Technical ReportPDF Available

DETECTION OF GRAPHENE IN COVID19 VACCINES

Authors:

Abstract

We present here our research on the presence of graphene in covid vaccines. We have carried out a random screening of graphene-like nanoparticles visible at the optical microscopy in seven random samples of vials from four different trademarks, coupling images with their spectral signatures of RAMAN vibration. By this technique, called micro-RAMAN, we have been able to determine the presence of graphene in some of these samples, after screening more than 110 objects selected for their graphene-like appearance under optical microscopy. Out of them, a group of 28 objects have been selected, due to the compatibility of both images and spectra with the presence of graphene derivatives, based on the correspondence of these signals with those obtained from standards and scientific literature. The identification of graphene oxide structures can be regarded as conclusive in 8 of them, due to the high spectral correlation with the standard. In the remaining 20 objects, images coupled with Raman signals show a very high level of compatibility with undetermined graphene structures, however different than the standard used here. This research remains open and is made available to scientific community for discussion. We make a call for independent researchers, with no conflict of interest or coaction from any institution to make wider counter-analysis of these products to achieve a more detailed knowledge of the composition and potential health risk of these experimental drugs, reminding that graphene materials have a potential toxicity on human beings and its presence has not been declared in any emergency use authorization. We leave a link to download this report at the end of this video.
0
DETECTION OF GRAPHENE IN COVID19 VACCINES
BY MICRO-RAMAN SPECTROSCOPY
*
TECHNICAL REPORT
Almeria, Spain, November 2, 2021
Prof. Dr. Pablo Campra Madrid
ASSOCIATE UNIVERSITY PROFESSOR
PhD in Chemical Sciences
Degree in Biological Sciences
Puede verificar la autenticidad, validez e integridad de este documento en la dirección:
https://verificarfirma.ual.es/verificarfirma/code/+vLJuznAs3HyEXzIEiEZyg==
Firmado Por Pablo Campra Madrid Fecha 07/11/2021
ID. FIRMA afirma.ual.es +vLJuznAs3HyEXzIEiEZyg== PÁGINA 1/75
+vLJuznAs3HyEXzIEiEZyg==
1
SUMMARY
We present here our research on the presence of graphene in covid vaccines. We have carried
out a random screening of graphene-like nanoparticles visible at the optical microscopy in
seven random samples of vials from four different trademarks, coupling images with their
spectral signatures of RAMAN vibration.
By this technique, called micro-RAMAN, we have been able to determine the presence of
graphene in these samples, after screening more than 110 objects selected for their graphene-
like appearance under optical microscopy. Out of them, a group of 28 objects have been
selected, due to the compatibility of both images and spectra with the presence of graphene
derivatives, based on the correspondence of these signals with those obtained from standards
and scientific literature. The identification of graphene oxide structures can be regarded as
conclusive in 8 of them, due to the high spectral correlation with the standard. In the
remaining 20 objects, images coupled with Raman signals show a very high level of
compatibility with undetermined graphene structures, however different than the standard
used here.
This research remains open and is made available to scientific community for discussion. We
make a call for independent researchers, with no conflict of interest or coaction from any
institution to make wider counter-analysis of these products to achieve a more detailed
knowledge of the composition and potential health risk of these experimental drugs, reminding
that graphene materials have a potential toxicity on human beings and its presence has not
been declared in any emergency use authorization.
Puede verificar la autenticidad, validez e integridad de este documento en la dirección:
https://verificarfirma.ual.es/verificarfirma/code/+vLJuznAs3HyEXzIEiEZyg==
Firmado Por Pablo Campra Madrid Fecha 07/11/2021
ID. FIRMA afirma.ual.es +vLJuznAs3HyEXzIEiEZyg== PÁGINA 2/75
+vLJuznAs3HyEXzIEiEZyg==
2
DISCLAIMER
This research has been carried out exclusively by Dr. Pablo Campra, without any type
of remuneration by any private or public entity, nor involvement or conformity with its
results and conclusions by the institution where he is affiliated.
The characterization of the related objects corresponds exclusively to the samples
analyzed. It is not possible without significant sampling to know whether these results
are generalizable to other samples of similar trademarks.
Dr. Pablo Campra is only responsible for the statements written in this electronically
signed file, and is not responsible for the opinions or conclusions that may be drawn
from its dissemination in media and social networks and not expressed in this
document, whose original version, authenticated and signed electronically, can be
consulted at the following Researchgate platform:
https://www.researchgate.net/publication/355684360_Deteccion_de_grafeno_en_va
cunas_COVID19_por_espectroscopia_Micro-RAMAN
Puede verificar la autenticidad, validez e integridad de este documento en la dirección:
https://verificarfirma.ual.es/verificarfirma/code/+vLJuznAs3HyEXzIEiEZyg==
Firmado Por Pablo Campra Madrid Fecha 07/11/2021
ID. FIRMA afirma.ual.es +vLJuznAs3HyEXzIEiEZyg== PÁGINA 3/75
+vLJuznAs3HyEXzIEiEZyg==
3
1. ANALYTICAL METHODOLOGY
1.1. Fundamentals of the micro-Raman technique
Due to the characteristics of the sample and to the dispersion of objects with a
graphene appearance of micrometric size in a complex matrix of indeterminate
composition, the direct application of spectroscopic methods does not allow
characterization of the nanoparticles studied here without a previous microscopic
localization or fractionation from the original sample. Therefore, microscopy coupled
to RAMAN spectroscopy (micro- RAMAN) was selected as an effective technique for an
exhaustive screening of micrometric objects visible under the optical microscope.
RAMAN infrared spectroscopy is a fast, non-destructive technique that allows the
verification of the structure of this material by identifying vibrational modes and
phonons generated after excitation with monochromatic laser, generating inelastic
dispersion that manifests itself in peaks of infrared emission that are a characteristic
signature of the reticular structure of graphene and derivatives. Coupled optical
microscopy allows the excitation laser to be focused on specific objects and points
located on objects, to reinforce the degree of confidence in identifying the nature of
the material, and to obtain complementary information on thickness, defects, thermal
conductivity and edge geometry of graphene nanocrystalline structures.
RAMAN vibrational modes of common functional groups
O-P-O 813 cm-1
C-C 800 (600-1300) cm-1
C-O-C 800-970 cm-1 Raman average
C-(NO2) 1340-1380 cm-1 strong Raman; 1530-1590 cm-1 (asymmetrical) Medium Raman
C=C vibrations in aromatic rings (e.g. graphene, graphite)
1580-1600 cm-1 : Strong Raman signal
1450, 1500 cm-1 : Medium Raman signal
-CH2- 1465 cm-1 in-plane bending H-C-H (scissoring)
C=N 1610-1680 cm-1
C=0 carbonyl 1640, 1680-1820 cm-1
C-H 3000 cm-1
O-H 3100-3650 cm-1
Puede verificar la autenticidad, validez e integridad de este documento en la dirección:
https://verificarfirma.ual.es/verificarfirma/code/+vLJuznAs3HyEXzIEiEZyg==
Firmado Por Pablo Campra Madrid Fecha 07/11/2021
ID. FIRMA afirma.ual.es +vLJuznAs3HyEXzIEiEZyg== PÁGINA 4/75
+vLJuznAs3HyEXzIEiEZyg==
4
1.2. Equipment used for micro-Raman spectroscopy
RAMAN LASER SPECTROMETER JASCO NRS-5100
Confocal Raman MICROSCOPE with spectrograph, includes:
-variety of magnification and working distances from x5 to x100
-up to 8 lasers ranging from UV to NIR
-SRI (spatial resolution image) to simultaneously view the sample image and the laser
point.
-DSF (Dual Spatial Filtration) that optimizes the confocal focus of the image produced
by the objective lens to reduce aberration and improve spatial resolution and reduce
the effects of matrix fluorescence.
The spectra were analyzed with SPECTRA MANAGER software, version 2. JASCO
Corporation.
Previously, the equipment was calibrated with a silicon standard at 520 cm-1.
RAMAN spectroscopy parameters applied for screening
Data array type Linear data array
Horizontal axis Raman Shift [cm-1]
Vertical axis Int.
Start 1200 cm-1
End 1800 cm-1
Data interval 1 cm-1
Data points 601
[Measurement Information]
Model Name NRS-5100
Exposure 30 sec
Accumulation 3
Center wavenumber 1470.59 cm-1
Puede verificar la autenticidad, validez e integridad de este documento en la dirección:
https://verificarfirma.ual.es/verificarfirma/code/+vLJuznAs3HyEXzIEiEZyg==
Firmado Por Pablo Campra Madrid Fecha 07/11/2021
ID. FIRMA afirma.ual.es +vLJuznAs3HyEXzIEiEZyg== PÁGINA 5/75
+vLJuznAs3HyEXzIEiEZyg==
5
Z position 27041.5 µm
Binning Upper 143
Binning Lower 202
Valid Channel 1 1024
CCD DV420_OE
Laser wavelength 532.09 nm
Monochromator Single
Grating 1800 l/mm
Wear 100 x 1000 about
Aperture d-4000 um
Notch filter 532.0 nm
Resolution 3.69 cm-1, 0.96 cm-1/pixel
Objective lens MPLFLN 100 x
BS/DMBS 30/70
1/2 plate Not fitted
Polarization Not fitted
Laser power 4.0 mW
Attenuator Open
CCD temperature -60.0 ºC
Shift-3.00 cm-1
Puede verificar la autenticidad, validez e integridad de este documento en la dirección:
https://verificarfirma.ual.es/verificarfirma/code/+vLJuznAs3HyEXzIEiEZyg==
Firmado Por Pablo Campra Madrid Fecha 07/11/2021
ID. FIRMA afirma.ual.es +vLJuznAs3HyEXzIEiEZyg== PÁGINA 6/75
+vLJuznAs3HyEXzIEiEZyg==
6
1.3. Micro-Raman spectroscopy of graphite and graphene
1. NANOCRYSTALLINE STRUCTURE BANDS
-G-band (~1580-1600 cm-1): Indicates a permissible phonon vibration (elementary
vibration of the net) in the plane of the aromatic ring (sp2 hybridization), characteristic
of the crystalline structure of graphite and graphene. It presents a red shift (lower
frequency, in cm-1), as well as higher intensity with a higher number of layers. On the
contrary, the higher energy in doped graphene shows as a blue shift (higher frequency
in cm-1), along the 1580-1600 cm-1 range (Ferrari et al, 2007).
-2D band (~2690 cm) (or G'): Indicates stacking order. It depends on the number of
layers, it does not depend on the degree of defects, but its frequency is close to twice
that of peak D. Its position oscillates according to the type of doping. The presence of
single-layer graphene (SLG) has been associated with the presence of an isolated and
sharp 2D peak, increasing in width according to the number of layers (Ni et al., 2008).
- The ratio of I2D/IG is proportional to the number of layers of the graphite network.
-
In graphite G and 2D appear are sharper and narrower than in graphene.
Puede verificar la autenticidad, validez e integridad de este documento en la dirección:
https://verificarfirma.ual.es/verificarfirma/code/+vLJuznAs3HyEXzIEiEZyg==
Firmado Por Pablo Campra Madrid Fecha 07/11/2021
ID. FIRMA afirma.ual.es +vLJuznAs3HyEXzIEiEZyg== PÁGINA 7/75
+vLJuznAs3HyEXzIEiEZyg==
7
2. BANDS ACTIVATED BY ANOMALIES in the graphitic structure.
These bands are generated by elastic dispersion (of the same energy) of load
conveyors and by phonon confinement (Kohn's anomaly in phonon dispersion).
