Chapter

Architectural Affordances: Linking Action, Perception, and CognitionLinking Action, Perception, and Cognition

Authors:
To read the full-text of this research, you can request a copy directly from the authors.

Abstract

In the article discussed in this chapter, the authors describe a framework of neuroaesthetics for architectural experiences that considers sensory feedback stemming from movement central for the experience of the built environment. As we move through space when experiencing architecture, our sensory impressions change, rendering the body and the brain as nondissociable agents of aesthetic experience. This interaction is described by the term affordance . The authors cast the human experience of the built environment to be predicated on the functional relation between action and perception and developed a neuroscientific experiment on architectural transitions to investigate how the human brain reflects architectural affordances. They found that varying sizes of transitions, reflecting different affordances, impact early perceptual processes, suggesting that our perception is indeed colored by the action potentials afforded by the composed space. In conclusion, the shape of space resonates with our embodied predictions regarding movement.

No full-text available

Request Full-text Paper PDF

To read the full-text of this research,
you can request a copy directly from the authors.

... The results from Djebbara et al. (2019) support the view that possibilities of imminent actions shape our perception (Djebbara and Gramann, 2022). This view is consistent with the propositions of direct perception and perception-action coupling within ecological psychology (Djebbara et al., 2019;Gepshtein and Snider, 2019). ...
Article
Full-text available
People spend a large portion of their time inside built environments. Research in neuro-architecture—the neural basis of human perception of and interaction with the surrounding architecture—promises to advance our understanding of the cognitive processes underlying this common human experience and also to inspire evidence-based architectural design principles. This article examines the current state of the field and offers a path for moving closer to fulfilling this promise. The paper is structured in three sections, beginning with an introduction to neuro-architecture, outlining its main objectives and giving an overview of experimental research in the field. Afterward, two methodological limitations attending current brain-imaging architectural research are discussed: the first concerns the limited focus of the research, which is often restricted to the aesthetic dimension of architectural experience; the second concerns practical limitations imposed by the typical experimental tools and methods, which often require participants to remain stationary and prevent naturalistic interaction with architectural surroundings. Next, we propose that the theoretical basis of ecological psychology provides a framework for addressing these limitations and motivates emphasizing the role of embodied exploration in architectural experience, which encompasses but is not limited to aesthetic contemplation. In this section, some basic concepts within ecological psychology and their convergences with architecture are described. Lastly, we introduce Mobile Brain/Body Imaging (MoBI) as one emerging brain imaging approach with the potential to improve the ecological validity of neuro-architecture research. Accordingly, we suggest that combining theoretical and conceptual resources from ecological psychology with state-of-the-art neuroscience methods (Mobile Brain/Body Imaging) is a promising way to bring neuro-architecture closer to accomplishing its scientific and practical goals.
Article
Full-text available
Anticipating meaningful actions in the environment is an essential function of the brain. Such predictive mechanisms originate from the motor system and allow for inferring actions from environmental affordances, and the potential to act within a specific environment. Using architecture, we provide a unique perspective on the ongoing debate in cognitive neuroscience and philosophy on whether cognition depends on movement or is decoupled from our physical structure. To investigate cognitive processes associated with architectural affordances, we used a mobile brain/body imaging approach recording brain activity synchronized to head-mounted displays. Participants perceived and acted on virtual transitions ranging from nonpassable to easily passable. We found that early sensory brain activity, on revealing the environment and before actual movement, differed as a function of affordances. In addition, movement through transitions was preceded by a motor-related negative component that also depended on affordances. Our results suggest that potential actions afforded by an environment influence perception.
Article
Full-text available
Cortical brain areas and dynamics evolved to organize motor behavior in our three-dimensional environment also support more general human cognitive processes. Yet traditional brain imaging paradigms typically allow and record only minimal participant behavior, then reduce the recorded data to single map features of averaged responses. To more fully investigate the complex links between distributed brain dynamics and motivated natural behavior, we propose the development of wearable mobile brain/body imaging (MoBI) systems that continuously capture the wearer's high-density electrical brain and muscle signals, three-dimensional body movements, audiovisual scene and point of regard, plus new data-driven analysis methods to model their interrelationships. The new imaging modality should allow new insights into how spatially distributed brain dynamics support natural human cognition and agency.
Article
Full-text available
We have recently developed a mobile brain imaging method (MoBI), that allows for simultaneous recording of brain and body dynamics of humans actively behaving in and interacting with their environment. A mobile imaging approach was needed to study cognitive processes that are inherently based on the use of human physical structure to obtain behavioral goals. This review gives examples of the tight coupling between human physical structure with cognitive processing and the role of supraspinal activity during control of human stance and locomotion. Existing brain imaging methods for actively behaving participants are described and new sensor technology allowing for mobile recordings of different behavioral states in humans is introduced. Finally, we review recent work demonstrating the feasibility of a MoBI system that was developed at the Swartz Center for Computational Neuroscience at the University of California, San Diego, demonstrating the range of behavior that can be investigated with this method.
Article
This article describes a process theory based on active inference and belief propagation. Starting from the premise that all neuronal processing (and action selection) can be explained by maximizing Bayesian model evidence-or minimizing variational free energy-we ask whether neuronal responses can be described as a gradient descent on variational free energy. Using a standard (Markov decision process) generative model, we derive the neuronal dynamics implicit in this description and reproduce a remarkable range of well-characterized neuronal phenomena. These include repetition suppression, mismatch negativity, violation responses, place-cell activity, phase precession, theta sequences, theta-gamma coupling, evidence accumulation, race-to-bound dynamics, and transfer of dopamine responses. Furthermore, the (approximately Bayes' optimal) behavior prescribed by these dynamics has a degree of face validity, providing a formal explanation for reward seeking, context learning, and epistemic foraging. Technically, the fact that a gradient descent appears to be a valid description of neuronal activity means that variational free energy is a Lyapunov function for neuronal dynamics, which therefore conform to Hamilton's principle of least action.
Article
Many current neurophysiological, psychophysical, and psychological approaches to vision rest on the idea that when we see, the brain produces an internal representation of the world. The activation of this internal representation is assumed to give rise to the experience of seeing. The problem with this kind of approach is that it leaves unexplained how the existence of such a detailed internal representation might produce visual consciousness. An alternative proposal is made here. We propose that seeing is a way of acting. It is a particular way of exploring the environment. Activity in internal representations does not generate the experience of seeing. The outside world serves as its own, external, representation. The experience of seeing occurs when the organism masters what we call the governing laws of sensorimotor contingency. The advantage of this approach is that it provides a natural and principled way of accounting for visual consciousness, and for the differences in the perceived quality of sensory experience in the different sensory modalities. Several lines of empirical evidence are brought forward in support of the theory, in particular: evidence from experiments in sensorimotor adaptation, visual "filling in," visual stability despite eye movements, change blindness, sensory substitution, and color perception.