Article

Changes to North American butterfly names

Authors:
To read the full-text of this research, you can request a copy directly from the authors.

Abstract

We obtained and analyzed whole genome shotgun sequences of all 845 species of butterflies recorded from Canada and the United States. Genome-scale phylogenetic trees constructed from the data reveal several non-monophyletic genera and suggest improved classification of species included in these genera. Here, these changes are formalized and 2 subgenera are described: Amblyteria Grishin, subgen. n. (type species Goniloba exoteria Herrich-Schäffer, 1869, parent genus Amblyscirtes Scudder, 1872), and Coa Grishin, subgen. n. (type species Hesperia baracoa Lucas, 1857, parent genus Polites Scudder, 1872). Furthermore, we resurrect 3 genera and 2 subgenera from synonymy, change the rank of 6 currently used genera to subgenus, synonymize 2 genera, transfer 3 (2 resurrected) subgenera and 11 additional species to different genera than those these taxa were assigned to, and raise one name from synonym to species rank. Namely, Hedone Scudder, 1872 and Limochores Scudder, 1872 are valid genera and not synonyms of Polites Scudder, 1872; Pendantus K. Johnson & Kroenlein, 1993 is a valid genus and not a synonym of Electrostrymon Clench, 1961; and Sphaenogona Butler, 1870 and Lucidia Lacordaire, 1833 are valid subgenera of Abaeis Hübner, [1819] (new placement) and not synonyms of Eurema Hübner, [1819]. The following taxa are best treated as subgenera: Mimoides Brown, 1991 of Eurytides Hübner, [1821] (sensu lato); Philotiella Mattoni, [1978] of Euphilotes Mattoni, [1978]; Neominois Scudder, 1875 of Oeneis Hübner, [1819]; Agraulis Boisduval & Le Conte, [1835] of Dione Hübner, [1819]; Copaeodes Speyer, 1877 of Oarisma Scudder, 1872; and Problema Skinner & R. Williams, 1924 of Atrytone Scudder, 1872. Phaeostrymon Clench, 1961 and Saliana Evans, 1955 are junior subjective synonyms of Satyrium Scudder, 1876 and Calpodes Hübner, [1819], respectively. The entire subgenus Erynnides Burns, 1964 is transferred from Erynnis Schrank, 1801 to Gesta Evans, 1953. New genus-species combinations resulting from transfer of species between genera are: Nastra perigenes (Godman, 1900) (not Vidius Evans, 1955); Troyus fantasos (Cramer, 1780), Troyus onaca (Evans, 1955), Troyus aurelius (Plötz, 1882), Troyus marcus (Fabricius, 1787), Troyus diversa (Herrich-Schäffer, 1869), and Troyus drova (Evans, 1955) (not Vettius Godman, 1901); Oligoria percosius (Godman, 1900), Oligoria rindgei (H. Freeman, 1969), Oligoria lucifer (Hübner, [1831]), and Oligoria mustea (H. Freeman, 1979) (not Decinea Evans, 1955). Urbanus alva Evans, 1952 is a valid species and not a synonym of Urbanus belli (Hayward, 1935), new status.

No full-text available

Request Full-text Paper PDF

To read the full-text of this research,
you can request a copy directly from the authors.

... Subsequent studies confirmed the monophyly of this group, but the division into the subtribes Scolitantidina and Glaucopsychina was not supported [5,6]. Over the past 50 years, this subtribe has been the subject of a series of taxonomic and phylogenetic studies based on the use of morphological and molecular markers [3,[5][6][7][8][9]. Despite this, the phylogenetic position, taxonomic status (genus-subgenus-synonymy) and species diversity of some genera within the subtribe Scolitantidina have remained unclear. ...
... We live in a time when works based on genome-wide data are beginning to appear in insect taxonomy [e.g., 8,9], but at the same time, articles based on multilocus data (phylogenomic approach) [e.g., 6,16,20] or on single mitochondrial gene COI (DNA-barcoding approach) [39,40] still dominate. It seems to us that in between these methodologies is the mixed approach proposed by Talavera et al. [49] who demonstrated that DNA barcodes combined with multilocus data of representative taxa could generate reliable, higher-level phylogenies. ...
... Euphilotes and Philotiella were described by Mattoni as two distinct genera [3]. Zhang et al. [8] downgraded Philotiella to the rank of a subgenus of Euphilotes because their COI barcodes differed by only 3.3%. Our data also showed that Philotiella was better treated as a subgenus than a genus. ...
Article
Full-text available
The Palearctic blue butterfly genus Pseudophilotes Beuret, 1958 is not homogenous regarding the morphology of its genital structures. For this reason, some of its species have been considered to be representatives of other genera of the subtribe Scolitantidina (subfamily Polyommatinae). Here, we address these taxonomic problems by analyzing the phylogenetic relationships between the genera, subgenera, and species of this subtribe inferred via the analysis of five nuclear and two mitochondrial DNA sequences. We demonstrate that the enigmatic Asian species P. panope (Eversmann, 1851) belongs to the genus Pseudophilotes but not to Praephilotes Forster, 1938 or Palaeophilotes Forster, 1938 and does not represent the independent genus Inderskia Korshunov, 2000, as hypothesized previously. We synonymize P. svetlana Yakovlev, 2003 (syn. nov.) and P. marina Zhdanko, 2004 (syn. nov.) with P. panope. We demonstrate a deep genetic divergence between lineages that were previously considered as subspecies of the single species Iolana iolas (Ochsenheimer, 1816). As a result, we confirm the multispecies concept of the genus Iolana Bethune-Baker, 1914. We show that the Holarctic genus Glaucopsyche can be divided into four subgenera: Glaucopsyche Scudder, 1872 (= Shijimiaeoides Beuret, 1958), Apelles Hemming, 1931, Bajluana Korshunov and Ivonin, 1990, and Phae-drotes Scudder, 1876.
... The phylogenetic relationships of the members of the Heliconiinae have been analyzed from a morphological (Penz 1999;Penz and Peggie 2003) and molecular (Brower and Egan 1997;Beltrán et al. 2002Beltrán et al. , 2007Kozak et al. 2015) perspective, recognizing four tribes: Acraeini, Heliconiini, Argynnini and Vagrantini. The Heliconiini included until recently the genera Philaethria Billberg, 1820, Podotricha Michener, 1942, Dryas Hübner, [1807, Dryadula Michener, 1942, Dione Hübner, [1819, Agraulis Boisduval & Le Conte, [1835], Eueides Hübner, 1816, andHeliconius Kluk, 1780, of which the latter is the most diverse with ~ 45 species and 200 subspecies (Lamas 2004;Kozak et al. 2015;Zhang et al. 2019). All the heliconiine species have as host plants members of the Passifloraceae s. l. (Bremer et al. 2009), mainly Passiflora L. (de Castro et al. 2018). ...
... For a long time, it was considered as a monotypic genus, with eight subspecies, occupying the larg-est distribution area within the tribe, ranging from the central west of the USA to the center of Argentina and Chile (Núñez et al. 2022). Recently, Zhang et al. (2019) through genome-scale phylogenetic analyses suggested that Agraulis is best treated as a subgenus of Dione. However, later on, Núñez et al. (2022) based on morphometric and molecular data maintained the two separate genera as valid. ...
... They also raised the eight subspecies of Agraulis to the species level including an undescribed species from the western slope of the Andes, previously listed as Agraulis n. sp. in the checklist of Neotropical butterflies (Lamas 2004). The proposal of Zhang et al. (2019) is followed in this study. ...
Article
Full-text available
Butterflies associated with xerophytic environments of the Andes have been little studied, and they exhibit high levels of endemism. Herein Dione (Agraulis) dodona Lamas & Farfán, sp. nov. (Nymphalidae; Heli-coniinae) is described, distributed on the western slopes of the Andes of Peru and northern Chile, between 800 and 3,000 m elevation. Adults of both sexes, and the immature stages, are described and illustrated based on light and scanning electron microscopy. The immature stages are associated with Malesherbia tenuifolia D. Don (Passifloraceae) found in xeric environments, representing a new record of this genus as a host plant for the subfamily Heliconiinae. Conspicuous morphological differences are presented for all stages at the generic level. Based on a phylogenetic analysis of the COI barcode mitochondrial gene fragment, D. (A.) dodona Lamas & Farfán, sp. nov. is distinguished as an independent lineage within the Agraulis clade of Dione, with ca. 5% difference to congeneric species.
... We correct these problems by proposing new names for the taxa that do not have them. Our logic about the taxonomic ranks (genus vs. subgenus) is discussed elsewhere Li et al. 2019;Zhang et al. 2019dZhang et al. , 2020Zhang et al. , 2021 and is adopted here. In brief, a genus corresponds to a prominent monophyletic group similar in genetic diversification within this group to other genera of its relatives. ...
... Notably, Draudt (1923a), applied the three names correctly, in agreement with our analysis, i.e., L. pupillus as a synonym of P. puxillius (although with a questionmark), with A. catahorma being a separate species. We recently argued for placing these species in the genus Limochores Scudder, 1872 (type species Hesperia manataaqua Scudder, 1864, which is a junior subjective synonym of Hesperia origenes Fabricius, 1793) (Zhang et al. 2019d;Zhang et al. 2021). ...
... Therefore we propose Neox eniades parna (Evans, 1955), new combination. (Evans, 1955) Inspection of the holotype Saliana vixen Evans, 1955 (type locality French Guiana) in BMNH reveals that it is similar to females of a Costa Rican species recorded in Janzen and Hallwachs database (2021) as "Neoxeniades Burns04", which is closely related to Neoxeniades parna (Evans, 1955) (type locality Brazil: Para) (Fig. 17), suggesting that it is not Calpodes Hübner, [1819] (type species Papilio ethlius Stoll, 1782), which now includes Saliana Evans, 1955 (type species Papilio salius Cramer, 1775) (Zhang et al. 2019d), but a female of N. parna. Notably, the S. vixen holotype has no hyaline spot in forewing cell M 2 -M 3 characteristic of Calpodes and has extensive bright emerald-green overscaling on the body above absent in Calpodes species. ...