In graphene oxides (GO) the disorder comes from the insertion of hydroxyl (-OH) and
epoxide (-O-) groups.
-D band (~1340 cm-1). It shows the density of defects in the crystal network due to
functionalization, doping or structural anomalies generating holes or new sp3 (C-C)
centers. The intensity of the D-band decreases with the alignment of layers in the
graphitic structure.
-D' band (~1620 cm-1). It follows a double resonance behavior due to network defects.
Sometimes it merges with the G band due to blueshift of the latter.
-D+G band (~2940 cm-1)
PARAMETERS INTRODUCING FREQUENCY VARIABILITY (cm-1), INTENSITY AND SHAPE
OF THE RAMAN BANDS
These parameters have not been studied in detail in this report but should be
considered in the future for the assignment of bands to vibrational modes.
- Degree and type of disorder (doping, breaks, etc.), that cause wider width
of the G, D, and 2D peaks by decreasing the phonon lifetime (molecular
vibration)
- The G-band does not show differences in intensity due to disorder, but the
ratio (ID/ IG) does vary with D band changes.
- Compression and stretching of the network by doping. There may be
blueshifts (>cm) in all bands (up to 15 cm1 in G and 25 cm1 in 2D) and band
narrowing (up to 10 cm 1)
e.g. "back gates" by doping with oxides through deposition
- By sheet bending the 2D band also increases, with no change in G, but with
blueshifts between 4-12 cm1 can occur.
- Stacking level or number of layers
- Functionalization (introduction of functional groups) of the network
generates the appearance of new Raman peaks: 746 cm1 (CS stretching),
524, 1062, 1102, 1130 cm1 (skeletal vibrations, CCCC trans and gauche),
1294 (twisting), 1440, 1461 (CH deformation, scissoring), 2848 and 2884
cm1 (CH stretching).
- A the same object may show spectral variations depending on the angle of
incidence and the layers affected. The edges will show more disorder than
the inner crystalline structure (Ni et al, 2008)
- Blueshifts dependent on the substrate employed to grow graphene layers
(Chen et al, 2008)
- Variable intensity of the peaks in the same object according to the laser focus
point, due to structural variability with respect to the angle of incidence
related to the crystal network (Barros et al., 2005)
Puede verificar la autenticidad, validez e integridad de este documento en la dirección:
https://verificarfirma.ual.es/verificarfirma/code/+vLJuznAs3HyEXzIEiEZyg==
Firmado Por Pablo Campra Madrid Fecha 07/11/2021
ID. FIRMA afirma.ual.es +vLJuznAs3HyEXzIEiEZyg== PÁGINA 8/75
+vLJuznAs3HyEXzIEiEZyg==
8
1.4. LIST OF SAMPLES OF VIALS AND OBJECTS SCREENED BY MICRO-RAMAN (SEE ANNEXES 1
AND 2)
1.5. SAMPLE PROCESSING
1. Samples were obtained from sealed vials of COVID19 mRNA vaccines as outlined in
Annex 1. All vials were sealed at the time of processing, except MOD and JAN, which
had no aluminum seals.
2. Four different aliquots per vial of 10 µl each were extracted with 50 µl micro-
syringe, deposited on optical microscopy slides, and left to dry in aseptic laminar flow
chamber at room temperature. They were then stored in a closed slide case and kept
cold until micro-Raman analysis.
3. Previous extensive visual screening of drips was carried out under optical
microscope (OLIMPUS CX43) in search for objects compatible with graphitic structures
or graphene. Magnification from X100 to x600 were used.
Object selection criteria were:
1. Location in the remains of the droplet or in the outer area of dragging by
drying
2. Two types of grafene-like appearance: two-dimensional translucent objects
or dark carbon-like opaque bodies.
4. Obtain RAMAN spectra of the selected objects
5. Processing of the spectral data
The list and keys of the objects characterized in this report are set out in Annex 2.
Puede verificar la autenticidad, validez e integridad de este documento en la dirección:
https://verificarfirma.ual.es/verificarfirma/code/+vLJuznAs3HyEXzIEiEZyg==
Firmado Por Pablo Campra Madrid Fecha 07/11/2021
ID. FIRMA afirma.ual.es +vLJuznAs3HyEXzIEiEZyg== PÁGINA 9/75
+vLJuznAs3HyEXzIEiEZyg==
9
3. RESULTS AND DISCUSSION
(See images and spectra of the selected objects in Annex 3: RESULTS)
The micro-Raman technique applied here has proved to be very effective for the rapid
screening of a large number of microscopic objects in the detection of graphene micro-
structures dispersed in complex samples. Compared to macro-Raman spectroscopy of
whole aqueous dispersions, the combination with microscopy in micro-Raman has the
advantage of allowing the association of spectral fingerprints to nanoparticles visible
under the optical microscope. This technique allowed us to focus the prospection
towards specific objects with graphene-like appearance, reinforcing their spectroscopic
characterization with coupled images. In this work, the preliminary selection of objects
has focused on two typologies, translucent sheets and opaque carbonaceous objects,
due to their visual similarity with similar shapes observable in standards after
sonication or in graphene oxide dispersions (see Annex 3 Results). The difference
between both typologies is not due to their chemical composition, both derived from
graphite, but only to the degree of exfoliation of the starting graphitic material and the
number of superimposed layers, assuming a threshold of around 10 layers as a
reference limit to consider that a material graphite (3D) (Ramos-Fernandez, 2017).
Anyhow, it was out the scope of our work to further characterize these structures.
A total of 110 objects with graphene-like appearance were selected, mostly located at
the edge of the sample droplets after dehydration, inside or outside of the dragging
area by drying at room temperature of the original aqueous phase. Our of them,
another 28 objects in total were selected for their higher degree of spectral
compatibility with graphene materials reported in the literature, considering both
spectra and images. The images and RAMAN spectra of these objects are shown in the
Annex 3 of this report. It is of interest to note that the samples do not dry completely
at room temperature, always leaving a gelatinous residue, whose limit can be
observed in some of the photographs shown. The composition of this medium is
unknown for the moment as it was not the subject of the present study, as well as that
of other typologies of micrometric size objects that could be observed recurrently in
the samples at low magnification (40-600X). The Raman spectra of some of these
objects were obtained but are not shown in this study because they did not present
visual resemblance to graphene or graphite.
A limitation in obtaining defined spectral patterns with this technique has been the
intensity of the fluorescence emitted by many selected objects. In numerous
translucent sheets with a graphene appearance, it was not possible to obtain Raman
spectra free of fluorescence noise, so the technique did not allow to obtain specific
RAMAN signals with well-defined peaks in many of them. Therefore, in these objects
the presence of graphene structures can neither be affirmed nor ruled out. Another
limitation of the micro- RAMAN technique is the low quality of the optical image of the
equipment, which often prevents the detection of high-transparency graphene-like
sheets, which can, however, be observed in optical microscopes with proper condenser
Puede verificar la autenticidad, validez e integridad de este documento en la dirección:
https://verificarfirma.ual.es/verificarfirma/code/+vLJuznAs3HyEXzIEiEZyg==
Firmado Por Pablo Campra Madrid Fecha 07/11/2021
ID. FIRMA afirma.ual.es +vLJuznAs3HyEXzIEiEZyg== PÁGINA 10/75
+vLJuznAs3HyEXzIEiEZyg==
10
adjustment. For these objects an effective alternative for characterization would be to
use other complementary microscopy techniques coupled with spectroscopy, such as
XPS with good optics or the obtention of electron diffraction pattern of graphene by
electronic microscopy (TEM).
Considering these selection criteria, the 28 objects found with potential graphene
identity have been distributed in 2 groups, according to the degree of correlation with
the RAMAN spectrum of reduced graphene oxide pattern used (rGO, TMSIGMA
ALDRICH). GROUP 1 included 8 objects whose spectral patterns were similar to the
spectrum of the rGO pattern, and therefore the presence of graphene oxide (nº 1-8)
can be affirmed with certainty. This spectral correspondence can be considered
unequivocal and is characterized by 2 dominant peaks in the scanned range (between
1200-1800 cm-1), peaks called G (~1584 cm-1) and D (~1344 cm-1), characteristic of
graphene oxides. This characterization by spectral correspondence between the signals
of these nanoparticles and the rGO pattern is furt her reinforced by the
microscopic appearance of these objects, all of them with an opaque carbonaceous
appearance similar to that of the standard objects, as can be seen in the photographs in
the Results annex. Therefore, we can affirm with a high level of confidence that the
identification of graphene material in all the analyzed samples of Group 1 IS
CONCLUSIVE, and with high probability graphene oxide structures can be assigned to
these nanoparticles. These group 1 objects presented a micrometric size in ranges of
tens of microns (shown as a blue line in photographs of some of them).
In the second group of 20 objects (GROUP 2, 9-28), RAMAN signals compatible with
the presence of graphene or graphitic structures have been detected, showing peaks
of RAMAN vibrations around the G band (1585-1600 cm-1), compatible with the G
peak of the nanocrystalline structure of graphene or graphite. This vibrational mode is
generated by the allowed vibration of the phonon in the plane of the aromatic ring
(sp2). Its drifting towards higher frequencies in some objects, tending towards 1600 cm-
1 (blue shift) can be assigned to a wide variety of modifications referred extensively in
the literature, such as, for example, the number of graphene layers or doping with
functional groups or heavy metals others (Ferrari et al, 2007). Visually, this group
includes the two types of appearances observed in the standards: whether opaque
micrometric objects with a carbonaceous appearance (nº 9, 11, 16, 21, 22, 23, 24,
25, 26, 27 and 28) or translucent sheets with graphene-like appearance (nº 10,
12, 13, 14, 18, 19 and 20).
In the spectra of this group 2, the G peak maxima are accompanied by other dominant
peaks of non-determined assignment in this work. A subgroup (2.1.) can be made
from of objects whose spectra have the two 2 dominant peaks located in band ranges
that could be assigned to the two main vibrational modes of graphene oxide, G (range
1569-1599 cm-1) and D (range 1342-1376 cm-1) (objects no. 11, 14, 15, 16, 17, 20, 21,
22, 23, 24, 25 and 26). Considering both microscopic images and RAMAN signals
together, the assignation of the spectra of this group 2.1 to graphenic structures can
be done with a high level of confidence. However, although the structural
modifications of the network generating spectral signals different than the standard
Puede verificar la autenticidad, validez e integridad de este documento en la dirección:
https://verificarfirma.ual.es/verificarfirma/code/+vLJuznAs3HyEXzIEiEZyg==
Firmado Por Pablo Campra Madrid Fecha 07/11/2021
ID. FIRMA afirma.ual.es +vLJuznAs3HyEXzIEiEZyg== PÁGINA 11/75
+vLJuznAs3HyEXzIEiEZyg==
11
rGO used have yet to be determined.
