, and Elmar unGer for providing
comparison material, Kurt kowald for his help during the eld work, Dr. Anna bieniok, curator
geoscience from the museum “Haus der Natur” Salzburg, for making images of Otodus (Megas-
elachus) chubutensis. Our special thanks go to the manager of the company Schärdinger Granit
Werke AG, Mr. Harald huemer, as well as the shot rer Rainer schauberGer for the permission
to carry out the necessary excavation and the logistical support. Thomas reinecke for useful
comments and the images of the Probst types and Roland melzer, Tobias lehmann, and Enriko
schwabe (Bavarian State Collection of Zoology, ZSM) for the kind support at the SEM facility
at the ZSM, and the two reviewers Carlos martinez-Perez and Ortwin schultz for their con-
structive criticism.
References
adnet, s. (2006): Nouvelles faunes de sélaciens (Elasmobranchii, Neoselachii) de l’Éocène des
Landes (Sud-Ouest, France). – Implication dans les connaissances des communautés d’eaux
profondes. Palaeo Ichthyologica, 10: 1–128.
adnet, s. & caPPetta, h. (2001): A paleontological and phylogenetical analysis of squaliform
sharks (Chondrichthyes: Squaliformes) based on dental characters. – Lethaia, 34: 234 – 248.
adnet, s., caPPetta, h. & mertiniene, r.a. (2008): Re-evaluation of squaloid shark records
from the Albian and Cenomanian of Lithuania. – Cretaceous Research, 29: 711– 722. https://
doi.org/10.1016/j.cretres.2008.01.014
adnet, s., caPPetta, h. & nakaya, k. (2006): Dentition of etmopterid shark Miroscyllium
(Squaliformes) with comments on the fossil record of lanternsharks. – Cybium, 30: 305 – 312.
adnet, s., caPPetta, h. & reynders, J. (2008): Contribution of Eocene sharks and rays from
southern France to the history of deep-sea selachians. – Acta Geologica Polonica, 58:
257– 260.
aGassiz, l. (1835 –1843): Recherches sur les poissons fossiles. Volume 3. – 1– 390: Atlas,
pp. 1– 34, pls 1– 83, pp., Neuchatel (Petitpierre).
aGassiz, l. (1858): [A new species of skate from the Sandwich Islands]. – Proceedings of the
Boston Society of Natural History, 6 (1856 –1859): 385.
aGuilera, o.a. & de aGuilera, d.r. (2001): An exceptional coastal upwelling sh assem-
blage in the Caribbean Neogene. – Journal of Paleontology, 75: 732 – 742. https://doi.
org/10.1666/0022-3360(2001)075<0732: AECUFA>2.0.CO;2
ameGhino, f. (1901): L’âge des formations sédimentaires de Patagonie. – Anales de la Sociedad
Cientíca Argentina, 51: 20 – 39, 65 – 91.
antunes, m.t. & Jonet, s. (1970): Requins de l’Helvétien supérieur et du Tortonien de Lis-
bonne. – Revista da Faculdade de Ciências de Lisboa, 16: 119 – 280.
antunes, m.t., Jonet, s. & nascimento, a. (1981): Vertébrés (crocodiliens, poissons) du
Miocène marin de l’Argarve occidentale. – Ciências da Terra (UNL), 6: 9 – 38.
arambourG, c. (1952): Les vertébrés fossiles des gisements de phosphates (Maroc-Algérie-
Tunisie). – Notes et Mémoires du Service Géologique du Maroc, 92: 1– 372.
128 Annalen des Naturhistorischen Museums in Wien, Serie A, 122
baier, J., schmitt, k.-h. & mick, r. (2004): Notizen zur untermiozänen Hai- und Rochenfauna
der Erminger Turritellenplatte (Mittlere Schwäbische Alb, SW-Deutschland). – Jahres-
berichte und Mitteilungen des Oberrheinischen Geologischen Vereins, N. F., 86: 361– 371.
barthelt, d., feJfar, o., Pfeil, f.h. & unGer, e. (1991): Notizen zu einem Prol der Sela-
chier-Fundstelle Walbertsweiler im Bereich der miozänen Oberen Meeresmolasse Süd-
deutschlands. – Münchner Geowissenschaftliche Abhandlungen Reihe A: Geologie und
Paläontologie, 19: 195 – 208.
berG, l.s. (1937): A classication of sh-like vertebrates. – Bulletin de l’Académie des Sciences
de l’URSS, 4, 1937: 1277–1280.
berG, l.s. (1940): [Classication of shes, both recent and fossil]. Trudy Zoologicheskogo
Instituta. Akademiia Nauk SSSR, 5: 87– 345. [in Russian]
bernárdez, e. (1997): Selachian Biostratigraphy of the Salamanca Formation (Palaeogene,
Patagonia, Argentina); Preliminary Report. – In: danGlade, G., Gutierrez, m. & santos,
f. (eds): XIII Jornadas de Paleontología. Libro de Resúmenes y Excursiones. – pp. 156 –159,
Madrid (Sociedad Española de Paleontología).
bitner, a.m. & schneider, s. (2009): The Late Burdigalian (Ottnangian) brachiopod fauna
from the northern coast of the Upper Marine Molasse Sea in Bavaria, Southern Germany. –
Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen, 254: 117–133. https://doi.
org/10.1127/0077-7749/2009/0006
blainVille, h.m.d. (1816): Prodrome d’une nouvelle distribution sytématique du règne
animal. – Bulletin des Sciences, par la Société Philomatique de Paris, 8: 105 –124.
blainVille, h.m.d. (1818): Sur les ichthyolites ou les poissons fossiles. – Nouveau Dictionnaire
d’Histoire Naturelle, 27: 310 – 391.
bleeker, P. (1859): Enumeratio specierum piscium hucusque in Archipelago indico observa-
tarum. – Acta Societatis scientiarum Indo-Neerlandae, 6: 1– 276.
bloch, m.e. & schneider, J.G. (1801): M.E. Blochii Systema Ichthyologiae iconibus ex illustra-
tum. – Post obitum auctoris opus inchoatum absolvit, correxit, interpolavit J.G. schneider. –
584 pp., Berlin (Sumtibus Austoris Impressum et Bibliopolio Sanderiano Commissum)
bolliGer, t., kindlimann, r. & weGmüller, u. (1995): Die marinen Sedimente (jüngere OMM,
St. Galler-Formation) am Südwestrand der Hörnlischüttung (Ostschweiz) und die palökol-
ogische Interpretation ihres Fossilinhaltes. – Eclogae Geologicae Helvetiae, 88: 885 – 909.
bonfil, r., mey, m., scholl, m.c., Johnson, r., obrien, s., oosthuizen, h., swanson, s.,
kotze, d. & Paterson, m. (2005): Transoceanic Migration, Spatial Dynamics, and Popula-
tion Linkages of White Sharks. – Science, 310: 100 –103.
bor, t.J. (1985): Elasmobranch teeth (Vertebrata, Pisces) from the Dongen Formation (Eocene)
in the Netherlands. – Mededelingen van de Werkgroep voor Tertiaire en Kwartaire Geo logie,
22: 73 –122.
bracher, h. & unGer, e. (2007): Untermiozäne Haie und Rochen. – 183 pp., Altheim (privately
published).
bracher, h., unGer, e., Jost J, lüdi, b. & PollersPöck, J. (2019): Haie und Rochen der
Molasse. – www.molasse-haie-rochen.de, World Wide Web electronic publication, Version
2019 [accessed 17-Apr-2019].
brauer, a. (1906): Die Tiefsee-Fische. I. Systematischer Teil. – In: chun, c. (ed.): Wissenschaft-
liche Ergebnisse der deutschen Tiefsee–Expedition „Valdivia, 1898 –1899“. pp. 1– 432,
Jena (Gustav fischer).
PollersPöck et al.: Elasmobranchs from the Burdigalian of Upper Austria 129
brisswalter, G. (2009): Inventaire des Elasmobranches (requins, raies, chimères) des dépôts
molassiques du Sud-Luberon (Miocène supérieur), à Cabrières d’Aigues (Vaucluse)
France. – Courriers scientiques du Parc Régional du Lubéron, Hors Série, 2009: 1–100.
BrzoBoHa, r. & KalaBiS, V. (1970): Die Fischzähne aus Pouzdřany (Pouzdřany-Schichten,
Oligozän). – Acta Musei Moraviae, 55: 41– 50.
BrzoBoHa, r. & schultz, O. (1971): Die Fischfauna der Eggenburger Schichtengruppe.
In: Steininger, F., SeneS, J., Báldi, t., BreStenSKá, e., BrzoBoHatý, r., cicHa, i., cty-
roKý, P., ctyroKá, J., daxner-HöcK, g., Kollmann, K., leHotayoVá, r., ondreJícKoá,
a., PaPP, a., PlanderoVá, e., schultz, o. & zaPletaloVá, i. (eds): M1 Eggenburgien.
Die Eggenburger Schichtengruppe und ihr Stratotypus. (Chronostratigraphie und Neostra-
totypen, Miozän der Zentralen Paratethys, 2). – pp. 719 – 759, Bratislava (Vydavateľstvo
Slovenská Akadémia Vied).
