Content uploaded by Sanda Rosca
Author content
All content in this area was uploaded by Sanda Rosca on Nov 01, 2021
Content may be subject to copyright.
Int.J.Environ.Res.PublicHealth2021,18,11416.https://doi.org/10.3390/ijerph182111416www.mdpi.com/journal/ijerph
Article
ApplyingaComplexIntegratedMethodforMapping
andAssessmentoftheDegradedEcosystemHotspots
fromRomania
SorinAvram1,2,IrinaOntel3,CarmenGheorghe1,StelianaRodino4,5andSandaRoșca6*
1
NationalInstituteforEconomicResearch“CostinC.Kiriţescu”(INCE),RomanianAcademy,13September
StreetNo.13,050711Bucharest,Romania;avram.sorin@ucv.ro(S.A.);carmen.adriana@ince.ro(C.G.)
2
DepartmentofGeography,UniversityofCraiova,Al.I.CuzaStreetNo.13,200585Craiova,Romania
3
RemoteSensingandSatelliteMeteorologyLaboratory,NationalMeteorologicalAdministration,
013686Bucharest,Romania;irina.ontel@meteoromania.ro
4
NationalInstituteofResearchandDevelopmentforBiologicalSciences,Spl.IndependenteiNo.296,
060031Bucharest,Romania;steliana.rodino@yahoo.com
5
InstituteofResearchforAgricultureEconomyandRuralDevelopment,Bd.MarastiNo.61,
011464Bucharest,Romania
6
FacultyofGeography,Babes‐BolyaiUniversity,400006Cluj‐Napoca,Romania
*Correspondence:sanda.rosca@ubbcluj.ro
Abstract:Tomeettheglobalchallengesofclimatechangeandhumanactivitypressureonbiodiver‐
sityconservation,ithasbecomevitaltomapsuchpressurehotspots.Largeareas,suchasnation‐
wideregions,aredifficulttomapfromthepointofviewoftheresourcesneededforsuchmapping
(humanresources,hardandsoftresources).Europeanbiodiversitypolicieshavefocusedonrestor‐
ingdegradedecosystemsbyatleast10%by2020,andnewpoliciesaimtorestoreupto30%of
degradedecosystemsby2030.Inthisstudy,methodsdevelopedandappliedfortheassessmentof
thedegradationstateoftheecosystemsinasemi‐automaticmannerfortheentireRomanianterri‐
tory(238,391km
2
)arepresented.Thefollowingecosystemswereanalyzed:forestry,grassland,riv‐
ers,lakes,cavesandcoastalareas.TheinformationanddatacoveringalltheecoregionsoftheRo‐
mania(~110,000km
2
)wereanalyzedandprocessed,basedonGISandremotesensingtechniques.
Thelargestdegradedareaswereidentifiedwithinthecoastalarea(49.80%),grasslandecosystems
(38.59%)andthecaveecosystems(2.66%),while27.64%ofriversecosystemsweredegraded,fol‐
lowedby8.52%offorestecosystems,and14.05%oflakesecosystems.Thisanalysiscancontribute
tobetterdefinitionofthelocationsofthemostaffectedareas,whichwillyieldausefulspatialrep‐
resentationforfutureecologicalreconstructionstrategy.
Keywords:degradedecosystems;terrestrialecosystems;freshwaterecosystems;marine
ecosystems;Romania
1. Introduction
Theevaluationofthestateofecosystems,asthefundamentalstructuralandfunc‐
tionalunitoflivingmatter,isaconstantconcernofglobalandEuropeanpolicies,inorder
toestablishguidelinesforpreventingthelossoftheirfunctions.Theassessmentofthe
conditionofecosystemsnecessitatesextensiveanalysisoftheirphysical,chemicalandbi‐
ologicalqualityataparticularmomentandmeasurementoftheimpactsofmajorpres‐
suresthatarearising.Naturalecosystemsareconstantlyexposedtopressuresfromover‐
exploitationofresources,extensivehunting,climatechangeandpollution[1,2].Someau‐
thorsconsiderthatthehighestdirectimpactonanecosystem’sstateisrepresentedby
anthropogenicpressures(overharvestingandlandusechange)leadingtobiodiversity
loss[3].
Citation:Avram,S.;Ontel,I.;
Gheorghe,C.;Rodino,S.;Roșca,S.
ApplyingaComplexIntegrated
MethodforMappingand
AssessmentoftheDegraded
EcosystemHotspotsfromRomania.