Article
Our expanded efforts in genomic sequencing to cover additional skipper butterfly (Lepidoptera: Hesperiidae) species and populations, including primary type specimens, call for taxonomic changes to re­store monophyly and correct misidentifications by moving taxa between genera and proposing new names. Reconciliation between phenotypic characters and genomic trees suggests three new tribes, two new sub­tribes, 23 new genera, 17 new subgenera and 10 new species that are proposed here: Psolosini Grishin, new tribe (type genus Psolos Staudinger, 1889), Ismini Grishin, new tribe (type genus Isma Distant, 1886), Eetio­nini Grishin, new tribe (type genus Eetion de Nicéville, 1895), Orphina Grishin, new subtribe (type genus Orphe Godman, 1901), Carystoidina Grishin, new subtribe (type genus Carystoides Godman, 1901), Fulvatis Grishin, new genus (type species Telegonus fulvius Plötz, 1882), Adina Grishin, new genus (type species Nascus adrastor Mabille and Boullet, 1912), Ornilius Grishin, new genus (type species Ornilius rotundus Grishin, new species), Tolius Grishin, new genus (type species Antigonus tolimus Plötz, 1884), Lennia Grishin, new genus (type species Leona lena Evans, 1937), Trida Grishin, new genus (type species Cyclopides barberae Trimen, 1873), Noxys Grishin, new genus (type species Oxynthes viricuculla Hayward, 1951), Gracilata Grishin, new genus (type species Enosis quadrinotata Mabille, 1889), Hermio Grishin, new genus (type species Falga ? hermione Schaus, 1913), Eutus Grishin, new genus (type species Cobalus rastaca Schaus, 1902), Gufa Grishin, new genus (type species Phlebodes gulala Schaus, 1902), Godmia Grishin, new genus (type species Euroto chlorocephala Godman, 1900), Rhomba Grishin, new genus (type species Eutychide gertschi Bell, 1937), Rectava Grishin, new genus (type species Megistias ignarus Bell, 1932), Contrastia Grishin, new genus (type species Hesperia distigma Plötz, 1882), Mit Grishin, new genus (type species Mna­sitheus badius Bell, 1930), Picova Grishin, new genus (type species Vorates steinbachi Bell, 1930), Lattus Grishin, new genus (type species Eutocus arabupuana Bell, 1932), Gubrus Grishin, new genus (type species Vehilius lugubris Lindsey, 1925), Koria Grishin, new genus (type species Hesperia kora Hewitson, 1877), Corta Grishin, new genus (type species Eutychide lycortas Godman, 1900), Calvetta Grishin, new genus (type species Hesperia calvina Hewitson, 1866), Oz Grishin, new genus (type species Astictopterus ozias Hewitson, 1878), Praxa Grishin, new subgenus (type species Nascus prax Evans, 1952), Bron Grishin, new subgenus (type species Papilio broteas Cramer, 1780), Turis Grishin, new subgenus (type species Pyrgus (Scelothrix) veturius Plötz, 1884), Tiges Grishin, new subgenus (type species Antigonus liborius Plötz, 1884), Ocrypta Grishin, new subgenus (type species Notocrypta caerulea Evans, 1928), Tixe Grishin, new subgenus (type species Cobalus quadrata Herrich-Schäffer, 1869), Nycea Grishin, new subgenus (type species Pamph­ila hycsos Mabille, 1891), Nausia Grishin, new subgenus (type species Oenus [sic] nausiphanes Schaus, 1913), Flor Grishin, new subgenus (type species Stomyles florus Godman, 1900), Geia Grishin, new subgenus (type species Pamphila geisa Möschler, 1879), Rotundia Grishin, new subgenus (type species Enosis schausi Mielke and Casagrande, 2002), Volus Grishin, new subgenus (type species Eutocus volasus Godman, 1901), Pseudo­papias Grishin, new subgenus (type species Papias tristissimus Schaus, 1902), Septia Grishin, new subgenus (type species Justinia septa Evans, 1955), Brasta Grishin, new subgenus (type species Lychnuchus brasta Ev­ans, 1955), Bina Grishin, new subgenus (type species Cobalus gabina Godman, 1900), Balma Grishin, new subgenus (type species Carystoides balza Evans, 1955), Ornilius rotundus Grishin, new species (type locality in Brazil: Santa Catarina), Salantoia metallica Grishin, new species (type locality in Guyana: Acarai Mts.), Dyscophellus australis Grishin, new species (type locality in Paraguay: Sapucay), Dyscophellus basialbus Grishin, new species (type locality in Brazil: Rondônia), Telegonus subflavus Grishin, new species (type lo­cality in Ecuador: Riobamba), Decinea colombiana Grishin, new species (type locality in Colombia: Bogota), Lerema lucius Grishin, new species (type locality in Panama: Colón), Cynea rope Grishin, new species (type locality in Nicaragua: Chontales), Lerodea sonex Grishin, new species (type locality in Peru: Cuzco), and Metiscus goth Grishin, new species (type locality in Costa Rica). Lectotypes are designated for the following 17 taxa: Telegonus gildo Mabille, 1888, Netrocoryne damias Plötz, 1882, Telegonus erythras Mabille, 1888, Te­legonus galesus Mabille, 1888, Eudamus cretellus Herrich-Schäffer, 1869, Leucochitonea chaeremon Mabille, 1891, Antigonus aura Plötz, 1884, Pamphila voranus Mabille, 1891, Hesperia pupillus Plötz, 1882, Cobalus lumina Herrich-Schäffer, 1869, Cobalus stigmula Mabille, 1891, Megistias isus Godman, 1900, Cobalopsis la­tonia Schaus, 1913, Pamphila nubila Mabille, 1891, Metiscus atheas Godman, 1900, Mnasalcas amatala Schaus, 1902, and Hesperia ina Plötz, 1882. The lectotype of Hesperia infuscata Plötz, 1882 is invalid because it does not agree with the original description and illustration by Plötz, is not from the locality listed in the original description, and therefore is not a syntype. Neotypes are designated for the following five taxa: Te­legonus corentinus Plötz, 1882, Hesperia dido Plötz, 1882, Hesperia distigma Plötz, 1882, Hesperia infuscata Plötz, 1882, and Hesperia pruinosa Plötz, 1882. As a result, the following five taxa are junior objective syn­onyms: Telegonus diophorus Möschler, 1883 of Telegonus corentinus Plötz, 1882, Pamphila puxillius Mabille, 1891 of Hesperia pupillus Plötz, 1882, Cobalus stigmula Mabille, 1891 of Hesperia distigma Plötz, 1882, Mna­salcas amatala Schaus, 1902 of Hesperia infuscata Plötz, 1882, and Hesperia pruinosa Plötz, 1882 of Hesperia uza Hewitson, 1877. Morys valerius valda Evans, 1955 is fixed as the type species of Morys Godman, 1900, and Pamphila compta Butler, 1877 is reaffirmed as the type species of Euroto Godman, 1900. Furthermore, the following taxonomic changes are suggested. Prosopalpus Holland, 1896, Lepella Evans, 1937, and Creteus de Nicéville, 1895 are placed in Aeromachini Tutt, 1906. Triskelionia Larsen and Congdon, 2011 is trans­ferred from Celaenorrhinini Swinhoe, 1912 to Tagiadini Mabille, 1878. Kobelana Larsen and Collins, 2013 is transferred from Tagiadini Mabille, 1878 to Celaenorrhinini Swinhoe, 1912. The following nine genus-group names are resurrected from synonymy and treated as valid genera: Abaratha Moore, 1881 (not in Caprona Wallengren, 1857), Bibla Mabille, 1904 (not in Taractrocera Butler, 1870), Kerana Distant, 1886 and Tamela Swinhoe, 1913 (not in Ancistroides Butler, 1874), Metrocles Godman, 1900 (not in Metron Godman, 1900), Alerema Hayward, 1942 (not in Tigasis Godman, 1900), Metiscus Godman, 1900 (not in Enosis Mabille, 1889), Vistigma Hayward, 1939 (not in Phlebodes Hübner, [1819]), and Mnasalcas Godman, 1900 (not in Mnasitheus Godman, 1900). The genus-group names Daimio Murray, 1875 and Pterygospidea Wallengren, 1857 are resurrected from synonymy and treated as valid subgenera of Tagiades Hübner, [1819]. We con­firm Apallaga Strand, 1911 as a valid genus. The following 24 genera are placed as subgenera, new status: Pseudonascus Austin, 2008 of Nascus Watson, 1893; Albiphasma Huang, Chiba, Wang and Fan, 2016 of Pin­tara Evans, 1932; Ctenoptilum de Nicéville, 1890 of Tapena Moore, [1881]; Odontoptilum de Nicéville, 1890 of Abaratha Moore, 1881; Caprona Wallengren, 1857 of Abantis Hopffer, 1855; Timochreon Godman and Salvin, 1896 of Zopyrion Godman and Salvin, 1896; Pulchroptera Hou, Fan and Chiba, 2021 of Heteropterus Duméril, 1806; Stimula de Nicéville, 1898 of Koruthaialos Watson, 1893; Udaspes Moore, [1881] and No­tocrypta de Nicéville, 1889 of Ancistroides Butler, 1874; Cravera de Jong, 1983 of Xeniades Godman, 1900; Cobaloides Hayward, 1939 of Oligoria Scudder, 1872; Saniba O. Mielke and Casagrande, 2003 of Psoralis Mabille, 1904; Quinta Evans, 1955 of Cynea Evans, 1955; Styriodes Schaus, 1913 and Remella Hemming, 1939 of Mnasicles Godman, 1901; Repens Evans, 1955 of Eprius Godman, 1901; Morys Godman, 1900 of Lerema Scudder, 1872; Enosis Mabille, 1889 of Lychnuchus Hübner, [1831]; Penicula Evans, 1955 of Vistigma Hay­ward, 1939; Mnasinous Godman, 1900 of Methionopsis Godman, 1901; and Moeros Evans, 1955, Argon Evans, 1955, and Synale Mabille, 1904 of Carystus Hübner, [1819]. The following 20 genera are treated as junior subjective synonyms: Leucochitonea Wallengren, 1857 of Abantis Hopffer, 1855; Sapaea Plötz, 1879 and Ne­trobalane Mabille, 1903 of Caprona Wallengren, 1857; Parasovia Devyatkin, 1996 of Sebastonyma Watson, 1893; Pemara Eliot, 1978 of Oerane Elwes and Edwards, 1897; Ankola Evans, 1937 of Pardaleodes Butler, 1870; Arotis Mabille, 1904 of Mnaseas Godman, 1901; Chalcone Evans, 1955, Hansa Evans, 1955, and Proper­tius Evans, 1955 of Metrocles Godman, 1900; Jongiana O. Mielke and Casagrande, 2002 of Cobaloides Hayward, 1939; Pamba Evans, 1955 of Psoralis Mabille, 1904; Brownus Grishin, 2019 of Styriodes Schaus, 1913; Mnasilus Godman, 1900 of Papias Godman, 1900; Sucova Evans, 1955 of Mnasitheus Godman, 1900; Pyrrhocalles Mabille, 1904 and Asbolis Mabille, 1904 of Choranthus Scudder, 1872; Miltomiges Mabille, 1903 of Methionopsis Godman, 1901; Sacrator Evans, 1955 of Thracides Hübner, [1819]; and Lychnuchoides God­man, 1901 of Perichares Scudder, 1872. Arunena Swinhoe, 1919 is a junior subjective synonym of Stimula de Nicéville, 1898 (not of Koruthaialos Watson, 1893). The following 27 names are species-level taxa (some in new combinations) reinstated from synonymy: Salantoia gildo (Mabille, 1888) (not Salatis cebrenus (Cra­mer, 1777)), Bungalotis corentinus (Plötz, 1882) (not Bungalotis midas (Cramer, 1775)), Telegonus cretellus (Herrich-Schäffer, 1869) (not Telegonus cassander (Fabricius, 1793)), Santa palica (Mabille, 1888) (not Chio­thion asychis (Stoll, 1780)), Camptopleura cincta Mabille and Boullet, 1917 (not Camptopleura auxo (Möschler, 1879)), Camptopleura orsus (Mabille, 1889) (not Nisoniades mimas (Cramer, 1775)), Metron voranus (Ma­bille, 1891) and Metron fasciata (Möschler, 1877) (not Metron zimra (Hewitson, 1877)), Limochores catahorma (Dyar, 1916) (not Limochores pupillus (Plötz, 1882)), Pares viridiceps (Mabille, 1889) (not Thoon modius (Ma­bille, 1889)), Tigasis wellingi (Freeman, 1969) (not Tigasis arita (Schaus, 1902)), Rectava sobrinus (Schaus, 1902) (not Papias phainis Godman, 1900), Nastra subsordida (Mabille, 1891) (not Adlerodea asema (Mabille, 1891), previously in Eutychide Godman, 1900), Lerema pattenii Scudder, 1872 (not Lerema accius (J. E. Smith, 1797)), Lerema (Morys) ancus (Möschler, 1879) (not Cymaenes tripunctus theogenis (Capronnier, 1874)), Cobalopsis zetus (Bell, 1942) (not Cobalopsis nero (Herrich-Schäffer, 1869)), Lerema (Geia) etelka (Schaus, 1902) (not Lerema (Geia) geisa (Möschler, 1879), previously in Morys Godman, 1900), Cymaenes isus (God­man, 1900) (not Cymaenes trebius (Mabille, 1891)), Vehilius labdacus (Godman, 1900) (not Vehilius inca (Scudder, 1872)), Papias amyrna (Mabille, 1891) (not Papias allubita (Butler, 1877), previously in Mnasilus Godman, 1900), Papias integra (Mabille, 1891) (not Papias subcostulata (Herrich-Schäffer, 1870)), Metiscus atheas Godman, 1900 (not Hesperia achelous Plötz, 1882), Dion agassus (Mabille, 1891) (not Dion uza (Hewitson, 1877), previously in Enosis Mabille, 1889), Picova