BrzoBoHa, r. & schultz, O. (1973): Die Fischfauna der Innviertler Schichtengruppe und der
Rzehakia Formation. – In: PaPP, a., röGl, f., senes, J. bachmann, a., baGdasarJan, G.P.,
BoHn-HaVaS, m., BrzoBoHatý, r., cicHa, i., ČtyroKý, P., ČtyroKá, i., gHeorgHian, m.,
hámor, G., hölzl, o., kantoroVá, V., kheil, J., knobloch, e., kókay, J., marinescu, f.,
nĕmeJc, F., ondreJíČKoVá, a., PlanderoVá, e., ScHlicKum, W.r., ScHultz, o., Steininger,
f., strauch, f., suraru, n., Vass, d. & zaPletaloVá, i. (eds): M2 Ottnangien. Die Innvi-
ertler, Salgótarjáner, Bántapusztaer Schichtengruppe und die Rzehakia Formation. (Chron-
ostratigraphie und Neostratotypen, Miozän der Zentralen Paratethys, 3). – pp. 652 – 693,
Bratislava (Vydavateľstvo Slovenská Akadémia Vied).
BrzoBoHa, r. & ScHultz, o. (1978): Die Fischfauna des Badeniens. – In: PaPP, a., cicha, i.,
senes, J. & steininGer, f. (eds): M4 Badenien (Moravien, Wielicien, Kosovien). (Chron-
ostratigraphie und Neostratotypen, Miozän der Zentralen Paratethys, 6). pp. 441– 465,
Bratislava (Vydavatel’stvo Slovenskej Akadémie Vied).
BrzoBoHa, r., KalaBiS, V. & ScHultz, o. (1975): Die Fischfauna des Egerien. – In: baldi, t.
& senes, J. (eds): OM Egerien. – Die Egerer, Pouzdraner, Puchkirchener Schichtengruppe
und die Bretkaer Formation. (Chronostratigraphie und Neostratotypen, Miozän der Zen-
tralen Paratethys, 5). – pp. 457– 477, Bratislava (Vydavateľstvo Slovenská Akadémia Vied).
caPPetta, h. (1970): Les Sélaciens du Miocène de la région de Montpellier. – Palaeovertebrata,
Mémoire extraordinaire, 1970: 1–139.
caPPetta, h. (2006): Elasmobranchii Post-Triadici (Index specierumet generum). – 142 pp.,
Leiden (Backhuys Publishers).
caPPetta, h. (2012): Handbook of Paleoichthyology, Vol. 3E: Chondrichthyes Mesozoic and
Cenozoic Elasmobranchii: Teeth. – 512 pp., Munich (Verlag Dr. Friedrich Pfeil).
caPPetta, h. & caVallo, o. (2006): Les sélaciens du Pliocène de la région d’Alba (Piémont,
Italie Nord-Ouest). – Rivista Piemontese di Storia Naturale, 27: 261– 304.
caPPetta, h. & nolf, d. (1991): Les sélaciens du Pliocène inférieur de Le-Puget-sur-Argens
(Sud-Est de la France). – Palaeontographica Abteilung A, 218: 49 – 67.
caPPetta, h., Granier, J. & ledoux, J.-c. (1967): Deux faunes de sélaciens du Miocène médi-
terranéen de France et leur signication bathymétrique. – Compte Rendu sommaire des
Société Géologique de France, 7: 292 – 293.
carlsen, a.w. & cuny, G. (2014): A study of the sharks and rays from the Lillebælt Clay
(Early–Middle Eocene) of Denmark, and their palaeoecology. – Bulletin of the Geological
Society of Denmark, 62: 39 – 88.
130 Annalen des Naturhistorischen Museums in Wien, Serie A, 122
carrillo-briceño, J.d., aGuilera, o.a. & rodriGuez, f. (2014): Fossil Chondrichthyes from
the central eastern Pacic Ocean and their paleoceanographic signicance. – Journal of
South American Earth Sciences, 51: 76 – 90. https://doi.org/10.1016/j.jsames.2014.01.001
carrillo-briceño, J.d., arGyriou, t., zaPata, V., kindlimann, r. & Jaramillo, c. (2016): A
new early Miocene (Aquitanian) Elasmobranchii assemblage from the La Guajira Peninsula,
Colombia. – Ameghiniana, 53: 77– 99. https://doi.org/10.5710/AMGH.26.10.2015.2931
carrillo-briceño, J.d., de Gracia, c., Pimiento, c., aGuilera, o.a., kindlimann, r.,
santamarina, P. & Jaramillo, c. (2015): A New Late Miocene Chondrichthyan Assem-
blage from the Chagres Formation, Panama. Journal of South American Earth Sciences,
60: 56 – 70. https://doi.org/10.1016/j.jsames.2015.02.001
carriol, r.-P. & schneider, s. (2008): A new Concavinae (Cirripedia, Chesaconcavus) from the
Late Burdigalian of Lower Bavaria (Germany). – Neues Jahrbuch für Geologie und Paläon-
tologie, Abhandlungen, 248: 345 – 354. https://doi.org/10.1127/0077-7749/2008/0248-0345
carriol, r-P. & schneider, s. (2016): New species of cirripedes (Calanticidae, Scalpellidae
and Archaeobalanidae) from the mid Burdigalian (Miocene) of the North Alpine Foreland
Basin. Annules de Paleontologie, 102: 41– 50. https://doi.org/10.1016/j.annpal.2016.01.002
case, G.r., udoVichenko, n.i., nessoV, l.a., aVerianoV, a.o. & borodin, P.d. (1996):
A Middle Eocene selachian fauna from the White Mountain Formation of the Kizylkum
Desert, Uzbekistan, C.I.S. – Palaeontographica Abteilung A, 242: 99 –126.
casier, e. (1946): La faune ichthyologique de l’Yprésien de la Belgique. – Mémoires du Musée
Royal d’Histoire Naturelle de Belgique, 104: 1– 267.
casier, e. (1958): Contribution à l’étude des poissons fossiles des Antilles. – Mémoires Suisses
de Paléontologie, 74: 1– 95.
casier, e. (1966): Sur la faune ichthyologique de la Formation de Bissex Hill et de la Série
océanique, de l’Ile de la Barbade, et sur l’âge de ces formations. – Eclogae Geologicae
Helvetiae, 59: 493 – 516.
casier, e. (1967): Poissons de l’Eocene inferieur de Katharinenhof-Fehmarn (Schleswig-
Holstein). – Bulletin de l’Institut Royal des Sciences Naturelles de Belgique, 43: 1– 23.
casier, e. & stinton, f.c. (1966): Faune ichthyologique du London Clay. – 496 pp., London
(Trustees of the British Museum).
castillo-Géniz, J.l., sosa-nishizaki, o. & Perez, J.c. (2007): Morphological variation and
sexual dimorphism in the California skate, Raja inornata Jordan and Gilbert, 1881 from
the Gulf of California, Mexico. – Zootaxa, 1545: 1–16.
ciGala-fulGosi, f. (1986): A deep water elasmobranch fauna from a lower Pliocene outcropping
(Northern Italy). – In: uyeno, t., arai, r., taniuchi, t. & matsuura, k. (eds): Proceedings
of the second international conference on Indo-Pacic shes. – pp. 133 –139, Tokyo (Ichthy-
ological Society of Japan).
ciGala-fulGosi, f., casati, s., orlandini, a. & Persico, d. (2009): A small fossil sh fauna,
rich in Chlamydoselachus teeth, from the Late Pliocene of Tuscany (Siena, central Italy). –
Cainozoic Research, 6: 3 – 23.
comPaGno, l.J.V. (1973): Interrelationships of living elasmobranchs. – Zoological Journal of the
Linnean Society, 53 (Supplement 1): 15 – 61.
comPaGno, l.J.V. (1977): Phyletic relationships of living sharks and rays. – American Zoologist,
17: 303 – 322.
PollersPöck et al.: Elasmobranchs from the Burdigalian of Upper Austria 131
comPaGno, l.J.V. & follett, w.i. (1986): Carcharias rafinesQue, 1810 (Chondrichthyes,
Lamniformes): Proposed Conservation by the Use of the Relative Precedence Procedure;
Z.N.(S) 2414. – Bulletin of Zoological Nomenclature, 43/1: 89 – 92.
cooPer, J. (1977): The palaeontology of the London Clay (Lower Eocene) of the Herne Bay
coastal section, Kent, England. – Proceedings of the Geological Association, 88: 163 –178.
cuVier, G.l.c.f.d. (1816): Le Règne Animal distribué d’après son organisation pour servir de
base à l’histoire naturelle des animaux et d’introduction à l’anatomie comparée. Les reptiles,
les poissons, les mollusques et les annélides. – 532 pp., Paris (Deterville).
daimeries, a. (1889): Notes ichthyologiques – V. – Annales de la Société royale malacologique
de Belgique, Bulletin des des Séances, 24: 39 – 44.
dames, w. (1883): Ueber Ancistrodon debey. – Zeitschrift der Deutschen Geologischen
Gesellschaft, 35: 655 – 670.
daxner-höck, G., miklas-temPfer, P.m., Göhlich, u.b., huttunen, k., kazár, e., naGel,
d., roessner, G.e., schultz, o. & zieGler, r. (2004): Marine and terrestrial vertebrates
from the Middle Miocene of Grund (Lower Austria). – Geologica Carpathica, 55: 191–197.
de buen, f. (1926): Catalogo ictiologico del Mediterraneo Español y de Marruecos, recopi-
lando lo publicado sobrepeces de las costas mediterraneas y proximas del Atlantico (Mar
de España). – Resultados de las ampaas Realizadas por Acuerdos Internacionales. Instituto
Español de Oceanograa, 2: 1– 221.
