ArticlePDF Available

Sustainable Electric Vehicle Transportation

Authors:

Abstract and Figures

The future direction of electric vehicle (EV) transportation in relation to the energy demand for charging EVs needs a more sustainable roadmap, compared to the current reliance on the centralised electricity grid system. It is common knowledge that the current state of electricity grids in the biggest economies of the world today suffer a perennial problem of power losses; and were not designed for the uptake and integration of the growing number of large-scale EV charging power demands from the grids. To promote sustainable EV transportation, this study aims to review the current state of research and development around this field. This study is significant to the effect that it accomplishes four major objectives. (1) First, the implication of large-scale EV integration to the electricity grid is assessed by looking at the impact on the distribution network. (2) Secondly, it provides energy management strategies for optimizing plug-in EVs load demand on the electricity distribution network. (3) It provides a clear direction and an overview on sustainable EV charging infrastructure, which is highlighted as one of the key factors that enables the promotion and sustainability of the EV market and transportation sector, re-engineered to support the United Nations Climate Change Agenda. Finally, a conclusion is made with some policy recommendations provided for the promotion of the electric vehicle market and widespread adoption in any economy of the world.
Content may be subject to copyright.
sustainability
Review
Sustainable Electric Vehicle Transportation
Raymond Kene 1, *, Thomas Olwal 1and Barend J. van Wyk 2


Citation: Kene, R.; Olwal, T.; van Wyk,
B.J. Sustainable Electric Vehicle
Transportation. Sustainability 2021,13,
12379. https://10.3390/su132212379
Academic Editors: Mohammad
Miralinaghi, Ramin Shabanpour,
Xiaozheng (Sean) He and Samuel Labi
Received: 26 August 2021
Accepted: 30 October 2021
Published: 9 November 2021
Publisher’s Note: MDPI stays neutral
with regard to jurisdictional claims in
published maps and institutional affil-
iations.
Copyright: © 2021 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses/by/
4.0/).
1Department of Electrical Engineering, Tshwane University of Technology, Pretoria 0183, South Africa;
OlwalTO@tut.ac.za
2
Faculty of Engineering and the Built Environment, Tshwane University of Technology, Pretoria 0183, South Africa;
VanWykB@tut.ac.za
*Correspondence: keneRO@tut.ac.za
Abstract:
The future direction of electric vehicle (EV) transportation in relation to the energy demand
for charging EVs needs a more sustainable roadmap, compared to the current reliance on the
centralised electricity grid system. It is common knowledge that the current state of electricity grids
in the biggest economies of the world today suffer a perennial problem of power losses; and were
not designed for the uptake and integration of the growing number of large-scale EV charging
power demands from the grids. To promote sustainable EV transportation, this study aims to
review the current state of research and development around this field. This study is significant
to the effect that it accomplishes four major objectives. (1) First, the implication of large-scale EV
integration to the electricity grid is assessed by looking at the impact on the distribution network.
(2) Secondly, it provides energy management strategies for optimizing plug-in EVs load demand on
the electricity distribution network. (3) It provides a clear direction and an overview on sustainable
EV charging infrastructure, which is highlighted as one of the key factors that enables the promotion
and sustainability of the EV market and transportation sector, re-engineered to support the United
Nations Climate Change Agenda. Finally, a conclusion is made with some policy recommendations
provided for the promotion of the electric vehicle market and widespread adoption in any economy
of the world.
Keywords:
sustainability; transportation; electric vehicles; grid integration; grid impact; renewable
charging infrastructure; strategic policies
1. Introduction
At the time of writing this journal, countries around the world are preparing to attend
the 26th Conference of the Parties (COP26) to the United Nations Climate Change Meeting
in Glasgow. Some of the core issues to be discussed will centre around the protection of
our environment, decarbonization efforts to achieve a net-zero future and a review of the
2015 Paris Agreement set to achieve the 1.5 C global average temperature.
This study provides a valuable contribution from the perspective of the transportation
industry’s adoption of electric vehicles and how the electrification of the transportation
sector will further enhance global climate change. It is very well known that global climate
deterioration is attributed to the burning and consumption of fossil fuels by the industrial
and residential sectors across all economies of the world. The United States and China are
currently the largest economies in the world that consume fossil fuels [
1
]. The primary
consumer of fossil fuels, judging by energy consumption by industry average, is the
transportation sector, which accounts for more than 91% of petroleum energy consumed [
2
].
The transition from internal combustion engine (ICE) vehicles to zero-emission electric
vehicles has already begun, with most global economies setting 2050 as the target year
for net-zero emissions in the transportation sector. The United States of America, Canada,
China, Britain, and most parts of the European Union are set to strategically phase out and
ban the manufacturing and sales of petrol and diesel-powered vehicles from 2030. Norway
Sustainability 2021,13, 12379. https://doi.org/10.3390/su132212379 https://www.mdpi.com/journal/sustainability
Sustainability 2021,13, 12379 2 of 16
appears to be one country that is taking the lead in this transition by setting 2025 as the
target year to phase out ICE vehicle sales and manufacturing. These efforts towards a
green industrial evolution will further stem the tide of global environmental pollution and
improve on the “Paris Agreement” of the 2015 conference of the parties (CoP) to the United
Nations Framework Convention on Climate Change (UNFCCC). Key to this agreement,
as seen in “Article 2(1)(a)(b) of the 2015 Paris Agreement” [
3
], was the commitment made
by 195 countries to drive decarbonization efforts to the stage where the global average
temperature is limited to 1.5
o
C and GHG emissions are lowered. Inarguably, large-scale
electric vehicle adoption, batteries, and charging infrastructure powered by renewable
energy sources (and not fossil fuel-powered plants) will accelerate the transition towards
the green industrial evolution within the transportation sector.
According to a report from the Bloomberg New Energy Finance on Electric Vehicle
Outlook 2021 Executive Summary [
4
], there are currently 12 million passenger EVs and
commercial EVs are estimated to have reached 1 million, while the category of two- and
three-wheeler EVs are estimated to be 260 million. The report [
4
] also gave a picture of
global electric vehicles by segment and market, as indicated in Figure 1, in that by 2025,
the estimated number of passenger EVs is predicted to surpass 54 million and commercial
EVs and E-buses combined will be over 5 million, while electric two- and three-wheelers
will surpass 300 million.
Sustainability 2021, 13, x FOR PEER REVIEW 2 of 16
from 2030. Norway appears to be one country that is taking the lead in this transition by
setting 2025 as the target year to phase out ICE vehicle sales and manufacturing. These
efforts towards a green industrial evolution will further stem the tide of global environ-
mental pollution and improve on the “Paris Agreement” of the 2015 conference of the
parties (CoP) to the United Nations Framework Convention on Climate Change (UN-
FCCC). Key to this agreement, as seen in “Article 2(1)(a)(b) of the 2015 Paris Agreement”
[3], was the commitment made by 195 countries to drive decarbonization efforts to the
stage where the global average temperature is limited to 1.5
o
C and GHG emissions are
lowered. Inarguably, large-scale electric vehicle adoption, batteries, and charging infra-
structure powered by renewable energy sources (and not fossil fuel-powered plants) will
accelerate the transition towards the green industrial evolution within the transportation
sector.
According to a report from the Bloomberg New Energy Finance on Electric Vehicle
Outlook 2021 Executive Summary [4], there are currently 12 million passenger EVs and
commercial EVs are estimated to have reached 1 million, while the category of two- and
three-wheeler EVs are estimated to be 260 million. The report [4] also gave a picture of
global electric vehicles by segment and market, as indicated in Figure 1, in that by 2025,
the estimated number of passenger EVs is predicted to surpass 54 million and commercial
EVs and E-buses combined will be over 5 million, while electric two- and three-wheelers
will surpass 300 million.
Figure 1. Global Electric Vehicle by Segment and Market. BloombergNEF: EV Outlook 2021 [4].
Figure 1. Global Electric Vehicle by Segment and Market. BloombergNEF: EV Outlook 2021 [4].
Engel et al. [
5
], under the auspices of the McKinsey Center for Future Mobility, con-
ducted a similar study which suggested an exponential increase in large-scale electric
vehicle adoption, reaching 120 million by 2030, in China, the European Union, and the
United States alone. Figure 2is a representation of McKinsey’s base-case scenario for
the exponential increase in EV adoption [
5
]. These figures suggest that the increasing
number of EVs that will plug into the grid for battery charging will continue to grow. The
consequential effect of this will cause the electricity grid—which was never designed to
service large-scale EVs’ load—to experience some level of instability, frequency deviation,
and overloading of substations, amongst other uncertainties relating to the safety and
stability of the electricity grid. Considering the three levels at which EV batteries can be
charged, with level 1 capacity ranging from 1 kW but less than 10 kW, level 2 charging
above 10 kW but less than 40 kW, and level 3 charging above 40 kW, it is unlikely that the
electricity distribution network will be able to sustain large-scale EV charging. To illustrate
further using big and small economies, the most recent World Bank data on electricity
power consumption per capita [
6
] shows that South Africa consumes about 4.198 kWh,
while the United States consumes about 12.994 kWh. Assuming that an average of 2 kWh
of energy is consumed by an EV from the grid, the exponential increase of EVs over time
suggests that the impact of large-scale EV to grid integration (EV2G) when added to the
Sustainability 2021,13, 12379 3 of 16
per capita consumption of electricity as indicated in [
6
] will adversely affect the energy
system of any economy. This study therefore argues that this problem will further increase
the global GHG emissions of CO
2
, making it difficult to achieve the 1.5
C limit of the Paris
Agreement. In addressing this problem, this study aims to provide insight into some of
the approaches that will enable sustainable EV transportation in addition to integrating
renewable energy sources, such as solar power as an alternative option for charging EVs in
the absence of grid-dependent fossil fuel energy.
Sustainability 2021, 13, x FOR PEER REVIEW 3 of 16
is consumed by an EV from the grid, the exponential increase of EVs over time suggests
that the impact of large-scale EV to grid integration (EV2G) when added to the per capita
consumption of electricity as indicated in [6] will adversely affect the energy system of
any economy. This study therefore argues that this problem will further increase the
global GHG emissions of CO2, making it difficult to achieve the 1.5 °C limit of the Paris
Agreement. In addressing this problem, this study aims to provide insight into some of
the approaches that will enable sustainable EV transportation in addition to integrating
renewable energy sources, such as solar power as an alternative option for charging EVs
in the absence of grid-dependent fossil fuel energy.
Figure 2. McKinsey’s Base-Case Scenario for EV Adoption by 2030 for China, the EU, and the US.