The signals from a second subgroup (2.2) of objects of this Group 2 (nº 9, 10, 12, 13,
18, 19, 25, 27, 28) can be considered compatible with the presence of graphene
structures due to the presence of maxima in the G-band, although the use of more
detailed spectral analysis algorithms would be necessary, since no clear peaks that
could be assigned to the vibrational mode D, around 1344 cm-1 in the rGO standard,
were not clearly observed. However, the presence of peak D is not a sine qua non
condition for the assignment of graphene structures to spectra, and in consequence these
objects have been selected for this report as they are showing compatible vibrational
maxima in the vicinity of the G-band (range 1569-1600 cm-1). There is still an open
debate about the interpretation of this D-band and its variable frequency and shape
(Ferrari and Robertson, 2004). As outlined in the methodological introduction, the
intensity of the D peak, generally cited around 1355 cm-1, as well as the intensity ratio
with the G peak (ID / IG) is indicative of the degree of disorder in the graphene
network, introduced by different agents such as doping, introduction of very different
functional groups or breaks in the continuity of the network. In ordered graphitic
materials this peak D is absent. In some spectra of this subgroup 2.2., other peaks with
higher frequencies (blueshift) than the standard appear, whose assignment to
vibrational mode D is possible, although this assignment is yet to be determined by
processing with algorithms analysis which was beyond the scope of the present work.
Therefore, at present, for these spectra we can only state that the absence or drifting
(shift) of the D peak with respect to the location of the rGO pattern still requires a
structural interpretation according to the models available. According to the
literature, both the variations in the shift of the G and D peaks, as well as their variable
width and intensity, and the presence of other peaks seen in these spectra could be
due to very diverse modifications yet to be determined, including different degrees of
disorder, oxidation, doping, functionalization, and structural breaks. The study of
these modifications were beyond the scope of this report.
Complementary to the range 1200-1800 cm-1, when RAMAN spectroscopy was
extended up to 2800 cm-1 for some objects (nº 3, 8 and 11), a 2D peak of low intensity
and frequency amplitude was detected, being absent in other scanned objects (data
not shown). However, both in the rGO standard and some objects with G peak maxima,
the intensity of this peak was always been very low compared to the G and D peaks of
the spectra. This might be due to the fact that, in graphene oxides, the relative
intensity of the 2D peak (~2700 cm-1) with respect to the G and D peaks is greatly
reduced. Therefore, in this study we have dispensed generally with analyzing the 2D
peak for reasons of greater efficiency and use of limited resources required to scan as
many objects as possible within a limited amount of time. In future work, it would be
of interest to examine it for all objects, thus estimating the ratio of I2D/2G intensities in
those objects where it minimally manifests in this vibrational mode, which would allow
for estimates to be made about the number of layers of the structure.
Puede verificar la autenticidad, validez e integridad de este documento en la dirección:
https://verificarfirma.ual.es/verificarfirma/code/+vLJuznAs3HyEXzIEiEZyg==
Firmado Por Pablo Campra Madrid Fecha 07/11/2021
ID. FIRMA afirma.ual.es +vLJuznAs3HyEXzIEiEZyg== PÁGINA 12/75
+vLJuznAs3HyEXzIEiEZyg==
12
The objects shown in this study represent a minority portion of the total micrometric
objects visible at low magnification in light-field optical microscopy (100X). These
objects were scanned and are not shown in this study because their spectra where not
compatible with graphene structures as they lack a band that could be assigned to G
vibrational mode peak. It is of great interest to note that many of these objects show
RAMAN maxima in the 1439-1457 cm-1 band. Likewise, among the objects in group 2.2,
also a prominent peak is frequently found in this band, around 1450 cm-1, in
combination with peaks G and D (nº 11, 12, 14, 15, 16, 17, 20, 21, 23, 24, 25, 26 and
28). The assignment of this band around 1450 cm-1 is still pending, since it does not
correspond to specific peaks in graphene, but we consider it to be of great importance
for the knowledge of the composition of the samples due to the frequent appearance
of this vibrational mode. As a working hypothesis, this band is usually assigned to
organic methylene groups -CH2- by bending the pair of hydrogens- (scissoring).
However, it has also been referred to as a band of moderate intensity associated with
aromatic rings, and if so, it could also be associated with graphene (Ferrari and
Robertson, 2004). As stated, another possible assignment of this band would be that
of a superimposed vibrational mode of some compound other than graphene, more
likely, or even of the hydrogel medium remaining after drying, as in all samples there
is always a viscous residue remaining after drying at room temperature. This residue
could in many cases be manifesting RAMAN vibrations overlapping with the objects that
remain embedded in it, but not in those that appear outside the gel at the limits of the
drying drag zone. In this sense, it is possible that this vibrational mode of the medium
appears overlapped with the G and D peaks of graphene in the spectra of subgroup
2.1. It is beyond the scope of this work to characterize this medium, as well as all the
components of the sample. However, there are some substances capable of forming
this hydrogel matrix whose RAMAN signals show prominent vibrational modes around
this band, such as polyvinyl alcohol (PVA), methylacrylamide, or the polymer PQT-12
(Mik Andersen, https://corona2inspect.blogspot.com/ pers. com). It is also a fact that
some of these substances have been combined with graphene in experimental
biomedicine designs that can be found in the scientific literature, for example artificial
synapses for PQT-12 (Chen and Huang, 2020), gelatins for neuronal regeneration
combining methylacrylamide with graphene (Zhu et al, 2016) or PVA/GO electrospun
fibers (Tan et al, 2016). Now, all these hypotheses about the assignment of this peak
in the vicinity of 1450 cm-1 remain open.
In conclusion, out of a total of 110 scanned objects, unambiguous signals for the
presence of graphene oxide have been found in 8 objects, and signals compatible
with the presence of graphitic or graphene structures in another 20 objects. The rest
of the objects scanned here, out of 110 nanoparticles with graphene-like appearance
have not shown signals compatible with graphene, with spectra at times dominated by
excess noise caused by excessive fluorescence intensity, so we cannot neither assign
nor rule out the presence of graphene structures in them.
As a continuation of this line of work, and although our micro-RAMAN analysis has
Puede verificar la autenticidad, validez e integridad de este documento en la dirección:
https://verificarfirma.ual.es/verificarfirma/code/+vLJuznAs3HyEXzIEiEZyg==
Firmado Por Pablo Campra Madrid Fecha 07/11/2021
ID. FIRMA afirma.ual.es +vLJuznAs3HyEXzIEiEZyg== PÁGINA 13/75
+vLJuznAs3HyEXzIEiEZyg==
13
shown conclusive signs of the presence of objects with graphene structure, to
consolidate the certainty of identification and to deepen the structural
characterization, it would be convenient to carry out complementary analyses using
coupled microscopy and spectroscopy techniques such as XPS spectroscopy, or TEM
electron diffraction.
For the present investigation, most of the samples have been obtained from sealed
vials. Also, during the extraction of the samples and their transfer to slides for Raman
microscopy, we worked under aseptic conditions under laminar flow chamber.
However, the possibility of sample contamination processes during manufacturing,
distribution, and processing, as well as the general applicability of these findings to
comparable samples, need to be assessed by routine and more extensive monitoring
of similar batches of these products.
Although the results of this sampling are conclusive with regard to the presence of
graphenic structures in some samples analyzed, this research is considered open for
continuation and is made available to the scientific community for replication and
optimization, considering it necessary to continue with a more detailed and exhaustive
spectral study, based on a statistically significant sampling of similar vials, and the
application of complementary techniques to confirm, refute, qualify or generalize the
conclusions of this report. The samples analyzed are duly guarded and available for
future scientific collaboration.
Puede verificar la autenticidad, validez e integridad de este documento en la dirección:
https://verificarfirma.ual.es/verificarfirma/code/+vLJuznAs3HyEXzIEiEZyg==
Firmado Por Pablo Campra Madrid Fecha 07/11/2021
ID. FIRMA afirma.ual.es +vLJuznAs3HyEXzIEiEZyg== PÁGINA 14/75
+vLJuznAs3HyEXzIEiEZyg==
14
CONCLUSIONS
A random sampling of COVID19 vaccine vials has been performed using a coupled
micro-RAMAN technique to characterize graphene-like microscopic objects using
spectroscopic fingerprints characteristic of the molecular structure.
The micro-RAMAN technique allows to reinforce the level of confidence in the
identification of the material by coupling imaging and spectral analysis as observational
evidence to be considered together.
Objects have been detected whose RAMAN signals by similarity with the standard
unequivocally correspond to GRAPHENE OXIDE.
Another group of objects present variable spectral signals compatible with graphene
derivatives, due to the presence of a majority of specific RAMAN signals (G-band) that
can be assigned to the aromatic structure of this material, in conjunction with its
visible appearance.
This research remains open for continuation, contrasting and replication. Further
analyses based on significant sampling, using the described technique or others which
are complementary would allow us to assess with adequate statistical significance the
level of presence of graphene materials in these drugs, as well as their detailed chemical
and structural characterization.
Puede verificar la autenticidad, validez e integridad de este documento en la dirección:
https://verificarfirma.ual.es/verificarfirma/code/+vLJuznAs3HyEXzIEiEZyg==
Firmado Por Pablo Campra Madrid Fecha 07/11/2021
ID. FIRMA afirma.ual.es +vLJuznAs3HyEXzIEiEZyg== PÁGINA 15/75
+vLJuznAs3HyEXzIEiEZyg==
15
REFERENCES
Alimohammadian, M., Sohrabi, B. Observation of magnetic domains in graphene
magnetized by controlling temperature, strain and magnetic field. Sci Rep 10, 21325
(2020).
Bano, I. Hussain, A.M. EL-Naggar, A.A. Albassam. Exploring the fluorescence properties
of reduced graphene oxide with tunable device performance. Diamond and Related
Materials, Volume 94, Pages 59-64,2019.
Barros E. B., et al, Raman spectroscopy of graphitic foams. PHYSICAL REVIEW B 71, 165422.
2005.
Biroju, Ravi, Narayanan, Tharangattu, Vineesh, Thazhe Veettil, New advances in 2D
electrochemistryCatalysis and Sensing, 2018.
Bhuyan, Sajibul Alam, Nizam Uddin, Maksudul Islam, Ferdaushi Alam Bipasha, Sayed
Shafayat Hossain. Synthesis of graphene. Int Nano Lett (2016) 6:6583
Jalil Charmi, Hamed Nosrati, Jafar Mostafavi Amjad, Ramin Mohammadkhani, Hosein
Danafar. Polyethylene glycol (PEG) decorated graphene oxide nanosheets for controlled
release curcumin delivery. VOLUME 5, ISSUE 4, E01466, APRIL 01, 2019
Childres, Luis A. Jaureguib,, Wonjun Parkb, Helin Caoa, and Yong P. Chena et al RAMAN
SPECTROSCOPY OF GRAPHENE AND RELATED MATERIALS. [www.physics.purdue.edu].
Last Accessed 30/10/21.
Choucair, Mohammad, Thordarson, Pall, Stride, John, Gram-scale production of graphene
based on solvothermal synthesis and sonication. Nature nanotechnology, 2009.
Chung, Hoon & Zelenay, Piotr. (2015). Chung and Zelenay, Chem Commun 2015 (on-
line version). A Simple Synthesis of Nitrogen-Doped Carbon Micro- and Nanotubes.