de schutter, P. & wiJnker, e. (2012): Large Centrophorus (Chondrichthyes, Squaliformes) of
the Belgian Neogene continental shelf. – Geologica Belgica, 15: 26 – 36.
de stefano, G. (1909): Osservazione sulle ittiofauna pliocenica di Orciano e San Quirico in
Toscana. – Bollettino della Società Geologica Italiana, 28: 539 – 648.
del raye, G., JorGensen, s.J., krumhansl, k., ezcurra, J.m. & block, b.a. (2013): Travelling
light: white sharks (Carcharodon carcharias) rely on body lipid stores to power ocean-ba-
sin scale migration. Proceedings of the Royal Society of London, Series B, 280/1766:
20130836. https://doi.org/10.1098/rspb.2013.0836
delPiani, G., fiGueroa, d.e. & mabraGaña, e. (2012): Dental abnormalities of the southern
thorny skate Amblyraja doellojura (Chondrichthyes, Rajidae). – Revista de Biología Marina
y Oceanografía, 47: 135 –140. https://doi.org/10.4067/S0718-19572012000100012
domeier, m.l. & nasby-lucas, n. (2008): Migration patterns of white sharks Carcharodon
carcharias tagged at Guadalupe Island, Mexico, and identication of an eastern Pacic
shared offshore foraging area. – Marine Ecology Progress Series, 370: 221– 237. https://doi.
org/10.3354/meps07628
dutheil, d.b. (1991): A checklist of Neoselachii (Pisces, Chondrichthyes) from the Palaeogene
of the Paris Basin, France. – Tertiary Research, 13: 27– 36.
ebert, d.a. (2016): Deep–sea cartilaginous shes of the southeastern Pacic Ocean. (FAO
Species Catalogue for Fishery Purposes, 10). – 241 pp., Rome (FAO).
ebert, d.a. & stehmann, m. (2013): Sharks, batoids, and chimaeras of the North Atlantic.
(FAO Species Catalogue for Fishery Purposes, 7). – 523 pp., Rome (FAO).
enGelbrecht, a., mörs, t., reGuero, m.a. & kriwet, J. (2017): Eocene squalomorph sharks
(Chondrichthyes, Elasmobranchii) from Antarctica. – Journal of South American Earth
Sciences, 78: 175 –189. https://doi.org/10.1016/j.jsames.2017.07.006
feduccia, A. & slauGhter, B.H. (1974): Sexual dimorphism in skates (Rajidae) and its possible
role in diffferential niche utilization. – Evolution, 28: 164 –168.
132 Annalen des Naturhistorischen Museums in Wien, Serie A, 122
ferrón, h.G. (2017): Regional endothermy as a trigger for gigantism in some extinct macro-
predatory sharks. – PLoS ONE, 12: e0185185. https://doi.org/10.1371/journal.pone.0185185
fischli, h. (1930): Die Fossilien der Quarzsande von Benken (Kt. Zürich). – Mitteilungen der
naturwissenschaftlichen Gesellschaft Winterthur, 17/18: 131–167.
flammanG, b.e., ebert, d.a. & cailliet, G.m. (2007): Egg cases of the genus Apristurus
(Chondrichthyes: Scyliorhinidae): Phylogenetic and ecological implications. – Zoology,
110: 308 – 317. https://doi.org/10.1016/j.zool.2007.03.001
flammensbeck, c., PollersPöck, J., schedel, f., matzke, n.J. & straube, n. (2018): Of teeth
and trees: A fossil tip-dating approach to infer divergence times of extinct and extant squali-
form sharks. – Zoologica Scripta, 47/5: 539 – 557. https://doi.org/10.1111/zsc.12299
fowler, h.w. (1941): Contributions to the biology of the Philippine archipelago and adjacent
regions. The shes of the groups Elasmocephalii, Holocephali, Isospondyli, and Ostario-
physi obtained by the United States Fisheries Steamer “Albatross” in 1907 to 1910, chiey
in the Philippine islands and adjacent seas. – Bulletin of the United States National Museum,
100: 1– 879.
frielinG, d., PiPPèrr, m., schneider, s. & reichenbacher, b. (2009): Sedimentology and stra-
tigraphy at the rocky coast of the upper Burdigalian Molasse Sea: a case study from Gurlarn
near Passau (SE Germany). – Facies, 55: 47– 62. https://doi.org/10.1007/s10347-008-0161-5
Garman, s. (1884): An extraordinary shark. – Bulletin of the Essex Institute, 16: 47– 55.
Garman, s. (1913): The Plagiostomia (Sharks, Skates and Rays). – Memoirs of the Museum of
Comparative Zoology at Harvard College, 36: 1– 528.
Gill, t. (1862): Analytical synopsis of the Order of Squali and revision of the nomenclature of
the genera. – Annals of the Lyceum of Natural History of New York, 7: 367– 408.
Gill, t. (1865a): Synopsis of the eastern American sharks. Proceedings of the Academy of
Natural Sciences of Philadelphia, 16: 258 – 265.
Gill, t. (1865b): Note on the family of myliobatoids, and on a new species of Aetobatis. – Annals
of the Lyceum of Natural History of New York, 8: 135 –138.
Glikman, l.s. (1964): [Sharks of Paleogene and their stratigraphic signicance]. – 229 pp.,
Moscou (Nauka Press). [in Russian]
González-barba, G. & thies, d. (2000): Asociaciones faunisticas de condrictios en el Cenozo-
ico de la Peninsula de Baja California, Mexico. – Prol, 18: 1– 4.
Goto, m. & the JaPanese club for fossil shark tooth research (2004): Tooth remains
of chlamydoselachian sharks from Japan and their phylogeny and paleoecology. – Earth
Science (Chikyu Kagaku), 58: 361– 374.
Graf, h.r., Jost, J., eberhard, m., kruysse, h. & kemPf, o. (2012): Geologischer Atlas
der Schweiz, 1: 25.000, Blatt 1109 Schöftland. 80 pp., Wabern (Bundesamt für
Landestopograe).
Gray, J.e. (1851): List of the specimens of sh in the collection of the British Museum. Part I.
Chondropterygii. – 160 pp., London (British Museum).
hadley, a. (2010): CombineZP, Image Stacking Software. – http://www.hadleyweb.pwp.
blueyonder.co.
harzhauser, m., landau, b., mandic, o., kroh, a., kuttelwascher, k., Grunert, P.,
schneider, s. & danninGer, w. (2014): Gastropods of an Ottnangian (Early Miocene)
rocky shore in the North Alpine Foreland Basin (Allerding, Austria). – Jahrbuch der Geolo-
gischen Bundesanstalt, 154: 137–167.
PollersPöck et al.: Elasmobranchs from the Burdigalian of Upper Austria 133
hay, o.P. (1902): Bibliography and catalogue of the fossil Vertebrata of North America. – Bulle-
tin of the United States Geological and Geographical Survey of the Territories, 179: 1– 868.
herman, J., crochard, m. & Girardot, m. (1974): Quelques restes de sélaciens récoltés dans
les sables du Kattendijk à Kallo. I. Selachii – Euselachii. – Bulletin de la Société Belge de
Géologié, 83: 15 – 31.
herman, J., hoVestadt-euler, m. & hoVestadt, d.c. (1989): Contributions to the study of
the comparative morphology of teeth and other relevant ichthyodorulites in living superspe-
cic taxa of Chondrichthyan shes. Part A: Selachii. No. 3: Order: Squaliformes Fami-
lies: Echinorhinidae, Oxynotidae and Squalidae. – Bulletin de l’Institut Royal des Sciences
Naturelles de Belgique, Biologie, 59: 101–158.
herman, J., hoVestadt-euler, m. & hoVestadt, d.c. (1990): Contributions to the study of the
comparative morphology of teeth and other relevant ichthyodorulites in living superspecic
taxa of Chondrichthyan shes. Part A: Selachii. No. 2b: Order: Carcharhiniformes – Family:
Scyliorhinidae. – Bulletin de l’Institut Royal des Sciences Naturelles de Belgique, Biologie,
60: 181– 230.
herman, J., hoVestadt-euler, m., hoVestadt, d.c. & stehmann, m. (1994): Contributions
to the study of the comparative morphology of teeth and other relevant ichthyodorulites
in living supraspecic taxa of Chondrichthyan shes. Part B: Batomorphii No. 1a: Order
Rajiformes, Suborder Rajoidei, Family Rajidae. – Bulletin de l ́Institut Royal des Sciences
Naturelles de Belgique, Biologie, 64: 165 – 207.
herman, J., hoVestadt-euler, m., hoVestadt, d.c. & stehmann, m. (1995): Contributions
to the study of the comparative morphology of teeth and other relevant ichthyodorulites
in living supraspecic taxa of Chondrichthyan shes. Part B: Batomorphii No. 1b: Order
Rajiformes, Suborder Rajoidei, Family Rajidae. – Bulletin de l ́Institut Royal des Sciences
Naturelles de Belgique, Biologie, 65: 237– 307.
herman, J., hoVestadt-euler, m., hoVestadt, d.c. & stehmann, m. (1996): Contributions
to the study of the comparative morphology of teeth and other relevant ichthyodorulites
in living supraspecic taxa of Chondrichthyan shes. Part B: Batomorphii No. 1c: Order
Rajiformes, Suborder Rajoidei, Family Rajidae. – Bulletin de l ́Institut Royal des Sciences
Naturelles de Belgique, Biologie, 66: 179 – 236.