incompta (Hayward, 1942) (not Lerema (Morys) micythus (Godman, 1900), previously in Morys Godman, 1900), Lucida melitaea (Draudt, 1923) (not Lucida lucia (Capronnier, 1874)), Methionopsis modestus Godman, 1901 (not Methionopsis ina (Plötz, 1882)), and Thargella (Volus) volasus (Godman, 1901) (not Eutocus facilis (Plötz, 1884)). The following 57 taxa are ele­vated from subspecies to species, new status (some in new combinations): Dyscophellus doriscus (Hewitson, 1867) (not Dyscophellus porcius (C. Felder and R. Felder, 1862), Phocides vida (A. Butler, 1872) (not Phocides urania (Westwood, 1852)), Tagiades (Daimio) ceylonica Evans, 1932 (not Tagiades litigiosa Möschler, 1878), Tagiades (Daimio) tubulus Fruhstorfer, 1910 (not Tagiades sambavana Elwes and Edwards, 1897), Tagiades (Daimio) kina Evans, 1934, Tagiades (Daimio) sheba Evans, 1934, Tagiades (Daimio) martinus Plötz, 1884, Tagiades (Daimio) sem Mabille, 1883, and Tagiades (Daimio) neira Plötz, 1885 (not Tagiades trebellius (Hopffer, 1874)), Tagiades (Daimio) korela Mabille, 1891 and Tagiades (Daimio) presbyter Butler, 1882 (not Tagiades nestus (C. Felder, 1860)), Tagiades obscurus Mabille, 1876, Tagiades ravi (Moore, [1866]), Tagiades atticus (Fabricius, 1793), Tagiades titus Plötz, 1884, Tagiades janetta Butler, 1870, Tagiades inconspicua Roth­schild, 1915, and Tagiades hovia Swinhoe, 1904 (not Tagiades japetus (Stoll, [1781])), Tagiades silvia Evans, 1934 and Tagiades elegans Mabille, 1877 (not Tagiades gana (Moore, [1866])), Tapena bornea Evans, 1941 and Tapena minuscula Elwes and Edwards, 1897 (not Tapena thwaitesi Moore, [1881]), Darpa dealbata (Distant, 1886) (not Darpa pteria (Hewitson, 1868)), Perus manx (Evans, 1953) (not Perus minor (Schaus, 1902)), Canesia pallida (Röber, 1925) (not Carrhenes canescens (R. Felder, 1869)), Carrhenes conia Evans, 1953 (not Carrhenes fuscescens (Mabille, 1891)), Anisochoria extincta Hayward, 1933 and Anisochoria polysticta Ma­bille, 1876 (not Anisochoria pedaliodina (Butler, 1870)), Anisochoria verda Evans, 1953 (not Anisochoria minorella Mabille, 1898), Bralus alco (Evans, 1953) (not Bralus albida (Mabille, 1888)), Ephyriades jamaicen­sis (Möschler, 1879) (not Ephyriades brunnea (Herrich-Schäffer, 1865)), Koruthaialos (Stimula) frena Evans, 1949 (not Koruthaialos focula (Plötz, 1882)), Euphyes kiowah (Reakirt, 1866) (not Euphyes vestris (Boisduval, 1852)), Mnaseas inca Bell, 1930 (not Mnaseas bicolor (Mabille, 1889)), Metron hypochlora (Draudt, 1923) (not Metrocles schrottkyi (Giacomelli, 1911), previously in Metron Godman, 1900), Decinea huasteca (H. Freeman, 1969), Decinea denta Evans, 1955, and Decinea antus (Mabille, 1895) (not Decinea decinea (Hewitson, 1876)), Xeniades pteras Godman, 1900 (not Xeniades chalestra (Hewitson, 1866)), Xeniades difficilis Draudt, 1923 (not Xeniades orchamus (Cramer, 1777)), Xeniades hermoda (Hewitson, 1870) (not Tisias quadrata (Herrich- Schäffer, 1869)), Hermio vina (Evans, 1955) (not Hermio hermione (Schaus, 1913), previously in Lento Evans, 1955), Cymaenes loxa Evans, 1955, (not Cymaenes laureolus (Schaus, 1913)), Niconiades peri (Evans, 1955) (not Rhinthon bajula (Schaus, 1902), previously in Neoxeniades Hayward, 1938), Gallio danius (Bell, 1941) (not Vehilius seriatus (Mabille, 1891)), Gallio massarus (E. Bell, 1940) (not Gallio garima (Schaus, 1902) pre­viously in Tigasis Godman, 1900), Cymaenes edata (Plötz, 1882), Cymaenes miqua (Dyar, 1913) and Cymaenes aequatoria (Hayward, 1940) (not Cymaenes odilia (Burmeister, 1878)), Lychnuchus (Enosis) demon (Evans, 1955) (not Lychnuchus (Enosis) immaculata (Hewitson, 1868), previously in Enosis Mabille, 1889), Naevolus naevus Evans, 1955 (not Naevolus orius (Mabille, 1883)), Lucida scopas (Mabille, 1891), Lucida oebasus (God­man, 1900), and Lucida leopardus (Weeks, 1901) (not Lucida lucia (Capronnier, 1874)), Corticea schwarzi (E. Bell, 1941) and Corticea sylva (Hayward, 1942) (not Corticea mendica (Mabille, 1898)), and Choranthus ori­entis (Skinner, 1920) (not Choranthus antiqua (Herrich-Schäffer, 1863), previously in Pyrrhocalles Mabille, 1904). Borbo impar bipunctata (Elwes and J. Edwards, 1897) is a valid subspecies, not a synonym of Borbo impar tetragraphus (Mabille, 1891), here placed in synonymy with Lotongus calathus (Hewitson, 1876), new synonym. We confirm the species status of Telegonus cassius (Evans, 1952) and Lerema (Morys) valda Evans, 1955. Euphyes chamuli Freeman, 1969 is placed as a subspecies of Euphyes kiowah (Reakirt, 1866), new status. The following 41 taxa are junior subjective synonyms, either newly proposed or transferred from synonymy with other species or subspecies: Telegonus mutius Plötz, 1882 of Euriphellus phraxanor (Hewitson, 1876), Telegonus erythras Mabille, 1888 of Dyscophellus damias (Plötz, 1882), Aethilla jaira Butler, 1870 of Telegonus cretellus (Herrich-Schäffer, 1869), Paches era Evans, 1953 of Santa palica (Mabille, 1888), Antigonus alburnea Plötz, 1884 of Tolius tolimus robigus (Plötz, 1884) (not of Echelatus sempiternus simplicior (Möschler, 1877)), Echelatus depenicillus Strand, 1921 of E. sempiternus simplicior (not of T. tolimus robigus), Antigonus aura Plötz, 1884 of Theagenes dichrous (Mabille, 1878) (not of Helias phalaenoides palpalis (Latreille, [1824])), Achlyodes impressus Mabille, 1889 of Camptopleura orsus (Mabille, 1889), Augiades tania Schaus, 1902 of Metron voranus (Mabille, 1891), Pamphila verdanta Weeks, 1906 of Metron fasciata (Möschler, 1877), Nico­niades viridis vista Evans, 1955 of Niconiades derisor (Mabille, 1891), Pamphila binaria Mabille, 1891 of Conga chydaea (A. Butler, 1877) (not of Cynea cynea (Hewitson, 1876)), Psoralis concolor Nicolay, 1980 of Ralis immaculatus (Hayward, 1940), Hesperia dido Plötz, 1882 of Cynea (Quinta) cannae (Herrich-Schäffer, 1869) (not of Lerema lochius (Plötz, 1882)), Proteides osembo Möschler, 1883 of Cynea (Cynea) diluta (Her­rich-Schäffer, 1869) (not of Cynea (Quinta) cannae (Herrich-Schäffer, 1869)), Cobalopsis brema E. Bell, 1959 of Eutus rastaca (Schaus, 1902), Psoralis panamensis Anderson and Nakamura, 2019 of Rhomba gertschi (Bell, 1937), Cobalus asella Herrich-Schäffer, 1869 of Amblyscirtes alternata (Grote and Robinson, 1867) (not of Amblyscirtes vialis (W. H. Edwards, 1862)), Papias trimacula Nicolay, 1973 of Nastra subsordida (Mabille, 1891), Pamphila bipunctata Mabille, 1889 and Sarega staurus Mabille, 1904 of Lerema pattenii Scudder, 1872 (not of Cymaenes lumina (Herrich-Schäffer, 1869), previously in Lerema Scudder, 1872), Hesperia aethra Plötz, 1886 of Lerema lineosa (Herrich-Schäffer, 1865) (not of Lerema (Morys) compta Butler, 1877), Megistias miaba Schaus, 1902 of Cobalopsis valerius (Möschler, 1879), Phanis sylvia Kaye, 1914 of Lerema etelka (Schaus, 1902) (not of Lerema (Geia) geisa (Möschler, 1879), previously in Morys Godman, 1900), Carystus odilia Burmeister, 1878, Pamphila trebius Mabille, 1891 and Megistias corescene Schaus, 1902 of Cymaenes lumina (Herrich-Schäffer, 1869), Hesperia phocylides Plötz, 1882 of Cymaenes edata (Plötz, 1882) (not of Le­rema accius (J. E. Smith, 1797)), Pamphila xenos Mabille, 1898 of Vehilius inca (Scudder, 1872), Mnasilus guianae Lindsey, 1925 of Papias amyrna (Mabille, 1891), Pamphila nubila Mabille, 1891 of Papias integra (Mabille, 1891) (not of Cynea corisana (Plötz, 1882)), Enosis matheri H. Freeman, 1969 of Metiscus atheas Godman, 1900 (previously in Enosis Mabille, 1889), Hesperia infuscata Plötz, 1882 of Mnaseas derasa derasa (Herrich-Schäffer, 1870) (previously Arotis Mabille, 1904), (not of Papias subcostulata (Herrich-Schäffer, 1870)), Pamphila astur Mabille, 1891 of Metiscus angularis (Möschler, 1877) (not of Cymaenes tripunctus theogenis (Capronnier, 1874)), Anthoptus macalpinei H. Freeman, 1969 of Anthoptus inculta (Dyar, 1918), Methionopsis typhon Godman, 1901 of Methionopsis ina (Plötz, 1882), Methionopsis dolor Evans, 1955 of Thargella volasus (Godman, 1901), Hesperia cinica Plötz, 1882 of Dubiella dubius (Stoll, 1781), Cobalus dis­juncta Herrich-Schäffer, 1869 of Dubiella dubius (Stoll, 1781) (not of Vettius lafrenaye (Latreille, [1824])), and Saliana vixen Evans, 1955 of Neoxeniades parna (Evans, 1955). The following are new and revised genus-species combinations: Euriphellus cebrenus (Cramer, 1777) (not Salatis Evans, 1952), Gorgopas extensa (Mabille, 1891) (not Polyctor Evans, 1953), Clytius shola (Evans, 1953) (not Staphylus Godman and Salvin, 1896), Perus narycus (Mabille, 1889) (not Ouleus Lindsey, 1925), Perus parvus (Steinhauser and Austin, 1993) (not Staphylus Godman and Salvin, 1896), Pholisora litus (Dyar, 1912) (not Bolla Mabille, 1903), Carrhenes decens (A. Butler, 1874) (not Antigonus Hübner, [1819]), Santa palica (Mabille, 1888) (not Chiothion Grishin, 2019), Bralus nadia (Nicolay, 1980) (not Anisochoria Mabille, 1876), Acerbas sarala (de Nicéville, 1889) (not Lotongus Distant, 1886), Caenides sophia (Evans, 1937) (not Hypoleucis Mabille, 1891), Hypoleucis dacena (Hewitson, 1876) (not Caenides Holland, 1896), Dotta tura (Evans, 1951) (not Astictopterus C. Felder and R. Felder, 1860), Nervia wallengrenii (Trimen, 1883) (not Kedestes Watson, 1893), Testia mammaea (Hewitson, 1876) (not Decinea Evans, 1955), Oxynthes trinka (Evans, 1955) (not Orthos Evans, 1955), Metrocles argentea (Weeks, 1901) (not Paratrytone Godman, 1900), Metrocles scitula (Hayward, 1951) (not Mucia Godman, 1900), Metrocles schrottkyi (Giacomelli, 1911) (not Metron Godman, 1900), Niconiades derisor (Mabille, 1891) (not Decinea Evans, 1955), Paratrytone samenta (Dyar, 1914) (not Ochlodes Scudder, 1872), Oligoria (Cobaloides) locutia (Hewitson, 1876) (not Quinta Evans, 1955), Psoralis (Saniba) laska (Evans, 1955) (not Vidius Evans, 1955), Psoralis (Saniba) arva (Evans, 1955) and Psoralis (Saniba) umbrata (Erschoff, 1876) (not Vettius Godman, 1901), Psoralis (Saniba) calcarea (Schaus, 1902) and Psoralis (Saniba) visendus (E. Bell, 1942) (not Molo Godman, 1900), Alychna gota (Evans, 1955) (not Psoralis Mabille, 1904), Adlerodea asema (Mabille, 1891) and Adlerodea subpunctata (Hayward, 1940) (not Eutychide Godman, 1900), Ralis immacula­tus (Hayward, 1940) (not Mucia Godman, 1900), Rhinthon braesia (Hewitson, 1867) and Rhinthon bajula (Schaus, 1902) (not Neoxeniades Hayward, 1938), Cymaenes lochius Plötz, 1882 (not Lerema Scudder, 1872), Paracarystus ranka (Evans, 1955) (not Thoon Godman, 1900), Tricrista aethus (Hayward, 1951), Tricrista canta (Evans, 1955), Tricrista slopa (Evans, 1955), Tricrista circellata (Plötz, 1882), and Tricrista taxes (God­man, 1900) (not Thoon Godman, 1900), Gallio madius (E. Bell, 1941) and Gallio seriatus (Mabille, 1891) (not Vehilius Godman, 1900), Gallio garima (Schaus, 1902) (not Tigasis Godman, 1900), Tigasis corope (Herrich- Schäffer, 1869) (not Cynea Evans, 1955), Tigasis perloides (Plötz, 1882) (not Cymaenes Scudder, 1872), Amblyscirtes (Flor) florus (Godman, 1900) (not Repens Evans, 1955), Vidius fraus (Godman, 1900) (not Cy­maenes Scudder, 1872), Nastra celeus (Mabille, 1891) (not Vehilius Godman, 1900), Nastra nappa (Evans, 1955) (not Vidius Evans, 1955), Vehilius warreni (Weeks, 1901) and Vehilius limae (Lindsey, 1925) (not Cy­maenes Scudder, 1872), Cymaenes lumina (Herrich-Schäffer, 1869) (not Lerema Scudder, 1872), Cobalopsis valerius (Möschler, 1879) (not Cobalopsis Godman, 1900), Cobalopsis dictys (Godman, 1900) (not Papias Godman, 1900), Lerema (Morys) venias (Bell, 1942) (not Cobalopsis Godman, 1900), Papias latonia (Schaus, 1913) (not Cobalopsis Godman, 1900), Dion iccius (Evans, 1955) and Dion uza (Hewitson, 1877) (not Enosis Mabille, 1889), Vistigma (Vistigma) opus (Steinhauser, 2008) (not Thoon Godman, 1900), Saturnus