2. Large-Scale Electric Vehicle Impact: Implications for Grid Integration
The integration of large-scale EVs into the electricity grid has continued to raise seri-
ous concerns about the security and stability of the grid. Gadh et al. [7] conducted a study
that investigated the uncertainties associated with the impact of large-scale EVs on the
distribution network and the problem of coordinating them. To solve this problem, the
application of parametric diffusion kernel density estimation (DKDE) was employed to
evaluate the energy required to charge large-scale EVs. In the case of the power flow prob-
lem for this study, an alternating direction method of multipliers was employed to ad-
dress this issue. Singh et al. [8] investigated the impact analysis of plug-in electric vehicles
(PEVs) on the distribution network using different charging models. The study high-
lighted that an increased number of PEV has a significant impact on the distribution net-
work with obvious losses, peak loading, and transformer overload. The impact of EV en-
ergy demand on the distribution network of five countries from the European Union (the
UK, Germany, Spain, Portugal, and Greece) was analyzed in a study conducted by Hat-
ziargyriou et al. [9]. The analysis involved the use of dumb charging (EV charging on a
residential grid system) as a method to establish that domestic energy consumption in-
creases with EV integration. With this scenario, an increase in peak load energy demands
Figure 2. McKinsey’s Base-Case Scenario for EV Adoption by 2030 for China, the EU, and the US.
2. Large-Scale Electric Vehicle Impact: Implications for Grid Integration
The integration of large-scale EVs into the electricity grid has continued to raise seri-
ous concerns about the security and stability of the grid. Gadh et al. [
7
] conducted a study
that investigated the uncertainties associated with the impact of large-scale EVs on the
distribution network and the problem of coordinating them. To solve this problem, the
application of parametric diffusion kernel density estimation (DKDE) was employed to
evaluate the energy required to charge large-scale EVs. In the case of the power flow prob-
lem for this study, an alternating direction method of multipliers was employed to address
this issue. Singh et al. [
8
] investigated the impact analysis of plug-in electric vehicles (PEVs)
on the distribution network using different charging models. The study highlighted that an
increased number of PEV has a significant impact on the distribution network with obvious
losses, peak loading, and transformer overload. The impact of EV energy demand on the
distribution network of five countries from the European Union (the UK, Germany, Spain,
Portugal, and Greece) was analyzed in a study conducted by Hatziargyriou et al. [
9
]. The
analysis involved the use of dumb charging (EV charging on a residential grid system) as a
method to establish that domestic energy consumption increases with EV integration. With
this scenario, an increase in peak load energy demands on residential distribution networks
Sustainability 2021,13, 12379 4 of 16
was experienced in the summer, mostly in the afternoon, while in the winter season, the
impact of EV energy demand from the grid shows a further increase in residential energy
consumption during the evening due to peak load, which usually occurred in the evening.
An evaluation of the impact that different EV charging will have on Germany’s
national grid by 2030 was conducted by Hartmann et al. [
10
]. The investigation used three
scenarios to gauge the future impact of the increasing large-scale integration of EVs on
Germany’s energy system. Using synthetic data with a minimum of one million EVs and up
to a maximum of 42 million charging on the grid, the study established an increase in the
peak demand of daily electricity. This first scenario demonstrated that the uncoordinated
charging of EVs will certainly disrupt the stability of the distribution network. To cushion
the effect of the first scenario, Hartmann et al. [
10
] considered the use of large-scale EV
batteries to stabilize the electricity grid, which showed an improvement of 16% in the
second scenario. This improvement from the second scenario was primarily because of
the strategic and coordinated charging of EVs during off-peak periods and feeding the
EVs’ battery energy back to the grid (stabilization). The third scenario was purely for its
economic benefit, whereby EVs were used for energy trading.
Weiller [
11
] conducted a research study on the impact of EVs’ load demand on the US
energy system. In analyzing the charging pattern and load profiles of EVs’ hourly energy
demand, the study used the US National Household Travel Survey of over 365,000 private
vehicle trips. Using this dataset, a simulation model was conducted with input parameters
such as battery charge depletion based on mileage, EV battery size, the efficiency of the
charger, and the power level of the charger employed, amongst other parameters. Some
of the results indicated that EV energy consumption can go up to 8.5 kWh/day, which
increases the electricity consumption per capita [
6
]. In other words, large-scale EVs charging
at the same time will impose a significant increase on the peak demand of daily electricity
consumption and constrain the stability of the power grid. Axsen et al. [
12
] conducted a
study using three scenarios to investigate the impacts of plug-in hybrid electric vehicles
(PHEVs) in California. In the first scenario, using the unconstrained method for charging
EVs, this study established the potential impact of increased peak demand, which can
significantly affect grid stability and may require that additional electricity be generated to
meet the growing demand of uncontrolled large-scale EVs charging. The second scenario,
which involved the use of workplace amenities to charge EVs, indicated an increase of
27% in electricity consumption, while the last scenario involved a control strategy of load
shifting of EVs charging to off-peak periods, which showed a significant reduction of 25%
in the overall electricity consumption profile.
Salah et al. [
13
], in a study conducted using the distribution substations in Switzer-
land’s energy system, argued that an increasing number of large-scale EV penetration will
have a significant impact on the national grid. In a quest to understand how EV charging
will impact the energy system, real-time capacity datasets from SWISS high-voltage grid
substations, EV datasets comprising of 30 kWh battery capacity, EV power consumption
estimated at 0.15 kWh/km, and the maximum travel range of 200 km based on the battery
capacity and estimated consumption were used for modelling and analysis. Using the cur-
rent electricity tariff and at 16% EV penetration, the findings showed a stable performance
from the distribution substation, even though charging activities were uncoordinated.
However, with an exponential increase of large-scale EVs’ uncoordinated charging ex-
ceeding the 50% penetration level, the performance of the distribution substations is most
likely to be significantly impacted with overloads. Some of the recommendations made by
Salah et al. [13]
include the introduction of adaptive and dynamic electricity tariff schemes
that encourages load shifting of EV charging to off-peak periods.
Foley et al. [
14
] studied the impact of 213,561 EVs on the Republic of Ireland and
Northern Ireland single electricity market (SEM) using a model based on PLEXOS. In
analyzing the potential impact, two scenarios that involved charging EVs during off-peak
and peak periods were employed. The overall result indicated that off-peak charging has
a minimal impact on the stability and safety of the electricity network. Furthermore, a
Sustainability 2021,13, 12379 5 of 16
reduction in carbon emissions of CO
2
for both the off-peak and peak charging was indi-
cated as 147 and 210 kt CO
2
, respectively. Fernandes et al. [
15
] investigated the impact
of EV load demand on Spain’s energy system, whilst considering its economic benefits
and that of renewable energy sources’ (RES) integration into the grid systems. Analysis of
the operational cost and energy consumption profile on the energy system was done with
and without EV integration to the grid. Results from this study showed that the cost of
generating electricity with RES for charging EVs with average penetration levels is quite
minimal. On the other hand, an increase in EV penetration levels imposes additional costs
on the generation capacity. The study, however, noted that RES integration with EV2G
integration will provide valuable ancillary services and a more sustainable energy system
with reduced GHG emissions. Supplementary literature studies on the aggregated impact
of large-scale EV charging on the distribution network can be seen in [
16
18
]. An entire
literature survey on EVs’ impact on distribution systems and the significance of carrying
out safety assessments to ameliorate this impact can be read in [
19
]. The impacts of the
coordinated and uncoordinated charging of EVs on the Western Australia distribution net-
work based on the time of use and voltage unbalance factor, amongst other parameters, can
be read in [
20
]. In trying to understand the impact of the uncoordinated charging of PEVs
on the distribution network, an assessment to determine the actual performance of distri-
bution networks as against the ideal performance was conducted in [
21
]. In concluding this
section, an overview that summarizes the grid impact of EVs from the perspective of fast
charging stations integrated into distribution networks can be read in [
22
]. It highlighted
and reviewed power quality issues associated with EV fast-charging under high power
mode and provides ways of improving this process to ensure grid safety and stability.
3. Energy Management Strategies to Optimize PEV Load Demand on the Electricity Grid
The impact of the electrification of vehicles has been established to be a threat to the
security and stability of the electricity grid, as outlined above in Section 2. In this section,
the focus on the context around the energy management strategy evaluation of EVs and
minimizing the impact of EVs on the distribution network, including methodologies and
tools used for optimization, is provided.
3.1. Electric Vehicle Classification
EVs are generally classified into the following distinct powertrains, namely battery
electric vehicle (BEV), hybrid electric vehicle (HEV), plug-in hybrid electric vehicle (PHEV),
and fuel cell electric vehicle (FCEV). Within the PHEV category, as depicted in Figure 3,
there are two subcategories, namely (1) the series PHEV, which is otherwise popularly
known as the extended-range electric vehicle (EREV), and (2) the parallel PHEV.
Sustainability 2021, 13, x FOR PEER REVIEW 6 of 16
Figure 3. General Classification of Electric Vehicles.
3.1.1. Battery Electric Vehicle (BEV)
The battery electric vehicle, otherwise known as purely EV or fully EV, has no inter-
nal combustion engine, hence its purely 100% electric driven powertrain with a very large
battery power pack. With an intelligent energy management system (IEMS), the battery
DC power is converted to AC power supplied to the electric motor which converts the
electrical energy to mechanical energy required to drive the wheels. During the vehicle
braking process (regenerative braking), the motor acts as an electrical generator (an alter-
nator), which converts the mechanical energy (through a process known as kinetic energy
recovery) from the brakes to the electrical energy required to charge the battery. Addi-
tional information can be seen in the Alternative Fuels Data Center of Energy Efficiency
and Renewable Energy in the U.S. Department of Energy [23].
3.1.2. Hybrid Electric Vehicle (HEV)
Hybrid electric vehicles were not designed to charge from the grid. Instead, its con-
figuration is such that includes a conventional ICE (using gasoline or diesel), which is
smaller and more efficient with regular fuel tanks, battery power packs, and electric mo-
tors. The ICE is used to power the electric motor and charge the battery and the regener-
ative braking system is also employed to recover kinetic energy from the brakes for charg-
ing the battery and to power the electric motor [23].
3.1.3. Plug-In Hybrid Electric Vehicle (PHEV)
Plug-in hybrid electric vehicles, as the name suggests, combine the characteristics of
the HEV and, in addition, were designed for grid integration. It has the conventional ICE,
an electric motor, and a larger battery power pack than the HEV. The electric motor can
be independently powered by either the ICE or the battery or a combination of the two.
There are three modes available to charge the battery, namely using the ICE, regenerative
braking, or through electrical outlets integrated into the electricity grid. Typically, the
PHEV operates only in two modes, starting with the all-electric mode (also known as
charge-depleting mode (CD mode)), which uses the battery and the electric motor to sup-
ply the power needed for all operations. The IEMS of the PHEV helps with energy man-
agement, monitoring, and control in this mode, in the sense that in the all-electric mode
drive, the IEMS monitors the battery state of charge (SoC) and determines when to switch
to the hybrid mode (the second mode of operation), where the ICE is now employed to
drive the EV. In the second mode of operation, the IEMS switches the battery system to a
mode known as the charge-sustaining (CS) mode. To maintain the required battery SoC
in the CS mode, the IEMS uses the kinetic energy recovered from the regenerative braking
Electric
Vehicles
Battery Electric Vehicle
(BEV)
Hybrid Electric Vehicle
(HEV)
Plug-in Hybrid Electric Vehicle
(PHEV)
Series PHEV
(Extended Range Electric
Vehicle (EREV))
Parallel PHEV
Fuel Cell Electric Vehicle
(FCEV)
Figure 3. General Classification of Electric Vehicles.