hessin, w.a., morrison, k. & bowen, d. (2007): Pictorial guide to the fossil shark teeth from
the Upper Cretaceous of Hornby Island, British Columbia, Canada. – 35 pp., Ontario (Dig-
ital Production w.a. hessin).
hiden, h.r. (1995): Elasmobranchier (Pisces, Chondrichthyes) aus dem Badenium (Mittleres
Miozän) des Steirischen Beckens (Österreich). Mitteilungen der Abteilung für Geologie
und Paläontologie am Landesmuseum Joanneum, 52/53: 41–110.
holec, P., hornácek, m. & sykora, m. (1995): Lower Miocene Shark (Chondrichthys, Elas-
mobranchii) and Whale Faunas near Mučín, Southern Slovakia. – Geologické práce, Správy,
100: 37 – 52.
hubbs, c.l. & mchuGh, J.l. (1951): Relationships of the pelagic shark Euprotomicrus bi-
spinatus, with description of a specimen from off California. – Proceedings of the California
Academy of Sciences, Series 4, 27: 159 –176.
hubbs, c.l., iwai, t. & matsubara, k. (1967): External and internal characters, horizontal
and vertical distribution, luminescence and food of the dwarf pelagic shark, Euprotomicrus
bi spinatus. – Bulletin of the Scripps Institution of Oceanography, 10: 1– 81.
134 Annalen des Naturhistorischen Museums in Wien, Serie A, 122
Hyžný, m., HarzHauSer, m. & danninger, W. (2015): Decapod crustaceans of the Central
Paratethyan Ottnangian Stage (middle Burdigalian): implications for systematics and bio-
geography. – Geologica Carpathica, 66: 217– 233. https://doi.org/10.1515/geoca-2015-0021
iGlésias, s.P., lecointre, G. & sellos, d.y. (2005): Extensive paraphylies within sharks of the
order Carcharhiniformes inferred from nuclear and mitochondrial genes. – Molecular Phy-
logenetics and Evolution, 34: 569 – 583. https://doi.org/10.1016/j.ympev.2004.10.022
iserbyt, a. & de schutter, P.J. (2012): Quantitative analysis of Elasmobranch assemblages
from two successive Ypresian (early Eocene) facies at Marke, western Belgium. – Geologica
Belgica, 15: 146 –153.
Jaekel, o. (1890): Über die systematische Stellung und über fossile Reste der Genus Pristio-
phorus. – Zeitschrift der Deutschen Geologischen Gesellschaft, 42: 86 –120.
JäGer, m. & schneider, s. (2009): Serpulidae (Annelida, Polychaeta) from the Lower Ottnan-
gian (Late Burdigalian) Upper Marine Molasse of Dommelstadl and Gurlarn (Passau area,
Lower Bavaria, SE Germany). – Neues Jahrbuch für Geologie und Paläontologie, Abhand-
lungen, 254: 105 –115. https://doi.org/10.1127/0077-7749/2009/0005
Johns, m.J., barnes, c.r. & narayan, y.r. (2005): Cenozoic and Cretaceous Ichthyoliths from
the Tono Basin and Western Vancouver Island, British Columbia, Canada. – Palaeontologia
Electronica, 8.2.29A: 1– 202.
Joleaud, l. (1907): Géologie et paléontologie de la Plaine du Comtat et de ses abords. Descrip-
tion des terrains néogènes. – Mémoire de l’Académie de Vaucluse, 1: 1– 252.
Joleaud, l. (1912): Géologie et paléontologie de la Plaine du Comtat et de ses abords. Descrip-
tion des terrains néogènes. – Imprimerie Montane, Sicardi et Valentin, 2: 255 – 285.
Jordan, d.s. (1898): Description of a species of sh (Mitsukurina owstoni) from Japan, the
type of a distinct family of Lamnoid sharks. Proceedings of the California Academy of
Sciences, Series 3, Zoology, 1: 199 – 202.
Jordan, d.s. & Gilbert, c.h. (1879): Notes on the shes of Beaufort Harbor, North Carolina.
– Proceedings of the United States National Museum, 1: 365 – 388. http://doi.org/10.5479/
si.00963801.1-55.365
Jordan, d.s. & snyder, J.o. (1902): Descriptions of two new species of squaloid sharks from
Japan. – Proceedings of the United States National Museum, 25 (1279): 79 – 81.
Jordan, P., Graf, h.r., eberhard, m., Jost, J., kälin, d. & bitterli-dreher, P.h. (2011):
Blatt 1089 Aarau. Geologischer Atlas Schweiz 1: 25 000, Erläuterungen. – 156 pp., Wabern
(Bundesamt für Landestopograe).
JorGensen, s.J., reeb, c.a., chaPPle, t.k., anderson, s.d., Perle, c., Van sommeran, s.r.,
fritz-coPe, c., brown, a.c., klimley, a.P. & block, b.a. (2010): Philopatry and migra-
tion of Pacic white sharks. – Proceedings of the Royal Society of London, Series B, 277:
1–10. https://doi.org/10.1098/rspb.2009.1155
Jost, J., kemPf, o. & kälin, d. (2016): Stratigraphy and palaeoecology of the Upper Marine
Molasse (OMM) of the central Swiss Plateau. – Swiss Journal of Geosciences, 109: 149 –169.
https://doi.org/10.1007/s00015-016-0223-6
kemP, d.J., kemP, l. & ward, d.J. (1990): An Illustrated Guide to the British Middle Eocene
Vertebrates. – 59 pp., London (Privately published).
kent, b.w. (1999): Part 2. Sharks from the Fisher/Sullivan Site. – In: weems, r.e. (ed.): Fossil
Vertebrates and Plants from the Fisher/Sullivan Site (Stafford County): A Record of Early
Eocene Life in Virginia, Virginia Division of Mineral Resources, 152. – pp. 11– 37, Char-
lottesville (Department of Mines, Minerals and Energy).
PollersPöck et al.: Elasmobranchs from the Burdigalian of Upper Austria 135
keyes, i.w. (1984): New records of fossil elasmobranch genera Megascyliorhinus, Centro-
phorus, and Dalatias (Order Selachii) in New Zealand. – New Zealand Journal of Geology
and Geophysics, 27: 203 – 216. https://doi.org/10.1080/00288306.1984.10422527
kocsis, l. (2007): Central Paratethyan shark fauna (Ipolytarnóc, Hungary). – Geologica Carpath-
ica, 58: 27– 40.
koike, h., ohe, f. & narita, k. (2008): A fossil dermal denticle, Etmopterus sp. (Elasmo-
branchii; Etmopteridae) from the Middle Miocene Bessho Formation in Azumino City,
Nagano Prefecture, Japan. – Research Report of the Shinshushinmachi Fossil Museum, 11:
15 –18.
kriwet, J. & kluG, s. (2009): Fossil record and origin of squaliform sharks (Chondrichthyes,
Neoselachii). – In: Gallucci, V.f., mcfarlane, G.a. & barGmann, G.G. (eds): Biology
and management of dogsh sharks. American Fisheries Society. pp. 19 – 38, Bethesda
(American Fisheries Society).
landini, w. (1977): Revizione degli «Ittiodontoliti pliocenici» della collezione Lawley. –
Palaeontographia Italica, 70: 92 –134.
latham, J. (1794): An essay on the various species of Sawsh. – Transactions of the Linnean
Society of London, 2: 273 – 282.
laurito mora, c.a. (1996): El Género Isistius (Squalidae) en el alto Guayacán. Formación
uscari (Mioceno superior-Plioceno Inferior), Provincia de Limón, Costa Rica. Revista
Geológica de América Central, 19/20: 87– 92.
laurito mora, c.a. (1999): Los selaceos fosiles de la localidad de Alto Guayacan (y otros
ictiolitos associados). Mioceno Superior-Plioceno Inferior de Limon, Costa Rica. – 125 pp.,
San José (Guila Imprenta).
lawley, r. (1876): Nuovi studi sopra ai pesci ed altri vertebrati fossili delle Colline Toscane. –
122 pp., Firenze (Tipograa dell Arte della Stampa).
ledoux, J.-c. (1972): Les Squalidae (Euselachii) miocènes des environs d’Avignon (Vau-
cluse). – Documents des Laboratoires de Geologie de la Facult des Sciences de Lyon, Notes
et Mémoires, 52: 133 –175.
leriche, m. (1905): Les poissons éocènes de la Belgique. – Mémoires du Musée Royal d’His-
toire Naturelle de Belgique, 3: 49 – 228.
leriche, m. (1908): Sur un appareil fanonculaire de Cetorhinus trouvé à l’état fossile dans
le Pliocène d’Anvers. Comptes Rendus hebdomadaires des séances de l’Academie des
Sciences, 146: 875 – 878.
leriche, m. (1927): Les Poissons de la Molasse suisse. – Mémoires de la Société Paléontologique
Suisse, 46: 1– 55.
leriche, m. (1938): Contribution à l’étude des poissons fossiles des pays riverains de la Méditer-
ranée américaine (Venezuela, Trinité, Antilles, Mexique). – Mémoires de la Société Paléon-
tologique Suisse, 61: 1– 42.
linné, c. (1758): Systema Naturae per regna tria naturae, regnum animale, secundum classes,
ordines, genera, species, cum characteribus differentiis synonymis, locis. – Ed. X., 1:
824 pp., Stockholm (L. Salvius).
lonG, d.J. (1992): Sharks from the La Meseta Formation (Eocene), Seymour Island, Antarctica
Peninsula. – Journal of Vertebrate Paleontology, 12: 11– 32. https://doi.org/10.1080/027246
34.1992.10011428
136 Annalen des Naturhistorischen Museums in Wien, Serie A, 122
lonGbottom, a.e. (1979): Miocene sharks’ teeth from Ecuador. – Bulletin of the British Museum
of Natural History (Geology), 32: 57– 70.
lowe, R.T. (1839): A supplement to a synopsis of the shes of Madeira. Proceedings of the
Zoological Society of London, 1839: 76 – 92.
maisey, J.G. (2012): What is an ‘elasmobranch’? The impact of palaeontology in understanding
elasmobranch phylogeny and evolution. – Journal of Fish Biology, 80: 918 – 951. https://doi.
org/10.1111/j.1095-864
mañé, r., maGrans, J. & ferrer, e. (1996): Ictiologia fòssil del Pliocè del Baix Llobregat. II.