Colom, J. Cañavate, M.J. Lis, G. Sanjuan, and I. Gil. Structural analysis of Graphene
Oxides (GO) and Reduced Graphene Oxides (rGO). 2020
Durge, Rakhee & Kshirsagar, R.V. & Tambe, Pankaj. (2014). Effect of Sonication Energy
on the Yield of Graphene Nanosheets by Liquid-phase Exfoliation of Graphite. Procedia
Engineering. 97. 10.1016/j.proeng.2014.12.429.
Fakhrullin R., Läysän Nigamatzyanova, Gölnur Fakhrullina, Dark-field/hyperspectral
microscopy for detecting nanoscale particles in environmental nanotoxicology research.
Science of The Total Environment. Volume 772,2021.
Fan, Qitang, Martin-Jimenez, Daniel, Ebeling, Daniel, Krug, Claudio K., Brechmann, Lea,
Kohlmeyer, Corinna et al. Nanoribbons with Nonalternant Topology from Fusion of
Polyazulene: Carbon Allotropes beyond Graphene. Journal of the American Chemical
Society. 2019
Ferrari A.C. / Raman spectroscopy of graphene and graphite: Disorder, electron
phonon coupling, doping and nonadiabatic effects. Solid State Communications 143
(2007)
Puede verificar la autenticidad, validez e integridad de este documento en la dirección:
https://verificarfirma.ual.es/verificarfirma/code/+vLJuznAs3HyEXzIEiEZyg==
Firmado Por Pablo Campra Madrid Fecha 07/11/2021
ID. FIRMA afirma.ual.es +vLJuznAs3HyEXzIEiEZyg== PÁGINA 16/75
+vLJuznAs3HyEXzIEiEZyg==
16
Ferrari AC and J. Robertson Interpretation of Raman spectra of disordered and
amorphous carbon. Phys. Rev. B
61
, 2000
Ferrari Andrea Carlo and Robertson John. Raman spectroscopy of amorphous,
nanostructured, diamondlike carbon, and nanodiamond. Phil. Trans. R. Soc. A.3622477
2512. 2004
Fraga, Tiago José Marques, da Motta Sobrinho, Maurício Alves, Carvalho, Marilda
Nascimento, Ghislandi, Marcos Gomes. State of the art: synthesis and characterization
of functionalized graphene nanomaterials. Nano Express. 2020. IOP Publishing.
Gao, A.; Chen, S.; Zhao, S.; Zhang, G.; Cui, J.; Yan, Y. (2020). The interaction between N,
N- dimethylacrylamide and pristine graphene and its role in fabricating a strong
nanocomposite hydrogel. Journal of Materials Science, 55(18).
Gupta A., Gugang Chena, P. Joshi, Tadigadapa S., and P.C. Eklund. Raman Scattering from
High Frequency Phonons in Supported n-Graphene Layer Films.
https://arxiv.org/ftp/cond- mat/papers/0606/0606593.pdf (last accessed 31/10/21)
Gusev A, Zakharova O, Muratov DS, Vorobeva NS, Sarker M, Rybkin I, Bratashov D,
Kolesnikov E, Lapanje A, Kuznetsov DV, Sinitskii A. Medium-Dependent Antibacterial
Properties and Bacterial Filtration Ability of Reduced Graphene Oxide. Nanomaterials
(Basel). 2019 Oct 13;9(10):1454. doi: 10.3390/nano9101454. PMID: 31614934; PMCID:
PMC6835404.
Hack R, Cláudia Hack, Gumz Correia, Ricardo Antônio de Simone Zanon, Sérgio Henrique
Pezzin Matéria (Rio J.) 23 (1) Characterization of graphene nanosheets obtained by a
modified Hummer's method. 2018.
Hu, X., Dandan Lia and Li Mu. Biotransformation of graphene oxide nanosheets in blood
plasma affects their interactions with cells. Environ. Sci.: Nano, 2017,4, 1569-1578.
Alison J. Hobro, Mansour Rouhi, Ewan W. Blanch* and Graeme L. Conn. Raman and
Raman optical activity (ROA) analysis of RNA structural motifs in Domain I of the EMCV
IRES. Nucleic Acids Research, 2007, Vol. 35, No. 4 11691177
Long-Xian Gai, Wei-Qing Wang, Xia Wu, Xiu-Jun Su, Fu-Cun Yang, NIR absorbing reduced
graphene oxide for photothermal radiotherapy for treatment of esophageal cancer,
Journal of Photochemistry and Photobiology B: Biology, Volume 194, 2019, Pages 188-
193.
Khalilia D. Graphene oxide: a promising carbocatalyst for the regioselective
thiocyanation of aromatic amines, phenols, anisols and enolizable ketones by hydrogen
peroxide/KSCN in water. New J. Chem., 2016,40, 2547-2553
Khare, R., Dhanraj B. Shinde, Sanjeewani Bansode, Mahendra A. More, Mainak
Majumder, Vijayamohanan K. Pillai, and Dattatray. Graphene nanoribbons as
prospective field emitter. J. Appl. Phys. Lett. 106, 023111 (2015). 2015
Puede verificar la autenticidad, validez e integridad de este documento en la dirección:
https://verificarfirma.ual.es/verificarfirma/code/+vLJuznAs3HyEXzIEiEZyg==
Firmado Por Pablo Campra Madrid Fecha 07/11/2021
ID. FIRMA afirma.ual.es +vLJuznAs3HyEXzIEiEZyg== PÁGINA 17/75
+vLJuznAs3HyEXzIEiEZyg==
17
Kim S, Lee SM, Yoon JP, Lee N, Chung J, Chung WJ, Shin DS. Robust Magnetized Graphene
Oxide Platform for In Situ Peptide Synthesis and FRET-Based Protease Detection. Sensors
(Basel). Sep 15;20(18):5275. 2020
Jaemyung Kim, Franklin Kim, Jiaxing Huang, Seeing graphene-based sheets, Materials
Today, Volume 13, Issue 3, Pages 28-38. 2010
Kovaříček et al. Extended characterization methods for covalent functionalization of
graphene on copper, Carbon, Volume 118 (2017)
Jia-Hui Liu et al. Biocompatibility of graphene oxide intravenously administrated in
mice effects of dose, size and exposure protocols. Toxicol. Res., 2015,4, 83-91.
Kozawa D, Miyauchi Y, Mouri S, Matsuda K. Exploring the Origin of Blue and Ultraviolet
Fluorescence in Graphene Oxide. J Phys Chem Lett. 2013 Jun 20;4(12):2035-40. 2013.
Liao Y, Zhou X, Fu Y, Xing D. Graphene Oxide as a Bifunctional Material toward Superior
RNA Protection and Extraction. ACS Appl Mater Interfaces. 2018 Sep 12;10(36):30227-
30234. 2018
Lu N, Huang Y, Li HB, Li Z, Yang J. First principles nuclear magnetic resonance signatures
of graphene oxide. J Chem Phys. 2010 Jul 21;133(3):034502. doi: 10.1063/1.3455715.
PMID: 20649332.
Manoratne C.H., S.R.D.Rosa, and I.R.M. Kottegoda. XRD-HTA, UV Visible, FTIR and SEM
Interpretation of Reduced Graphene Oxide Synthesized from High Purity Vein Graphite.
Material Science Research India Vol. 14(1), 19-30 (2017).
Marquina, J.;I Power, Ch.II. and González, J. III. Raman spectroscopy of graphene
monolayer and graphite: electron phonon coupling and non-adiabatic effects. Tumbaga
Magazine 2010 | 5 | 183-194
Martin-Gullon, I, Juana M. Pérez, Daniel Domene, Anibal J.A. Salgado-Casanova, Ljubisa
R. Radovic, New insights into oxygen surface coverage and the resulting two-component
structure of graphene oxide, Carbon, Volume 158, 2020, Pages 406-417
Meyer, J., Geim, A., Katsnelson, M. et al. The structure of suspended graphene sheets.
Nature 446, 6063 (2007).
Ni, Z., Wang Y, and Shen Z. Raman Spectroscopy and Imaging of Graphene, Nano Res
(2008) 1: 273 291
Palacio I, Koen Lauwaet, Luis Vázquez, Francisco Javier Palomares a, Héctor González-
Herrero, José Ignacio Martínez, Lucía Aballe, Michael Foerster, Mar García-Hernández
and José Ángel Martín-Gago. Ultra-thin NaCl films as protective layers for Graphene.
Nanoscale, 2019, 11, 16767-16772
Palmieri V, Perini G, De Spirito M, Papi M. Graphene oxide touches blood: in vivo
interactions of bio-coronated 2D materials. Nanoscale Horiz. 2019 Mar 1;4(2):273-290.
doi: 10.1039/c8nh00318a. Epub 2018 Oct 31. PMID: 32254085.
Puede verificar la autenticidad, validez e integridad de este documento en la dirección:
https://verificarfirma.ual.es/verificarfirma/code/+vLJuznAs3HyEXzIEiEZyg==
Firmado Por Pablo Campra Madrid Fecha 07/11/2021
ID. FIRMA afirma.ual.es +vLJuznAs3HyEXzIEiEZyg== PÁGINA 18/75
+vLJuznAs3HyEXzIEiEZyg==
18
Panchal V, Yang Y, Cheng G, Hu J, Kruskopf M, Liu CI, Rigosi AF, Melios C, Hight Walker AR,
Newell DB, Kazakova O, Elmquist RE. Confocal laser scanning microscopy for rapid
optical characterization of graphene. Commun Phys. 2018
Paredes JI, Villar-Rodil S, Martínez-Alonso A, Tascón JM. Graphene oxide dispersions in
organic solvents. Langmuir. 24(19):10560-4. 2008
Ramos Fernandez Gloria. Effect of the surface chemistry of graphene oxide in the
development of Applications. DOCTORAL THESIS. University of Alicante. 2017.
Sadezky, A. H. Muckenhuber, H. Grothe, R. Niessner, U. Pöschl, Raman
microspectroscopy of soot and related carbonaceous materials: Spectral analysis and
structural information, Carbon, Volume 43, Issue 8,2005, Pages 1731-1742
Sarkar, S.K., K.K. Raul, S.S. Pradhan, S. Basu, A. Nayak, Magnetic properties of graphite
oxide and reduced graphene oxide, Physica E: Low-dimensional Systems and
Nanostructures,Volume 64, 2014,Pages 78-82.
Smetana Jr.K.; Vacik, J.; Součková, D.; Krčová, Z.; Šulc, J. (1990). The influence of hydrogel
functional groups on cell behavior. Journal of biomedical materials research, 24(4), pp. 463-
470.
Stankovich S, Dmitriy A. Dikin, Richard D. Piner, Kevin A. Kohlhaas, Alfred Kleinhammes,
Yuanyuan Jia, Yue Wu, SonBinh T. Nguyen, Rodney S. Ruoff, Synthesis of graphene-
based nanosheets via chemical reduction of exfoliated graphite oxide, Carbon, Volume
45, Issue 7, 2007, Pages 1558-1565.
Thema F.T., M. J. Moloto, E. D. Dikio, N. N. Nyangiwe, L. Kotsedi, M. Maaza, M.
Khenfouch, "Synthesis and Characterization of Graphene Thin Films by Chemical Reduction
of Exfoliated and Intercalated Graphite Oxide", Journal of Chemistry, vol. 2013, Article ID
150536, 6 pages, 2013.