Sustainability 2021,13, 12379 6 of 16
3.1.1. Battery Electric Vehicle (BEV)
The battery electric vehicle, otherwise known as purely EV or fully EV, has no internal
combustion engine, hence its purely 100% electric driven powertrain with a very large
battery power pack. With an intelligent energy management system (IEMS), the battery
DC power is converted to AC power supplied to the electric motor which converts the
electrical energy to mechanical energy required to drive the wheels. During the vehicle
braking process (regenerative braking), the motor acts as an electrical generator (an alter-
nator), which converts the mechanical energy (through a process known as kinetic energy
recovery) from the brakes to the electrical energy required to charge the battery. Additional
information can be seen in the Alternative Fuels Data Center of Energy Efficiency and
Renewable Energy in the U.S. Department of Energy [23].
3.1.2. Hybrid Electric Vehicle (HEV)
Hybrid electric vehicles were not designed to charge from the grid. Instead, its
configuration is such that includes a conventional ICE (using gasoline or diesel), which is
smaller and more efficient with regular fuel tanks, battery power packs, and electric motors.
The ICE is used to power the electric motor and charge the battery and the regenerative
braking system is also employed to recover kinetic energy from the brakes for charging the
battery and to power the electric motor [23].
3.1.3. Plug-In Hybrid Electric Vehicle (PHEV)
Plug-in hybrid electric vehicles, as the name suggests, combine the characteristics of
the HEV and, in addition, were designed for grid integration. It has the conventional ICE,
an electric motor, and a larger battery power pack than the HEV. The electric motor can
be independently powered by either the ICE or the battery or a combination of the two.
There are three modes available to charge the battery, namely using the ICE, regenerative
braking, or through electrical outlets integrated into the electricity grid. Typically, the
PHEV operates only in two modes, starting with the all-electric mode (also known as
charge-depleting mode (CD mode)), which uses the battery and the electric motor to
supply the power needed for all operations. The IEMS of the PHEV helps with energy
management, monitoring, and control in this mode, in the sense that in the all-electric
mode drive, the IEMS monitors the battery state of charge (SoC) and determines when to
switch to the hybrid mode (the second mode of operation), where the ICE is now employed
to drive the EV. In the second mode of operation, the IEMS switches the battery system to a
mode known as the charge-sustaining (CS) mode. To maintain the required battery SoC in
the CS mode, the IEMS uses the kinetic energy recovered from the regenerative braking
process, and through the help of the electric motor which acts as an electrical generator (an
alternator), energy is restored to the battery to sustain the required SoC [23].
3.1.4. Fuel Cell Electric Vehicle (FCEV)
Fuel cell electric vehicles have some similarities to the above-mentioned EVs, including
an electric motor and a large battery power pack, except for the fact that FCEV generates
electricity using hydrogen gas and atmospheric oxygen with the help of an onboard fuel
cell stack. The electricity generated from the fuel cell stack and the battery power pack is
used to drive an electric motor that propels the wheels [23].
3.2. Energy Management of PEV Load Demand on the Distribution Network
In order to evaluate the future uncertainties that are likely to affect the energy system
in Colombia from large-scale grid integration of EV by 2030, Betancur et al. [
24
] developed a
method to simulate the large-scale charging scenario of PEV using the Monte Carlo method.
The model included parameters relating to the PEV daily mileage, charging behaviour that
includes the battery SoC, and PEV energy consumption, amongst other parameters. The
outcome of the investigation indicated an upsurge of 20% and 40% in transformer and
power lines overload arising from PEV charging power demand.
Sustainability 2021,13, 12379 7 of 16
Forecasting the charging demand of PEVs is one way to reduce the grid impact of large-
scale PEVs. This method was demonstrated by Jahangir et al. [
25
] by using an Artificial
neural network (ANN) to estimate the impact of PEVs on the electricity distribution
network. This investigation involved the use of Recurrent ANN based on the feedforward
method and the Lavenberg Marquardt (LM) method of training data to forecast the travel
behaviour and charging pattern of the PEVs. The result of the ANN simulation was
compared with a benchmark simulation done with the Monte Carlo method. The result
indicated that significant energy consumption costs can be reduced by an aggregator on a
yearly basis.
An approach for the load management of PEVs integrated into the grid has been
applied by Topic et al. [
26
]. Specifically, the authors [
26
] developed two models for PEV
energy demand, using a deep neural network (DNN) to model the energy demand of
PEVs. The first model predicts battery SoC and the associated fuel consumption during
the PEV’s driving cycle. The second model predicts the travel range limit associated with
driving PEVs in all-electric mode (also known as charge-depleting mode (CD mode)). The
neural network model showed better results in minimizing the charging energy costs of
large-scale PEVs when compared with the traditional response surface approach.
Considering energy-efficient routing for EVs, De Cauwer et al. [
27
] conducted a study
that predicted the energy consumption pattern of EVs using real-world driving datasets. A
multiple linear regression (MLR) model was used to estimate the energy consumption of
EVs, considering internal parameters like speed and acceleration and temperature as an
external parameter, while the neural network was used to predict unknown parameters.
According to [
27
], results from the models show a mean absolute error of 12% to 14%
derived from the predicted energy consumption of the EVs.
Nageshrao et al. [
28
] conducted a study that employed optimal charging strategies to
illustrate how the EV load demand can be managed to reduce the energy cost of electricity
consumption from the grid. The result showed a 54% improvement in cost optimization
using coordinated charging strategies, as opposed to when an uncoordinated charging sce-
nario was employed. Another approach employed by [
28
] to minimize the charging cost of
EV operation involves using a neural network to predict the energy demand of EVs based
on battery SoC and temperature. In order to be able to schedule EV charging and discharg-
ing operations, Morsalin et al. [
29
] used a neural network to make this intelligent decision.
The approach involved the use of a smart metering device to obtain a dataset on household
power consumption profiles and EV energy demand patterns. The neural network involved
a feed-forward approach and a sigmoid function to train datasets that include parameters
of battery SoC, EV trip time, and energy consumption. Using a nonlinear autoregressive
with an external input (NARX) neural network,
Jiménez-Bermejo et al. [30]
were able to
predict the EV battery SoC. The input parameters used to train the neural network were
voltage and current, while the battery SoC represented the output of the network.
Using a nonlinear model predictive control (MPC) Pereira et al. [
31
] developed an
energy management system (EMS) for FCEV and modelled the proton exchange mem-
brane of the fuel cell using a recurrent neural network (RNN). Results indicated that the
RNN which was trained with the Bayesian regularization algorithm in MATLAB shows
accurate results of the FC voltage prediction, while the MPC model was able to minimize
hydrogen consumption.
Park et al. [
32
] developed a controller using MPC to manage HEV energy while
using ANN to predict future duty cycles instead of assumed duty cycles. The results
indicated that the ANN predictions show a good fit for actual duty cycles and contribute to
improving the HEV fuel economy. In a study conducted by Zhang et al. [
33
] which looks
at the power management of PHEV, the use of MPC strategy was applied to control the
output power between available battery power packs and ultracapacitors. In this case, the
control strategy was optimized using a dynamic programming algorithm. This method
was evaluated using three different driving cycles to validate the results, which indicated
an improved fuel economy for the PHEVs.
Sustainability 2021,13, 12379 8 of 16
One of the major objectives of using IEMS in HEV operations is to maintain accurate
SoC for the battery. This can be seen in the study conducted by Xiang et al. [
34
], which
used a cascaded control concept that included three approaches, namely the use of a radial
basis function ANN to predict vehicle velocity, the application of nonlinear MPC in a
master controller that helps to maintain battery SoC and minimize the consumption of
fuel, and the use of a slave controller based on a proportional integral derivative (PID)
for engine and motor control. Further studies on MPC with comprehensive reviews on
power management strategies for HEV considering prediction accuracy, design parameters,
solvers, and other factors affecting MPC performance can be read from the study conducted
by Huang et al. [35].
Considering the variables of fuel rate, battery SoC, and driveline power demand,
Chen et al. [36]
conducted a study that used a genetic algorithm (GA) to optimize the
threshold of a power-split PHEV when the engine is switched on, while quadratic program-
ming (QP) was applied for the estimate of the PHEV battery current. The result indicated
that the energy management strategy was able to minimize PHEV fuel consumption. In
order to reduce the peak power that will arise from the point of common coupling due to
large-scale EV grid integration, Kucevic et al. [
37
] employed the use of linear optimization
and time series modelling for the coordination of multiple battery energy storage systems.
This model was evaluated on a distribution grid in order to assess the effective control and
coordination of the BESS charging and discharging functions. The results indicated that an
estimated 44.9% maximum peak load reduction can be achieved.
In a study conducted by Khaki et al. [
38
], where EV charging scheduling was formu-
lated as an exchange problem, a novel hierarchical distributed electric vehicle charging
schedule (HDEVCS) composed of a trilayer multiagent framework was developed to solve
the exchange problem using the alternating direction method of multipliers (ADMM) as a
solver. The results indicated that EV charging cost and the peak load demand were reduced
significantly. In an effort to minimize EV charging costs and guarantee that EVs are fully
charged, and giving the stochastic nature associated with EV arriving and living charging
stations and the fluctuating electricity price, Li et al. [
39
] conducted a study to address this
problem by formulating the charging and discharging schedule as a constrained Markov
Decision Process (MDP) and applying a solver called safe deep reinforcement learning.
The simulation for this experiment used the deep neural network to learn the datasets of
EV constrained charging and discharging schedules.
3.3. Tools for Modeling Electric Vehicle Load Demand Impact on the Distribution Network
Literature studies, as seen in Section 3.2, have been able to describe some of the
available approaches on the energy management of PEV load demand, which includes
EV load demand forecast and the prediction of the battery SoC amongst many alterna-
tives. This subsection presents some of the tools and approaches for modelling EV energy
consumption and its impact on the electricity grid.
Using the load curves generated from EV charging profiles to measure the impacts
of EV charging activities on Croatia’s energy system, Novosel et al. [
40
] made attempts to
model EV energy consumption based on the hourly distribution of energy supplied. To
achieve this objective, the use of MATSim as an agent-based modelling tool was employed
to determine the hourly distribution of energy demand by EVs, whereas, the impact
assessment of the EV load demand on Croatia’s energy system was done using the reference
model created in EnergyPLAN for modelling.
