To read the full-text of this research, you can request a copy directly from the authors.


Die Energiewende genießt in Deutschland sehr hohe Zustimmung in der Bevölkerung. Allerdings sind bei diesem Transformationsprozess auch andere Belange wie der Schutz der biologischen Vielfalt und die Interessen der Anwohnerinnen und Anwohner zu berücksichtigen. Die vorliegende Studie zeigt mit Szenarien Wege zur Lösung dieser Konflikte. Dazu wurde ein GIS-Modell entwickelt, das die Empfindlichkeiten von Mensch und Natur berücksichtigt und flächenkonkret sowie summativ für Deutschland Potenziale für erneuerbare Energien berechnet und einem für 2050 projizierten Bedarf gegenüberstellt. Das Modell dient der Entscheidungsunterstützung: Sowohl der Energiebedarf als auch die eingegebenen Daten können als Variablen behandelt werden. Die Projektionen zeigen, dass der Strombedarf von 1 500 Terawattstunden(TWh)/a im Jahr 2050 bei einer intelligenten Verteilung von On-Shore-Windenergieanlagen und einer sehr ambitionierten Nutzung von Dachflächen mit Photovoltaik gedeckt werden kann. Das Modell liefert die Grundlage für ein Werkzeug, das einer wissensbasierten Lenkung der Energiewende dient und in Zukunft bereitgestellt werden kann.

No full-text available

Request Full-text Paper PDF

To read the full-text of this research,
you can request a copy directly from the authors.

ResearchGate has not been able to resolve any citations for this publication.
Technical Report
Full-text available
The INSIDE project is a joint project of the Institute for Solar Energy Research in Hamelin (ISFH) and Leibniz University Hannover, Institute of Environmental Planning (IUP) and Institute of Solid State Physics (FKP). The project explored options to increase the acceptance of solar parcs in Lower Saxony and thus enable the strong expansion of solar energy in Lower Saxony that will be necessary in the future, in agreement with local stakeholders.
Full-text available
This work presents a pathway for the transition to a 100% renewable energy (RE) system by 2050 for Iran. An hourly resolved model is simulated to investigate the total power capacity required from 2015 to 2050 in 5-year time steps to fulfil the electricity demand for Iran. In addition, shares of various RE resources and storage technologies have been estimated for the applied years, and all periods before in 5-year time steps. The model takes the 2015 installed power plant capacities, corresponding lifetimes and total electrical energy demand to compute and optimize the mix of RE plants needed to be installed to achieve a 100% RE power system by 2050. The optimization is carried out on the basis of assumed costs and technological status of all energy technologies involved. Moreover, the role of storage technologies in the energy system, and integration of the power sector with desalination and non-energetic industrial gas sectors are examined. Our results reveal that RE technologies can fulfil all electricity demand by the year 2050 at a price level of about 41 - 47 €/MWhel depending on the sectorial integration. Moreover, the combination of solar PV and battery storage is found as a least cost solution after 2030 for Iran. If the capacity in 2050 would have been invested for the cost assumptions of 2050 the cost would be 32 - 40 €/MWhel, depending on the sectorial integration, which can be expected for the time beyond 2050.
Full-text available
While the interactions between wind turbines and birds have been studied comprehensively in recent years, large scale assessments on likely effects of the current development status of the wind energy sector on sensitive species are often missing. To mitigate wind farm related risks for birds, the Working Group of German State Bird Conservancies published species-specific minimum distances of wind turbines to breeding sites that should be kept free from turbines. Using these recommendations the overlap between the breeding distribution and areas of wind farm related risks was estimated as well as the proportions of bird populations potentially influenced by the current state of wind energy production. The assessment was carried out based on the distribution and abundance information of the recently published second Atlas of German Breeding Birds, land use information of the Corine Land Cover data base and location information for operational onshore wind turbines on German territory. The results indicate a considerable overlap between the breeding season habitat and areas of wind farm related risks for various sensitive species. Especially the group of open landscape species regularly face potential disturbance of 9 to 13 % of their breeding season habitat. For individual species, often with only regional distribution in Germany, even considerable higher potential habitat disturbance figures are found with values up to 55 %. For most species, values for percentage habitat disturbance and estimates on the proportion of the national population to be influenced by wind turbines were relatively similar.