Selacis pleurotremats. – Batalleria, 6: 19 – 33.
mannerinG, A.A. & hiller, N. (2008): An Early Cenozoic neoselachian shark fauna from the
Southwest Pacic. – Palaeontology, 51: 1341–1365. https://doi.org/10.1111/j.1475-4983.
2008.00812.x
marian, f. (1926): Aufbau und erdgeschichtliche Entwicklung der Landschaft des Bezirkes
Schärding. – 23 pp., Schärding (Bezirkslehrerbücherei und Musealverein).
marsili, s. (2007): A new bathyal shark fauna from the Pleistocene sediments of Fiumefreddo
(Sicily, Italy). – Geodiversitas, 29: 229 – 247.
marsili, s. (2008): Systematic, paleoecologic and paleobiogeographic analysis of the Plio-
Pleistocene Mediteranean elasmobranch fauna. Atti Societa Toscana Scienze Naturali,
Serie A, 113: 81– 88.
marsili, s. & tabanelli, c. (2007): Bathyal sharks from the middle Pliocene of the Romagna
Apennines (Italy). – Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen, 244:
247– 255. https://doi.org/10.1127/0077-7749/2007/0244-0247
martínez-Pérez, c., carrillo-Briceño, J.d., eSParza, c., Ferrón, H.g., manzanareS,
e., hammann, c. & botella, h. (2018): A Serravallian (Middle Miocene) shark fauna
from Southeastern Spain and its palaeoenvironment signicance. – Historical Biology, 30:
422 – 432. https://doi.org/10.1080/08912963.2017.1326111
moreau, f., dion, m. & mathis, s. (2013): Présence des genres Xiphodolamia et Isistius (Chon-
drichthyes, Elasmobranchii) à l’Eocène du Bassin de Paris. – Cossmanniana, 15: 85 – 98.
moyer, J.k. & bemis, w.e. (2016): Tooth Microstructure and Replacement in the Gulper Shark,
Centrophorus granulosus (Squaliformes: Centrophoridae). – Copeia, 104: 529 – 538. https://
doi.org/10.1643/CI-15-288
müller, a. (1989): Selachier (Pisces: Neoselachii) aus dem höheren Campanium (Oberkreide)
Westfalens (Nordrhein-Westfalen, NW-Deutschland). – Geologie und Paläontologie in
Westfalen, 14: 1–161.
müller, J. & henle, f.G.J. (1837): Ueber die Gattungen der Plagiostomen. – Archiv für Natur-
geschichte, 3: 394 – 401.
müller, J. & henle, f.G.J. (1839 –1841): Systematische Beschreibung der Plagiostomen. –
200 pp., Berlin (Veit).
münster, G.G. (1846): Ueber die in der Tertiär-Formation des Wiener Beckens vorkommenden
Fisch-Ueberreste, mit Beschreibung einiger neuen merkwürdigen Arten. – Beiträge zur
Petrefactenkunde, 7: 1– 31.
nakano, h. & tabuchi, m. (1990): Occurrence of the cookiecutter shark Isistius brasiliensis in
surface waters of the North Pacic Ocean. – Japanese Journal of Ichthyology, 37: 60 – 63.
PollersPöck et al.: Elasmobranchs from the Burdigalian of Upper Austria 137
nakaya, k. & sato, k. (1999): Species grouping within the genus Apristurus (Elasmobranchii:
Scyliorhinidae). – In: seret, b. & sire, J.y. (eds): Indo-Pacic sh biology: Proceedings of
the 5th Indo-Pacic Fisheries Conference, Noumea, 1997. – pp. 307– 320, Paris (Ichthyolo-
gical Society of France).
nakaya, k., sato, k., iGlésias, s.P. & white, w.t. (2008): Methodology for the taxonomic
description of members of the genus Apristurus (Chondrichthyes: Carcharhiniformes:
Scyliorhinidae). – CSIRO Marine and Atmospheric Research Paper, 22: 49 – 60.
naylor, G.J.P., caira, J.n., Jensen, k., rosana, k.a.m., straube, n. & lakner, c. (2012a):
Elasmobranch Phylogeny: A Mitochondrial Estimate Based on 595 Species. – In: carrier,
J.c., musick, J.a. & heithaus, m.r. (eds): Biology of Sharks and their Relatives, Edition
2. – pp. 31– 56, Boca Raton (CRC Press).
naylor, G.J.P., caira, J.n., Jensen, k., rosana, k.a.m., white, w.t. & last, P.r. (2012b): A
DNA sequence based approach to the identication of shark and ray species and its impli-
cations for global elasmobranch diversity and parasitology. – Bulletin of the American
Museum of Natural History, 367: 262 pp.
noetlinG, f. (1886): [Vorlage von Haischzähnen]. – Sitzungsberichte der Gesellschaft naturfor-
schender Freunde zu Berlin, 1886: 13 –17.
nolf, d. (1988): Fossiles de Belgique. Dents de Requins et de Raies du Tertiaire de la Belgique.
– 184 pp., Brussels (Institut royal des Sciences naturelles de Belgique).
noubhani, a. & caPPetta, h. (1997): Les Orectolobiformes, Carcharhiniformes et Mylio-
batiformes (Elasmobranchii, Neoselachii) des Bassins à phosphate du Maroc (Maastrich-
tien-Lutétien basal). Systématique, biostratigraphie, évolution et dynamique des faunes.
Palaeo Ichthyologica, 8: 1– 327.
ohe, f. & koike, h. (1998): Fish Assemblage of the Miocene Bessho Formation, Toyoshi-
na-machi, Minamiazumi-gun, Nagano Prefecture. Research Report of the Shinshushin-
machi Fossil Museum, 1: 33 – 42.
orloV, a.m., afanasieV, P.k. & PeleneV, d.V. (2017): First record of the goblin shark, Mit-
sukurina owstoni, (Mitsukurinidae) with notes on its distribution. – Journal of Ichthyology,
57: 329 – 332. https://doi.org/10.1134/S0032945217020138
Parin, n.V. (1966): Data on the biology and distribution of the pelagic sharks Euprotomicrus
bispinatus and Isistius brasiliensis (Squalidae, Pisces). – Trudy Instituta Okeanologii.
Akademiya nauk SSSR, 73: 163 –184.
Perez, V.J. & marks, k.w. (2017): The rst documented fossil records of Isistius and Squatina
(Chondrichthyes) from Florida, with an overview of the associated vertebrate fauna. – Bul-
letin of the Florida Museum of Natural History, 55: 139 –155.
Perez, V.J., Pimiento, c., hendy, a. & González-barba, G. (2017): Late Miocene chondrich-
thyans from Lago Bayano, Panama: Functional diversity, environment and biogeography. –
Journal of Paleontology, 91: 512 – 547. https://doi.org/10.1017/jpa.2017.5
Pfeil, f.h. (1981): Eine nektonische Fischfauna aus dem unteroligozänen Schönecker
Fischschiefer des Galon-Grabens in Oberbayern. – Geologica Bavarica, 82: 357– 388.
Pfeil, f.h. (1983): Zahnmorphologische Untersuchungen an rezenten und fossilen Haien der Ord-
nungen Chlamydoselachiformes und Echinorhiniformes. – Palaeo Ichthyologica, 1: 1–
315.
Pfeil, f.h. (1984): Neoselachian Teeth Collected from Phosphorite-bearing Greensand on
Chatham Rise East of New Zealand. – Geologisches Jahrbuch, Reihe D, 65: 107–115.
138 Annalen des Naturhistorischen Museums in Wien, Serie A, 122
PhilliPs, f.J., welton, b.J. & welton, J. (1976): Paleontologic studies of the Middle Tertiary
Skooner Gulch and Gallaway Formations at Point Arena, California. – In: fritsche, a.e.,
terbest, J.h. & wornardt, w.w. (eds): The Neogene symposium. pp. 137–154, San
Francisco (Society of Economic Paleontologists and Mineralogists).
Pimiento, c., ehret, d.J., macfadden, b.J. & hubbell, G. (2010): Ancient Nursery Area for
the Extinct Giant Shark Megalodon from the Miocene of Panama. – PLoS ONE, 5: e10552
https://doi.org/10.1371/journal.pone.0010552
Pimiento, c., González-barba, G., hendy, a.J.w., Jaramillo, c., macfadden, b.J., montes,
c., suareza, s.c. & shiPPritt, m. (2013): Early Miocene chondrichthyans from the Cule-
bra Formation, Panama: a window into marine vertebrate faunas before closure the Central
American Seaway. – Journal of South American Earth Sciences, 42: 159 –170.