Using deep reinforcement learning (DRL), Hu et al. [
41
] developed an EMS for HEV.
This approach employed a DRL algorithm that makes use of deep neural networks and
Q-Learning to better understand and learn the HEV driving cycles and conditions in order
to optimize energy consumption. The tools employed in this study include MATLAB
and the advanced vehicle simulator known as ADVISOR from the national renewable
energy laboratory (NREL) of the U.S. Department of Energy. Zhang et al. [
42
] conducted a
study involving the use of a fuzzy neural network (FNN) control strategy for the energy
Sustainability 2021,13, 12379 9 of 16
management of the HEV fuel economy. The FNN approach was based on an optimization
algorithm constructed with an adaptive neuro-fuzzy inference. Using the HEV battery SoC
as part of the inputs to the FNN, the algorithm was tested using the ADVISOR tool from
NREL, and the results indicated an improved fuel economy of 51%.
The capabilities of the future automotive systems technology simulator (FASTSim)
application software, which is an advanced vehicle powertrain system analysis and evalua-
tion tool, was exhibited by Brooker et al. [
43
] as a model that can be used on most types of
EVs for the estimation of battery life, efficiency, cost, and performance. A study conducted
by Xu et al. [
44
] emphasizes the benefit of predicting the energy consumption of large-scale
EVs for the purpose of better planning and designing sustainable operations of the EV
transportation system. To model the energy consumed by large-scale EVs in this regard,
a data-driven model which involves operational parameters from the powertrain was
trained using the Bayesian Network. Some of the parameters employed include observable
on-road operational parameters including EV speed, acceleration, battery SoC, EV load
relating to heating, ventilation, and air conditioning. A system modelling and control
application software known as Autonomie was used to generate and evaluate datasets
relating to the EV energy consumption profile.
The development of a smart charging system for EV load management is one major
aspect that is gaining the attention of industry, academia, and the research community.
This is evident in the research and development work conducted by Rajit et al. [
45
] at
the University of California Los Angeles and Lee et al. [
46
] at the California Institute of
Technology. Rajit et al. [
45
] at UCLA developed an innovative smart EV charging system
called WINSmartEV and an infrastructure platform called WinSmartGrid which combines
the intelligence of a smart charging algorithm and smart communication network for
scheduling large-scale EV distributed charging. The capabilities of the WINSmartEV and
the WinSmartGrid also includes remote control and monitoring of large-scale EV charging
activities over the network, grid power flow control and monitoring, EV battery SoC, and
optimal energy supply management. In the case of Lee et al. [
46
], an innovative technology
known as the adaptive charging network (ACN) was developed to demonstrate how large-
scale EV can be charged using smart communication devices, protocols, power meters,
internet connections, and datasets to control the distributed charging of EVs over the
charging network. The significance that open data and models have in the reproducibility
of EV research and development which is consistent, scalable, and applicable to any country
was emphasized in the study conducted by Yvenn et al. [
47
]. Further readings on EV load
management models and data sources can be found in [
47
]. Also, data sources on EVs
charging profiles and integration can be seen in the review conducted by Calearo et al. [
48
].
4. Sustainable Electric Vehicle Charging Infrastructure
Charging stations are the next big investment in the EV market to sustain the transition
from the ICE vehicle to greener EV transportation. Moreover, EV charging stations with
renewable energy sources are the most promising solution to reducing carbon emissions
and alleviating the significant consequences of EV charging on distribution networks. This
section entails literature studies and applications of solar photovoltaic power and battery
energy storage system (BESS) as a sustainable energy source for charging EVs.
Developing a sustainable solution for EV charging infrastructure with respect to the
renewable energy supply is the key to fully realising the carbon emission-free transportation
industry. Unfortunately, technology development has not yet matured to a stage where
EVs will completely be off-grid and less dependent on fossil fuel. The techno-economic
application of solar power and BESS in the electrification of vehicles is one major aspect
that is currently underutilized due to the stochastic and intermittent nature of the power
supply. A case study has been provided by Laurischkat et al. [
49
], where system dynamics
was used in Germany to promote the economic and sustainable application of SPP and
BESS for charging EVs. Some of the critical parameters considered in this application
include the EV driving profile, current electricity price, and household energy requirement.
Sustainability 2021,13, 12379 10 of 16
Using the Monte Carlo simulation approach to evaluate the economic and energy benefit
potentials of solar power and EVs to minimize the cost of electricity in EV to grid (EV2G)
and EV to home (EV2H) applications, Lazzeroni et al. [
50
] employed a similar case study
to that mentioned in [
49
], where solar power is employed in a residential environment
for optimal EV battery charging and management. One of the objectives was to reduce
the cost of electricity supply from the grid. For this study, the key parameters, including
EV battery constraints, driver behaviour in terms of how EVs are being used, household
energy requirements, and electricity tariffs, were taken into consideration in other to apply
SPP as an alternative clean energy supply.
Wu et al. [
51
] conducted a study that promotes the application of solar power and
BESS integration to household electricity systems in order to efficiently charge EVs. An
optimization framework was developed considering solar power, BESS, and plug-in EVs.
Using convex programming, this study was able to achieve an optimal BESS capable of
supplying the electricity supply requirement of a home during off-peak periods, thereby
generating huge financial savings as compared to a home without solar power and BESS.
Chowdhury et al. [
52
] conducted a study that investigated the economic and environmental
benefits of SPP application in Bangladesh, India for the purpose of charging EVs.
Minh et al. [
53
] conducted a study that supports the use of SPP integrated into charg-
ing stations to enable large-scale charging of EVs, reduce GHG emissions, and enable a
sustainable EV market which is currently lacking in charging infrastructure. This study
confirmed that most EVs still depend largely on the fossil fuel-powered electricity distri-
bution network for large-scale EV battery charging. Considering that SPP is stochastic
in nature, this study used Vietnam as a case study for the techno-economic analysis and
application of SPP integrated to EV charging stations to establish an optimal configuration
suitable to meet large-scale EV charging requirements under different solar irradiation
atmospheres. Part of the objective was to establish the potential for cities to invest in SPP
applications for EV charging based on the level of irradiation available.
Given that EVs takes a long time to get charged due to the large number of battery
packs installed, Nishimwe et al. [
54
] conducted a study that involves the integration of
SPP and BESS to develop a fast-charging station for EVs. This study was based on an
optimization framework to maximize these combined energy sources to supply EVs with
clean energy. Some of the key parameters considered in this study include the intermittent
SPP, EV arrival time, scheduling EVs for charging, and the power requirement of the EVs.
Part of the objective for this application was to establish a framework for a profitable RES
charging station.
For EVs to achieve zero emissions, they should be completely charged off the utility
grid, which is majorly coal-dependent. A recent study conducted by Deshmukh et al. [
55
]
investigates the viability of using Walmart, the multinational retail outlet with chains
of hypermarkets across the United States, as a case study for the development of Solar
Photovoltaic Power (SPP) EV charging stations. In this case, the idea is based on having
solar panels as roof covers in large car-parking amenities. The technical detail from this
study indicates that about 3.1 MW of SPP can be generated from one retail outlet for
charging an estimated 100 EV. It was further estimated that the entire chain of Walmart
hypermarkets has the potential to provide more than 346,000 SPP EV charging stations and
more than 11.1 GW of rooftop SPP generation. The drive towards the 2030 decarboniza-
tion of the electricity system in Japan and China has motivated the research conducted
by
Kobashi et al. [56]
. This study investigated the techno-economic assessment of using
residential SPP and BESS for charging EVs. The outcome of the study indicated both
economic and environmental benefits of using SPP, BESS, and large-scale EV charging and
discharging operations to lower the impact of EVs’ energy demands from the distribution
networks, as well as cutting carbon emissions. It further recommends strategic policies
which will encourage the integration of SPP and BESS to household charging stations
for EVs.
Sustainability 2021,13, 12379 11 of 16
The study conducted by Zhao et al. [
57
] was based on using a different approach
to energy management to improve the optimal operation of the distribution network
in charging EVs. This approach mainly involves EV charging stations with integrated
renewable energy sources comprising SPP and BESS. This study argues that replacing
EV batteries with fully charged batteries is more effective towards the optimization of
the distribution networks and it allows EV batteries to fully utilize SPP generated while
providing an optimal load-shifting strategy. The fragmented energy management approach
employed in [
57
] is such that uses three energy supply sources including the SPP, BESS,
and the distribution network to charge EVs at different times and based on the time of use
and electricity pricing.
A feasibility study conducted by Ye et al. [
58
] based on a model of SPP charging
stations for large-scale EVs was proposed for the Shenzhen city of China. One of the
primary objectives of this study was based on the technical and economic feasibility
of developing an SPP charging station that will meet the growing energy demand of
EVs’ charging requirements. The result from this developed model indicates a combined
reduction in GHG emissions of carbon dioxide, sulphur dioxide, and nitrogen oxide with a
significant percentage of reduction at 99.8%, 99.7%, and 100%, respectively. In analysing
the proposed model for SPP EV charging stations and their impacts, Ye et al. [
58
] conducted
a sensitivity analysis using the capital cost of the SPP system, carbon pricing, interest rate,
and feed-in tariff policy as parameters for measuring the impacts. The sensitivity analysis
for the capital cost of SPP system development shows to have an impact on the Cost of
Energy (CoE), in the sense of an increase in the cost of the PV system that including module
prices will add to the CoE. The influence of an increase in carbon pricing and raising
the emission tax for non-RES will encourage investment and increase the penetration of
RES. While an increasing interest rate is a major drawback for investments in RES, policy
mechanisms that encourage feed-in tariffs for SPP generation are surely bound to increase
investment in RES and a reduction in the global footprint of carbon emissions.
Mazzeo [
59
] conducted an evaluation on the use of SPP and BESS to set up a residential
charging system for EVs. The methodology employed three charging scenarios that involve
charging EVs directly from a residential electrical outlet. The second scenario combines
SPP, BESS, and grid connection, while the third scenario includes all the power sources in
scenario two in the presence of residential load. These energy models or scenarios in one,
two, and three were used to determine the significant impact SPP and BESS have on the
load satisfaction of EV energy demands when off-grid or grid-connected.
From the literature surveyed in this section, it is important to note the significance of
sustainable charging infrastructure for the future of EVs and the battle against the growing
global footprint of GHG emissions. Although this study did not investigate the different
EV plug configurations and communication protocols that EV manufacturers have built
into their vehicles, this study argues that the future of EVs, with regards to its sustainability,
also depends on the ability of any EV to have compatible charging connectors to any
charging station equipment. Conversely, at best, the EV manufacturers should have a
common standard adapter that can be bought off the shelf, this will enable different EVs
to convert or adapt their charging ports to any charging station network. The current
EV market has made available the charging connectors J1772, CCS, CHAdeMO and Tesla
connectors, which are commonly found in the United States and European countries,
while the Chinese EV market supports its own proprietary GB/T connector. Figure 4
makes available the visual representation of these EV charger connectors and the typical
power ratings [
60
]. A comprehensive review that provides an extensive information on
EV charging methods, including charging standards, levels of charging, and charging
configurations was conducted by Arif et al. [
61
]. This review provides a pathway for
countries to adopt methodologies that are based on a feasible framework established for
the successful adoption of EVs.