fartuga (Schaus, 1902) (not Parphorus Godman, 1900), Phlebodes fuldai (E. Bell, 1930) (not Vettius Godman, 1901), Mnasitheus padus (Evans, 1955) (not Moeris Godman, 1900), Naevolus brunnescens (Hayward, 1939) (not Psoralis Mabille, 1904), Lamponia ploetzii (Capronnier, 1874) (not Vettius Godman, 1901), Mnestheus silvati­cus Hayward, 1940 (not Ludens Evans, 1955), Rigga spangla (Evans, 1955) (not Sodalia Evans, 1955), Corticea vicinus (Plötz, 1884) (not Lento Evans, 1955), Mnasalcas thymoetes (Hayward, 1942) (not Mnasicles Godman, 1901), Mnasalcas boyaca (Nicolay, 1973) (not Pamba Evans, 1955), Vertica brasta (Evans, 1955) (not Lychnu­chus Hübner, [1831]), Carystina discors Plötz, 1882 (not Cobalus Hübner, [1819]), Zetka irena (Evans, 1955) (not Neoxeniades Hayward, 1938), and Neoxeniades parna (Evans, 1955) (not Niconiades Hübner, [1821]). The following are new or revised species-subspecies combinations: Tagiades neira moti Evans, 1934, Tagia­des neira canonicus Fruhstorfer, 1910, Tagiades sheba vella Evans, 1934, Tagiades sheba lola Evans, 1945, Tagiades korela biakana Evans, 1934, Tagiades korela mefora Evans, 1934, Tagiades korela suffusus Rothschild, 1915, Tagiades korela brunta Evans, 1949, Tagiades ravi ravina Fruhstorfer, 1910, Tagiades atticus carnica Evans, 1934, Tagiades atticus nankowra Evans, 1934, Tagiades atticus helferi C. Felder, 1862, Tagiades atticus balana Fruhstorfer, 1910, Tagiades inconspicua mathias Evans, 1934, Tagiades hovia kazana Evans, 1934, Ta­giades elegans fuscata de Jong and Treadaway, 2007, Tagiades elegans semperi Fruhstorfer, 1910, Metron hypochlora tomba Evans, 1955, Decinea denta pruda Evans, 1955, and Choranthus orientis eleutherae (Bates, 1934) (previously in Pyrrhocalles Mabille, 1904). In addition to the abovementioned changes, the following new combinations involve newly proposed genus group names: Fulvatis fulvius (Plötz, 1882) and Fulvatis scyrus (E. Bell, 1934) (not Salatis Evans, 1952); Adina adrastor (Mabille and Boullet, 1912) (not Bungalotis Watson, 1893); Nascus (Praxa) prax Evans, 1952, Nascus (Bron) broteas (Cramer, 1780), and Nascus (Bron) solon (Plötz, 1882) (not Pseudonascus Austin, 2008); Chirgus (Turis) veturius (Plötz, 1884); Paches (Tiges) li­borius (Plötz, 1884), and Paches (Tiges) mutilatus (Hopffer, 1874) (not Antigonus Hübner, [1819]); Paches (Tiges) exosa (A. Butler, 1877); Tolius tolimus (Plötz, 1884) and Tolius luctuosus (Godman & Salvin, 1894) (not Echelatus Godman and Salvin, 1894); Ancistroides (Ocrypta) caerulea (Evans, 1928), Ancistroides (Ocrypta) renardi (Oberthür, 1878), Ancistroides (Ocrypta) waigensis (Plötz, 1882), Ancistroides (Ocrypta) aluensis (Swinhoe, 1907), Ancistroides (Ocrypta) flavipes (Janson, 1886), and Ancistroides (Ocrypta) maria (Evans, 1949) (not Notocrypta de Nicéville, 1889); Lennia lena (Evans, 1937), Lennia binoevatus (Mabille, 1891), Len­nia maracanda (Hewitson, 1876), and Lennia lota (Evans, 1937) (not Leona Evans, 1937); Trida barberae (Trimen, 1873) and Trida sarahae (Henning and Henning, 1998) (not Kedestes Watson, 1893); Noxys viricu­culla (Hayward, 1951) (not Oxynthes Godman, 1900); Xeniades (Tixe) quadrata (Herrich-Schäffer, 1869), Xeniades (Tixe) rinda (Evans, 1955), Xeniades (Tixe) putumayo (Constantino and Salazar, 2013) (not Tisias Godman, 1901); Gracilata quadrinotata (Mabille, 1889) (not Styriodes Schaus, 1913); Hermio hermione (Schaus, 1913) (not Lento Evans, 1955); Cynea (Nycea) hycsos (Mabille, 1891), Cynea (Nycea) corisana (Plötz, 1882), Cynea (Nycea) popla Evans, 1955, Cynea (Nycea) iquita (E. Bell, 1941), Cynea (Nycea) robba Evans, 1955, Cynea (Nycea) melius (Geyer, 1832), and Cynea (Nycea) irma (Möschler, 1879); Eutus rastaca (Schaus, 1902) (not Eutychide Godman, 1900); Eutus yesta (Evans, 1955) (not Thoon Godman, 1900); Eutus mubeven­sis (E. Bell, 1932) (not Tigasis Godman, 1900); Gufa gulala (Schaus, 1902) (not Mucia Godman, 1900); Gufa fusca (Hayward, 1940) (not Tigasis Godman, 1900); Godmia chlorocephala (Godman, 1900) (not Onophas Godman, 1900); Rhomba gertschi (E. Bell, 1937) (not Justinia Evans, 1955); Mnasicles (Nausia) nausiphanes (Schaus, 1913) (not Tigasis Godman, 1900); Amblyscirtes (Flor) florus (Godman, 1900) (not Repens Evans, 1955); Rectava ignarus (E. Bell, 1932) (not Papias Godman, 1900); Rectava vorgia (Schaus, 1902) (not Coba­lopsis Godman, 1900); Rectava nostra (Evans, 1955) (not not Vidius Evans, 1955); Lerema (Geia) geisa (Möschler, 1879) and Lerema (Geia) lyde (Godman, 1900) (not Morys Godman, 1900); Contrastia distigma (Plötz, 1882) (not Cymaenes Scudder, 1872); Mit (Mit) badius (E. Bell, 1930) (not Styriodes Schaus, 1913); Mit (Mit) gemignanii (Hayward, 1940), (not Mnasitheus Godman, 1900); Mit (Rotundia) schausi (Mielke and Casagrande, 2002), (not Enosis Mabille, 1889); Picova steinbachi (E. Bell, 1930) (not Saturnus Evans, 1955); Lattus arabupuana (E. Bell, 1932) (not Eutocus Godman, 1901); Gubrus lugubris (Lindsey, 1925) (not Vehilius Godman, 1900); Thargella (Pseudopapias) tristissimus (Schaus, 1902) (not Papias Godman, 1900); Koria kora (Hewitson, 1877) (not Justinia Evans, 1955); Justinia (Septia) septa Evans, 1955; Corta lycortas (Godman, 1900) (not Orthos Evans, 1955); Vertica (Brasta) brasta (Evans, 1955) (not Lychnuchus Hübner, [1831]); Cal­vetta calvina (Hewitson, 1866) (not Cobalus Hübner, [1819]); Neoxeniades (Bina) gabina (Godman, 1900) (not Orthos Evans, 1955); Oz ozias (Hewitson, 1878) and Oz sebastiani Salazar and Constantino, 2013 (not Lychnuchoides Godman, 1901); and Carystoides (Balma) balza Evans, 1955 and Carystoides (Balma) maroma (Möschler, 1877). Finally, unless stated otherwise, all subgenera, species, subspecies and synonyms of men­tioned genera and species are transferred together with their parent taxa, and taxa not mentioned in this work remain as previously classified.
... Classification concepts and methods employed in this work do not differ from those in our previous studies, where they were explained in more detail (Zhang et al. 2019c;Zhang et al. 2020). Here, they are simply applied to additional taxonomic groups of butterflies. ...
... Most sections are illustrated by a segment of a nuclear genomic tree (or Z chromosome tree when specified) with species minimally necessary to support the conclusion. Presently employed genus-species combinations (Callaghan and Lamas 2004;Lamas 2004;Mielke 2005;Pelham 2008;Hall 2018) are used in the figures, including recently proposed changes (Pelham 2019;Zhang et al. 2019c;Pelham 2020;Zhang et al. 2020). New combinations and taxonomic changes are given in the text. ...
... We sequenced all major phenotypically distinct taxa from the Hylephila Billberg, 1820 (type species Papilio phyleus Drury, 1773) group of genera (Fig. 54, rooted with Hesperia Fabricius, 1793). Confirming our previous assessment (Zhang et al. 2019c), we see that Polites Scudder, 1872 (type species Hesperia peckius W. Kirby, 1837) is genetically close to Wallengrenia Berg, 1897 (type species Hesperia premnas Wallengren, 1860) and is not separated from it by a long internal branch (Fig. 54). Both branches that are labeled "Polites" in Fig. 54 are longer than the branch between them and therefore assigning a taxonomic rank to them seems more appropriate than to the shorter branch between them. ...
Article
Continuing with comparative genomic exploration of worldwide butterfly fauna, we use all protein-coding genes as they are retrieved from the whole genome shotgun sequences for phylogeny construction. Analysis of these genome-scale phylogenies projected onto the taxonomic classification and the knowledge about butterfly phenotypes suggests further refinements of butterfly taxonomy that are presented here. As a general rule, we assign most prominent clades of similar genetic differentiation to the same taxonomic rank, and use criteria based on relative population diversification and the extent of gene exchange for species delimitation. As a result, 7 tribes, 4 subtribes, 14 genera, and 9 subgenera are proposed as new, i.e., in subfamily Pierinae Swainson, 1820: Calopierini Grishin, trib. n. (type genus Calopieris Aurivillius, 1898); in subfamily Riodininae Grote, 1895: Callistiumini Grishin, trib. n. (type genus Callistium Stichel, 1911); in subfamily Nymphalinae Rafinesque, 1815: Pycinini Grishin, trib. n. (type genus Pycina Doubleday 1849), Rhinopalpini Grishin, trib. n. (type genus Rhinopalpa C. & R. Felder 1860), Kallimoidini Grishin, trib. n. (type genus Kallimoides Shirôzu & Nakanishi 1984), Vanessulini Grishin, trib. n. (type genus Vanessula Dewitz 1887), and Doleschalliaini Grishin, trib. n. (type genus Doleschallia C. & R. Felder 1860); in tribe Mesosemiini Bates, 1859: Eunogyrina Grishin, subtrib. n. (type genus Eunogyra Westwood, 1851); in tribe Satyrini Boisduval, 1833: Callerebiina Grishin, subtrib. n. (type genus Callerebia Butler, 1867), Gyrocheilina Grishin, subtrib. n. (type genus Gyrocheilus Butler, 1867), and Calistina Grishin, subtrib. n. (type genus Calisto Hübner, [1823]); in subfamily Euselasiinae Kirby, 1871: Pelolasia Grishin, gen. n. (type species Eurygona pelor Hewitson, [1853]), Myselasia Grishin, gen. n. (type species Eurygona mys Herrich-Schäffer, [1853]), Eurylasia Grishin, gen. n. (type species Eurygona euryone Hewitson, 1856), Maculasia Grishin, gen. n. (type species Euselasia albomaculiga Callaghan, 1999), and Eugelasia Grishin, gen. n. (type species Eurygona eugeon Hewitson, 1856); in subtribe Mesosemiina Bates, 1859: Ectosemia Grishin, gen. n. (type species Papilio eumene Cramer, 1776) and Endosemia Grishin, gen. n. (type species Papilio ulrica Cramer, 1777); in tribe Symmachiini Reuter, 1896: Tigria Grishin, gen. n. (type species Mesene xypete Hewitson, 1870) and Asymma Grishin, gen. n. (type species Symmachia virgatula Stichel, 1910); in tribe Riodinini Grote, 1895: Putridivora Grishin, gen. n. (type species Charis argyrea Bates, 1868), Chadia Grishin, gen. n. (type species Charis cadytis Hewitson, 1866), Inkana Grishin, gen. n. (type species Charis incoides Schaus, 1902), and Oco Grishin, gen. n. (type species Symmachia ocellata Hewitson, 1867); in subtribe Zabuellina Seraphim, Freitas & Kaminski, 2018: Teenie Grishin, gen. n. (type species Calydna tinea Bates, 1868); Boreographium Grishin, subgen. n. (type species Papilio marcellus Cramer, 1777, parent genus Eurytides Hübner, [1821]), Esperourus Grishin, subgen. n. (type species Papilio esperanza Beutelspacher, 1975, parent genus Pterourus Scopoli, 1777), Hyppasonia Grishin, subgen. n. (type species Papilio hyppason Cramer, 1775, parent genus Heraclides Hübner, [1819]), Sisymbria Grishin, subgen. n. (type species Pieris sisymbrii Boisduval, 1852, parent genus Pontia [Fabricius], 1807), Greenie Grishin, subgen. n. (type species Thecla sheridonii [sic] Edwards, 1877, parent genus Callophrys Billberg, 1820), Magda Grishin, subgen. n. (type species Erebia magdalena Strecker, 1880, parent genus Erebia Dalman, 1816), and in genus Eresia Boisduval, 1836: Notilia Grishin, subgen. n. (type species Eresia orthia Hewitson, 1864), Levinata Grishin, subgen. n. (type species Eresia levina Hewitson, 1872), and Ithra Grishin, subgen. n. (type species Phyciodes ithra Kirby, 1900). Furthermore, we resurrect 6 genera, change the rank of 36 currently used genera to subgenus, synonymize 3 subtribes, 42 genera or subgenera, assign 3 genera to tribes and subtribes, and transfer 34 additional species to genera different from those these taxa are presently assigned to, present evidence to support 7 taxa as species instead of subspecies, and 1 taxon as a subspecies instead of species. Namely, the following taxa are valid genera: Terias Swainson, 