Poey, f. (1868): Synopsis piscium cubensium. Catalogo razonado de los peces de la isla de
Cuba. – Repertorio Fisico–Natural de la Isla de Cuba, 2: 279 – 484.
PollersPöck, J. & beaury, b. (2014): Eine Elasmobranchierfauna (Elasmobranchii, Neose-
lachii) aus der Oberen Meeresmolasse (Ottnangium, Unteres Miozän) des Heigelsberger
Grabens bei Teisendorf, Oberbayern. – Zitteliana, Reihe A, 54: 23 – 37.
PollersPöck, J. & straube, n. (2017): A new deep-sea elasmobranch fauna form the Central
Paratethys (Neuhofener Beds, Mitterdorf, near Passau, Germany, Early Miocene, Middle
Burdigalian). – Zitteliana, 90: 27 – 53.
PollersPöck, J. & straube, n. (2019): Bibliography database of living/fossil sharks, rays and
chimaeras (Chondrichtyes: Elasmobranchii, Holocephali). – www.shark-references.com,
World Wide Web electronic publication, Version 2019 [accessed 30-Apr-2019].
PollersPöck, J., flammensbeck, c.k. & straube, n. (2018): Palaeocentroscymnus (Chondrich-
thyes: Somniosidae), a new sleeper shark genus from Miocene deposits of Austria (Europe).
Paläontologische Zeitschrift, 92: 443 – 456. https://doi.org/10.1007/s12542-017-0398-9
PřiKryl, t. & SKuPien, P. (2013): Some new Eocene elasmobranch reports from the Outer West-
ern Carpathians (Moravia, Czech Republic). – Neues Jahrbuch für Geologie und Paläontol-
ogie, Abhandlungen, 268: 113 –123. https://doi.org/10.1127/0077-7749/2013/0322
Probst, J. (1877): Beiträge zur Kenntniss der fossilen Fische aus der Molasse von Baltringen. II:
Batoidei A. Günther. – Jahreshefte des Vereins für vaterländische Naturkunde in Württem-
berg, 33: 69 –103.
Probst, J. (1879): Beiträge zur Kenntniss der fossilen Fische aus der Molasse von Baltringen.
Haysche. Jahreshefte des Vereins für vaterländische Naturkunde in Württemberg, 35:
127–191.
Purdy, r.w., schneider, V.P., aPPleGate, s.P., mclellan, J.h., meyer, r.l. & slauGhter, r.
(2001): The Neogene sharks, rays, and bony shes from Lee Creek Mine, Aurora, North Car-
olina. – In: ray, c.e. & bohaska, d.J. (eds): Geology and paleontology of the Lee Creek
Mine, North Carolina, III, Smithsonian Contributions to Paleobiology, 90. pp. 71– 202,
Washington, D.C. (Smithsonian Institution Press).
Quoy, J.r.c. & Gaimard, J.P. (1824): Description des Poissons. Chapître IX. – In: de freycinet,
l. (ed.): Voyage autour du Monde ... exécuté sur les corvettes de L. M. “L’Uranie” et “La
Physicienne”, pendant les années 1817, 1818, 1819 et 1820. pp. 192 – 401, Paris (Chez
Pillet aìné).
rafinesQue, c.s. (1810): Caratteri di alcuni nuovi generi e nuove specie di animali e pinate
della Sicilia, con varie osservazioni sopra i medisimi, lère partie. Part 1, [i-iv]. – pp. 3 – 69,
Palermo (Per le stampe di Sanlippo).
PollersPöck et al.: Elasmobranchs from the Burdigalian of Upper Austria 139
rayner, d., mitchell, t. & rayner, m. (2009): London Clay Fossils of Kent and Essex.
228 pp., Rochester, (Medway Fossil and Mineral Society).
reddacliff, G. (1988): Crater wounds in marine mammals. In: auGee, m.l. (ed.): Marine
mammals of Australasia: Field biology and captive management. Sydney, Australia. –
pp. 133 –134, New South Wales (Royal Zoological Society).
reinecke, t. (2014): Two new scyliorhinid shark species (Elasmobranchii, Carcharhiniformes,
Scyliorhinidae), from the Sülstorf Beds (Chattian, Late Oligocene) of the southeastern North
Sea Basin, northern Germany. – Palaeovertebrata, 38: 1– 8.
reinecke, t. (2015): Batoids (Rajiformes, Torpediniformes, Myliobatiformes) from the Sülstorf
Beds (Chattian, Late Oligocene) of Mecklenburg, northeastern Germany: a revision and
description of three new species. – Palaeovertebrata, 39: e2.
reinecke, t. & enGelhard, P. (1997): The selachian fauna from Geschiebe of the Lower Selan-
dian basal conglomerate (Thanetian, Late Paleocene) in the Danish subbasin (Sealand,
Scania, Western Baltic Sea). – Erratica, 2: 3 – 45.
reinecke, t., balsberGer, m., beaury, b. & PollersPöck, J. (2014): The elasmobranch fauna
of the Thalberg Beds, early Egerian (Chattian, Oligocene), in the Subalpine Molasse Basin
near Siegsdorf, Bavaria, Germany. – Palaeontos, 26: 1–127.
reinecke, t., louwye, s., haVekost, u. & moths, h. (2011): The elasmobranch fauna of the
late Burdigalian, Miocene, at Werder-Uesen, Lower Saxony, Germany, and its relationships
with Early Miocene faunas in the North Atlantic, Central Paratethys and Mediterranean.
Palaeontos, 20: 1–170.
reinecKe, t., motHS, H., grant, a. & BreitKreuz, H. (2005): Die Elasmobranchier des nord-
deutschen Chattiums, insbesondere des Sternberger Gesteins (Eochattium, Oligozän). –
Palaeontos, 8: 1–135.
reinecke, t., Von der hocht, f. & dufrainG, l. (2015): Fossil basking shark of the genus
Keasius (Lamniforme, Cetorhindiae) from the boreal North Sea Basin and Upper Rhine
Graben: evolution of dental characteristics from the Oligocene to late Middle Miocene and
description of two new species. – Palaeontos, 28: 1– 60.
risso, a. (1810): Ichthyologie de Nice, ou histoire naturelle des poissons du département des
Alpes Maritimes. – 388 pp., Paris (F. Schoell).
röGl, f. (1998): Palaeogeographic Considerations for Mediterranean and Paratethys Seaways
(Oligocene to Miocene). – Annalen des Naturhistorischen Museums in Wien, Serie A, 99:
279 – 310.
romão serralheiro, a.m. (1954): Contribuiciao para o conhecimento da fauna ictiológica do
Miocénico Marinho de Portugal Continental. – Revista da Faculdade de Ciéncias de Lisboa,
Serie C, 4: 39 –119.
ruPP, c., linner, m. & mandl, G.w. (Red.) (2011): Geologische Karte von Oberösterreich 1:
200.000, Erläuterungen. – 255 pp., Wien (Geologische Bundesanstalt).
sach, V.J. (2016): Fossilienkatalog der Miozän-Molasse in Südwestdeutschland. Documenta
naturae, Sonderband, 70: 1–115.
schluneGGer, f., Jost, J., GrüniG, a. & trüssel, m. (2016): Blatt 1169 Schüpfheim. Geo-
logischer Atlas Schweiz 1: 25 000, Erläuterungen 148. 108 pp., Wabern (Bundesamt für
Landestopograe).
140 Annalen des Naturhistorischen Museums in Wien, Serie A, 122
schneider, s., berninG, b., bitner, m.a., carriol, r.-P., JäGer, m., kriwet, J., kroh, a.
& werner, w. (2009): A parautochthonous shallow marine fauna from the Late Burdiga-
lian (early Ottnangian) of Gurlarn (Lower Bavaria, SE Germany): Macrofaunal inventory
and paleoecology. – Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen, 254:
63 –103. https://doi.org/10.1127/0077-7749/2009/0004
scholz, h. & bienerth, r. (1992): Bausteine und Fossilien aus der Oberen Meeresmolasse bei
Kempten. – Berichte des Naturwissenschaftlichen Vereins für Schwaben e.V., 90: 2 –12.
schultz, o. (1968): Die Selachierfauna (Pisces, Elasmobranchii) aus den Phosphoritsanden.
(Untermiozän) von Plesching bei Linz, Oberösterreich. – Naturkundliches Jahrbuch der
Stadt Linz, 14: 61–103.
schultz, o. (1971): Die Selachier-Fauna (Pisces, Elasmobranchii) des Wiener Beckens und
seiner Randgebiete im Badenien (Miozän). Annalen des Naturhistorischen Museums in
Wien, 75: 311– 341.
schultz, o. (1972): Eine Fischzahn-Brekzie aus dem Ottnangien (Miozän) Oberösterreichs.