Sustainability 2021,13, 12379 12 of 16
Sustainability 2021, 13, x FOR PEER REVIEW 12 of 16
From the literature surveyed in this section, it is important to note the significance of
sustainable charging infrastructure for the future of EVs and the battle against the grow-
ing global footprint of GHG emissions. Although this study did not investigate the differ-
ent EV plug configurations and communication protocols that EV manufacturers have
built into their vehicles, this study argues that the future of EVs, with regards to its sus-
tainability, also depends on the ability of any EV to have compatible charging connectors
to any charging station equipment. Conversely, at best, the EV manufacturers should have
a common standard adapter that can be bought off the shelf, this will enable different EVs
to convert or adapt their charging ports to any charging station network. The current EV
market has made available the charging connectors J1772, CCS, CHAdeMO and Tesla con-
nectors, which are commonly found in the United States and European countries, while
the Chinese EV market supports its own proprietary GB/T connector. Figure 4 makes
available the visual representation of these EV charger connectors and the typical power
ratings [60]. A comprehensive review that provides an extensive information on EV charg-
ing methods, including charging standards, levels of charging, and charging configura-
tions was conducted by Arif et al. [61]. This review provides a pathway for countries to
adopt methodologies that are based on a feasible framework established for the successful
adoption of EVs.
Figure 4. Electric Vehicle Charging Connectors and Configurations [60].
5. Conclusions and Policy Recommendations to Promote Electric Vehicle Adoption
This study was mainly an investigation on the future direction of EVs and the sus-
tainability of the transportation sector in relation to EV adoption, whilst also considering
the negative impacts of EV energy demands from fossil fuel-powered energy systems and
how this undercuts the United Nations Climate Change efforts. Sustainable analysis case
studies have been presented on applicable strategies for a global decarbonization
roadmap within the transportation industry using EVs and renewable energy sources like
the BESS and SPP to power EVs and their charging infrastructure. However, this paper
Figure 4. Electric Vehicle Charging Connectors and Configurations [60].
5. Conclusions and Policy Recommendations to Promote Electric Vehicle Adoption
This study was mainly an investigation on the future direction of EVs and the sus-
tainability of the transportation sector in relation to EV adoption, whilst also considering
the negative impacts of EV energy demands from fossil fuel-powered energy systems and
how this undercuts the United Nations Climate Change efforts. Sustainable analysis case
studies have been presented on applicable strategies for a global decarbonization roadmap
within the transportation industry using EVs and renewable energy sources like the BESS
and SPP to power EVs and their charging infrastructure. However, this paper did not
investigate the end-of-life (EoL) management of EVs and ICEV components, especially
the issues related to the recycling and reuse of batteries and tires, which are composed of
chemicals and hydrocarbon materials that may further escalate environmental issues when
they are not properly managed. To this end, future research recommendations should look
into these issues. The study conducted by Idiano et al., as seen in [
62
,
63
], provides a basis
for the EoL management of vehicles.
The main issues of this study centre around the future and sustainability of EV
transportation in relation to alternative and renewable energy power supplies for EV
charging stations that will be off-grid dependent fossil fuel energy, this is in addition to
promoting the widespread adoption of EVs in the transportation industry in order to
reduce global GHG emissions and fulfilling the initial Paris Agreement (2015) to lower the
global average temperature to 1.5 C.
Although the issue of combating global climate change and reducing the global
average temperature to 1.5
C may seem to be a herculean task in a global economy that
depends heavily on fossil fuel-powered energy systems, this study and review is very
significant in providing a future direction for sustainable EV market and the transportation
sector which has a direct impact on global climate change. For countries that are seeking
to cut their greenhouse gas emissions by one-third, the transportation sector provides a
huge opportunity for decarbonization through EV adoption and the implementation of
Sustainability 2021,13, 12379 13 of 16
RES charging stations for EVs. Furthermore, given the enormous benefits that the EV
market provides amidst promoting decarbonization and renewable energy, it offers an
opportunity to develop new economies and job creation. Therefore, the government and
industry players should create an enabling environment and strategic policies that will
support the industrialization of the EV market across economies.
To achieve this, and based on the current EV technology infrastructure deficit in any
country vis-à-vis manufacturing capacity to produce EVs and develop the value chain
needed to support this market. It is important to consider the renewable energy mix,
utility grid capacity for expansion, accessibility of EVs charging stations, business case for
government and stakeholders to buy-into the idea of the electrification of the transportation
sector, and the return on investments in EVs and climate change benefits. The following
recommendations for an EV readiness plan should also be considered in any economy.
i.
Tax credits to reduce the high cost and ownership of EVs should be considered as a
key factor that will drive EV penetration.
ii.
Policies that include carbon tax holidays and financial incentives for businesses that
invest in the EV value chain.
iii.
Policy to encourage public–private partnerships for the development of EV charging
stations that are off-grid, with renewable energy supply sources. This policy can
incentivize this initiative through government grant allocation.
iv.
Incentives that will encourage and fast-track the development and smooth operation
of regional charging equipment and lower the cost of installation for businesses, in
public facilities, and at fuel stations.
v.
A policy document backed by a government (national, state, municipal, and local
government) legislative bill to establish EV charging stations on the streets using
existing utility infrastructure such as street light poles to scale the deployment of
charging stations and lower the high cost associated with developing entirely new
infrastructure. This policy should encourage partnership with governments, utility
companies and the private sector to streamline project development in public works,
and the required permit processes needed to establish designated charging zones.
vi.
A policy that will enable EVs to be parked on the streets in designated EV charging
zones that protects EVs from getting traffic tickets and fines.
vii.
A policy to incentivize university–industry-based research and development endeav-
ours in public charging infrastructure will further encourage EV adoption.
viii.
Economic incentive policy that encourages charging of EVs during off-peak periods,
i.e., time-of-use (ToU) electricity pricing.
Author Contributions:
R.K. conceived the concept and was responsible for preparing the original
draft manuscript; T.O. and B.J.v.W. supervised the development and were responsible for guidance,
reviewing, and editing. All authors have read and agreed to the published version of the manuscript.
Funding:
This research has been partially supported by the National Research Foundation of South
Africa and the Tshwane University of Technology.
Data Availability Statement: Not applicable.
Acknowledgments:
The authors would like to appreciate the ongoing support received from the Na-
tional Research Foundation of South Africa and the Tshwane University of Technology,
South Africa
.
Conflicts of Interest: The authors declare no conflict of interest.
References
1.
Statista. Largest Oil Consumption Worldwide by Country 2019. Available online: https://www.statista.com/statistics/271622
/countries-with-the-highest-oil-consumption-in-2012/ (accessed on 13 May 2021).
2.
U.S. Energy Information Administration. Available online: https://www.eia.gov/energyexplained/us-energy-facts/ (accessed
on 13 May 2021).
3.
United Nations Climate Change. Available online: https://unfccc.int/sites/default/files/english_paris_agreement.pdf (accessed
on 19 May 2021).
Sustainability 2021,13, 12379 14 of 16
4.
Bloomberg New Energy Finance: Electric Vehicle Outlook 2021 Executive Summary. Available online: https://bnef.turtl.co/
story/evo-2021/page/1?teaser=yes (accessed on 23 August 2021).
5.
Engel, H.; Hensley, R.; Knupfer, S.; Sahdev, S. Charging Ahead: Electric-Vehicle Infrastructure Demand; McKinsey Center for Future
Mobility: Beijing, China, 2018; pp. 1–8. Available online: https://www.mckinsey.com/~{}/media/McKinsey/Industries/
Automotive%20and%20Assembly/Our%20Insights/Charging%20ahead%20Electric-vehicle%20infrastructure%20demand/
Charging-ahead-electric-vehicle-infrastructure-demand-final.pdf (accessed on 23 August 2021).
6.
The World Bank. Electric Power Consumption (kWh per Capita)-South Africa 2014. Available online: https://data.worldbank.
org/indicator/EG.USE.ELEC.KH.PC?locations=ZA (accessed on 27 July 2021).
7.
Khaki, B.; Chung, Y.W.; Chu, C.; Gadh, R. Probabilistic Electric Vehicle Load Management in Distribution Grids. In Proceedings
of the IEEE Transportation Electrification Conference and Expo (ITEC), IEEE, Detroit, MI, USA, 19–21 June 2019; pp. 1–6.
8.
Singh, J.; Tiwari, R. Impact analysis of different charging models for optimal integration of plug-in electric vehicles in distribution
system. IET J. Eng. 2019,2019, 4728–4733. [CrossRef]
9.
Hatziargyriou, N.; Karfopoulos, E.L.; Tsatsakis, K. The impact of EV charging on the system demand. In Electric Vehicle Integration
into Modern Power Networks; Garcia-Valle, R., Pecas Lopes, J.A., Eds.; Springer: New York, NY, USA, 2013; pp. 57–85.
10.
Hartmann, N.; Ozdemir, E.D. Impact of different utilization scenarios of electric vehicles on German grid 2030. J. Power Sources
2011,196, 2311–2318. [CrossRef]
11.
Weiller, C. Plug-in hybrid electric vehicle impacts on hourly electricity demand in the United States. Energy Policy
2011
,
39, 3766–3778. [CrossRef]
12.
Axsen, J.; Kurani, K.S. Anticipating plug-in hybrid vehicle energy impacts in California: Constructing consumer informed
recharge profiles. J. Transp. Res. Part D Transp. Environ. 2010,15, 212–219. [CrossRef]
13.
Salah, F.; Ilg, J.P.; Flath, C.M.; Basse, H.; van Dinther, C. Impact of electric vehicles on distribution substations: A Swiss case study.
Appl. Energy 2015,137, 88–96. [CrossRef]
14.
Foley, A.; Tyther, B.; Calnan, P.; Gallachóir, Ó. Brian. Impacts of electricity vehicle charging under electricity market operations.
Appl. Energy 2013,101, 93–102. [CrossRef]
15.
Fernandes, C.; Frias, P.; Latorre, J.M. Impact of vehicle to grid on power system operation costs: The Spanish case study.
Appl. Energy 2012,96, 194–202. [CrossRef]
16.
Habib, S.; Kamran, M.; Rashid, U. Impact analysis of vehicle-to-grid technology and charging strategies of electric vehicles on
distribution networks—A Review. J. Power Sources 2015,277, 205–214. [CrossRef]
17.
Reddy, G.H.; Goswami, A.K.; Dev Choudhury, N.B. Impact of plug-in electric vehicles and distributed generation on reliability of
distribution systems. J. Eng. Sci. Technol. 2018,21, 50–59.