1821 (not in Eurema Hübner, [1819]), Erythia Hübner, [1819] and Marmessus Hübner, [1819] (not in Euselasia Hübner, [1819]), Eucorna Strand, 1932 (not in Voltinia Stichel, 1910), Cremna Doubleday, 1847 (not in Napaea Hübner, [1819]), and Hallonympha Penz & DeVries, 2006 (not in Zabuella Stichel, 1911). The following taxa are best treated as subgenera: Zegris Boisduval, 1836 of Anthocharis Boisduval, Rambur, [Duménil] & Graslin, [1833]; Baltia Moore, 1878 and Pontieuchloia Verity, 1929 of Pontia [Fabricius], 1807; Phrissura Butler, 1870 of Appias Hübner, [1819]; Saletara Distant, 1885 of Catophaga Hübner, 1819; Leodonta Butler, 1870 of Pereute Herrich-Schäffer, 1867; Takashia M. Okano & T. Okano, 1985 of Polycaena Staudinger, 1886; Corrachia Schaus, 1913 of Styx Staudinger, 1876; Ionotus Hall, 2005 and Voltinia Stichel, 1910 of Cremna Doubleday, 1847; Hermathena Hewitson, 1874 of Ithomiola C. & R. Felder, 1865; Lucillella Strand, 1932 of Esthemopsis C. & R. Felder, 1865; Mesenopsis Godman & Salvin, 1886 and Xenandra C. & R. Felder, 1865 of Symmachia Hübner, [1819]; Pirascca J. Hall & Willmott, 1996 of Pterographium Stichel, 1910; Imelda Hewitson, 1870 of Echenais Hübner, [1819]; Calicosama J. Hall & Harvey, 2001 of Behemothia Hall, 2000; Polygrapha Staudinger, 1887 and Fountainea Rydon, 1971 of Anaea Hübner, [1819]; Siderone Hübner, [1823] and Phantos Dias, 2018 of Zaretis Hübner, [1819]; Harsiesis Fruhstorfer, 1911 of Platypthima Rothschild & Jordan, 1905; Vila Kirby, 1871 of Biblis Fabricius, 1807; Diaethria Billberg, 1820 and Perisama Doubleday, 1849 of Callicore Hübner, [1819]; Antigonis C. Felder, 1861 of Haematera Doubleday, 1849; Asterope Hübner, [1819], Nica Hübner, [1826], Peria Kirby, 1871, and Callicorina Smart, 1976 of Temenis Hübner, [1819]; Anthanassa Scudder, 1875, Castilia Higgins, 1981, Telenassa Higgins, 1981, Dagon Higgins, 1981, and Janatella Higgins, 1981 of Eresia Boisduval, 1836; and Wallengrenia Berg, 1897 of Polites Scudder, 1872. The following taxa are junior subjective synonyms: Maniolina Grote, 1897 of Erebiina Tutt, 1896; Melanargiina Wheeler, 1903 of Satyrina Boisduval, 1833; Phyciodina Higgins, 1981 of Melitaeina Herrich-Schäffer, 1843; Cunizza Grote, 1900 of Hesperocharis C. Felder, 1862; Reliquia Ackery, 1975 of Pontia [Fabricius], 1807; Tatochila A. Butler, 1870, Piercolias Staudinger, 1894, Hypsochila Ureta, 1955, Theochila W. D. Field, 1958, Pierphulia W. D. Field, 1958, and Infraphulia W. D. Field, 1958 of Phulia Herrich-Schäffer, 1867; Mesapia Gray, 1856 of Aporia Hübner, [1819]; Catasticta Butler, 1870 of Archonias Hübner, 1827; Sandia Clench & P. Ehrlich, 1960 andXamia Clench, 1961 of Incisalia Scudder, 1872; Hades Westwood, 1851 of Methone Doubleday, 1847; Semomesia Westwood, 1851, Mesophthalma Westwood, 1851, Perophthalma Westwood, 1851 and Leucochimona Stichel, 1909 of Mesosemia Hübner, [1819], Xynias Hewitson, 1874 of Mesenopsis Godman & Salvin, 1886; Stichelia J. Zikán, 1949 of Symmachia Hübner, [1819]; Chimastrum Godman & Salvin, 1886 of Mesene Doubleday, 1847; Alethea Nielsen & Salazar, [2018] of Pirascca J. Hall & Willmott, 1996; Panaropsis J. Hall, 2002 of Pterographium Stichel, 1910; Comphotis Stichel, 1910 of Phaenochitonia Stichel, 1910; Colaciticus Stichel, 1910 of Baeotis Hübner, [1819]; Nahida Kirby, 1871 of Ithomeis Bates, 1862; Machaya Hall & Willmott, 1995 of Pachythone Bates, 1868; Percnodaimon Butler, 1876 and Erebiola Fereday, 1879 of Argyrophenga Doubleday, 1845; Hestinalis Bryk, 1938 of Mimathyma Moore, 1896; Catacore Dillon, 1948 of Diaethria Billberg, 1820; Mesotaenia Kirby, 1871 and Orophila Staudinger, 1886 of Perisama Doubleday, 1849; Paulogramma Dillon, 1948 of Catagramma Boisduval, 1836; Panacea Godman & Salvin, 1883 of Batesia C. Felder & R. Felder, 1862; Napeocles Bates, 1864 of Siproeta Hübner, [1823]; Texola Higgins, 1959 and Dymasia Higgins, 1960 of Microtia H. Bates, 1864; Tisona Higgins, 1981 of Ortilia Higgins, 1981; Abananote Potts, 1943 and Altinote Potts, 1943 of Actinote Hübner, [1819]; Episcada Godman & Salvin, 1879 of Ceratinia Hübner, 1816; and Appia Evans, 1955 of Pompeius Evans, 1955. The following genera are placed in taxonomic hierarchy: Prestonia Schaus, 1920 belongs to Euremini Grote, 1898; Petrocerus Callaghan, 1979 belongs to Theopina Clench, 1955; and Paralasa Moore, 1893 belongs to Ypthimina Reuter, 1896. The following taxa are distinct species rather than subspecies (of species shown in parenthesis): Pyrisitia westwoodii (Boisduval, 1836) (not Pyrisitia dina (Poey, 1832)), Biblis aganisa Boisduval, 1836 (not Biblis hyperia (Cramer, 1779)), Phystis variegata (Röber, 1913) and Phystis pratti (A. Hall, 1935) (not Phystis simois (Hewitson, 1864)), Phocides batabano (Lucas, 1857) and Phocides bicolora (Boddaert, 1783) (not Phocides pigmalion (Cramer, 1779)), Lobotractus mysie (Dyar, 1904) (not Lobotractus valeriana (Plötz, 1881)). Nahida coenoides (Hewitson, 1870) is conspecific with Ithomeis aurantiaca H. Bates, 1862. Additional new and revised combinations are: Teriocolias deva (E. Doubleday, 1847), Teriocolias reticulata (A. Butler, 1871), Hesperocharis leucothea (Molina, 1782), Methone euploea (Hewitson, [1855]), Methone eucerus (Hewitson, 1872), Methone hypophaea (Godman & Salvin, 1878), Methone eubule (R. Felder, 1869), Methone onorata (Hewitson, 1869), Methone authe (Godman, 1903), Methone dolichos (Staudinger, [1887]), Methone baucis (Stichel, 1919), Methone eucrates (Hewitson, 1872), Napaea danforthi A. Warren & Opler, 1999, Napaea dramba (J. Hall, Robbins & Harvey, 2004), Napaea sanarita (Schaus, 1902), Napaea agroeca Stichel, 1910, Napaea tumbesia J. Hall & Lamas, 2001, Napaea umbra (Boisduval, 1870), Napaea phryxe (C. & R. Felder, 1865), Napaea cebrenia (Hewitson, [1873]), Napaea loxicha (R.G. Maza & J. Maza, 2016), Napaea maya (J. Maza & Lamas, 2016), Napaea necaxa (R.G. Maza & J. Maza, 2018), Napaea totonaca (R.G. Maza & J. Maza, 2016), Mesene aeolia (Bates, 1868), Pterographium hypochloris (Bates, 1868), Phaenochitonia florus (Fabricius, 1793), Ourocnemis carausius (Westwood, 1851), Ourocnemis principalis (Hopffer, 1874), Ourocnemis renaldus (Stoll, 1790), and Ourocnemis aerosus (Stichel, 1924), Hallonympha maculosa (Bates, 1868), Exoplisia aphanis (Stichel, 1910), Phystis fontus (A. Hall, 1928), Phocides batabano okeechobee (Worthington, 1881), and Phocides batabano batabanoides (W. Holland, 1902). Finally, we confirm the combination Zabuella castanea (Prittwitz, 1865) and find Pyrgus centaureae dzekh Gorbunov, 2007 as a new subspecies for North America.
... This approach generally results in a smaller number of genera, frequently due to the elimination of monotypic genera, which in our opinion, should be used only to indicate the genetic uniqueness of taxa in the absence of close relatives. Zhang et al. (2019) placed Philotiella Mattoni, [1978] (type species Lycaena speciosa Hy. Edwards, 1877) as a subgenus of Euphilotes Mattoni, [1978] (type species Lycaena enoptes Boisduval, 1852) due to their genetic similarity, as recently confirmed by Lukhtanov and Gagarina (2022). ...
... Genomics-based arguments for Agraulis as a subgenus of Dione from the position of internal consistency and uniformity of taxonomic classification were stated by Zhang et al. (2019). COI barcodes of Agraulis and Dione differ by less than 8%. ...
Article
Comparative analyses of genomic data reveal further insights into the phylogeny and taxonomic classification of butterflies presented here. As a result, 2 new subgenera and 2 new species of Hesperiidae are described: Borna Grishin, subgen. n. (type species Godmania borincona Watson, 1937) and Lilla Grishin, subgen. n. (type species Choranthus lilliae Bell, 1931) of Choranthus Scudder, 1872, Cecropterus (Murgaria) markwalkeri Grishin, sp. n. (type locality in Mexico: Sonora), and Hedone yunga Grishin, sp. n. (type locality in Bolivia: Yungas, La Paz). The lectotype is designated for Aethilla toxeus Plötz, 1882. The type locality of Dion uza (Hewitson, 1877) is likely in southern Brazil. A number of taxonomic changes are proposed. The following taxa are subgenera, not genera: Plebulina Nabokov, 1945 of Icaricia Nabokov, 1945; Sinia Forster, 1940 of Glaucopsyche Scudder, 1872; Pseudophilotes Beuret, 1958 of Palaeophilotes Forster, 1938; and Agraulis Boisduval & Le Conte, [1835] of Dione Hübner, [1819]. Asbolis Mabille, 1904 is a subgenus of Choranthus Scudder, 1872 rather than its synonym. The following are species, not subspecies or synonyms: Glaucopsyche algirica (Heyne, 1895) (not Glaucopsyche melanops (Boisduval, 1829)), Chlosyne flavula (W. Barnes & McDunnough, 1918) (not Chlosyne palla (Boisduval, 1852)), Cercyonis hypoleuca Hawks & J. Emmel, 1998 (not Cercyonis sthenele (Boisduval, 1852)), Cecropterus coyote (Skinner, 1892) and Cecropterus nigrociliata (Mabille & Boullet, 1912) (not Aethilla toxeus Plötz, 1882), Aguna malia Evans, 1952 (not Aguna megaeles (Mabille, 1888)), Polygonus arizonensis (Skinner, 1911), Polygonus histrio Röber, 1925, Polygonus pallida Röber, 1925, and Polygonus hagar Evans, 1952 (not Polygonus leo (Gmelin, [1790])), Viola kuma (Bell, 1942), comb. nov. (not Pachyneuria helena (Hayward, 1939)), Tamela maura (Snellen, 1886) (not Tamela othonias (Hewitson, 1878)), Tamela diocles (Moore, [1866]) (not Tamela nigrita (Latreille, [1824])), Vinius phellus (Mabille, 1883) (not Vinius exilis (Plötz, 1883)), Vinius sophistes (Dyar, 1918) (not Vinius tryhana (Kaye, 1914)), and Rhinthon andricus (Mabille, 1895) and Rhinthon aqua (Evans, 1955) (not Rhinthon braesia (Hewitson, 1867)). The following are new and revised species-subspecies combinations: Cercyonis sthenele damei W. Barnes & Benjamin, 1926 (not Cercyonis meadii (W. H. Edwards, 1872)) and Chlosyne flavula blackmorei Pelham, 2008 and Chlosyne flavula calydon (W. Holland, 1931) (not Chlosyne palla). The following are valid subspecies resurrected from synonymy in new and reinstated species-subspecies combinations: Chlosyne palla pola (Boisduval, 1869) (not Chlosyne gabbii gabbii (Behr, 1863)) and Cercyonis meadii mexicana R. Chermock, 1949 (not Cercyonis sthenele damei W. Barnes & Benjamin, 1926, comb. rev.). The following are new junior subjective synonyms: Aethilla toxeus Plötz, 1882 of Cecropterus albociliatus (Mabille, 1877) and Viola dagamba Steinhauser, 1989 of Viola kuma (Bell, 1942), comb. nov., stat. rest. Leucochitonea janice Ehrmann, 1907 is a junior subjective synonym of Heliopetes alana (Reakirt, 1868) and not of Heliopetes petrus (Hübner, [1819]). The holotype of Hermeuptychia sinuosa Grishin, 2021 is illustrated after being spread.
... Genome-scale approaches aim at utilizing all DNA of an organism and thus are most comprehensive and accurate, frequently revealing inconsistencies between phylogeny and current classification (Kawahara and Breinholt 2014;Espeland et al. 2018;Allio et al. 2019;Li et al. 2019;Zhang et al. 2019a;Zhang et al. 2019b). Our research group genome-sequenced all butterfly species recorded from the United States and Canada (USC) (Zhang et al. 2019d) and proposed refinements to butterfly taxonomy (Zhang et al. 2019c). Currently we are working on extending our genomic datasets to cover subspecies and populations, in addition to species from other parts of the world. ...
... For this reason, we use them to make decisions about classification of genera. Here, we explain how we arrive to these decisions using examples from this work and our previous publication (Zhang et al. 2019c). A maximum likelihood tree constructed using IQ-TREE program (model GTR+I+G) (Minh et al. 2020) from concatenated protein-coding regions of nuclear genomes is shown in Fig. 32. ...