Annalen des Naturhistorischen Museums in Wien, 76: 485 – 490.
schultz, o. (1998): Die Knorpel- und Knochenschfauna (excl. Otolithen) aus dem Karpat des
Korneuburger Beckens (Niederösterreich). – Beiträge zur Paläontologie, 23: 295 – 323.
schultz, o. (2003): The Middle Miocene Fish Fauna (excl. otolithes) from Mühlbach am
Manhartsberg and Grund near Hollabrunn, Lower Austria. – Annalen des Naturhistorischen
Museums in Wien, Serie A, 104: 185 –193.
schultz, o. (2004): Karpatian Fish Teeth of the Central Paratethys. – In: BrzoBoHatý, r.,
cicha, i., koVac, m. & röGl, f. (eds): The Karpatian. A Lower Miocene Stage of the Cen-
tral Paratethys. – pp. 257– 264, Brno (Masaryk University).
schultz, o. (2013): Pisces. In: Piller, w.e. (ed.): Catalogus Fossilium Austriae, Band 3.
576 pp., Wien (Verlag der Österreichischen Akademie der Wissenschaften).
ScHultz, o., BrzoBoHatý, r. & KrouPa, o. (2010): Fish teeth from the Middle Miocene of
Kienberg at Mikulov, Czech Republic, Vienna Basin. – Annalen des Naturhistorischen
Museums in Wien, Serie A, 11 2: 489 – 506.
seiGel, J.a. (1978): Revision of the Dalatiid shark Genus Squaliolus: anatomy, systematics, ecol-
ogy. – Copeia, 1978: 602 – 614.
smith, h.m. (1912): The squaloid sharks of the Philippine Archipelago, with descriptions of new
genera and species. – Proceedings of the United States National Museum, 41: 677 – 685.
souto, l.r.a., abrão-oliVeira, J.G., maia-noGueira, r. & dórea-reis, l.w. (2009): Inter-
actions between subantarctic fur seal (Arctocephalus tropicalis) and cookiecutter shark (Isis-
tius plutodus) in the coast of Bahia, north-east of Brazil. – Marine Biodiversity Records, 2:
e123. https://doi.org/10.1017/S1755267209000992
stadler, J. (1916): Der Löss und sein Vorkommen um Passau mit besonderer Berücksichtigung
seiner Unterlagerungsverhältnisse. – 92 pp., Passau (Naturwissenschaftlicher Verein Passau).
straube, n., iGlésias, s.P., sellos, d.y., kriwet, J. & schliewen, u.k. (2010): Molecular
phylogeny and node time estimation of bioluminescent Lantern Sharks (Elasmobranchii:
Etmopteridae). Molecular Phylogenetics and Evolution, 56: 905 – 917. https://doi.
org/10.1016/j.ympev.2010.04.042
straube, n., li, c., claes, J.m., corriGan, s. & naylor, G.J.P. (2015): Molecular phylogeny
of Squaliformes and rst occurrence of bioluminescence in sharks. BMC Evolutionary
Biology, 15: 162. https://doi.org/10.1186/s12862-015-0446-6
PollersPöck et al.: Elasmobranchs from the Burdigalian of Upper Austria 141
straube, n., white, w.t., ho, h.-c., rochel, e., corriGan, s., li, c. & naylor, G.J.P. (2013):
A DNA sequence-based identication checklist for Taiwanese chondrichthyans. – Zootaxa,
3752: 256 – 278.
suárez, m.e., marQuardt, c., laVenu, a., marinoVic, n. & wilke, h.-G. (2003): Vertebrados
Marinos Neógenos de la Formación La Portada, II Región, Chile. – 9 pp., Conception (10°
Congreso Geológico Chileno).
suess, f.e. (1891): Beobachtungen über den Schlier in Oberösterreich und Bayern. – Annalen
des kaiserlich-königlichen naturhistorischen Hofmuseums, 6: 407– 429.
suzuki, h. (2007): First description of fossil shark teeth of the genus Centrophorus (Elasmo-
branchii: Squaliformes) from the Miocene of Japan. – Journal of the Geological Society of
Japan, 113: 23– 26.
suzuki, h. (2012): A fossil deep-sea shark assemblage from the Middle Miocene, Ueda City,
Nagano Prefecture, central Japan. – Earth Science (Chikyu Kagaku), 66: 47– 61.
takakuwa, y. (2006): A deep-sea shark assemblage from the Miocene in southwest of Gunma
Prefecture, central Japan and the biogeographical signicance. Palaeontological Society
of Japan, 81: 24 – 44.
takakuwa, y., Goto, m., hasaGawa, y., yamazawa, t., takayama, y. & shimizu, m. (2001):
Tooth remains of Chlamydoselachus (Chondrichthyes, Elasmobranchii) from the Tomioka
Group (Lower to Middle Miocene) in Tomioka and Annaka City, Gunma Prefecture, Central
Japan. – Bulletin of Gunma Museum of Natural History, 5: 19 – 30.
takakuwa, y., koike, h. & narita, k. (2009): Outline of fossil elasmobranchs from the Middle
Miocene Bessho and Aoki Formations, Nagano Prefecture, Japan. – Research Report of the
Shinshushinmachi Fossil Museum, 13: 7–18.
tausch, l. (1896): Bericht über geologische Beobachtungen bei einigen Tertiärvorkommnissen
im Innviertel (Oberösterreich) und in einem Theile von Nieder- und Oberbayern: (Ueber
Schlier, Oncophora-Schichten und die Braunkohlen des Hausrucks). Verhandlungen der
Geologischen Bundesanstalt, 1896: 304 – 311.
taVerne, l. & nolf, d. (1978): Troisième note sur les poissons des sables de lede (Eocène
belge): Les fossiles autres que les Otholithes. – Bulletin de la Société Belge de Géologié,
87: 125 –152.
thies, d. & müller, a. (1993): A neoselachian fauna (Vertebrata, Pisces) from the Late Creta-
ceous (Campanian) of Höver, near Hannover (NW Germany). – Paläontologische Zeitschrift,
67: 89 –107. https://doi.org/10.1007/BF02985872
timmerman, J. & chandler, r.e. (2011): Neogene and Quaternary Fossils of North Carolina, A
Field Guide. – 58 pp., Durham (North Carolina Fossil Club).
underwood, c.J. & mitchell, s.f. (2004): Sharks, bony shes and endodental borings from
the Miocene Montpelier Formation (White Limestone Group) of Jamaica. – Cainozoic
Research, 3: 157–165.
underwood, c.J. & schlöGl, J. (2013): Deep water chondrichthyans from the Early Miocene
of the Vienna Basin (Central Paratethys, Slovakia). – Acta Palaeontologica Polonica, 58:
487– 509. https://doi.org/10.4202/app.2011.0101
Van den bosch, m. (1980): Elasmobranch associations in Tertiary and Quaternary deposits of
the Netherlands (Vertebrata, Pisces), 2. Paleogene of the eastern and northern part of The
Netherland, Neogene in the eastern part of The Netherland. – Mededelingen Van De Werk-
groep Voor Tertiaire En Kwartaire Geologie, 17: 65 – 70.
142 Annalen des Naturhistorischen Museums in Wien, Serie A, 122
Van den eeckhaut, G. & de schutter, P. (2009): The Elasmobranch Fauna of the Lede Sand
Formation at Oosterzele (Lutetian, Middle Eocene of Belgium). – Palaeofocus, 1: 1– 57.
Van der bruGGhen, w., Quack-Potteboom, e.z.m. & o, h. (1993). Enige opmerkingen
over de Horizont van Lichtenberg in de groeve ENCI en de aangetroffen kraakbeenvissen-
fauna. – Grondboor en Hamer, 6: 162 –166.
Vialle, n., adnet, s. & caPPetta, h. (2011): A new shark and ray fauna from the Middle
Miocene of Mazan, Vaucluse (southern France) and its importance in interpreting the
paleoenvironment of marine deposits in the southern Rhodanian Basin. – Swiss Journal of
Palaeontology, 130: 241– 258. https://doi.org/10.1007/s13358-011-0025-4
Von der hocht, f. (1979): Eine Lagerstätte kreidezeitlicher und paläogener Chondrichthyes-Reste
bei Fürstenau (Niedersachsen). – Osnabrücker Naturwissenschaftliche Mitteilungen, 6:
35 – 44.
Von der hocht, f. (1986): Stand der Untersuchungen an der Chondrichthyes-Fauna des nord-
westdeutschen Tertiärs. – Beiträge zur regionalen Geologie der Erde, 18: 503 – 509.