Full-text available
In Germany the introduction of a feed-in tariff for renewable energies in the year 2000 led to a massive increase in newly constructed photovoltaic (PV) plants reaching a total installed capacity of 35 GW(p) as of November 30th, 2013. The distribution of these plants shows a large disparity between regions, which motivates investigations of regional potentials which earlier studies of Germany have not addressed in detail. This study presents a high-resolution calculation for the technical potential of residential-roof-mounted photovoltaic systems for each municipality in Germany. Electricity load curves for municipalities were generated based on the socio-economic structure and used to draw generalized conclusions about the relationship between the (potential) supply from PV and the local demand. The total German residential-roof-mounted technical PV potential was determined as 148 TWh/a with an installable capacity of 208 GW(p). About 30% of municipalities could become autonomous based on a yearly balance of PV electricity generation. If the daily and seasonal variations in demand and PV electricity generation were considered, only 53 of the 11,593 German municipalities could become autonomous, provided they installed a short-term storage system which would have to be sized around 57% of their daily electricity demand. Imposing the restriction that no feedback of electricity into the distribution network outside the municipality should occur, and assuming that no local storage exists, around 49% of the total technical potential, i.e. 103 GW(p) could be installed (i.e. 90 GW(p) additional potential since some municipalities already experience feedbacks into the distribution network). A validation of the results with municipal solar cadastres has shown that the discrepancy between them and the technical potential calculated in this study is quite consistently about 30%, which is assumed to be due to non-residential buildings not being considered here. The calculated technical potential is most sensitive to the assumptions on the module efficiency and the usable area of (slanted) roofs. A validation of building data assumptions as well as a comparison with other studies both show a good agreement.
Full-text available
As a result of signing the Kyoto Agreement the UK will need to reduce carbon emissions to 20% of their 1990 value by 2050. This will require a complete change in power generation over the next 40years. The system involved is immensely complex, with multiple agents, levels of description, new technologies and new policies and actions. However, here we develop a relatively simple spatial, dynamic model representing a basic part of the problem - the changing geographical distribution of electrical generation capacity in the UK. It runs from 2010 until 2050 and allows the exploration of the different pattern of investments in, and closures of, generation capacity. It was develop as part of the CASCADE project on Smart Grids to provide scenarios for annual changes in generating capacity. It provides generation scenarios for much more complex, multi-agent models, such as that developed in the CASCADE project, that represent the short-term (30mins time step) dynamics of the wholesale and retail energy markets. The model allows us to explore different possible pathways to 2050 and the difficulty of the overall endeavour. In order to increase electricity production but reduce CO2 emissions, we shall need to close our current coal/gas generating plants and make a vast investment in new low carbon generating capacity. The model allows us to rapidly the possible consequences of innovations in technologies, and to re-shape plans in the light of as new opportunities and circumstances.
Raw Data
The shapefiles display areas with low and medium spatial vulnerability to a prototype wind turbine (variant 2, (Thiele et al. submitted); scenario “hochaufgelöste Eingangsdaten“ (Thiele et al. in press) and scenario “no regret” (Wiehe et al. 2020)). The dataset resulted from the research project "Konkretisierung von Ansatzpunkten einer naturverträglichen Ausgestaltung der Energiewende, mit Blick auf strategische Stellschrauben (EE100-konkret)". The project was funded by the Federal Agency for Nature Conservation (BfN) with funds from the Federal Ministry for the Environment, Nature Conservation and Nuclear Safety (BMU) (FKZ: 3517 86 0100). Basic data (Thiele et al. submitted): GeoBasis-DE/BKG 2017; GeoBasis-DE/BKG 2018 (Conditions of use: ); BNetzA 2016; BfN data; Atlas of German Breeding Birds; Corine Land Cover 2018. The basic data was converted into grids with a resolution of 50 m × 50 m in order to calculate areas of the spatial vulnerability classes. The resulting grid per spatial vulnerability class was converted into a shapefile. Projected Coordinate System: ETRS_1989_UTM_Zone_32N_8stellen References: Thiele, J.; Wiehe, J.; Gauglitz, P.; Lohr, C.; Bensmann, A.; Hanke-Rauschenbach, R.; Haaren, C. von (in press): EE100 in Deutschland: Kann der Energiebedarf 2050 mensch- und naturverträglich gedeckt werden? In: Natur und Landschaft. Thiele, J.; Wiehe, J.; Gauglitz, P.; Pape, C.; Lohr, C.; Bensmann, A.; Hanke-Rauschenbach, R.; Kluß, L.; Hofmann, L.; Kraschewski, T.; Breitner, M.; Demuth, B.; Vayhinger, E.; Heiland, S.; Haaren, C. von (submitted): Konkretisierung von Ansatzpunkten einer naturverträglichen Ausgestaltung der Energiewende, mit Blick auf strategische Stellschrauben. BfN-Skript. Bonn-Bad Godesberg. Wiehe, J.; Thiele, J.; Walter, A.; Hashemifarzad, A.; Zum Hingst, J.; Haaren, C. von (2020): Nothing to regret: Reconciling renewable energies with human wellbeing and nature in the German Energy Transition. In: International Journal of Energy Research 45 (1), S. 745–758. DOI: 10.1002/er.5870.