Article
Further genomic sequencing of butterflies by our research group expanding the coverage of species and specimens from different localities, coupled with genome-scale phylogenetic analysis and complemented by phenotypic considerations, suggests a number of changes to the names of butterflies, mostly those recorded from the United States and Canada. Here, we present evidence to support these changes. The changes are intended to make butterfly classification more internally consistent at the genus, subgenus and species levels. I.e., considering all available evidence, we attempt to assign similar taxonomic ranks to the clades of comparable genetic differentiation, which on average is correlated with the age of phylogenetic groups estimated from trees. For species, we use criteria devised by genomic analysis of the genetic differentiation across suture zones and comparison of sympatric populations of closely related species. As a result, we resurrect 4 genera and 1 subgenus from subgeneric status or synonymy, change the rank of 8 currently used genera to subgenus, synonymize 7 genus-group names, summarize evidence to support 19 taxa as species instead of subspecies and 1 taxon as subspecies instead of species, along with a number of additional changes. One new genus and one new subspecies are described. Namely, the following taxa are treated as genera Tharsalea Scudder, 1876, Helleia Verity, 1943, Apangea Zhdanko, 1995, and Boldenaria Zhdanko, 1995. Tetracharis Grote, 1898 is a valid subgenus (not a synonym of Anthocharis Boisduval, Rambur, [Duménil] & Graslin, [1833]) that consists of Anthocharis cethura C. Felder & R. Felder, 1865 (Müller, 1764), Anthocharis midea (Hübner, [1809]), and Anthocharis limonea (A. Butler, 1871). The following are subgenera: Speyeria Scudder, 1872 of Argynnis Fabricius, 1807; Aglais Dalman, 1816 and Polygonia Hübner, [1819] of Nymphalis Kluk, 1780; Palaeonympha Butler, 1871 of Megisto Hübner, [1819]; Hyponephele Muschamp, 1915 of Cercyonis Scudder, 1875; Pyronia Hübner, [1819] and Aphantopus Wallengren, 1853 of Maniola Schrank, 1801 and Pseudonymphidia Callaghan, 1985 of Pachythone. Lafron Grishin, gen. n. (type species Papilio orus Stoll, [1780], parent subfamily Lycaeninae [Leach], [1815]) is described. Dipsas japonica Murray, 1875 is fixed as the type species of Neozephyrus Sibatani & Ito, 1942. The following taxa are junior subjective synonyms: Falcapica Klots, 1930 of Tetracharis Grote, 1898; Habrodais Scudder, 1876, Favonius Sibatani & Ito, 1942, Neozephyrus Sibatani & Ito, 1942, Quercusia Verity, 1943, Chrysozephyrus Shirôzu & Yamamoto, 1956, and Sibataniozephyrus Inomata, 1986 of Hypaurotis Scudder, 1876; Plesioarida Trujano & García, 2018 of Roeberella Strand, 1932; Papilio temenes Godart, 1819 (lectotype designated herein) of Heraclides aristodemus (Esper, 1794), Speyeria hydaspe conquista dos Passos & Grey, 1945 of Argynnis hesperis tetonia (dos Passos & Grey, 1945), and Erycides imbreus Plötz, 1879 of Phocides polybius polybius (Fabricius, 1793). The following are revised genus-species combinations: Pachythone lencates (Hewitson, 1875) Pachythone flocculus (Brévignon & Gallard, 1993), Pachythone floccus (Brévignon, 2013), Pachythone heberti (P. Jauffret & J. Jauffret, 2007), Pachythone marajoara (P. Jauffret & J. Jauffret, 2007) and Cissia cleophes (Godman & Salvin, 1889). The following species are transferred between subgenera: Anthocharis lanceolata Lucas, 1852 belongs to Anthocharis Boisduval, Rambur, [Duménil] & Graslin, [1833] instead of Paramidea Kuznetsov, 1929 and Danaus eresimus (Cramer, 1777) belongs to Danaus Kluk, 1780, and not to Anosia Hübner, 1816. The following taxa are distinct species rather than subspecies (of species shown in parenthesis): Heraclides ponceana (Schaus, 1911) (not Heraclides aristodemus (Esper, 1794)), Colias elis Strecker, 1885 (not Colias meadii W. H. Edwards, 1871), Argynnis irene Boisduval, 1869 and Argynnis nausicaa W. H. Edwards, 1874 (not Argynnis hesperis W. H. Edwards, 1864), Coenonympha california Westwood, [1851] (not Coenonympha tullia (Müller, 1764)), Dione incarnata N. Riley, 1926 (not Dione vanillae (Linnaeus, 1758)), Chlosyne coronado (M. Smith & Brock, 1988) (not Chlosyne fulvia (W. H. Edwards, 1879)), Chlosyne chinatiensis (Tinkham, 1944) (not Chlosyne theona (Ménétriés, 1855)), Phocides lilea (Reakirt, [1867]) (not Phocides polybius (Fabricius, 1793)), Cecropterus nevada (Scudder, 1872) and Cecropterus dobra (Evans, 1952) (not Cecropterus mexicana (Herrich-Schäffer, 1869)), Telegonus anausis Godman & Salvin, 1896, (not Telegonus anaphus (Cramer, 1777)), Epargyreus huachuca Dixon, 1955 (not Epargyreus clarus (Cramer, 1775)), Nisoniades bromias (Godman & Salvin, 1894) (not Nisoniades rubescens (Möschler, 1877)), Pholisora crestar J. Scott & Davenport, 2017 (not Pholisora catullus (Fabricius, 1793)), Carterocephalus mandan (W. H. Edwards, 1863) and Carterocephalus skada (W. H. Edwards, 1870) (not Carterocephalus palaemon (Pallas, 1771)), Amblyscirtes arizonae H. Freeman, 1993 (not Amblyscirtes elissa Godman, 1900), and Megathymus violae D. Stallings & Turner, 1956 (not Megathymus ursus Poling, 1902). Resulting from these changes, the following are revised species-subspecies combinations: Heraclides ponceana bjorndalae (Clench, 1979), Heraclides ponceana majasi L. Miller, 1987, Argynnis irene dodgei Gunder, 1931, Argynnis irene cottlei J. A. Comstock, 1925, Argynnis irene hanseni (J. Emmel, T. Emmel & Mattoon, 1998), Argynnis nausicaa elko (Austin, 1984), Argynnis nausicaa greyi (Moeck, 1950), Argynnis nausicaa viola (dos Passos & Grey, 1945), Argynnis nausicaa tetonia (dos Passos & Grey, 1945), Argynnis nausicaa chitone W. H. Edwards, 1879, Argynnis nausicaa schellbachi (Garth, 1949), Argynnis nausicaa electa W. H. Edwards, 1878, Argynnis nausicaa dorothea (Moeck, 1947), and Argynnis nausicaa capitanensis (R. Holland, 1988), Argynnis zerene atossa W. H. Edwards, 1890, Dione incarnata nigrior (Michener, 1942), Chlosyne coronado pariaensis (M. Smith & Brock, 1988), Cecropterus nevada aemilea (Skinner, 1893), Cecropterus nevada blanca (J. Scott, 1981), Telegonus anausis annetta (Evans, 1952), Telegonus anausis anoma (Evans, 1952), Telegonus anausis aniza (Evans, 1952), Epargyreus huachuca profugus Austin, 1998, Carterocephalus mandan mesapano (Scudder, 1868) and Carterocephalus skada magnus Mattoon & Tilden, 1998. American Coenonympha subspecies placed under C. tullia other than Coenonympha tullia kodiak W. H. Edwards, 1869, Coenonympha tullia mixturata Alpheraky, 1897 and Coenonympha tullia yukonensis W. Holland, 1900 belong to C. california. Heraclides ponceana latefasciatus Grishin, ssp. n. is described from Cuba. Argynnis coronis carolae dos Passos & Grey, 1942 is considered a subspecies-level taxon. Unless stated otherwise, all subgenera, species, subspecies and synonyms of mentioned genera and species are transferred together with their parent taxa, and others remain as previously classified.
... To reinforce this argument, the classification of the butterfly (Papilionoidea) family Hesperiidae has recently been evolving dramatically, with taxonomic changes ranging from species-group-level to subfamily level, based mainly on phylogenetic analyses of genomic data (e.g. Cong et al. 2019;Li et al. 2019;Zhang et al. 2019aZhang et al. , 2019b. These works have revealed the presence of homoplasy, reflecting limitations to 'interpreting' morphology and generating taxonomic hypotheses based solely on such an approach, as stated above, which has proven to result in creating paraphyletic and/or polyphyletic taxa in other butterfly groups as well (e.g. ...
... Recently, Cong et al. (2019) removed six species from Vettius based on molecular data and placed two species in their own monotypic genera, and four species in a new genus Mielkeus Grishin, 2019. Zhang et al. (2019b) also transferred taxa which appear not to form a clade with the type species of Vettius, evidenced from genetic data, resulting in the removal of 10 names (6 senior synonyms and 4 junior synonyms) associated with the genus and placement in Troyus Warren & Turland, 2012. Therefore, the species richness of Vettius as currently conceived has decreased to half since the classification proposed in Mielke (2004) (see Table 1 for list of taxa currently placed in Vettius). ...
Article
We here describe and name a new skipper butterfly in the genus Vettius Godman, 1901, currently known from two sites, one in Costa Rica and the other in Panama. Based on molecular data, Vettius mitsuko Nakahara, Nakamura & MacDonald, n. sp. is recovered as a sister to the type species of Vettius, Papilio phyllus Cramer, 1777. DNA sequence data further indicate V. chagres Nicolay, 1973 to be another closely related species, a relationship consistent with their phenotypic resemblance. The rather small genetic divergence between the two taxa and apparent allopatry might suggest a subspecific rank for V. mitsuko n. sp. instead. However, further evidence from morphology, genetic data and ecology supports our hypothesis of species-level distinction.
... As stated above, the available skipper host plant information to date likely represents a small fraction of their true diet breadth, however, some patterns can be observed. The genus Vettius (sensu Mielke 2004) is not monophyletic, and species associated with this genus in Mielke's (2004) checklist are currently scattered across six genera in two subtribes within Hesperiinae Zhang et al. 2019b;Zhang et al. 2022). Despite these distant relationships, Janzen & Hallwachs' (2018) database suggests these species previously associated with Vettius all predominantly feed on Poaceae, with exception of Mielkeus tertianus (Herrich-Schäffer, 1869), which is reported to feed on the plant family Bromeliaceae and presently classified as a member of skipper subtribe Carystina . ...
Article
We describe here for the first time the complete immature life cycles and shelter structures of two Neotropical skipper butterflies in the subtribe Moncina, Troyus phyllides (Röber, 1925) and Thoon ponka Evans 1955, along with new natural host plant records for these species at Finca Las Piedras, Madre de Dios, Peru. Four eggs and a preantepenultimate larva of T. phyllides, as well as three eggs of Thoon ponka were collected in nature and each passed through five larval instars to adulthood. Troyus phyllides fed on a herbaceous species, Lasiacis ligulata Hitchcock & Chase (Poaceae: Panicoideae: Paniceae), while T. ponka fed on two congeneric herbaceous bamboo species, Pariana lunata Nees and Pariana sp. (Poaceae: Bambusoideae: Olyreae). We present photos of all immature stages and host plants, as well as illustrations of the shelter structures and the head capsules for each of these two species.
... With regard to both species-level taxonomy and higher-level systematics, resolution of the butterfly family Hesperiidae has challenged researchers for decades. Phylogenetic analysis at the genomic scale revolutionized skipper systematics in recent years (Toussaint et al. 2018;Cong et al. 2019;Li et al. 2019;Zhang et al. 2019aZhang et al. , 2019bZhang et al. , 2022, enhancing our understanding of their relationships, partly building on classic morphology-based classification (Evans 1937(Evans , 1949(Evans , 1951(Evans , 1952(Evans , 1953(Evans , 1955. Advancement of DNA techniques has also been integral in uncovering hidden skipper diversity (e.g., Bertrand et al. 2014;Janzen et al. 2017). ...
Article
Here, we untangle an oversight surrounding the application of the name Papilio marcus Fabricius, 1787 (Hesperiidae: Hesperiinae), currently in Troyus Warren & Turland, 2012, which has eluded taxonomists for nearly two centuries. First, we note that P. marcus is a junior primary homonym of Papilio marcus Schaller, 1785, a species currently in Morpho Fabricius, 1807 (Nymphalidae: Satyrinae). Second, we designate a lectotype for P. marcus Fabricius, 1787, and recognize it as conspecific with Papilio phyllus Cramer, 1777, a species currently in Vettius Godman, 1901. Therefore, P. marcus is also a junior subjective synonym of V. phyllus (new synonym). Third, aided by genomic sequencing of the lectotype of Vettius phyllides Röber, 1925, we find that this species is not conspecific with V. phyllus and represents instead a valid species of Troyus Warren & Turland, 2012, so that the relative epithet, currently considered as a junior subjective synonym of P. marcus, has to be reappreciated as Troyus phyllides (reinstated status, new combination). Moreover, T. phyllides is apparently the species that has been misidentified as P. marcus since 1832. As a result of this study, the name P. marcus Fabricius nec Cramer falls in synonymy with P. phyllus (currently in Vettius), and the species currently known as T. marcus becomes Troyus phyllides.
... A very widespread butterfly with silvery spots is Dione vanillae (Linnaeus, 1758) (previously known as Agraulis vanillae 26 ) from the tribe Heliconiini. As shown in Fig. 1a, its ventral wings are covered with flashy silvery spots which explains its common Spanish name 'espejitos' (little mirrors). ...
Article
Full-text available
The ventral face of the wings of the butterfly Dione vanillae is covered with bright and shiny silvery spots. These areas contain densely packed ground- and coverscales with a bright metallic appearance reflecting more than 50% of light uniformly over the visible range. Our analysis shows that this optically attractive feature is caused by the inner microstructure of the scales located in these areas. Electron microscopy of cross sections through the scales shows that upper and lower lamina, supporting trabeculae, and topping ridges can be approximated by a ‘circus tent’-like geometry. By simulating its optical properties, we show that a moderate disorder of this geometry is important for the uniform reflection of light resulting in the silvery appearance.
... Despite the increasing reliance on molecular data in resolving relationships at the species level, and higher, which has resulted in numerous taxonomic changes, it is also still common to see taxonomic proposals based solely on molecular data without testing morphological synapomorphies (e.g. Ferreira et al. 2019;Zhang et al. 2019). ...
Article
The field of systematics and our understanding of phylogenetic relationships have been invigorated by the use of molecular data, but analyses based on DNA sequence data are not always corroborated by diagnostic morphological characters. In particular, several taxonomic changes in butterflies (Papilionoidea) have been made solely on the basis of molecular data without identifying morphological synapomorphies that might have aided in diagnosing taxa from butterfly collections or specimens with no accessible DNA. We here focus on the butterfly genus Pseudodebis Forster, 1964 in the so-called 'Taygetis clade', which is one of the major clades in the diverse Neotropical nymphalid subtribe Euptychiina. We inferred the evolution of a male genitalic character using the most comprehensive molecular phylogeny for the 'Taygetis clade' to date. This approach allowed us to identify a synapomorphy for Pseudodebis Forster, 1964, which can be used to morphologically diagnose this genus and to distinguish it from other genera in the 'Taygetis clade'. In addition, we describe two new species of Pseudodebis, P. nakamurai Nakahara & Willmott, sp. nov. and P. pieti Nakahara & Willmott, sp. nov., recovered as sister species based on molecular data, with an estimated time of divergence of 0.3 Ma (Bayesian confidence interval 0.03-1.61 Ma). Despite the low genetic divergence between these two Pseudodebis species, they can be readily distinguished by wing morphology. Pseudodebis nakamurai, sp. nov. and P. pieti, sp. nov. occur in partial sympatry across an elevational gradient along the western Andes, and the inferred recent speciation event might be related to a shift in elevation and possibly a change in larval hostplant preference.
... Conversely, larvae of Calpodes ethlius (Stoll, 1782) are relatively slim, although feeding primarily on host plants with large and soft leaves (such as Cannaceae, Heliconiaceae, Musaceae and Marantaceae) (McAuslane, 2000;Cock, 2003;Beccaloni et al., 2008;Janzen & Hallwachs, 2018). Calpodes Hübner, [1819] and Saliana are closely related genera (Sahoo et al., 2016;Li et al., 2019), and Zhang et al. (2019) suggested that they should be lumped into a single genus, Calpodes. The observed differences in larvae are suggestive of rather different ecological traits and could be seen as support for retaining both genera. ...
Article
Full-text available
The early stages of the hesperiid butterfly Saliana longirostris (Sepp) are described. The host plant in nature is Heliconia velloziana (Heliconiaceae). The egg is hemispherical, pale pink, and has more than 60 vertical ribs. The body of the larva is smooth in all five of its instars. The last instar has a plump body and is salmon-pink in color, variegated with many circular dark markings, and the head is rusty brown, ellipsoidal, and with a pair of rounded bumps on the vertex. The pupa is elongated, without spines, bearing a long, thin, anteriorly-directed projection on the head and a long proboscis sheath longer than body. The immature stages are similar to those of other Calpodina, and the plump body of the later instars is similar to those of other skipper species that feed on host plants with large and soft leaves. The relationship between larval body shape and host plant use in Calpodina is discussed.
... La taxonomía sigue a Klimaitis et al. (2018), más algunos trabajos filogenéticos de publicación reciente (Li et al., 2019;Núñez et al., 2019;Zhang et al. 2019). ...