18.
Dharmakeerthi, C.H.; Mithulananthan, N.; Saha, T.K. Impact of electric vehicle fast charging on power system voltage stability.
Int. J. Electr. Power Energy Syst. 2013,57, 241–249. [CrossRef]
19.
Abdalrahman, A.; Zhuang, W. A survey on PEV charging infrastructure: Impact assessment and planning. Energies
2017
,10, 1650.
[CrossRef]
20.
Jabalameli, N.; Ghosh, A.; Su, X.; Banerjee, B. Stochastic Assessment of Plug-In Electric Vehicles Charging In LV Distribution
Network On Voltage Unbalance. In Proceedings of the 9th International Conference on Power and Energy Systems (ICPES),
Perth, WA, Australia, 10–12 December 2019; pp. 1–6.
21.
Roncancio, I.; Rios, M.A. Spectral and Steady State Impact Assessment of PHEV On Distribution Systems. In Proceedings of the
2013 Workshop on Power Electronics and Power Quality Applications (PEPQA), Bogota, Colombia, 6–7 July 2013; pp. 1–6.
22.
Wang, L.; Qin, Z.; Slangen, T. Grid impact of electric vehicle fast charging stations: Trends, Standards, Issues and Mitigation
Measures-An Overview. IEEE Open J. Power Electron. 2021,2, 56–74. [CrossRef]
23.
Alternative Fuels Data Center, Energy Efficiency and Renewable Energy, U.S. Department of Energy. Available online:
https://afdc.energy.gov/vehicles/how-do-all-electric-cars-work (accessed on 24 August 2021).
24.
Betancur, D.; Duarte, L.F.; Revollo, J.; Restrepo, C.; Díez, A.E.; Isaac, I.A.; López, G.J.; González, J.W. Methodology to evaluate the
impact of electric vehicles on electrical networks using Monte Carlo. Energies 2021,14, 1300. [CrossRef]
25.
Jahangir, H.; Tayarani, H.; Ahmadian, A.; Golkar, M.A.; Miret, J.; Tayarani, M.; Gao, H.O. Charging demand of plug-in electric
vehicles: Forecasting travel behavior based on a novel rough artificial neural network approach. J. Clean. Prod.
2019
,229, 1029–1044.
[CrossRef]
26.
Topic’, J.; Skugor, B.; Deur, J. Neural network-based modeling of electric vehicle energy demand and electric range. Energies
2019
,
12, 1396. [CrossRef]
27.
De Cauwer, C.; Verbeke, W.; Coosemans, T.; Faid, S.; Van Mierlo, J. A data-driven method for energy consumption prediction and
energy-efficient routing of electric vehicles in real-world conditions. Energies 2017,10, 608. [CrossRef]
28.
Nageshrao, S.P.; Jacob, J.; Wilkins, S. Charging cost optimization for EV buses using neural network-based energy predictor.
IFAC-PapersOnLine 2017,50, 5947–5952. [CrossRef]
29.
Morsalin, S.; Khizir, K.; Town, G. Electric vehicle charge scheduling using an artificial neural network. In Proceedings of the 2016
IEEE Innovative Smart Grid Technologies-Asia (ISGT-Asia), Melbourne, VIC, Australia, 28 November–1 December 2016; pp. 1–5.
30.
Jiménez-Bermejo, D.; Fraile-Ardanuy, J.; Castana-Solis, S.; Merino, J.; Alvaro-Hermana, R. Using dynamic neural networks for
battery state of charge estimation in electric vehicles. Procedia Comput. Sci. 2018,130, 533–540. [CrossRef]
Sustainability 2021,13, 12379 15 of 16
31.
Pereira, D.F.; Lopes, F.D.C.; Watanabe, E.H. Nonlinear Model Predictive Control for the Energy Management of Fuel Cell Hybrid
Electric Vehicles in Real Time. IEEE Trans. Ind. Electron. 2020,68, 3213–3223. [CrossRef]
32.
Park, S.; Ahn, C. Power management controller for hybrid electric vehicle with predicted future acceleration. IEEE Trans. Veh.
Technol. 2019,68, 10477–10488. [CrossRef]
33.
Zhang, S.; Xiong, R.; Sun, F. Model predictive control for power management in a plug-in hybrid electric vehicle with a hybrid
energy storage system. Appl. Energy 2017,185, 1654–1662. [CrossRef]
34.
Xiang, C.; Ding, F.; Wang, W.; He, W. Energy management of a dual-mode power-split hybrid electric vehicle based on velocity
prediction and nonlinear model predictive control. Appl. Energy 2017,189, 640–653. [CrossRef]
35.
Huang, Y.; Wang, H.; Khajepour, A.; He, H.; Ji, J. Model predictive control power management strategies for HEVs: A review.
J. Power Sources 2016,341, 91–106. [CrossRef]
36.
Chen, Z.; Chunting, M.; Xiong, R.; Xu, J.; You, C. Energy management of a power-split plug-in hybrid electric vehicle based on
genetic algorithm and quadratic programming. J. Power Sources 2014,248, 416–426. [CrossRef]
37.
Kucevic, D.; Englberger, S.; Sharma, A.; Trivedi, A.; Tepe, B.; Schachler, B.; Hesse, H.; Srinivasan, D.; Jossen, A. Reducing grid peak
load through the coordinated control of battery energy storage systems located at electric vehicle charging parks.
Appl. Energy
2021,295, 116936. [CrossRef]
38.
Khaki, B.; Chu, C.; Gadh, R. Hierarchical distributed framework for EV charging scheduling using exchange problem.
Appl. Energy
2021,295, 116936. [CrossRef]
39.
Li, H.; Wan, Z.; He, H. Constrained EV charging scheduling based on safe deep reinforcement learning. Appl. Energy
2020
,295, 116936.
[CrossRef]
40.
Novosel, T.; Perkovic, L.; Ban, M.; Keko, H.; Puksec, T.; Krajacic, G.; Duic, N. Agent based modelling and energy planning-
Utilization of MATSim for transport energy demand modelling. Energy 2015,92, 466–475. [CrossRef]
41.
Hu, Y.; Li, W.; Xu, K.; Zahid, T.; Qin, F.; Li, C. Energy management strategy for a hybrid electric vehicle based on deep
reinforcement learning. Appl. Sci. 2017,8, 187. [CrossRef]
42.
Zhang, X.; Liu, Y.; Zhang, J.; Dai, W.; Liu, Z. A fuzzy neural network energy management strategy for parallel hybrid electric
vehicle. In Proceedings of the 9th International Conference on Modelling, Identification and Control (ICMIC), Kunming, China,
10–12 July 2017; pp. 342–347.
43.
Brooker, A.; Gonder, J.; Wang, L.; Wood, E. FASTSim: A Model to Estimate Vehicle Efficiency, Cost, and performance. In Proceed-
ings of the SAE Technical Paper 2015–01–0973, Detroit, MI, USA, 21–23 April 2015; pp. 1–12. [CrossRef]
44.
Xu, X.; Abdul-Aziz, H.M.; Lliu, H.; Rodgers, M.O.; Guensler, R. A scalable energy modeling framework for electric vehicles in
regional transportation networks. Appl. Energy 2020,269, 115095. [CrossRef]
45.
Chynoweth, J.; Chung, C.Y.; Qiu, C.; Chu, P.; Gadh, R. Smart Electric Vehicle Charging Infrastructure Overview. In Proceedings of
the Innovative Smart Grid Technologies (ISGT), Washington, DC, USA, 19–22 February 2014; pp. 1–5.
46.
Zachary, J.L.; Sunash, S.; Steven, H.L. Research Tools for Smart Electric Vehicle Charging. An Introduction to the Adaptive
Charging Network Research Portal. In IEEE Electrification Magazine; IEEE: Miami, FL, USA, 2021; Volume 9, pp. 29–36.
47.
Yvenn, A.O.; Yannig, G.; Pascal, M.; Jean-Michel, P.; Hui, Y. A review on Electric Vehicle load open data models. Energies
2021
,14, 2233.
48.
Calearo, L.; Marinelli, M.; Ziras, C. A review of data sources for electric vehicle integration studies. Renew. Sustain. Energy Rev.
2021,151, 111518. [CrossRef]
49.
Laurischkat, K.; Jandt, D. Techno-economic analysis of sustainable mobility and energy solutions consisting of electric vehicles,
photovoltaic systems and battery storages. J. Clean. Prod. 2018,179, 642–661. [CrossRef]
50.
Lazzeroni, P.; Olivero, S.; Repetto, M.; Stirano, F.; Vallet, M. Optimal battery management for vehicle-to-home and vehicle-to-grid
operations in a residential case study. Energy 2019,175, 704–721. [CrossRef]
51.
Wu, X.; Hu, X.; Teng, Y.; Qian, S.; Cheng, R. Optimal integration of hybrid solar-battery power source into smart home nanaogrid
with plug-in electric vehicle. J. Power Sources 2017,363, 277–283. [CrossRef]
52.
Chowdhury, N.; Hossain, C.A.; Longo, M.; Yaici, W. Optimization of solar energy system for the electric vehicle at University
Campus in Dhaka, Bangladesh. Energies 2018,11, 2433. [CrossRef]
53.
Minh, P.V.; Quang, S.L.; Pham, M.H. Technical economic analysis of photovoltaic-powered electric vehicle charging stations
under different solar irradiation conditions in Vietnam. Sustainability 2021,13, 3528. [CrossRef]
54.
Nishimwe, L.F.; Yoon, S.G. Combined optimal planning and operation of a fast EV-charging station integrated with solar PV and
ESS. Energies 2021,14, 3152. [CrossRef]
55.
Deshmukh, S.S.; Pearce, J.M. Electric vehicle charging potential from retail parking lot solar photovoltaic awnings. Renew. Energy
2021,169, 608–617. [CrossRef]
56.
Kobashi, T.; Say, K.; Wang, J.; Yarime, M.; Wang, D.; Yoshida, T.; Yamagata, Y. Techno-economic assessment of photovoltaics plus
electric vehicles towards household-sector decarbonization in Kyoto and Shenzhen by year 2030. J. Clean. Prod.
2020
,253, 119933.
[CrossRef]
57.
Zhao, Z.; Wang, K.; Li, G.; Jiang, X.; Wang, X. Economic dispatch of distribution network with in for electric vehicles and
photovoltaic. J. Eng. 2019,2019, 2864–2868. [CrossRef]
58.
Ye, B.; Jiang, J.; Miao, L.; Yang, P.; Li, J.; Shen, B. Feasibility study of a solar-powered electric vehicle charging station model.
Energies 2015,8, 13265–13283. [CrossRef]
Sustainability 2021,13, 12379 16 of 16
59.
Mazzeo, D. Nocturnal electric vehicle charging interacting with a residential photovoltaic-battery system: A 3E (energy, economic
and environmental) analysis. Energy 2019,168, 310–331. [CrossRef]
60.