Uran S., A. Alhani, and C. Silva, Study of ultraviolet-visible light absorbance of exfoliated
graphite forms, AIP Advances 7, 035323 (2017)
Wang, J.W., Hon, M.H. Preparation and characterization of pH sensitive sugar mediated
(polyethylene glycol/chitosan) membrane. Journal of Materials Science: Materials in
Medicine 14, 10791088 (2003).
Yang, S.H., Lee, T., Seo, E., Ko, E.H., Choi, I.S. and Kim, B.-S. (2012), Interfacing Living Yeast
Cells with Graphene Oxide Nanosheets. Macromol. Biosci., 12: 61-66.
Ye, Y.; Hu, X. (2016). A pH-sensitive injectable nanoparticle composite hydrogel for
anticancer drug delivery. Journal of Nanomaterials, 2016.
Wei Zhu, Harris BT, Zhang LG. Gelatin methacrylamide hydrogel with graphene
nanoplatelets for neural cell-laden 3D bioprinting. Annu Int Conf IEEE Eng Med Biol Soc.
2016 Aug;2016:4185- 4188. doi: 10.1109/EMBC.2016.7591649. PMID: 28269205.
Puede verificar la autenticidad, validez e integridad de este documento en la dirección:
https://verificarfirma.ual.es/verificarfirma/code/+vLJuznAs3HyEXzIEiEZyg==
Firmado Por Pablo Campra Madrid Fecha 07/11/2021
ID. FIRMA afirma.ual.es +vLJuznAs3HyEXzIEiEZyg== PÁGINA 19/75
+vLJuznAs3HyEXzIEiEZyg==
ANNEX 1
COVID19 mRNA vaccines subject to micro-RAMAN analysis
19
PFIZER 1 (RD1). Batch EY3014. Sealed
PFIZER 2 (WBR). Batch FD8271. Sealed
PFIZER 3 (ROS). Batch F69428. Sealed
PFIZER 4 (ARM). Batch FE4721. Sealed
ASTRAZENECA (AZ MIT). Batch ABW0411. Sealed
MODERN (MOD). Batch 3002183. Not sealed
JANSSEN (JAN). Batch number Not available. Not
sealed
GRAPHENE STANDARD SAMPLES
Reduced graphene oxide (rGO) (TMSigma Aldrich. Ref 805424)
GRAPHENE OXIDE Suspension (TMThe Graphene Box)
Puede verificar la autenticidad, validez e integridad de este documento en la dirección:
https://verificarfirma.ual.es/verificarfirma/code/+vLJuznAs3HyEXzIEiEZyg==
Firmado Por Pablo Campra Madrid Fecha 07/11/2021
ID. FIRMA afirma.ual.es +vLJuznAs3HyEXzIEiEZyg== PÁGINA 20/75
+vLJuznAs3HyEXzIEiEZyg==
ANNEX 2
CHARACTERIZED OBJECTS COMPATIBLE WITH GRAPHENE STRUCTURES
20
GROUP 1
1 PFIZER 2 WBR UP GO2
2 PFIZER 3 Ros 2hy GO1
3 PFIZER 3 Ros 2hy GO1b
4 PFIZER 3 Ros 2hy b GO2
5 AZ MIT UP CARB1
6 AZ MIT UP CARB4
7 AZ MIT DOWN CARB2
8 MOD lump1
GROUP 2
9 PFIZER 2 WBR GO1
10 PFIZER 2 WBR GO6a
11 PFIZER 2 WBR 2 GO7
12 PFIZER 2 WBR UP GO1
13 PFIZER 2 WBR UP GO3b
14 PFIZER 2 WBR UP GO4
15 PFIZER 2 WBR DOWN GO2
16 PFIZER 2 WBR DOWN GO3
17 PFIZER 2 WBR DOWN GO5
18 PFIZER 3 ROS OBJ 1
19 PFIZER 3 ROS 2 OBJ 1
20 PFIZER 3 ROS 2 OBJ 2
21 PFIZER 4 Pdown lump1
22 PFIZER 4 Pdown lump2
23 PFIZER 4 Pdown lump3
24 ASTRAZENECA AZ MIT UP CARB5
25 ASTRAZENECA AZ MIT UP CARB6
26 JANSSEN JAN GO1
27 JANSSEN JAN GO3
28 JANSSEN JAN GO4
Puede verificar la autenticidad, validez e integridad de este documento en la dirección:
https://verificarfirma.ual.es/verificarfirma/code/+vLJuznAs3HyEXzIEiEZyg==
Firmado Por Pablo Campra Madrid Fecha 07/11/2021
ID. FIRMA afirma.ual.es +vLJuznAs3HyEXzIEiEZyg== PÁGINA 21/75
+vLJuznAs3HyEXzIEiEZyg==
ANNEX 3. RESULTS
21
Puede verificar la autenticidad, validez e integridad de este documento en la dirección:
https://verificarfirma.ual.es/verificarfirma/code/+vLJuznAs3HyEXzIEiEZyg==
Firmado Por Pablo Campra Madrid Fecha 07/11/2021
ID. FIRMA afirma.ual.es +vLJuznAs3HyEXzIEiEZyg== PÁGINA 22/75
+vLJuznAs3HyEXzIEiEZyg==
Detection of graphene in COVID19 vaccines
using micro-RAMAN spectroscopy
TECHNICAL REPORT
ANNEX 3. RESULTS
Almería, Spain November 2, 2021
Prof. Dr. Pablo Campra Madrid
ASSOCIATE UNIVERSITY PROFESSOR
PhD in Chemical Sciences
Degree in Biological Sciences
Puede verificar la autenticidad, validez e integridad de este documento en la dirección:
https://verificarfirma.ual.es/verificarfirma/code/+vLJuznAs3HyEXzIEiEZyg==
Firmado Por Pablo Campra Madrid Fecha 07/11/2021
ID. FIRMA afirma.ual.es +vLJuznAs3HyEXzIEiEZyg== PÁGINA 23/75
+vLJuznAs3HyEXzIEiEZyg==
VIALS ANALYZED by micro-RAMAN
COVID19 mRNA VACCINES
PFIZER 1 (RD1). Batch # EY3014. Sealed
PFIZER 2 (WBR). Batch # FD8271. sealed
PFIZER 3 (ROS). Batch # F69428. Sealed
PFIZER 4 (ARM). Batch # FE4721. Sealed
ASTRAZENECA (AZ MIT). Batch # ABW0411. Sealed
MODERNA (MOD). Batch # 3002183. Not sealed
JANSSEN (JAN). Batch # Not available. Not sealed.
GRAPHENE PATTERN SAMPLES
Reduced graphene oxide (rGO) (TMSigma Aldrich. Ref 805424)
GRAPHENE OXIDE Suspension (TMThe Graphene Box)
Puede verificar la autenticidad, validez e integridad de este documento en la dirección:
https://verificarfirma.ual.es/verificarfirma/code/+vLJuznAs3HyEXzIEiEZyg==
Firmado Por Pablo Campra Madrid Fecha 07/11/2021
ID. FIRMA afirma.ual.es +vLJuznAs3HyEXzIEiEZyg== PÁGINA 24/75
+vLJuznAs3HyEXzIEiEZyg==
small with respect to G and D.
RAMAN spectrum of the reduced GRAPHENE OXIDE
reference pattern (SIGMA ALDRICHTM)
For the rGO STANDARD the equipment shows
the presence of 3 characteristic peaks:
G-band at 1584 cm-1
D-Band at 1344 cm-1
2D-band at 2691 cm-1
In graphene oxide, the intensity of 2D is normally
Degree of disorder: ID/IG = 346/309 = 1.12
Stacking level: I2D/IG = 219/309 = 0.70
Previously, the equipment was calibrated with a
silicon standard at 520 cm-1 ID/IG=1.12
D
G
2D
Puede verificar la autenticidad, validez e integridad de este documento en la dirección:
https://verificarfirma.ual.es/verificarfirma/code/+vLJuznAs3HyEXzIEiEZyg==
Firmado Por Pablo Campra Madrid Fecha 07/11/2021
ID. FIRMA afirma.ual.es +vLJuznAs3HyEXzIEiEZyg== PÁGINA 25/75
+vLJuznAs3HyEXzIEiEZyg==
1.1. GROUP 1
OBJECTS WITH RAMAN SIGNAL SIMILAR
TO THE REDUCED GRAPHENE OXIDE
STANDARD
Puede verificar la autenticidad, validez e integridad de este documento en la dirección:
https://verificarfirma.ual.es/verificarfirma/code/+vLJuznAs3HyEXzIEiEZyg==
Firmado Por Pablo Campra Madrid Fecha 07/11/2021
ID. FIRMA afirma.ual.es +vLJuznAs3HyEXzIEiEZyg== PÁGINA 26/75
+vLJuznAs3HyEXzIEiEZyg==
ANALYZED OBJECTS
GROUP 1
1. PFIZER 2 WBR UP GO2
2. PFIZER 3 ROS 2hy GO1b
3. PFIZER 3 ROS 2hy b GO2
4. PFIZER 3 ROS2 HY GO1
5. AZ MIT UP CARB 1
6. AZ MIT UP CARB4
7. AZ MIT DOWN CARB2
8. MOD lump1
Puede verificar la autenticidad, validez e integridad de este documento en la dirección:
https://verificarfirma.ual.es/verificarfirma/code/+vLJuznAs3HyEXzIEiEZyg==
Firmado Por Pablo Campra Madrid Fecha 07/11/2021
ID. FIRMA afirma.ual.es +vLJuznAs3HyEXzIEiEZyg== PÁGINA 27/75
+vLJuznAs3HyEXzIEiEZyg==
1. PFIZER 2
WBR UP GO2
Puede verificar la autenticidad, validez e integridad de este documento en la dirección:
https://verificarfirma.ual.es/verificarfirma/code/+vLJuznAs3HyEXzIEiEZyg==
Firmado Por Pablo Campra Madrid Fecha 07/11/2021
ID. FIRMA afirma.ual.es +vLJuznAs3HyEXzIEiEZyg== PÁGINA 28/75
+vLJuznAs3HyEXzIEiEZyg==
1. PFIZER 2
WBR UP GO2
ID/IG = 1.18
Puede verificar la autenticidad, validez e integridad de este documento en la dirección:
https://verificarfirma.ual.es/verificarfirma/code/+vLJuznAs3HyEXzIEiEZyg==
Firmado Por Pablo Campra Madrid Fecha 07/11/2021
ID. FIRMA afirma.ual.es +vLJuznAs3HyEXzIEiEZyg== PÁGINA 29/75
+vLJuznAs3HyEXzIEiEZyg==
2. PFIZER 3
ROS 2 HY GO1
Puede verificar la autenticidad, validez e integridad de este documento en la dirección:
https://verificarfirma.ual.es/verificarfirma/code/+vLJuznAs3HyEXzIEiEZyg==
Firmado Por Pablo Campra Madrid Fecha 07/11/2021
ID. FIRMA afirma.ual.es +vLJuznAs3HyEXzIEiEZyg== PÁGINA 30/75
+vLJuznAs3HyEXzIEiEZyg==
2. PFIZER 3
ROS 2 HY GO1
Puede verificar la autenticidad, validez e integridad de este documento en la dirección:
https://verificarfirma.ual.es/verificarfirma/code/+vLJuznAs3HyEXzIEiEZyg==
Firmado Por Pablo Campra Madrid Fecha 07/11/2021
ID. FIRMA afirma.ual.es +vLJuznAs3HyEXzIEiEZyg== PÁGINA 31/75