Article
Full-text available
In the present paper we describe 57 lepidoptera recorded in five protected areas located in the Andean and High Andean regions northwest of Mendoza province. Aspects of their behavior, morphology, time of year in which they were sighted, height above sea level, and ecological relationships with the flora, whether native or exotic, are included. We also mention new records in the province for Battus polydamas, Tatochila orthodice, Strymon oribata, Hemiargus hanno, Pampasatyrus gyrtone, Hylephila venustus and Rothschildia condor.
... However, our genome-level analysis revealed a number of problems with the current butterfly classification at a shallower phylogeny level (tribe and genus). We rectified these problems in dedicated publications (37,38). Briefly, we proposed 6 new genera, 2 new subgenera, and reclassified 40 species (Table S1). ...
Preprint
Full-text available
Never before have we had the luxury of choosing a continent, picking a large phylogenetic group of animals, and obtaining genomic data for its every species. Here, we sequence all 845 species of butterflies recorded from North America north of Mexico. Our comprehensive approach reveals the pattern of diversification and adaptation occurring in this phylogenetic lineage as it has spread over the continent, which cannot be seen on a sample of selected species. We observe bursts of diversification that generated taxonomic ranks: subfamily, tribe, subtribe, genus, and species. The older burst around 70 Mya resulted in the butterfly subfamilies, with the major evolutionary inventions being unique phenotypic traits shaped by high positive selection and gene duplications. The recent burst around 5 Mya is caused by explosive radiation in diverse butterfly groups associated with diversification in transcription and mRNA regulation, morphogenesis, and mate selection. Rapid radiation correlates with more frequent introgression of speciation-promoting and beneficial genes among radiating species. Radiation and extinction patterns over the last 100 million years suggest the following general model of animal evolution. A population spreads over the land, adapts to various conditions through mutations, and diversifies into several species. Occasional hybridization between these species results in accumulation of beneficial alleles in one, which eventually survives, while others become extinct. Not only butterflies, but also the hominids may have followed this path.
Article
Full-text available
The comparative genomics of butterflies yields additional insights into their phylogeny and classification that are compiled here. As a result, 3 genera, 5 subgenera, 5 species, and 3 subspecies are proposed as new, i.e., in Hesperiidae: Antina Grishin, gen. n. (type species Antigonus minor O. Mielke, 1980), Pompe Grishin and Lamas, gen. n. (type species Lerema postpuncta Draudt, 1923), and Curva Grishin, gen. n. (type species Moeris hyagnis Godman, 1900); in Lycaenidae: Fussia Grishin, subgen. n. (type species Polyommatus standfussi Grum-Grshimailo, 1891) and Pava Grishin, subgen. n. (type species Thecla panava Westwood, 1852); in Hesperiidae: Monoca Grishin, subgen. n. (type species Tagiades monophthalma Plötz, 1884), Putuma Grishin, subgen. n. (type species Tisias putumayo Constantino and Salazar, 2013), and Rayia Grishin, subgen. n. (type species Mastor perigenes Godman, 1900); Cissia wahala Grishin, sp. n. (Nymphalidae; type locality in Mexico: Oaxaca); in Hesperiidae: Hedone mira Grishin and Lamas, sp. n. (type locality in Peru: Apurímac), Vidius pompeoides Grishin, sp. n. (type locality in Brazil: Amazonas), Parphorus hermieri Grishin, sp. n. (Hesperiidae; type locality in Brazil: Rondônia), and Zenis par Grishin, sp. n. (Hesperiidae; type locality in Peru: Cuzco); in Pieridae: Glutophrissa drusilla noroesta Grishin, ssp. n. (type locality in USA: Texas, Cameron Co.) and Pieris marginalis siblanca Grishin, ssp. n. (type locality in USA: New Mexico, Lincoln Co.), and Argynnis cybele neomexicana Grishin, ssp. n. (Nymphalidae; type locality in USA: New Mexico, Sandoval Co.). Acidalia leto valesinoides-alba Reuss, [1926] and Acidalia nokomis valesinoides-alba Reuss, [1926] are unavailable names. Neotypes are designated for Mylothris margarita Hübner, [1825] (type locality in Brazil) and Papilio coras Cramer, 1775 (type locality becomes USA: Pennsylvania, Montgomery Co., Flourtown). Mylothris margarita Hübner, [1825] becomes a junior objective synonym of Pieris ilaire Godart, 1819, currently a junior subjective synonym of Glutophrissa drusilla (Cramer, 1777). Lectotypes are designated for Hesperia ceramica Plötz, 1886 (type locality in Indonesia: Seram Island), Pamphila trebius Mabille, 1891 (type locality Colombia: Bogota), Methionopsis modestus Godman, 1901 and Papias microsema Godman, 1900 (type locality in Mexico: Tabasco), Hesperia fusca Grote & Robinson, 1867 (type locality in USA: Georgia), Goniloba corusca Herrich-Schäffer, 1869, and Goniloba devanes Herrich-Schäffer, 1869; the type localities of the last two species, together with Pamphila stigma Skinner, 1896 and Carystus (Argon) lota (Hewitson, 1877), are deduced to be in South America. Type locality of Junonia pacoma Grishin, 2020 is in Sinaloa, not Sonora (Mexico). Abdomen is excluded from the holotype of Staphylus ascalon (Staudinger, 1876). Furthermore, a number of taxonomic changes are proposed. Alciphronia Koçak, 1992 is treated as a subgenus, not a synonym of Heodes Dalman, 1816. The following genera are treated as subgenera: Lafron Grishin, 2020 of Lycaena [Fabricius], 1807, Aremfoxia Real, 1971 of Epityches D'Almeida, 1938, Placidina D'Almeida, 1928 of Pagyris Boisduval, 1870, and Methionopsis Godman, 1901 of Mnasinous Godman, 1900. Polites (Polites) coras (Cramer, 1775) is not a nomen dubium but a valid species. The following are species-level taxa (not subspecies or synonyms of taxa given in parenthesis): Lycaena pseudophlaeas (Lucas, 1866) and Lycaena hypophlaeas (Boisduval, 1852) (not Lycaena phlaeas (Linnaeus, 1761), Satyrium dryope (W. H. Edwards, 1870) (not Satyrium sylvinus (Boisduval, 1852)), Apodemia cleis (W. H. Edwards, 1882) (not Apodemia zela (Butler, 1870)), Epityches thyridiana (Haensch, 1909), comb. nov. (not Epityches ferra Haensch, 1909, comb. nov.), Argynnis bischoffii W. H. Edwards, 1870 (not Argynnis mormonia Boisduval, 1869), Argynnis leto Behr, 1862 (not Argynnis cybele (Fabricius, 1775)), Boloria myrina (Cramer, 1777) (not Boloria selene ([Denis & Schiffermüller], 1775)), Phyciodes jalapeno J. Scott, 1998 (not Phyciodes phaon (W. H. Edwards, 1864)), Phyciodes incognitus Gatrelle, 2004 and Phyciodes diminutor J. Scott, 1998 (not Phyciodes cocyta (Cramer, 1777)), Phyciodes orantain J. Scott, 1998 (not Phyciodes tharos (Drury, 1773)), Phyciodes anasazi J. Scott, 1994 (not Phyciodes batesii (Reakirt, [1866])), Cercyonis silvestris (W. H. Edwards, 1861) (not Cercyonis sthenele (Boisduval, 1852)), Paramacera allyni L. Miller, 1972 and Paramacera rubrosuffusa L. Miller, 1972 (not Paramacera xicaque (Reakirt, [1867])), Cissia cheneyorum (R. Chermock, 1949), Cissia pseudocleophes (L. Miller, 1976), and Cissia anabelae (L. Miller, 1976) (not Cissia rubricata (W. H. Edwards, 1871)), Tarsoctenus gaudialis (Hewitson, 1876) (not Tarsoctenus corytus (Cramer, 1777)), Nisoniades inca (Lindsey, 1925) (not Nisoniades mimas (Cramer, 1775), Xenophanes ruatanensis Godman & Salvin, 1895 (not Xenophanes tryxus (Stoll, 1780)), Lotongus shigeoi Treadaway & Nuyda, 1994, Lotongus balta Evans, 1949, Lotongus zalates (Mabille, 1893), and Lotongus taprobanus (Plötz, 1885) (not Lotongus calathus (Hewitson, 1876)), Oxynthes martius (Mabille, 1889) (not Oxynthes corusca (Herrich-Schäffer, 1869)), Notamblyscirtes durango J. Scott, 2017 (not Notamblyscirtes simius W. H. Edwards, 1881), Hedone praeceps Scudder, 1872, Hedone catilina (Plötz, 1886), and Hedone calla (Evans, 1955) (not Hedone vibex (Geyer, 1832)), Atalopedes huron (W. H. Edwards, 1863) (not Atalopedes campestris (Boisduval, 1852)), Papias microsema Godman, 1900 (not Mnasinous phaeomelas (Hübner, [1829]), comb. nov.), Papias unicolor (Hayward, 1938) and Papias monus Bell, 1942 (not Papias phainis Godman, 1900), Nastra leuconoides (Lindsey, 1925) (not Nastra leucone (Godman, 1900)), Nastra fusca (Grote & Robinson, 1867) (not Nastra lherminier (Latreille, [1824])), Zenis hemizona (Dyar, 1918) and Zenis janka Evans, 1955 (not Zenis jebus (Plötz, 1882)), Carystus (Argon) argus Möschler, 1879 (not Carystus (Argon) lota Hewitson, 1877), and Lycas devanes (Herrich-Schäffer, 1869) (not Lycas argentea (Hewitson, 1866)). Borbo impar ceramica (Plötz, 1886), comb. nov. is not a synonym of Pelopidas agna larika (Pagenstecher, 1884) but a valid subspecies. Parnassius smintheus behrii W. H. Edwards, 1870 and Cercyonis silvestris incognita J. Emmel, T. Emmel & Mattoon, 2012 are subspecies, not species. The following are junior subjective synonyms: Shijimiaeoides Beuret, 1958 of Glaucopsyche Scudder, 1872, Micropsyche Mattoni, 1981 of Turanana Bethune-Baker, 1916, Cyclyrius Butler, 1897 of Leptotes Scudder, 1876, Mesenopsis Godman & Salvin, 1886 of Xynias Hewitson, 1874, Carystus tetragraphus Mabille, 1891 of Lotongus calathus parthenope (Plötz, 1886), Parnara bipunctata Elwes & J. Edwards, 1897 of Borbo impar ceramica (Plötz, 1886), Hesperia peckius W. Kirby, 1837 of Polites (Polites) coras (Cramer, 1775), and Lerodea neamathla Skinner & R. Williams, 1923 of Nastra fusca (Grote & Robinson, 1867). The following transfers are proposed: of species between genera (i.e., revised genus-species combinations): Nervia niveostriga (Trimen, 1864) (not Kedestes Watson, 1893), Leona lota Evans, 1937 (not Lennia Grishin, 2022), Leona pruna (Evans, 1937) and Leona reali (Berger, 1962) (not Pteroteinon Watson, 1893), Mnasinous phaeomelas (Hübner, [1829]) (not Papias Godman, 1900), Saturnus jaguar (Steinhauser, 2008) (not Parphorus Godman, 1900), Parphorus harpe (Steinhauser, 2008) (not Saturnus Evans, 1955), Parphorus kadeni (Evans, 1955) (not Lento Evans, 1955), and Calpodes chocoensis (Salazar & Constantino, 2013) (not Megaleas Godman, 1901); of subspecies between species (i.e., revised species-subspecies combinations): Melitaea sterope W. H. Edwards, 1870 of Chlosyne palla (Boisduval, 1852) (not Chlosyne acastus (W. H. Edwards, 1874)) and Panoquina ocola distipuncta Johnson & Matusik, 1988 of Panoquina lucas (Fabricius, 1793); and junior subjective synonym transferred between species: Rhinthon zaba Strand, 1921 of Conga chydaea (A. Butler, 1877), not Cynea cynea (Hewitson, 1876), Pamphila stigma Skinner, 1896 of Hedone catilina (Plötz, 1886), not Hedone praeceps Scudder, 1872, and Pamphila ortygia Möschler, 1883 of Panoquina hecebolus (Scudder, 1872), not Panoquina ocola (W. H. Edwards, 1863). Proposed taxonomic changes result in additional revised species-subspecies combinations: Lycaena pseudophlaeas abbottii (Holland, 1892), Satyrium dryope putnami (Hy. Edwards, 1877), Satyrium dryope megapallidum Austin, 1998, Satyrium dryope itys (W. H. Edwards, 1882), Satyrium dryope desertorum (F. Grinnell, 1917), Argynnis bischoffi opis W. H. Edwards, 1874, Argynnis bischoffi washingtonia W. Barnes & McDunnough, 1913, Argynnis bischoffi erinna W. H. Edwards, 1883, Argynnis bischoffi kimimela Marrone, Spomer & J. Scott, 2008, Argynnis bischoffi eurynome W. H. Edwards, 1872, Argynnis bischoffi artonis W. H. Edwards, 1881, Argynnis bischoffi luski W. Barnes & McDunnough, 1913, Argynnis leto letona (dos Passos & Grey, 1945), Argynnis leto pugetensis (F. Chermock & Frechin, 1947), Argynnis leto eileenae (J. Emmel, T. Emmel & Mattoon, 1998), Boloria myrina nebraskensis (W. Holland, 1928), Boloria myrina sabulocollis Kohler, 1977, Boloria myrina tollandensis (W. Barnes & Benjamin, 1925), Boloria myrina albequina (W. Holland, 1928), Boloria myrina atrocostalis (Huard, 1927), Boloria myrina terraenovae (W. Holland, 1928), Phyciodes anasazi apsaalooke J. Scott, 1994, Polites coras surllano J. Scott, 2006, and Curva darienensis (Gaviria, Siewert, Mielke & Casagrande, 2018). Specimen curated as the holotype of Acidalia leto valesinoides-alba Reuss, [1926] is Argynnis leto letona (dos Passos & Grey, 1945) (not A. leto leto Behr, 1862) from USA: Utah, Provo. A synonymic list of available genus-group names for Lycaeninae [Leach], [1815] is given. Unless stated otherwise, all subgenera, species, subspecies and synonyms of mentioned genera and species are transferred with their parent taxa, and others remain as previously classified.