Khaligh, A.; D’Antonio, M. Global trends in high-power on-board chargers for electric vehicles. IEEE Trans. Veh. Technol.
2019
,
68, 3306–3324. [CrossRef]
61.
Arif, S.M.; Lie, T.T.; Seet, B.C.; Ayyadi, S.; Jensen, K. Review of electric vehicle technologies, charging methods, standards and
optimization techniques. Electronics 2021,10, 1910. [CrossRef]
62.
D’Adamo, I.; Rosa, P. A structured literature review on obsolete electric vehicles management practices. Sustainability
2019
,11, 6876.
[CrossRef]
63.
D’Adamo, I.; Gastaldi, M.; Rosa, P. Recycling of end-of-life vehicles: Assessing trends and performances in Europe. Technol.
Forecast. Soc. Chang. 2019,152, 119887. [CrossRef]
... The stored DC is converted to AC by the Intelligent energy management system (IEMS), which then supplies it to the electric motor, which transforms the electric energy into mechanical energy that powers the wheels of the vehicle. Regenerative braking is used in the majority of EVs to recover energy lost during braking [3]. During this process, the electric motor functions as an alternator and converts the mechanical energy to electric energy to recharge the battery pack. ...
... Hybrid electric vehicles (HEVs) utilize an electric motor in conjunction with an internal combustion engine. In this arrangement, the internal combustion engine (ICE) collaborates with the electric motor to provide power to the vehicle, while regenerative charging is employed to recharge the battery [3]. Hybrid cars incorporate fuel tanks, fuel lines, and other internal components found in vehicles powered by internal combustion engines (ICE). ...
... The ICE recharges the battery pack through regenerative braking system or the use of electrical outlet connected to the grid. During operation, the intelligent energy management system (IEMS) decides which energy source powers the vehicle [3]. ...
... [ [130][131][132] Progress and sustainable methods for EVs and E-mobility Analysis of different sustainable indicators for developing countries using EVs was evaluated with different roadmaps to reduce the overreliance on the electric grid. ...
Article
Full-text available
There has been a progressive global increase in the usage of electric vehicles in this dispensation. This is mostly due to the need to decarbonise the transport sector and mitigate the concerns of climate change and depleting oil reserves of which South Africa is not an exception. In fact, South Africa is the country with the highest CO2 emissions in Africa and can reduce its carbon footprint by embracing green mobility. Compared to the internal combustion engine (ICE) market, the electric vehicle (EV) market in South Africa is still in its early stages, with limited local production and usage since its introduction to the country’s automotive sector in 2013. Therefore, in this study, the usage of EVs in South Africa, along with adoption rates and challenges were carried out to make a stronger case that would offer a better pathway for increased EV adoption in the country. It has been discovered that the slow adoption rate of EVs is due to factors such as EV procurement, ownership costs, vehicle parts, safety issues, battery technology, tax and import duties, load shedding, and availability of charging stations. This paper also provides insights into government policies, funding, and other efforts that can support EV adoption in the country through the analyses of primary and secondary data. The proposed strategies include the introduction of tax rebates on imported EVs, local production of EVs and their vehicle parts, retrofitting ICE vehicles to EVs, and science-informed strategies to transition from ICE to electric vehicles. Furthermore, more renewable energy grid integration and renewable energy-powered EV charging stations would also provide support for the energy required to power EVs even during load shedding. Preliminary findings from the survey also suggest that the local production of EV components and government-sponsored training programmes on various EV skills are crucial for increasing the adoption rate of EVs in the country.
... Countries around the world recognize the significant sustainable transportation benefits that EVs provide [30] and have thus provided extensive funding to prepare their transportation infrastructure [31] to accelerate EV adoption. A significant body of existing literature has documented the public health and environmental benefits of EVs towards reducing greenhouse gas emissions and addressing climate change [30,[32][33][34], the economic benefits [35,36], and how closely a sustainable transportation future outlook is intertwined with growth in EV adoption and smart grid management strategies [37,38]. A robust and scalable data-driven methodology and related performance measures, such as those presented by this study, are vital to enable such informed infrastructure investment decision making to ensure sustainable transportation-focused practices in the future. ...
Article
Full-text available
Historically, practitioners and researchers have used selected count station data and survey-based methods along with demand modeling to forecast vehicle miles traveled (VMT). While these methods may suffer from self-reporting bias or spatial and temporal constraints, the widely available connected vehicle (CV) data at 3 s fidelity, independent of any fixed sensor constraints, present a unique opportunity to complement traditional VMT estimation processes with real-world data in near real-time. This study developed scalable methodologies and analyzed 238 billion records representing 16 months of connected vehicle data from January 2022 through April 2023 for Indiana, classified as internal combustion engine (ICE), hybrid (HVs) or electric vehicles (EVs). Year-over-year comparisons showed a significant increase in EVMT (+156%) with minor growth in ICEVMT (+2%). A route-level analysis enables stakeholders to evaluate the impact of their charging infrastructure investments at the federal, state, and even local level, unbound by jurisdictional constraints. Mean and median EV trip lengths on the six longest interstate corridors showed a 7.1 and 11.5 mile increase, respectively, from April 2022 to April 2023. Although the current CV dataset does not randomly sample the full fleet of ICE, HVs, and EVs, the methodologies and visuals in this study present a framework for future evaluations of the return on charging infrastructure investments on a regular basis using real-world data from electric vehicles traversing U.S. roads. This study presents novel contributions in utilizing CV data to compute performance measures such as VMT and trip lengths by vehicle type—EV, HV, or ICE, unattainable using traditional data collection practices that cannot differentiate among vehicle types due to inherent limitations. We believe the analysis presented in this paper can serve as a framework to support dialogue between agencies and automotive Original Equipment Manufacturers in developing an unbiased framework for deriving anonymized performance measures for agencies to make informed data-driven infrastructure investment decisions to equitably serve ICE, HV, and EV users.
... Significant progress in energy research has driven the increased adoption of EVs. Raymond et al. [7] proposed the use of eco-friendly approaches to EV transportation. By adopting these approaches, societies can benefit and also contribute to achieving sustainability. ...
Article
Full-text available
Electric vehicle (EV) drivers in urban areas face range anxiety due to the fear of running out of charge without timely access to charging points (CPs). The lack of sufficient numbers of CPs has hindered EV adoption and negatively impacted the progress of sustainable mobility. We propose a CP distribution algorithm that is machine learning-based and leverages population density, points of interest (POIs), and the most used roads as input parameters to determine the best locations for deploying CPs. The objects of the following research are as follows: (1) to allocate weights to the three parameters in a 6 km by 10 km grid size scenario in Dublin in Ireland so that the best CP distribution is obtained; (2) to use a feedforward neural network (FNNs) model to predict the best parameter weight combinations and the corresponding CPs. CP deployment solutions are classified as successful when an EV is located within 100 m of a CP at the end of a trip. We find that (1) integrating the GEECharge and EV Portacharge algorithms with FNNs optimises the distribution of CPs; (2) the normalised optimal weights for the population density, POIs, and most used road parameters determined by this approach result in approximately 109 CPs being allocated in Dublin; (3) resizing the grid from 6 km by 10 km to 10 km by 6 km and rotating it at an angle of −350∘ results in a 5.7% rise in the overall number of CPs in Dublin; (4) reducing the grid cell size from 1 km2 to 500 m2 reduces the mean distance between CPs and the EVs. This research is vital to city planners as we show that city planners can use readily available data to generate these parameters for urban planning decisions that result in EV CP networks, which have increased efficiency. This will promote EV usage in urban transportation, leading to greater sustainability.
... Starting with this observation, it follows that there is a need for the design and construction of the asynchronous traction motor to be performed while considering the consequences of the deforming regime caused by the supply from the static converter. Increasing the sustainability of the static converter-asynchronous traction motor assembly requires us to establish the optimal motor option [5][6][7][8][9][10][11], so that for the selected static converter, the operating characteristics of the asynchronous motor meet the operating requirements and result in a judicious use of existing energy resources. ...
Article
Full-text available
In modern electric traction, direct current traction motors have been replaced with asynchronous motors with a short-circuited rotor. The justification is that asynchronous motors are more reliable, cheaper, and have smaller weights and dimensions, so they are more sustainable. In order to start and adjust the speed required in traction, these motors are powered from the contact line using a transformer and a static voltage and frequency converter. As a result, you can use green electricity produced with wind power plants or solar energy converted with photovoltaic panels, increasing sustainability because the consumption of traditional fuels is reduced. This paper presents various simulations emphasizing the negative effects of the distorting regime, with concrete results. The quality of the simulations carried out is increased by using a mathematical model, which uses the variable parameters of the motor dependent on the modulation of the current and the magnetic saturation. In modern 1500 kW electric locomotives, the traction motors are powered by static converters, which means an increase in losses when operating at nominal load on the motors by 38.7 kW and 217.8 kVAR compared to the sinusoidal three-phase power supply. Thus, the research carried out provides qualitatively and quantitatively correct simulations of the non-sinusoidal regime related to the asynchronous traction motor in order to increase the sustainability of this traction system.
... The impact of this change is closely related to the continuously increasing carbon emissions in Indonesia (Cakrawati Sudjoko, 2021). Uncontrolled use of fossil energy poses significant threats, including energy crises and environmental pollution contributing to climate change (Kene et al., 2021). In 2023, Indonesia was recorded as the country with the second largest carbon emissions from land-use change, after Brazil (Annur, 2023). ...
Article
Full-text available
1✉ Abstrak Penelitian ini bertujuan untuk menganalisis sentimen pengguna Twitter terhadap kendaraan listrik menggunakan teknik pembelajaran mesin. Data dikumpulkan dari Twitter dengan menggunakan kata kunci terkait kendaraan listrik. Data yang diperoleh diolah melalui beberapa tahap seperti pembersihan data, tokenisasi, dan stemming. Selanjutnya, data dianalisis menggunakan tiga algoritma pembelajaran mesin: Support Vector Machine (SVM), Naive Bayes Classifier (NBC), dan Random Forest. Hasil penelitian menunjukkan bahwa algoritma SVM memberikan akurasi terbaik dalam mengklasifikasikan sentimen pengguna. Berdasarkan analisis diagram tulang ikan, ditemukan bahwa sentimen negatif pengguna terutama disebabkan oleh delapan faktor utama: baterai, infrastruktur pengisian daya, biaya awal, jangkauan, dukungan kebijakan, kinerja, variasi model, dan keandalan. Temuan ini diharapkan dapat memberikan wawasan bagi produsen kendaraan listrik untuk meningkatkan kualitas produk dan kepuasan pelanggan.
... Owing to the awareness about global warming and worldwide government's targets towards sustainable automotive solutions to reduce greenhouse gas emissions, people as well as governments are setting goals to phaseout fossil fuel transport vehicles and replace them with Electric Vehicles (EVs) and other sustainable transportation modes (Kene et al., 2021). EVs as such is seen as vital sustainable transport option (Adnan et al., 2018). ...