+vLJuznAs3HyEXzIEiEZyg==
2. PFIZER 3
ROS 2 HY GO1
ID/IG = 1.22
Puede verificar la autenticidad, validez e integridad de este documento en la dirección:
https://verificarfirma.ual.es/verificarfirma/code/+vLJuznAs3HyEXzIEiEZyg==
Firmado Por Pablo Campra Madrid Fecha 07/11/2021
ID. FIRMA afirma.ual.es +vLJuznAs3HyEXzIEiEZyg== PÁGINA 32/75
+vLJuznAs3HyEXzIEiEZyg==
3. PFIZER 3
Ros 2hy GO1b
Puede verificar la autenticidad, validez e integridad de este documento en la dirección:
https://verificarfirma.ual.es/verificarfirma/code/+vLJuznAs3HyEXzIEiEZyg==
Firmado Por Pablo Campra Madrid Fecha 07/11/2021
ID. FIRMA afirma.ual.es +vLJuznAs3HyEXzIEiEZyg== PÁGINA 33/75
+vLJuznAs3HyEXzIEiEZyg==
3. PFIZER 3
Ros 2hy GO1b
Puede verificar la autenticidad, validez e integridad de este documento en la dirección:
https://verificarfirma.ual.es/verificarfirma/code/+vLJuznAs3HyEXzIEiEZyg==
Firmado Por Pablo Campra Madrid Fecha 07/11/2021
ID. FIRMA afirma.ual.es +vLJuznAs3HyEXzIEiEZyg== PÁGINA 34/75
+vLJuznAs3HyEXzIEiEZyg==
3. PFIZER 3 Ros
2hy GO1b
ID/IG = 1.22
Puede verificar la autenticidad, validez e integridad de este documento en la dirección:
https://verificarfirma.ual.es/verificarfirma/code/+vLJuznAs3HyEXzIEiEZyg==
Firmado Por Pablo Campra Madrid Fecha 07/11/2021
ID. FIRMA afirma.ual.es +vLJuznAs3HyEXzIEiEZyg== PÁGINA 35/75
+vLJuznAs3HyEXzIEiEZyg==
4. PFIZER 3
Ros 2hy b GO2
Puede verificar la autenticidad, validez e integridad de este documento en la dirección:
https://verificarfirma.ual.es/verificarfirma/code/+vLJuznAs3HyEXzIEiEZyg==
Firmado Por Pablo Campra Madrid Fecha 07/11/2021
ID. FIRMA afirma.ual.es +vLJuznAs3HyEXzIEiEZyg== PÁGINA 36/75
+vLJuznAs3HyEXzIEiEZyg==
4. PFIZER 3
Ros 2hy b GO2
Puede verificar la autenticidad, validez e integridad de este documento en la dirección:
https://verificarfirma.ual.es/verificarfirma/code/+vLJuznAs3HyEXzIEiEZyg==
Firmado Por Pablo Campra Madrid Fecha 07/11/2021
ID. FIRMA afirma.ual.es +vLJuznAs3HyEXzIEiEZyg== PÁGINA 37/75
+vLJuznAs3HyEXzIEiEZyg==
4. PFIZER 3
Ros 2hy b GO2
I
D
/I
G
=
1.03
Puede verificar la autenticidad, validez e integridad de este documento en la dirección:
https://verificarfirma.ual.es/verificarfirma/code/+vLJuznAs3HyEXzIEiEZyg==
Firmado Por Pablo Campra Madrid Fecha 07/11/2021
ID. FIRMA afirma.ual.es +vLJuznAs3HyEXzIEiEZyg== PÁGINA 38/75
+vLJuznAs3HyEXzIEiEZyg==
5. ASTRAZENECA
AZ MIT UP CARB1
Puede verificar la autenticidad, validez e integridad de este documento en la dirección:
https://verificarfirma.ual.es/verificarfirma/code/+vLJuznAs3HyEXzIEiEZyg==
Firmado Por Pablo Campra Madrid Fecha 07/11/2021
ID. FIRMA afirma.ual.es +vLJuznAs3HyEXzIEiEZyg== PÁGINA 39/75
+vLJuznAs3HyEXzIEiEZyg==
5.
ASTRAZENECA
AZ MIT UP CARB1
ID/IG = 1.07
Puede verificar la autenticidad, validez e integridad de este documento en la dirección:
https://verificarfirma.ual.es/verificarfirma/code/+vLJuznAs3HyEXzIEiEZyg==
Firmado Por Pablo Campra Madrid Fecha 07/11/2021
ID. FIRMA afirma.ual.es +vLJuznAs3HyEXzIEiEZyg== PÁGINA 40/75
+vLJuznAs3HyEXzIEiEZyg==
6.
ASTRAZENECA
AZ MIT UP CARB4
Puede verificar la autenticidad, validez e integridad de este documento en la dirección:
https://verificarfirma.ual.es/verificarfirma/code/+vLJuznAs3HyEXzIEiEZyg==
Firmado Por Pablo Campra Madrid Fecha 07/11/2021
ID. FIRMA afirma.ual.es +vLJuznAs3HyEXzIEiEZyg== PÁGINA 41/75
+vLJuznAs3HyEXzIEiEZyg==
6. ASTRAZENECA
AZ MIT UP CARB4
ID/IG = 1.14
Puede verificar la autenticidad, validez e integridad de este documento en la dirección:
https://verificarfirma.ual.es/verificarfirma/code/+vLJuznAs3HyEXzIEiEZyg==
Firmado Por Pablo Campra Madrid Fecha 07/11/2021
ID. FIRMA afirma.ual.es +vLJuznAs3HyEXzIEiEZyg== PÁGINA 42/75
+vLJuznAs3HyEXzIEiEZyg==
7. ASTRAZENECA
AZ MIT DOWN 2 CARB2
Puede verificar la autenticidad, validez e integridad de este documento en la dirección:
https://verificarfirma.ual.es/verificarfirma/code/+vLJuznAs3HyEXzIEiEZyg==
Firmado Por Pablo Campra Madrid Fecha 07/11/2021
ID. FIRMA afirma.ual.es +vLJuznAs3HyEXzIEiEZyg== PÁGINA 43/75
+vLJuznAs3HyEXzIEiEZyg==
7. ASTRAZENECA
AZ MIT DOWN 2 CARB2
ID/IG = 1.18
Puede verificar la autenticidad, validez e integridad de este documento en la dirección:
https://verificarfirma.ual.es/verificarfirma/code/+vLJuznAs3HyEXzIEiEZyg==
Firmado Por Pablo Campra Madrid Fecha 07/11/2021
ID. FIRMA afirma.ual.es +vLJuznAs3HyEXzIEiEZyg== PÁGINA 44/75
+vLJuznAs3HyEXzIEiEZyg==
8. MODERNA
MOD lump1
Puede verificar la autenticidad, validez e integridad de este documento en la dirección:
https://verificarfirma.ual.es/verificarfirma/code/+vLJuznAs3HyEXzIEiEZyg==
Firmado Por Pablo Campra Madrid Fecha 07/11/2021
ID. FIRMA afirma.ual.es +vLJuznAs3HyEXzIEiEZyg== PÁGINA 45/75
+vLJuznAs3HyEXzIEiEZyg==
8. MODERNA
MOD lump1
ID/IG = 1.11
Puede verificar la autenticidad, validez e integridad de este documento en la dirección:
https://verificarfirma.ual.es/verificarfirma/code/+vLJuznAs3HyEXzIEiEZyg==
Firmado Por Pablo Campra Madrid Fecha 07/11/2021
ID. FIRMA afirma.ual.es +vLJuznAs3HyEXzIEiEZyg== PÁGINA 46/75
+vLJuznAs3HyEXzIEiEZyg==
1.2. GROUP 2:
OBJECTS WITH SIGNALS COMPATIBLE
WITH GRAPHITE OR GRAPHENE
DERIVATIVES
Puede verificar la autenticidad, validez e integridad de este documento en la dirección:
https://verificarfirma.ual.es/verificarfirma/code/+vLJuznAs3HyEXzIEiEZyg==
Firmado Por Pablo Campra Madrid Fecha 07/11/2021
ID. FIRMA afirma.ual.es +vLJuznAs3HyEXzIEiEZyg== PÁGINA 47/75
+vLJuznAs3HyEXzIEiEZyg==
ANALYZED OBJECTS
GROUP 2
9 PFIZER 2 WBR GO1
10 PFIZER 2 WBR GO6a
11 PFIZER 2 WBR 2 GO7
12 PFIZER 2 WBR UP GO1
13 PFIZER 2 WBR UP GO3b
14 PFIZER 2 WBR UP GO4
15 PFIZER 2 WBR DOWN GO2
16 PFIZER 2 WBR DOWN GO3
17 PFIZER 2 WBR DOWN GO5
18 PFIZER 3 ROS OBJ 1
19 PFIZER 3 ROS 2 OBJ 1
20 PFIZER 3 ROS 2 OBJ 2
21 PFIZER 4 Pdown lump1
22 PFIZER 4 Pdown lump2
23 PFIZER 4 Pdown lump3
24 ASTRAZENECA AZ MIT UP CARB5
25 ASTRAZENECA AZ MIT UP CARB6
26 JANSSEN JAN GO1
27 JANSSEN JAN GO3
28 JANSSEN JAN GO4
Puede verificar la autenticidad, validez e integridad de este documento en la dirección:
https://verificarfirma.ual.es/verificarfirma/code/+vLJuznAs3HyEXzIEiEZyg==
Firmado Por Pablo Campra Madrid Fecha 07/11/2021
ID. FIRMA afirma.ual.es +vLJuznAs3HyEXzIEiEZyg== PÁGINA 48/75
+vLJuznAs3HyEXzIEiEZyg==
WB
1600 cm-1
9. PFIZER 2
WBR GO1
Puede verificar la autenticidad, validez e integridad de este documento en la dirección:
https://verificarfirma.ual.es/verificarfirma/code/+vLJuznAs3HyEXzIEiEZyg==
Firmado Por Pablo Campra Madrid Fecha 07/11/2021
ID. FIRMA afirma.ual.es +vLJuznAs3HyEXzIEiEZyg== PÁGINA 49/75
+vLJuznAs3HyEXzIEiEZyg==
28. PFIZER 2
WBR
WBR GO6a
Puede verificar la autenticidad, validez e integridad de este documento en la dirección:
https://verificarfirma.ual.es/verificarfirma/code/+vLJuznAs3HyEXzIEiEZyg==
Firmado Por Pablo Campra Madrid Fecha 07/11/2021
ID. FIRMA afirma.ual.es +vLJuznAs3HyEXzIEiEZyg== PÁGINA 50/75
+vLJuznAs3HyEXzIEiEZyg==
11. PFIZER 2
WBR2 GO7
Puede verificar la autenticidad, validez e integridad de este documento en la dirección:
https://verificarfirma.ual.es/verificarfirma/code/+vLJuznAs3HyEXzIEiEZyg==
Firmado Por Pablo Campra Madrid Fecha 07/11/2021
ID. FIRMA afirma.ual.es +vLJuznAs3HyEXzIEiEZyg== PÁGINA 51/75
+vLJuznAs3HyEXzIEiEZyg==
11. PFIZER 2
WBR GO 7
ID/IG = 0.48
Puede verificar la autenticidad, validez e integridad de este documento en la dirección:
https://verificarfirma.ual.es/verificarfirma/code/+vLJuznAs3HyEXzIEiEZyg==
Firmado Por Pablo Campra Madrid Fecha 07/11/2021
ID. FIRMA afirma.ual.es +vLJuznAs3HyEXzIEiEZyg== PÁGINA 52/75
+vLJuznAs3HyEXzIEiEZyg==
G
D
11. PFIZER 2
WBRGO7(1200-2800cm-1)