Article
Full-text available
The richest butterfly communities in the world are found in the Amazon rainforest. Despite of this, and the importance of species inventories for the knowledge of diversity patterns, there are few comprehensive lists of butterflies for localities in the Brazilian Amazon. Here, we present an updated list of the butterflies of Cristalino Lodge (Alta Floresta, Mato Grosso, Brazil), in southern Amazonia, based on specimens collected by researchers and photographic records taken by ecotourists, butterfly watchers, and tour guides. With 1010 species recorded, this is currently the largest list of butterflies published for a single locality in Brazil and the first to reach (and surpass) 1000 species, with more than one third of the records coming from citizen science. The region has about 29% of the butterfly species in Brazil and one of the greatest richnesses known in the country, inferior only to areas in the western Amazon. Its fauna is mainly composed of species widely distributed in lowland Amazonia, with the addition of some species typical of the Cerrado. It has a relatively low number of species of the tribe Ithomiini (Nymphalidae: Danainae), generally considered a good indicator of the total butterfly diversity in neotropical forests, which points to the need for caution when using a single taxonomic group as a surrogate of richness of entire communities. The present work highlights the importance of citizen science and ecotourism centers for inventories and data on species distribution in diverse tropical forests.
Article
Full-text available
We here report for the first time the complete immature life cycle of a Neotropical skipper butterfly, Ebusus ebusus ebusus (Cramer, 1780), with a report of a new natural hostplant based on a single individual reared at Finca Las Piedras (Madre de Dios, Peru). An egg obtained in nature passed through four larval instars and reached the adult stage, feeding on a palm species identified as Mauritia flexuosa L.f. (Arecaceae: Calamoideae). We provide images of each life stage including illustrations of head capsules and larval shelter structures, as well as information on the duration of the stages. Resumen: Aquí reportamos por primera vez el ciclo de vida completo de una mariposa hespérida Neotropical, Ebusus ebusus ebusus (Cramer, 1780) y el registro de una nueva planta hospedera basado en un solo individuo criado en Finca Las Piedras (Madre de Dios, Perú). El huevo colectado en su hábitat natural pasó por cuatro estadios larvales y alcanzó la etapa adulta alimentándose de una especie de palma identificada como Mauritia flexuosa L.f. (Arecaceae: Calamoideae). Proveemos imágenes de cada etapa de vida, incluyendo ilustraciones de las cápsulas de la cabeza y de las estructuras de los refugios para larvas, así como información sobre la duración de los estadíos larvales.
Article
Full-text available
We here report for the first time the complete immature life cycle of a Neotropical skipper butterfly, Ebusus ebusus ebusus (Cramer, 1780), with a report of a new natural hostplant based on a single individual reared at Finca Las Piedras (Madre de Dios, Peru). An egg obtained in nature passed through four larval instars and reached the adult stage, feeding on a palm species identified as Mauritia flexuosa L.f. (Arecaceae: Calamoideae). We provide images of each life stage including illustrations of head capsules and larval shelter structures, as well as information on the duration of the stages. Resumen: Aquí reportamos por primera vez el ciclo de vida completo de una mariposa hespérida Neotropical, Ebusus ebusus ebusus (Cramer, 1780) y el registro de una nueva planta hospedera basado en un solo individuo criado en Finca Las Piedras (Madre de Dios, Perú). El huevo colectado en su hábitat natural pasó por cuatro estadios larvales y alcanzó la etapa adulta alimentándose de una especie de palma identificada como Mauritia flexuosa L.f. (Arecaceae: Calamoideae). Proveemos imágenes de cada etapa de vida, incluyendo ilustraciones de las cápsulas de la cabeza y de las estructuras de los refugios para larvas, así como información sobre la duración de los estadíos larvales.
Article
Full-text available
The North American skipper butterfly Polites rhesus (W. H. Edwards, 1878) is reviewed, and notes on its morphology, distribution, phenology, biogeography and ecology are provided. In addition, a new subspecies, Polites rhesus otomi A. Warren & Gott, ssp. nov., is described from high-elevation grasslands in the State of México, Mexico.
Book
Full-text available
Neste livro nós reunimos informações sobre adultos e imaturos de borboletas ocorrentes no município de Joaçaba, localizado no meio-oeste de Santa Catarina. As espécies registradas aqui se distribuem também por grande parte da Floresta Atlântica, outras ainda adentrando biomas como o Cerrado e a Amazônia. Esta obra contém 2.273 imagens correspondentes a 447 espécies. Destas, há imagens de 446 espécies preparadas com as asas esticadas, 178 espécies registradas no ambiente natural e 89 espécies com imagens dos imaturos. Adicionalmente, há informações a respeito dos meses de ocorrência, de alguns hábitos e caracterização morfológica dos adultos e imaturos, além do registro de plantas hospedeiras. Desta forma, associando imagens desses belíssimos insetos à descrição de hábitos e demais características das espécies, nós objetivamos auxiliar na divulgação de informações científicas também ao público leigo, buscando atrair uma maior parcela da sociedade ao conhecimento da grande diversidade de insetos neotropicais.
Article
We obtained and phylogenetically analyzed whole genome shotgun sequences of nearly all species from the tribe Emesidini Seraphim, Freitas & Kaminski, 2018 (Riodinidae) and representatives from other Riodinidae tribes. We see that the recently proposed genera Neoapodemia Trujano, 2018 and Plesioarida Trujano & García, 2018 are closely allied with Apodemia C. & R. Felder, [1865] and are better viewed as its subgenera, new status. Overall, Emesis Fabricius, 1807 and Apodemia (even after inclusion of the two subgenera) are so phylogenetically close that several species have been previously swapped between these two genera. New combinations are: Apodemia (Neoapodemia) zela (Butler, 1870), Apodemia (Neoapodemia) ares (Edwards, 1882), and Apodemia (Neoapodemia) arnacis (Stichel, 1928) (not Emesis); and Emesis phyciodoides (Barnes & Benjamin, 1924) (not Apodemia), assigned to each genus by their monophyly in genomic trees with the type species (TS) of the genus. Surprisingly, we find that Emesis emesia Hewitson, 1867 is not grouped with Emesis, but in addition to Apodemia forms a third lineage of similar rank, here named Curvie Grishin, gen. n. (TS: Symmachia emesia Hewitson, 1867). Furthermore, we partition Emesis into 6 subgenera (4 new): Emesis (TS: Hesperia ovidius Fabricius, 1793, a subjective junior synonym of Papilio cereus Linnaeus, 1767), Aphacitis Hübner, [1819] (TS: Papilio dyndima Cramer, [1780], a subjective junior synonym of Papilio lucinda Cramer, [1775]), Poeasia Grishin, subgen. n. (TS: Emesis poeas Godman, [1901]), Mandania Grishin, subgen. n. (TS: Papilio mandana Cramer, [1780]), Brimia Grishin, subgen. n. (TS: Emesis brimo Godman & Salvin, 1889), and Tenedia Grishin, subgen. n. (TS: Emesis tenedia C. & R. Felder, 1861). Next, genomic comparison of primary type specimens suggests new status for Emesis vimena Schaus, 1928 as a subspecies of Emesis brimo Godman & Salvin, 1889, Emesis adelpha Le Cerf, 1958 with E. a. vicaria Le Cerf, 1958 are subspecies of Emesis heteroclita Stichel, 1929, and Emesis tristis Stichel, 1929 is not a synonym of E. brimo vimena but of Emesis lupina Godman & Salvin, 1886. A new status of a species is given to the following taxa: Emesis furor A. Butler & H. Druce, 1872 (not a subspecies of E. mandana (Cramer, 1780)), Emesis melancholica Stichel, 1916 (not a subspecies of E. lupina Godman & Salvin, 1886), Emesis progne (Godman, 1903) (not a subspecies of E. brimo Godman & Salvin, 1889), and Emesis opaca Stichel, 1910 (not a synonym of E. lucinda (Cramer, 1775)). Emesis castigata diringeri Gallard 2008 is a subjective junior synonym of E. opaca, new status. Finally, Xanthosa Grishin, gen. n. (TS: Charmona xanthosa Stichel, 1910) is proposed for a sister lineage of Sertania Callaghan & Kaminski, 2017 and Befrostia Grishin, gen. n. (TS: Emesis elegia Stichel, 1929) is proposed for a clade without apparent phylogenetic affinities that we place in Befrostiini Grishin, trib. n. In conclusion, genomic data reveal a number of errors in the current classification of Emesidini and allow us to confidently reclassify the tribe partitioning it in three genera: Apodemia, Curvie gen. n. and Emesis.
Article
Full-text available
We obtained and analyzed whole genome data for more than 160 representatives of skipper butterflies (family Hesperiidae) from all known subfamilies, tribes and most distinctive genera. We found that two genera, Katreus Watson, 1893 and Ortholexis Karsch, 1895, which are sisters, are well-separated from all other major phylogenetic lineages and originate near the base of the Hesperiidae tree, prior to the origin of some subfamilies. Due to this ancient origin compared to other subfamilies, this group is described as Katreinae Grishin, subfam. n. DNA sequencing of primary type specimens reveals that Ortholexismelichroptera Karsch, 1895 is not a female of Ortholexisholocausta Mabille, 1891, but instead a female of Ortholexisdimidia Holland, 1896. This finding establishes O.dimidia as a junior subjective synonym of O.melichroptera. Furthermore, we see that Chamunda Evans, 1949 does not originate within Pyrginae Burmeister, 1878, but, unexpectedly, forms an ancient lineage of its own at the subfamily rank: Chamundinae Grishin, subfam. n. Finally, a group of two sister genera, Barca de Nicéville, 1902 and Apostictopterus Leech, [1893], originates around the time Hesperiinae Latreille, 1809 have split from their sister clade. A new subfamily Barcinae Grishin, subfam. n. sets them apart from all other Hesperiidae.
Article
Full-text available
For centuries, biologists have used phenotypes to infer evolution. For decades, a handful of gene markers have given us a glimpse of the genotype to combine with phenotypic traits. Today, we can sequence entire genomes from hundreds of species and gain yet closer scrutiny. To illustrate the power of genomics, we have chosen skipper butterflies (Hesperiidae). The genomes of 250 representative species of skippers reveal rampant inconsistencies between their current classification and a genome-based phylogeny. We use a dated genomic tree to define tribes (six new) and subtribes (six new), to overhaul genera (nine new) and subgenera (three new), and to display convergence in wing patterns that fooled researchers for decades. We find that many skippers with similar appearance are distantly related, and several skippers with distinct morphology are close relatives. These conclusions are strongly supported by different genomic regions and are consistent with some morphological traits. Our work is a forerunner to genomic biology shaping biodiversity research.
Article
Biologists marvel at the powers of adaptive convergence, when distantly related animals look alike. While mimetic wing patterns of butterflies have fooled predators for millennia, entomologists inferred that mimics were distant relatives despite similar appearance. However, the obverse question has not been frequently asked. Who are the close relatives of mimetic butterflies and what are their features? As opposed to close convergence, divergence from a non-mimetic relative would also be extreme. When closely related animals look unalike, it is challenging to pair them. Genomic analysis promises to elucidate evolutionary relationships and shed light on molecular mechanisms of divergence. We chose the firetip skipper butterfly as a model due to its phenotypic diversity and abundance of mimicry. We sequenced and analysed whole genomes of nearly 120 representative species. Genomes partitioned this subfamily Pyrrhopyginae into five tribes (1 new), 23 genera and, additionally, 22 subgenera (10 new). The largest tribe Pyrrhopygini is divided into four subtribes (three new). Surprisingly, we found five cases where a uniquely patterned butterfly was formerly placed in a genus of its own and separately from its close relatives. In several cases, extreme and rapid phenotypic divergence involved not only wing patterns but also the structure of the male genitalia. The visually striking wing pattern difference between close relatives frequently involves disappearance or suffusion of spots and colour exchange between orange and blue. These differences (in particular, a transition between unspotted black and striped wings) happen recurrently on a short evolutionary time scale, and are therefore probably achieved by a small number of mutations.
Article
Evolutionary relationships have remained unresolved in many well-studied groups, even though advances in next-generation sequencing and analysis, using approaches such as transcriptomics, anchored hybrid enrichment, or ultraconserved elements, have brought systematics to the brink of whole genome phylogenomics. Recently, it has become possible to sequence the entire genomes of numerous non-biological models in parallel at reasonable cost, particularly with shotgun sequencing. Here we identify orthologous coding sequences from whole-genome shotgun sequences, which we then use to investigate the relevance and power of phylogenomic relationship inference and time-calibrated tree estimation. We study an iconic group of butterflies - swallowtails of the family Papilionidae - that has remained phylogenetically unresolved, with continued debate about the timing of their diversification. Low-coverage whole genomes were obtained using Illumina shotgun sequencing for all genera. Genome assembly coupled to BLAST-based orthology searches allowed extraction of 6,621 orthologous protein-coding genes for 45 Papilionidae species and 16 outgroup species (with 32% missing data after cleaning phases). Supermatrix phylogenomic analyses were performed with both maximum-likelihood (IQ-TREE) and Bayesian mixture models (PhyloBayes) for amino acid sequences, which produced a fully resolved phylogeny providing new insights into controversial relationships. Species tree reconstruction from gene trees was performed with ASTRAL and SuperTriplets and recovered the same phylogeny. We estimated gene site concordant factors to complement traditional node-support measures, which strengthens the robustness of inferred phylogenies. Bayesian estimates of divergence times based on a reduced dataset (760 orthologs and 12% missing data) indicate a mid-Cretaceous origin of Papilionoidea around 99.2 million years ago (Ma) (95% credibility interval: 68.6-142.7 Ma) and Papilionidae around 71.4 Ma (49.8-103.6 Ma), with subsequent diversification of modern lineages well after the Cretaceous-Paleogene event. These results show that shotgun sequencing of whole genomes, even when highly fragmented, represents a powerful approach to phylogenomics and molecular dating in a group that has previously been refractory to resolution.
Genomics of a complete butterfly continent
  • J Zhang
  • Q Cong
  • J Shen
  • P A Opler
  • N V Grishin
Zhang J, Cong Q, Shen J, Opler PA, and Grishin NV. 2019c. Genomics of a complete butterfly continent. bioRxiv preprint.