Article
Full-text available
1. Abstract: Electric Vehicle (EV) manufacturing is an emerging and evolving industry. Gaining competitive advantage (CA) through apt strategies is of importance to existing as well as new entrants in the EV automobile industry. This paper aims to find various factors that may affect gaining Competitive Advantage (CA) in EV industry and to help strategy makers to weigh and prioritize them to gain competitive advantage in the EV industry. Extensive literature search and review is done as a method to find various factors influencing EV sector CA. The paper also evaluates Porter's Three Generic Strategies for competitiveness and Five Forces Framework to gain competitive advantage. The case study has helped to find various external and internal factors that affect the CA of emerging EV industry. The study also finds that Porter's generic strategies and five force frameworks are still widely used and useful for strategists in the EV industry but there could be additional drivers pertaining to current digital, technological and globalization environment currently prevailing in the industry. The findings are based on Desktop literature and data review without having done any field surveys or data collection.
Article
Full-text available
The transition towards electrifying the transport sector in China presents several new opportunities and solutions to accomplish the requirements, which are essential to address critical issues of energy resilience, air purity, and the development of sustainable energy systems. Accomplishing sustainability objectives faces significant challenges attributed to several adoption barriers of electric vehicles (EVs), therefore, a variety of different incentives have been considered, or being executed to handle these barriers effectively. The Chinese government is actively paying attention to augment the market penetration and consumer adoption of EVs through the implementation of numerous demonstration programs with favorable transportation policies. This study provides a comprehensive review of the key factors influencing adoption barriers and the effectiveness of EV policies. The primary objective is to extensively describe significant adoption issues, technical considerations, plans, and policies aimed at facilitating for massive deployment of EVs through an integrative review approach. This study also aims to highlight how government policies are systematically linked with each other to offer support, speedy progress, and achieve notable growth in the adoption of EVs in China. The final aim is to develop a comprehensive conceptualized research framework through extension in the Theory of Planned Behavior based on substantial barriers and policies for extensive adoption of EVs. The primary policy recommendations for different segments offer diverse insights for stakeholders to envision the future of electrified transportation.
Article
Full-text available
This paper presents a state-of-the-art review of electric vehicle technology, charging methods, standards, and optimization techniques. The essential characteristics of Hybrid Electric Vehicle (HEV) and Electric Vehicle (EV) are first discussed. Recent research on EV charging methods such as Battery Swap Station (BSS), Wireless Power Transfer (WPT), and Conductive Charging (CC) are then presented. This is followed by a discussion of EV standards such as charging levels and their configurations. Next, some of the most used optimization techniques for the sizing and placement of EV charging stations are analyzed. Finally, based on the insights gained, several recommendations are put forward for future research.
Article
Full-text available
Sufficient and convenient fast-charging facilities are crucial for the effective integration of electric vehicles. To construct enough fast electric vehicle-charging stations, station owners need to earn a reasonable profit. This paper proposed an optimization framework for profit maximization, which determined the combined planning and operation of the charging station considering the vehicle arrival pattern, intermittent solar photovoltaic generation, and energy storage system management. In a planning horizon, the proposed optimization framework finds an optimal configuration of a grid-connected charging station. Besides, during the operation horizon, it determines an optimal power scheduling in the charging station. We formulated an optimization framework to maximize the expected profit of the station. Four types of costs were considered during the planning period: the investment cost, operational cost, maintenance cost, and penalties. The penalties arose from vehicle customers’ dissatisfaction associated with waiting time in queues and rejection by the station. The simulation results showed the optimal investment configuration and daily power scheduling in the charging station in various environments such as the downtown, highway, and public stations. Furthermore, it was shown that the optimal configuration was different according to the environments. In addition, the effectiveness of solar photovoltaic, energy storage system, and queue management was demonstrated in terms of the optimal solution through a sensitivity analysis.
Article
Full-text available
Both global climate change and the decreasing cost of lithium-ion batteries are enablers of electric vehicles as an alternative form of transportation in the private sector. However, a high electric vehicle penetration in urban distribution grids leads to challenges, such as line over loading for the grid operator. In such a case installation of grid integrated storage systems represent an alternative to conventional grid reinforcement. This paper proposes a method of coordinated control for multiple battery energy storage systems located at electrical vehicle charging parks in a distribution grid using linear optimization in conjunction with time series modeling. The objective is to reduce the peak power at the point of common coupling in existing distribution grids with a high share of electric vehicles. An open source simulation tool has been developed that aims to couple a stand alone power flow model with a model of a stand alone battery energy storage system. This combination of previously disjointed tools enables more realistic simulation of the effects of storage systems in different operating modes on the distribution grid. Further information is derived from a detailed analysis of the storage system based on six key characteristics. The case study involves three charging parks with various sizes of coupled storage systems in a test grid in order to apply the developed method. By operating these storage systems using the coordinated control strategy, the maximum peak load can be reduced by 44.9%. The rise in peak load reduction increases linearly with small storage capacities, whereas saturation behavior can be observed above 800 kWh.
Article
Full-text available
The field of electric vehicle charging load modelling has been growing rapidly in the last decade. In light of the Paris Agreement, it is crucial to keep encouraging better modelling techniques for successful electric vehicle adoption. Additionally, numerous papers highlight the lack of charging station data available in order to build models that are consistent with reality. In this context, the purpose of this article is threefold. First, to provide the reader with an overview of the open datasets available and ready to be used in order to foster reproducible research in the field. Second, to review electric vehicle charging load models with their strengths and weaknesses. Third, to provide suggestions on matching the models reviewed to six datasets found in this research that have not previously been explored in the literature. The open data search covered more than 860 repositories and yielded around 60 datasets that are relevant for modelling electric vehicle charging load. These datasets include information on charging point locations, historical and real-time charging sessions, traffic counts, travel surveys and registered vehicles. The models reviewed range from statistical characterization to stochastic processes and machine learning and the context of their application is assessed.
Article
Full-text available
At present, the electric vehicle (EV) market is developing strongly and widely across many countries around the world. Increasing clean energy infrastructure for EVs is a possible solution to reduce greenhouse gas emissions and help improve air quality in urban areas. Electric vehicles charged by electricity from photovoltaic (PV) systems can produce less emissions than conventional EVs charged by the utility grid. Thus, the combination of solar power and EV charging stations is one of the possible methods to achieve sustainable development in the current EV market. EVs in cities in Vietnam have developed very quickly in recent times, but the charging station infrastructure is still very limited, and most existing charging stations use electricity from the utility grid. In this paper, the optimal configuration of PV-powered EV charging stations is analyzed technically and economically under different solar irradiation conditions in Vietnam. The study results show that the optimal configuration and investment efficiency of PV-powered EV charging stations in each urban area are greatly affected by the solar irradiation value and feed-in tariff (FIT) price of rooftop solar power. In Vietnam, a region with high solar irradiation, such as Ho Chi Minh, is more likely to invest in PV-powered EV charging stations than other areas with lower solar irradiation, such as Hanoi.
Article
Full-text available
In preparation for the electric mobility technological transition in Colombia, an impact assessment of the electric power system is required, considering the increasing loading that must be able to be managed in the future. In this paper, a plug-in electric vehicle (PEV) charging simulation methodology is developed in order to dimension the impact of this type of load on power grids. PEV electric properties, user charging behaviors, geographic location, trip distances, and other variables of interest are modeled from empirical or known probability distributions and later evaluated in different scenarios using Monte Carlo simulation and load flow analysis. This methodology is later applied to the transmission network of Antioquia (a department of Colombia) resulting in load increases of up to 40% on transmission lines and 20% on transformers in a high PEV penetration scenario in 2030, increases that are well within the expected grid capacity for that year, avoiding the need for additional upgrades.
Article
Full-text available
With growing concern on climate change, widespread adoption of electric vehicles (EVs) is important. One of the main barriers to EV acceptance is range anxiety, which can be alleviated by fast charging (FC). The main technology constraints for enabling FC consist of high-charging-rate batteries, high-power-charging infrastructure, and grid impacts. Although these technical aspects have been studied in literature individually, there is no comprehensive review on FC involving all the perspectives. Moreover, the power quality (PQ) problems of fast charging stations (FCSs) and the mitigation of these problems are not clearly summarized in the literature. In this paper, the state-of-the-art technology, standards for FC (CHAdeMO, GB/T, CCS, and Tesla), power quality issues, IEEE and IEC PQ standards, and mitigation measures of FCSs are systematically reviewed.
Article
Full-text available
This study investigates the energy related aspects of developing electric vehicle (EV) charging stations powered with solar photovoltaic (PV) canopies built on the parking infrastructure of large-scale retailers. A technical analysis is performed on parking lot areas located in the highest EV market coupled with charge station rates and capacities of the top ten EV. The results of a case study show a potential of 3.1 MW per Walmart Supercenter in the U.S., which could provide solar electricity for ∼100 EV charging stations. In the entire U.S., Walmart could potentially deploy 11.1GW of solar canopies over only their Supercenter parking lots providing over 346,000 EV charging stations with solar electricity for their customers covering 90% of the American public living within 15 miles of a Walmart. This novel model could be adopted by any box store with the solar electricity sold for EV charging at a profit solving community charging challenges. In addition, however, the results for the first time indicate store owners could increase store selection and profit by providing free PV-EV charging for their customers with four mechanisms. Overall the results of this study are promising, but future work is needed to provide more granular quantification of the benefits of this approach.
Article
Millions of Electric Vehicles (EVs) will enter service in the next decade, generating gigawatthours of additional energy demand. Charging these EVs cleanly, affordably, and without excessive stress on the grid will require advances in charging system design, hardware, monitoring, and control. Collectively, we refer to these advances as smart charging .
Article
The sales of electric vehicles (EVs) are rapidly increasing and their integration in the power system is becoming a crucial issue. However, there is a scarcity of necessary data to derive charging profiles and analyze their impact on the power system. The purpose of this manuscript is to provide a comprehensive review of published data sources that can be useful for EV studies in the context of smart grids and power systems. The manuscript focuses on the last two decades of published data, as this is more complete and reliable in terms of user and vehicle behavior. Data sources are categorized into three classes: surveys, internal combustion engine vehicles and EVs trials, and charger trials. Data from the different sources are summarized, including information regarding how and what kind of data has been collected and their availability. Based on the reviewed sources, five parameters are identified as essential to derive charging profiles: battery capacity, charging power, plug-in state of charge, plug-in/out time and charged energy. In order to observe individual behavior it is important to consider sets of charging sessions per charger, otherwise important correlations may be neglected. Depending on the source and data availability, in many cases this is not possible. To this end, this manuscript discusses how to use data from various sources to complement missing information and concludes with guidelines and limitations about data usage in EV studies.