Puede verificar la autenticidad, validez e integridad de este documento en la dirección:
https://verificarfirma.ual.es/verificarfirma/code/+vLJuznAs3HyEXzIEiEZyg==
Firmado Por Pablo Campra Madrid Fecha 07/11/2021
ID. FIRMA afirma.ual.es +vLJuznAs3HyEXzIEiEZyg== PÁGINA 53/75
+vLJuznAs3HyEXzIEiEZyg==
12. PFIZER 2
WBR UP GO1
Puede verificar la autenticidad, validez e integridad de este documento en la dirección:
https://verificarfirma.ual.es/verificarfirma/code/+vLJuznAs3HyEXzIEiEZyg==
Firmado Por Pablo Campra Madrid Fecha 07/11/2021
ID. FIRMA afirma.ual.es +vLJuznAs3HyEXzIEiEZyg== PÁGINA 54/75
+vLJuznAs3HyEXzIEiEZyg==
13. PFIZER
WBR UP GO3b
Puede verificar la autenticidad, validez e integridad de este documento en la dirección:
https://verificarfirma.ual.es/verificarfirma/code/+vLJuznAs3HyEXzIEiEZyg==
Firmado Por Pablo Campra Madrid Fecha 07/11/2021
ID. FIRMA afirma.ual.es +vLJuznAs3HyEXzIEiEZyg== PÁGINA 55/75
+vLJuznAs3HyEXzIEiEZyg==
WBR
14. PFIZER 2
WBR UP GO4
Puede verificar la autenticidad, validez e integridad de este documento en la dirección:
https://verificarfirma.ual.es/verificarfirma/code/+vLJuznAs3HyEXzIEiEZyg==
Firmado Por Pablo Campra Madrid Fecha 07/11/2021
ID. FIRMA afirma.ual.es +vLJuznAs3HyEXzIEiEZyg== PÁGINA 56/75
+vLJuznAs3HyEXzIEiEZyg==
15. PFIZER 2
WBR DOWN GO2
Photo N/A
Puede verificar la autenticidad, validez e integridad de este documento en la dirección:
https://verificarfirma.ual.es/verificarfirma/code/+vLJuznAs3HyEXzIEiEZyg==
Firmado Por Pablo Campra Madrid Fecha 07/11/2021
ID. FIRMA afirma.ual.es +vLJuznAs3HyEXzIEiEZyg== PÁGINA 57/75
+vLJuznAs3HyEXzIEiEZyg==
WBR
16. FIZER 2
WBR DOWN GO3
Puede verificar la autenticidad, validez e integridad de este documento en la dirección:
https://verificarfirma.ual.es/verificarfirma/code/+vLJuznAs3HyEXzIEiEZyg==
Firmado Por Pablo Campra Madrid Fecha 07/11/2021
ID. FIRMA afirma.ual.es +vLJuznAs3HyEXzIEiEZyg== PÁGINA 58/75
+vLJuznAs3HyEXzIEiEZyg==
17. PFIZER 2
WBR DOWN GO5
Puede verificar la autenticidad, validez e integridad de este documento en la dirección:
https://verificarfirma.ual.es/verificarfirma/code/+vLJuznAs3HyEXzIEiEZyg==
Firmado Por Pablo Campra Madrid Fecha 07/11/2021
ID. FIRMA afirma.ual.es +vLJuznAs3HyEXzIEiEZyg== PÁGINA 59/75
+vLJuznAs3HyEXzIEiEZyg==
18. PFIZER 3
Ros OBJ 1
Puede verificar la autenticidad, validez e integridad de este documento en la dirección:
https://verificarfirma.ual.es/verificarfirma/code/+vLJuznAs3HyEXzIEiEZyg==
Firmado Por Pablo Campra Madrid Fecha 07/11/2021
ID. FIRMA afirma.ual.es +vLJuznAs3HyEXzIEiEZyg== PÁGINA 60/75
+vLJuznAs3HyEXzIEiEZyg==
19. PFIZER 3
ROS 2 OBJ 1
Puede verificar la autenticidad, validez e integridad de este documento en la dirección:
https://verificarfirma.ual.es/verificarfirma/code/+vLJuznAs3HyEXzIEiEZyg==
Firmado Por Pablo Campra Madrid Fecha 07/11/2021
ID. FIRMA afirma.ual.es +vLJuznAs3HyEXzIEiEZyg== PÁGINA 61/75
+vLJuznAs3HyEXzIEiEZyg==
20. PFIZER 3
ROS 2 OBJ2
40
Puede verificar la autenticidad, validez e integridad de este documento en la dirección:
https://verificarfirma.ual.es/verificarfirma/code/+vLJuznAs3HyEXzIEiEZyg==
Firmado Por Pablo Campra Madrid Fecha 07/11/2021
ID. FIRMA afirma.ual.es +vLJuznAs3HyEXzIEiEZyg== PÁGINA 62/75
+vLJuznAs3HyEXzIEiEZyg==
21. PFIZER 4: Pdown lump1
41
Puede verificar la autenticidad, validez e integridad de este documento en la dirección:
https://verificarfirma.ual.es/verificarfirma/code/+vLJuznAs3HyEXzIEiEZyg==
Firmado Por Pablo Campra Madrid Fecha 07/11/2021
ID. FIRMA afirma.ual.es +vLJuznAs3HyEXzIEiEZyg== PÁGINA 63/75
+vLJuznAs3HyEXzIEiEZyg==
21. PFIZER 4:
Pdown lump1
Puede verificar la autenticidad, validez e integridad de este documento en la dirección:
https://verificarfirma.ual.es/verificarfirma/code/+vLJuznAs3HyEXzIEiEZyg==
Firmado Por Pablo Campra Madrid Fecha 07/11/2021
ID. FIRMA afirma.ual.es +vLJuznAs3HyEXzIEiEZyg== PÁGINA 64/75
+vLJuznAs3HyEXzIEiEZyg==
43
22. PFIZER 4
Pdown lump2
Puede verificar la autenticidad, validez e integridad de este documento en la dirección:
https://verificarfirma.ual.es/verificarfirma/code/+vLJuznAs3HyEXzIEiEZyg==
Firmado Por Pablo Campra Madrid Fecha 07/11/2021
ID. FIRMA afirma.ual.es +vLJuznAs3HyEXzIEiEZyg== PÁGINA 65/75
+vLJuznAs3HyEXzIEiEZyg==
22. PFIZER 4
Pdown lump2
ID/IG = 0.58
Puede verificar la autenticidad, validez e integridad de este documento en la dirección:
https://verificarfirma.ual.es/verificarfirma/code/+vLJuznAs3HyEXzIEiEZyg==
Firmado Por Pablo Campra Madrid Fecha 07/11/2021
ID. FIRMA afirma.ual.es +vLJuznAs3HyEXzIEiEZyg== PÁGINA 66/75
+vLJuznAs3HyEXzIEiEZyg==
45
23. PFIZER 4
Pdown lump3
Puede verificar la autenticidad, validez e integridad de este documento en la dirección:
https://verificarfirma.ual.es/verificarfirma/code/+vLJuznAs3HyEXzIEiEZyg==
Firmado Por Pablo Campra Madrid Fecha 07/11/2021
ID. FIRMA afirma.ual.es +vLJuznAs3HyEXzIEiEZyg== PÁGINA 67/75
+vLJuznAs3HyEXzIEiEZyg==
23. PFIZER 4
Pdown lump3
Puede verificar la autenticidad, validez e integridad de este documento en la dirección:
https://verificarfirma.ual.es/verificarfirma/code/+vLJuznAs3HyEXzIEiEZyg==
Firmado Por Pablo Campra Madrid Fecha 07/11/2021
ID. FIRMA afirma.ual.es +vLJuznAs3HyEXzIEiEZyg== PÁGINA 68/75
+vLJuznAs3HyEXzIEiEZyg==
47
24. ASTRAZENECA
AZ MIT UP CARB5
Puede verificar la autenticidad, validez e integridad de este documento en la dirección:
https://verificarfirma.ual.es/verificarfirma/code/+vLJuznAs3HyEXzIEiEZyg==
Firmado Por Pablo Campra Madrid Fecha 07/11/2021
ID. FIRMA afirma.ual.es +vLJuznAs3HyEXzIEiEZyg== PÁGINA 69/75
+vLJuznAs3HyEXzIEiEZyg==
24. ASTRAZENECA
AZ MIT UP CARB5
ID/IG = 0.59
Puede verificar la autenticidad, validez e integridad de este documento en la dirección:
https://verificarfirma.ual.es/verificarfirma/code/+vLJuznAs3HyEXzIEiEZyg==
Firmado Por Pablo Campra Madrid Fecha 07/11/2021
ID. FIRMA afirma.ual.es +vLJuznAs3HyEXzIEiEZyg== PÁGINA 70/75
+vLJuznAs3HyEXzIEiEZyg==
25.
ASTRAZENECA
AZ MIT UP CARB6
49
Puede verificar la autenticidad, validez e integridad de este documento en la dirección:
https://verificarfirma.ual.es/verificarfirma/code/+vLJuznAs3HyEXzIEiEZyg==
Firmado Por Pablo Campra Madrid Fecha 07/11/2021
ID. FIRMA afirma.ual.es +vLJuznAs3HyEXzIEiEZyg== PÁGINA 71/75
+vLJuznAs3HyEXzIEiEZyg==
25. ASTRAZENECA
AZ MIT UP CARB6
50
Puede verificar la autenticidad, validez e integridad de este documento en la dirección:
https://verificarfirma.ual.es/verificarfirma/code/+vLJuznAs3HyEXzIEiEZyg==
Firmado Por Pablo Campra Madrid Fecha 07/11/2021
ID. FIRMA afirma.ual.es +vLJuznAs3HyEXzIEiEZyg== PÁGINA 72/75
+vLJuznAs3HyEXzIEiEZyg==
26. JANSSEN
JAN GO1
Puede verificar la autenticidad, validez e integridad de este documento en la dirección:
https://verificarfirma.ual.es/verificarfirma/code/+vLJuznAs3HyEXzIEiEZyg==
Firmado Por Pablo Campra Madrid Fecha 07/11/2021
ID. FIRMA afirma.ual.es +vLJuznAs3HyEXzIEiEZyg== PÁGINA 73/75
+vLJuznAs3HyEXzIEiEZyg==
27. JANSSEN
JAN GO3
Puede verificar la autenticidad, validez e integridad de este documento en la dirección:
https://verificarfirma.ual.es/verificarfirma/code/+vLJuznAs3HyEXzIEiEZyg==
Firmado Por Pablo Campra Madrid Fecha 07/11/2021
ID. FIRMA afirma.ual.es +vLJuznAs3HyEXzIEiEZyg== PÁGINA 74/75
+vLJuznAs3HyEXzIEiEZyg==
28. JANSSEN
JAN GO4
Puede verificar la autenticidad, validez e integridad de este documento en la dirección:
https://verificarfirma.ual.es/verificarfirma/code/+vLJuznAs3HyEXzIEiEZyg==
Firmado Por Pablo Campra Madrid Fecha 07/11/2021
ID. FIRMA afirma.ual.es +vLJuznAs3HyEXzIEiEZyg== PÁGINA 75/75
+vLJuznAs3HyEXzIEiEZyg==
ResearchGate has not been able to resolve any citations for this publication.