A high landscape aesthetic quality (LAQ) arguably is an important ecosystem service that positively affects humans’ health and well-being. It is strongly appreciated by citizens and provides the backdrop and precondition for many outdoor activities. The objective of this paper is to map and assess the LAQ of landscapes across Germany. We developed and tested a method for a spatially explicit national assessment of LAQ. The method uses landscape diversity, naturalness and uniqueness as established indicators for landscape attractiveness, and applies several landscape metrics as proxies to spatially evaluate and map each of them. The results demonstrate that the LAQ varies substantially across Germany. Areas of high LAQ are located in the German high and many low mountain ranges, in riverine landscapes, and at the German coast and islands, whereas particularly low LAQ scores are found in urban agglomerations and intensively used open agrarian landscapes. The proportional distribution of values shows that most area is covered with mediocre scores, and that areas of extremely high or low scores are rare. The results respond to the EU biodiversity strategy’s request to member states to map and assess ecosystem services, and can usefully inform national and sub-national policy-, plan-, and decision-making.
Es ist höchste Zeit, daß die Diskussion um die künftige Energieversorgung wieder an Sachlichkeit gewinnt. Das Thema ist so wichtig für unsere Zukunft und so existentiell für die gesamte Biosphäre, daß alsbald die Weichen für einen weitreichenden Ersatz fossiler Energieträger gestellt werden sollten. Immer wieder fahren sich die Argumente für und wider regenerativer Energieträger - neben der Kernenergie die einzige zur Zeit realisierbare Alternative zu fossilen Brennstoffen - an Wirtschaftlichkeitsberechnungen fest, die je nach Standpunkt ganz verschieden ausfallen. Hier setzt das Buch an, indem es harte Daten liefert über die Potentiale aber auch die Kosten der verschiedenen Energieträger: Solarenergie, Windenergie, Biogas, nachwachsende Rohstoffe, land- und forstwirtschaftliche Reststoffe, Müllverwertung sowie Erdwärme und Wasserkraft. Stets wird dabei Bezug auf das Energiesystem Deutschlands genommen. Offensichtlich hat nicht überall jede Form der Erzeugung von erneuerbaren Energieträgern das gleiche Potential, außerdem ist es ökologisch sinnvoll, sie dezentral dort zu nutzen, wo sie erzeugt werden. Das Buch zeigt daher für ganz Deutschland auf, wo konventionelle durch regenerative Energieträger wirtschaftlich ersetzt werden können. Für eine ernsthafte Auseinandersetzung mit der Energieproblematik sind solche differenzierten und objektiven Informationen unerläßlich. Nur durch sie kann man der in der Beliebigkeit der Argumente erstarrten politischen Diskussion neue Impulse verleihen.
Globally, the production of renewable energy is undergoing rapid growth. One of the most pressing issues is the appropriate allocation of renewable power plants, as the question of where to produce renewable electricity is highly controversial. Here we explore this issue through analysis of the efficient and equitable spatial allocation of wind turbines and photovoltaic power plants in Germany. We combine multiple methods, including legal analysis, economic and energy modelling, monetary valuation and numerical optimization. We find that minimum distances between renewable power plants and human settlements should be as small as is legally possible. Even small reductions in efficiency lead to large increases in equity. By considering electricity grid expansion costs, we find a more even allocation of power plants across the country than is the case when grid expansion costs are neglected.
Numerous strategies for sourcing renewable energy are available for development and expansion, yet for many countries the idea of eventually transitioning to a completely renewable energy supply using domestic resources currently appears unfeasible. As a large country with low population density, Canada may be expected to face fewer obstacles in this regard. However, not only are Canada's population centers clustered largely in its south, but energy policy is significantly devolved to the level of provinces, making a match between energy demand and renewable supply more challenging. In order to address this challenge, we collect data from a variety of sources and combine it with our own geographical analysis to develop a scenario of renewable portfolios at the provincial level. We explicitly estimate the optimal sites, based on straightforward criteria, for development of each resource. In order to keep the analysis transparent, we focus on physical feasibility rather than economic details and, by lumping together all energy demand, we assume substitutability between electrically-provided and fuel-based energy delivery. Our assessments include wind, solar, hydro, tidal, wave, and geothermal energy, with a limited discussion of bioenergy. For comparison, we also break down current energy demand in each province according to categories intended to be meaningful to households. We find that overall with current technology Canada could more than provide for its energy needs using renewables, two-thirds of which would come from onshore and offshore wind, with much of the remainder coming from hydro. However, we find large differences across provinces in both the mix and magnitude of renewable potential. We find each province individually to be easily capable of renewable energy self-sufficiency at current levels of demand, with the exception of Ontario and Alberta. We believe this is the first combined, geographically-resolved inventory of renewable energy sources in Canada.