Voris, J.t. & heckert, a.b. (2017): Ontogenetic heterodonty in Reticulodus synergus (Chon-
drichthyes, Hybodontiformes) from the Upper Triassic of the southwestern U.S.A., with a
redescription of the genus. – Journal of Vertebrate Paleontology, 37: e1351980. https://doi.
org/10.1080/02724634.2017.1351980
ward, d.J. & bonaVia, c.G. (2001): Additions to, and a review of, the Miocene shark and ray
fauna of Malta. – Central Mediterranean Naturalist, 3: 131–146.
ward, d.J. & wiest, r.l. (1990): A checklist of Palaeocene and Eocene sharks and rays (Chondrich-
thyes) from the Pamunkey Group, Maryland and Virginia, USA. – Tertiary Research, 12: 81–
88.
welton, b.J. (1974): Preliminary note on the Paleocene elasmobranchs of the Lodo Formation,
Fresno County, California. – In: The Paleocene Symposium, Society of Economic Paleon-
tologists and Mineralogists. – pp. 91– 97, Long Beach (Pacic Section Guidebook).
welton, b.J. (2013): A New Archaic Basking Shark (Lamniformes: Cetorhinidae) from the Late
Eocene of Western Oregon, U.S.A., and Description of the Dentition, Gill Rakers and Verte-
brae of the Recent Basking Shark Cetorhinus maximus (Gunnerus). – New Mexico Museum
of Natural History and Science, Bulletin, 58: 1– 48.
wenG, k.c., boustany, a.m., Pyle, P., anderson, s.d., brown, a. & block, b.a. (2007):
Migration and habitat of white sharks (Carcharodon carcharias) in the eastern Pacic
Ocean. – Marine Biology, 152/4: 877– 894. https://doi.org/10.1007/s00227-007-0739-4
white, w.t. & naylor, G.J.P. (2016): Resurrection of the family Aetobatidae (Myliobati-
formes) for the pelagic eagle rays, genus Aetobatus. – Zootaxa, 4139: 435 – 438. https://doi.
org/10.11646/zootaxa.4139.3.10
white, w.t., ebert, d.a. & naylor, G.J.P. (2017): Revision of the genus Centrophorus (Squali-
formes: Centrophoridae): Part 2—Description of two new species of Centrophorus and
clarication of the status of Centrophorus lusitanicus barbosa du bocaGe and de brito
caPello, 1864. – Zootaxa, 4344: 86 –114. https://doi.org/10.11646/zootaxa.4344.1.3
WHite, W.t., eBert, d.a., naylor, g.J.P., Ho, H.-c., clerKin, P.J., VeríSSimo, a. & cotton,
c.f. (2013): Revision of the genus Centrophorus (Squaliformes: Centrophoridae): Part 1—
Redescription of Centrophorus granulosus (bloch and schneider), a senior synonym of
C. acus Garman and C. niaukang tenG. – Zootaxa, 3752: 35 – 72. https://doi.org/10.11646/
zootaxa.3752.1.5
PollersPöck et al.: Elasmobranchs from the Burdigalian of Upper Austria 143
widder, e.a. (1998): A predatory use of counterillumination by the squaloid shark, Isistius
brasiliensis. Environmental Biology of Fishes, 53: 267– 273. https://doi.org/10.1023/A:
1007498915860
WinKler, t.c. (1874): Deuxième mémoire sur des dents de poissons fossiles du terrain brux-
ellien. – Archives du Musée Teyler, 4: 16 – 48.
woodward, a.s. (1891): Notes on some sh-remains from the lower Tertiary and Upper Creta-
ceous of Belgium, collected by Monsieur A. Houzeau de Lahaie. – Geological Magazine,
Decade 3, 8: 104 –110.
yabe, h. & hirayama, r. (1998): Selachian fauna from the Upper Miocene Senhata Formation,
Boso Peninsula, Central Japan. – Natural History Research (special issue), 5: 33 – 61.
zbyszewski, G. & moitinho dalmeida, f. (1950): Os peixes miocénicos portugueses. – Comu-
nicações dos Serviços Geológicos de Portugal, 31: 308 – 412.
144 Annalen des Naturhistorischen Museums in Wien, Serie A, 122
Supplement Table S1. List of references about the paleogeographic distribution of the following squaliform sharks genera: Centrophorus,
Deania, Isistius, Squaliolus, and Etmopterus.
Author Keyword
Time 1
Keyword
Time 2
Keyword
Time 3
Epoch Continent Keyword
Country
Ocean Valid
species
Described
as
Material Collectionnr. Remarks
Adnet 2006 Eocene Lutetian Paleogene Europe France Central Tethys Centrophorus aff.
granulosus
+450 teeth ANG22-28
Adnet 2006 Eocene Lutetian Paleogene Europe France Central Tethys Deania angoumeensis +350 teeth ANG29-35
Adnet 2006 Eocene Bartonian Lutetian Paleogene Europe France Central Tethys Etmopterus cahuzaci 55 teeth ANG53-60
Adnet 2006 Eocene Lutetian Paleogene Europe France Central Tethys Isistius aff. trituratus 14 teeth ANG98-100
Adnet 2006 Eocene Bartonian Lutetian Paleogene Europe France Central Tethys Squaliolus
gasconensis
180 teeth ANG75-82
Adnet et al. 2008 Eocene Bartonian Paleogene Europe France Central Tethys Isistius cf. trituratus
Adnet et al. 2008 Eocene Bartonian Paleogene Europe France Central Tethys Centrophorus cf.
granulosus
AguilerA & de AguilerA 2001 Miocene Messinian Neogene South America Venezuela Caribbean Deania sp. only species list
AguilerA & de AguilerA 2001 Pliocene Zanclean Neogene South America Venezuela Caribbean Deania sp. only species list
AguilerA & de AguilerA 2001 Miocene Messinian Neogene South America Venezuela Caribbean Etmopterus sp. only species list
AguilerA & de AguilerA 2001 Pliocene Zanclean Neogene South America Venezuela Caribbean Etmopterus sp. only species list
AguilerA & de AguilerA 2001 Miocene Messinian Neogene South America Venezuela Caribbean Isistius aff. triangulus only species list
AguilerA & de AguilerA 2001 Pliocene Zanclean Neogene South America Venezuela Caribbean Isistius aff. triangulus only species list
AguilerA & de AguilerA 2001 Miocene Messinian Neogene South America Venezuela Caribbean Centrophorus sp. only species list
AguilerA & de AguilerA 2001 Pliocene Zanclean Neogene South America Venezuela Caribbean Centrophorus sp. only species list
Antunes & Jonet 1970 Miocene Langhian Serravallian Neogene Europe Portugal Eastern North
Atlantic
Deania sp.
Antunes & Jonet 1970 Miocene Langhian Serravallian Neogene Europe Portugal Eastern North
Atlantic
Isistius triangulus
Antunes et al. 1981 Miocene Burdigalian Neogene Europe Portugal Western
Mediterranean
Isistius sp. 1 no gure
ArAmbourg 1952 Paleocene Paleogene Africa Algeria,
Tunesia,
Marocco
Western
Mediterranean
Isistius trituratus
ArAmbourg 1952 Eocene Paleogene Africa Algeria,
Tunesia,
Marocco
Western
Mediterranean
Isistius trituratus
bAier et al. 2004 Miocene Burdigalian Neogene Europe Germany Central
Paratethys
Centrophorus cf.
granulosus
only species list
PollersPöck et al.: Elasmobranchs from the Burdigalian of Upper Austria 145
Author Keyword
Time 1
Keyword
Time 2
Keyword
Time 3
Epoch Continent Keyword
Country
Ocean Valid
species
Described
as
Material Collectionnr. Remarks
bArthelt et al. 1991 Miocene Burdigalian Neogene Europe Germany Central
Paratethys
Centrophorus cf.
granulosus
no information about number of
specimens
bArthelt et al. 1991 Miocene Burdigalian Neogene Europe Germany Central
Paratethys
Etmopterus sp. 1 tooth no image
bArthelt et al. 1991 Miocene Burdigalian Neogene Europe Germany Central
Paratethys
Isistius triangulus
bArthelt et al. 1991 Miocene Burdigalian Neogene Europe Germany Central
Paratethys
Squaliolus sp.
bArthelt 1997 Paleocene Danian Paleogene South America Argentina Western
South Atlantic
Deania sp. only species list
bernárdez 1997 Paleocene Danian Paleogene South America Argentina Western
South Atlantic
Etmopterus sp. only species list
bolliger et al. 1995 Miocene Burdigalian Neogene Europe Switzerland Western
Paratethys
Deania sp. PIMUZ A/I-3053
bolliger et al. 1995 Miocene Burdigalian Neogene Europe Switzerland Western
Paratethys
Etmopterus sp. PIMUZ A/I-3048,
PIMUZ A/I-3066
bolliger et al. 1995 Miocene Burdigalian Neogene Europe Switzerland Western
Paratethys
Isistius sp.
bolliger et al. 1995 Miocene Burdigalian Neogene Europe Switzerland Western
Paratethys
Squaliolus sp. PIMUZ A/I-3052
bolliger et al. 1995 Miocene Burdigalian Neogene Europe Switzerland Western
Paratethys
Centrophorus sp. PIMUZ A/I-3055
bor 1985 Eocene Ypresian Lutetian Paleogene Europe Netherland Central Tethys Isistius trituratus 46 LT
brisswAlter 2009 Miocene Langhian Serravallian Neogene Europe France Western
Paratethys
Isistius triangulus 500 teeth
brisswAlter 2009 Miocene Langhian Serravallian Neogene Europe France Western
Paratethys
Centrophorus cf.
granulosus
342 teeth
brzobohAtý & KAlAbis 1970 Oligocene Rupelian Paleogene Europe Czech
Republic
Central Tethys Centrophorus sp. Squalus sp. 20 teeth Geol.-pal. Insti-
tus des Mähri-
schen Museums
in Brno, Coll.
Nr. 16401
Pausramer Mergel, Pouzdřany-
Beds, see reinecKe et al. (2014)
cAppettA 1970 Miocene Aquitanian Neogene Europe France Western
Mediterranean
Isistius triangulus 12
cAppettA & cAvAllo 2006 Pliocene Zanclean Piacenzian Neogene Europe Italy Western
Mediterranean
Centrophorus aff.
granulosus
1 tooth
cAppettA et al. 1967 Miocene Langhian Neogene Europe France Western
Mediterranean
Centrophorus cf.
granulosus
Acanthias
radicans
only species list
146 Annalen des Naturhistorischen Museums in Wien, Serie A, 122
Author Keyword
Time 1
Keyword
Time 2
Keyword
Time 3
Epoch Continent Keyword
Country
Ocean Valid
species