Article
Full-text available
Since the production of ferromagnetic graphene as an extremely important matter in spintronics has made a revolution in future technology, a great deal of efforts has recently been done to reach a simple and cost-effective method. Up to now, controlling the magnetic properties at extremely low temperature have been investigated only by adding and removing atoms in graphene lattice. In this regard, the effect of strain on the magnetic and electronic properties of graphene has been probed. Here, the ferromagnetic properties are what have been created by strain, magnetic field, and temperature along with observation of the parallel magnetic domains in ferromagnetic graphene for the first time as a great achievement. In this way, we have represented the following: First, introducing three novel methods based on temperature, magnetic field, and strain for producing ferromagnetic graphene; Second, obtaining ferromagnetic graphene at room temperature by significant magnetization saturation in mass-scale; Third, probing the electronic systems and vibrational modes by Raman and IR spectroscopy; Fourth, introducing stacking and aggregation as two types of gathering process for graphene sheets; Fifth, comparing the results with leidenfrost effect-based method which the temperature, magnetic fields, and strain are simultaneously applied to graphene flakes (our previous work).
Article
Full-text available
Graphene oxide (GO)/peptide complexes as a promising disease biomarker analysis platform have been used to detect proteolytic activity by observing the turn-on signal of the quenched fluorescence upon the release of peptide fragments. However, the purification steps are often cumbersome during surface modification of nano-/micro-sized GO. In addition, it is still challenging to incorporate the specific peptides into GO with proper orientation using conventional immobilization methods based on pre-synthesized peptides. Here, we demonstrate a robust magnetic GO (MGO) fluorescence resonance energy transfer (FRET) platform based on in situ sequence-specific peptide synthesis of MGO. The magnetization of GO was achieved by co-precipitation of an iron precursor solution. Magnetic purification/isolation enabled efficient incorporation of amino-polyethylene glycol spacers and subsequent solid-phase peptide synthesis of MGO to ensure the oriented immobilization of the peptide, which was evaluated by mass spectrometry after photocleavage. The FRET peptide MGO responded to proteases such as trypsin, thrombin, and β-secretase in a concentration-dependent manner. Particularly, β-secretase, as an important Alzheimer’s disease marker, was assayed down to 0.125 ng/mL. Overall, the MGO platform is applicable to the detection of other proteases by using various peptide substrates, with a potential to be used in an automated synthesis system operating in a high throughput configuration.
Article
Full-text available
The ageing of graphene is an important issue for technological applications. Capping layers are a good way of circumventing this problem. In this work, we propose the use of ultra-thin NaCl films as easily-removable protective layers. We have carried out a detailed characterization of the NaCl/graphene interface on metal substrates, namely Cu(111) and Ir(111), by means of complementary microscopies, electron diffraction and spectroscopic techniques. Interestingly, we show that NaCl neither interacts in a chemical way with graphene nor intercalates through it. We demonstrate that the NaCl film is stable under ambient conditions, protecting the graphene surface from oxidation. In addition, after removing the protective layer, graphene remains intact.
Article
Full-text available
Nowadays, the use of nanostructures in various medical and biological fields such as drug delivery in cancer treatment is increasing. Among the nanostructures, graphene oxide (GO) is an excellent candidate for drug delivery application because of its unique properties. For more stability, GO can bind with various polymers by its carboxyl, hydroxyl and epoxy functional groups. In this study, firstly GO synthesized by the improved Hummers chemical method and then polyethylene glycol polymer was conjugated to it by using EDC/NHS catalyst. Finally, curcumin (Cur) as anti-cancer drug has been loaded onto the PEGylated graphene oxide (GO-PEG). Next, curcumin loaded onto PEGylated graphene oxide (GO-PEG-Cur) were evaluated by using ultraviolet, Fourier transform infrared spectroscopy, differential scanning calorimeter, atomic microscopic force and dynamic light scattering. The amount of loaded drug was calculated about 4.5% with the help of the standard curcumin curve and UV/Vis spectrometer. Also, the result of release shows that maximum drug release rate for this nanocarrier in pH 5.5 and 7.4 was measured 50% and 60%, respectively, after 96 hours. The results showed that the zeta-potential analysis of GO-PEG-Cur was about -13.9 mV that expresses a negative surface charge for produced nanocarrier.
Article
Full-text available
Two-dimensional (2D) materials such as graphene have become the focus of extensive research efforts in condensed matter physics. They provide opportunities for both fundamental research and applications across a wide range of industries. Ideally, characterization of graphene requires non-invasive techniques with single-atomic-layer thickness resolution and nanometer lateral resolution. Moreover, commercial application of graphene requires fast and large-area scanning capability. We demonstrate the optimized balance of image resolution and acquisition time of non-invasive confocal laser scanning microscopy (CLSM), rendering it an indispensable tool for rapid analysis of mass-produced graphene. It is powerful for analysis of 1-5 layers of exfoliated graphene on Si/SiO2, and allows us to distinguish the interfacial layer and 1-3 layers of epitaxial graphene on SiC substrates. Furthermore, CLSM shows excellent correlation with conventional optical microscopy, atomic force microscopy, Kelvin probe force microscopy, conductive atomic force microscopy, scanning electron microscopy and Raman mapping.
Article
Full-text available
Graphene oxide is the hot topic of biomedical and pharmaceutical research of this decade. However, its complex interactions with human blood components complicate a transition of the promising in vitro results to clinical settings. Even if graphene oxide is made with same atoms our organs, tissues, and cells, its bi-dimensional nature causes unique interactions with blood proteins and biological membranes and can lead to severe effects like thrombogenicity and immune cells activation. In this review, we will describe the journey of graphene oxide after injection in the bloodstream, from the initial interactions with plasma proteins to the formation of the “biomolecular corona”, and biodistribution. We will consider the link between the chemical properties of graphene oxide (and its functionalized/reduced derivatives), protein binding and in vivo response. We will also summarize data on biodistribution and toxicity in view of current knowledge of biomolecular corona influence on these processes. Our aim is to shed light on unsolved problems of graphene oxide corona literature to build the groundwork for future drug delivery technology development.
Article
Nanoscale contaminants (including engineered nanoparticles and nanoplastics) pose a significant threat to organisms and environment. Rapid and non-destructive detection and identification of nanosized materials in cells, tissues and organisms is still challenging, although a number of conventional methods exist. These approaches for nanoparticles imaging and characterisation both inside the cytoplasm and on the cell or tissue outer surfaces, such as electron or scanning probe microscopies, are unquestionably potent tools, having excellent resolution and supplemented with chemical analysis capabilities. However, imaging and detection of nanomaterials in situ, in wet unfixed and even live samples, such as living isolated cells, microorganisms, protozoans and miniature invertebrates using electron microscopy is practically impossible, because of the elaborate sample preparation requiring chemical fixation, contrast staining, matrix embedding and exposure into vacuum. Atomic force microscopy, in several cases, can be used for imaging and mechanical analysis of live cells and organisms under ambient conditions, however this technique allows for investigation of surfaces. Therefore, a different approach allowing for imaging and differentiation of nanoscale particles in wet samples is required. Dark-field microscopy as an optical microscopy technique has been popular among researchers, mostly for imaging relatively large specimens. In recent years, the so-called “enhanced dark field” microscopy based on using higher numerical aperture light condensers and variable numerical aperture objectives has emegred, which allows for imaging of nanoscale particles (starting from 5 nm nanospheres) using almost conventional optical microscopy methodology. Hyperspectral imaging can turn a dark-field optical microscope into a powerful chemical characterisation tool. As a result, this technique is becoming popular in environmental nanotoxicology studies. In this Review Article we introduce the reader into the methodology of enhanced dark-field and dark-field-based hyperspectral microscopy, covering the most important advances in this rapidly-expanding area of environmental nanotoxicology.
Article
Elucidating the essential details of the structure of graphene oxide (GO) is still a challenge. There is no consensus in the increasingly abundant literature, especially relating to the epoxy groups as the main surface complexes in the basal plane, as well as the simultaneous presence of GO sheets and oxidative debris (OD), with a large difference in their oxygen content. In the present work we characterized the base-washed GO (bwGO) sheets, the OD and the humic fraction of the OD obtained by base digestion, when the parent GO was dispersed by applying sonication, a routine procedure when starting from dried graphite oxide. When sonication is not applied, the amount of OD detected is considerably lower, indicative of its formation before base digestion. The presence of lactols and carboxylic anhydrides as the dominant surface complexes at graphene edges is consistent with all the characterization results, as well as with the general knowledge of surface chemistry of carbon materials ranging from coal to graphite. These findings suggest that the Hummers-Offeman reaction produces a chemical scissor effect during the water/hydrogen peroxide quenching step, yielding a broad size distribution of GO sheets, with little in-plane oxidation and the vast majority of edges being oxidized to form oxepinone-type functionalities.
Article
We demonstrated a way to achieve tunable fluorescence from reduced graphene oxide (rGO) by selecting appropriate solvents. This work begins a new area of research that seeks to improve the fluorescence properties of rGO, offering novel strategies for realizing printed flexible opto-electronics with tunable device performance. We investigated the effect of solvents and report that solvents play a vital role in the optical properties of rGO. The dispersion of rGO was analyzed by UV–Visible spectroscopy, FTIR spectroscopy, and fluorescence spectroscopy, demonstrating that rGO dissolved in polar solvents exhibits enhanced fluorescence covering the entire visible range as opposed to non-polar solvents. The synthesis strategy may possibly facilitate the manipulation and processing of rGO toward vital printed flexible optoelectronics applications, which could be tuned by selecting a suitable solvent.
Article
It is well-known that graphene oxide (GO), a planar nanomaterial, is endowed with the capacity to immobilize short ssRNA via π-π stacking, thus enhance its stability. However, whether large RNA molecules, such as total RNA, extracted from biological tissues, can be protected using GO is not has been investigated. It is usually believed that protection of total RNA by GO is not effective because the lengths of total RNA which range from a few to thousands of bases inclined to undergo desorption due to their complicated structure. Herein, the nanobiological effects of total RNA/GO is firstly investigated, and demonstrated that total RNA can be harbored on the surface of GO, thus resulting in a shield effect. This shield effect allows total RNA to highly resistant to RNase degradation and maintains RNA stability at room temperature up to four days, enabling the discovery of GO as the potential next-generation RNase nano-inhibitors. Furthermore, GO can be conjugated to nano-magnetic beads, defined as magnetic graphene oxide (MGO), enabling the rapid purification and protection of RNA from animal cells and tissues, whole blood, bacteria, and plant tissue.