Kurzgutachten Photovoltaik zum Workshop I -Schwerpunkt Technologieentwicklung bis 2050 für das Projekt "Natur verträgliche Energieversorgung aus 100 % erneuerbaren Energien
  • R Brendel
  • R Niepelt
  • A Walter
  • J Wiehe
Brendel R., Niepelt R. (2018): Kurzgutachten Photovoltaik zum Workshop I -Schwerpunkt Technologieentwicklung bis 2050 für das Projekt "Natur verträgliche Energieversorgung aus 100 % erneuerbaren Energien 2050". In: Walter A., Wiehe J. et al. (Hrsg.): Naturverträgliche Energieversorgung aus 100 % erneuerbaren Energien 2050. Anhang zum BfNSkript 501: 82 -110.
  • E Brunotte
  • E Dister
Brunotte E., Dister E. et al. (2009): Flussauen in Deutschland. Erfassung und Bewertung des Auenzustandes. Naturschutz und Biologische Vielfalt 87: 141 S.
Nature conservation as a driver in wind energy scenarios
  • P Gauglitz
  • S Schicketanz
  • C Pape
Gauglitz P., Schicketanz S., Pape C. (2019): Nature conservation as a driver in wind energy scenarios. Energy, Sustainability and Society 9(1): 437. DOI: 10.1186/s1370501902330
Spatial analysis of renewable energy potential and use in Turkey
  • G Güngördemirci
GüngörDemirci G. (2015): Spatial analysis of renewable energy potential and use in Turkey. Journal of Renewable and Sustainable Energy 7(1): 13 126. DOI: 10.1063/1.4907921
Nature's dangerous decline "unprecedented
IPBES/Intergovernmental SciencePolicy Platform on Biodiversity and Ecosystem Services (2019): Nature's dangerous decline "unprecedented". Media Release. (aufgerufen am 19.1.2021).
Analysis and comparison of optimization algorithms and placing principles for the wind farm layout optimization
  • T Meyer
Meyer T. (2018): Analysis and comparison of optimization algorithms and placing principles for the wind farm layout optimization. Masterarbeit. Hochschule Flensburg: 134 S.
  • U Riedl
  • B Stemmer
Riedl U., Stemmer B. et al. (2020): Szenarien für den Ausbau der erneuerbaren Energien aus Naturschutzsicht. BfNSkripten 570: 283 S.
Effects of turbine technology and land use on wind power resource potential
  • E Rinne
  • H Holttinen
Rinne E., Holttinen H. et al. (2018): Effects of turbine technology and land use on wind power resource potential. Nature Energy 3(6): 494 -500. DOI: 10.1038/s4156001801379
Abschlussbericht des gleichnamigen F + EVorhabens (FKZ 3512 85 0300 unter Integration von Zusatzauswertungen, FKZ 3515 85 0900)
  • G Rosenthal
  • A Mengel
Rosenthal G., Mengel A. et al. (2015): Umsetzung des 2 %Ziels für Wildnis gebiete aus der Nationalen Biodiversitätsstrategie. Abschlussbericht des gleichnamigen F + EVorhabens (FKZ 3512 85 0300 unter Integration von Zusatzauswertungen, FKZ 3515 85 0900). BfNSkripten 422: 1 207 S.
Speicherbedarf im Verkehrs und Chemie sektor
  • M Sterner
  • F Eckert
Sterner M., Eckert F. et al. (2017): Speicherbedarf im Verkehrs und Chemie sektor. In: Sterner M., Stadler I. (Hrsg.): Energiespeicher -Bedarf, Tech nologien, Integration. 2. Aufl. Springer Vieweg. Berlin: 169 -192.
  • A Walter
  • J Wiehe
Walter A., Wiehe J. et al. (2018): Naturverträgliche Energieversorgung aus 100 % erneuerbaren Energien 2050. BfNSkripten 501: 160 S.