Int.J.Environ.Res.PublicHealth2021,
18,11416.https://doi.org/10.3390/
ijerph182111416
Received:17September2021
Accepted:25October2021
Published:29October2021
Publisher’sNote:MDPIstaysneu‐
tralwithregardtojurisdictional
claimsinpublishedmapsandinstitu‐
tionalaffiliations.
Copyright:©2021bytheauthors.Li‐
censeeMDPI,Basel,Switzerland.
Thisarticleisanopenaccessarticle
distributedunderthetermsandcon‐
ditionsoftheCreativeCommonsAt‐
tribution(CCBY)license(https://cre‐
ativecommons.org/licenses/by/4.0/).
Int.J.Environ.Res.PublicHealth2021,18,114162of22
Toaccuratelyevaluatetheecosystemservicesprovidedbyaparticulararea,first,the
stateoftheecosystemmustbestudied.Thestateoftheecosystemisthefirstlevelinthe
flowofservicesfromnaturetosociety[4],anditdefinestheabilityoftheecosystemto
provideservices.Pressuresfromhumanactivity,suchaspollutionoroveruse,canhave
animpactonthestateoftheecosystem,thusreducingitsabilitytoprovideservicesto
society[5,6].Thegoodconditionofecosystemsisnotconsideredaserviceitself;however,
itisindispensableasitisanessentialconditionforhumanactivity.
Theecosystemisdegradedwhentheviabilityofnaturalprocessesandrelationships
withinitareremovedordisturbedbyanthropogenicactivityortheactionofnaturalfac‐
tors[7].Itisalsoaprocesswithmultipleeffectsonclimatechange,biodiversitychanges
andecosystemservices[8].
Europeisfacingacontinuinglossofbiodiversity,andnaturalecosystemsaredimin‐
ishing,especiallywetlands,byabout50%[9].AsamemberoftheEuropeanUnion(EU),
Romaniapromotesandsupportstheprotectionofecosystems,beingpartoftheUnited
NationsConventiononBiologicalDiversity(“ConventiononBiologicalDiversity,”1992).
However,likemostEuropeancountries,Romaniaisexperiencinganincreaseinitsshare
ofdegradedecosystems[10,11].
Therestorationofthegeologicalenvironmentandtheaffectedterrestrialecosystems
involvesbringingthemascloseaspossibletotheirnaturalstate,byapplyingcomplemen‐
taryandcompensatorycleaning,remediationand/orreconstructionmeasuresandby
eliminatinganysignificantriskaccordingtothecategoryoflanduse.Todothisitisnec‐
essarytoproperlyevaluatetheirdegradationstateandthedriversofthisdegradation.
Changesinecosystemsarefrequentlyidentifiedonthebasisofsatelliteimagery
[12,13].Mostmethodsfocusonbiomassevaluation[14–16],leafareaindex(LAI)[17]or
productivity[18–20].TheGlobalClimateObservingSystem(GCOS),promotesLAIasan
essentialclimatevariable(ECV),beingakeyparameterusedinwoodyecosystems[21].
Inmanystudies,thehealthoftheecosystemisanalyzedbasedonGPP(grossprimary
production)orNPP(netprimaryproduction)indicesandavegetationindex,suchasthe
normalized‐differencevegetationindex(NDVI).Thehighvalueoftheseindicesdoesnot
necessarilymeanagoodstateofhealth[22],asitmaybeduetoinvasivespecies.Inthe
sameway,primaryproductivityisrelatednotonlytovariationsinCO2intheatmosphere
butalsotoclimatechange.Globally,productivityhasincreasedinthelast20years[23].
MachinelearningalgorithmssuchasRandomForest(RF)andSupportVectorMa‐
chine(SVM)areusedtoidentifyandmonitorvegetationtypeswithinforest[24]and
grasslandecosystems[25].Moreover,theSVMimageclassificationmethodisusefulin
identifyinginvasiveplantspecies[26,27],oneoftheimportantcriteriaintheevaluation
ofgrasslandecosystems[27].Someauthorsusedsatelliteimagery(Sentinel2,Landsat8)
andmachinelearningprocessestolocateforesttreatmentsoverlargespatialextents[28].
Anotherrecentanalyticalframeworkforthemappingandassessmentofecosystem
condition[29]proposedindicatorsrelatedtoenvironmentalpressures(physicaland
chemicalquality)andecosystemattributes(biologicalquality)basedonacombinationof
individualmetrics.
InOctober2010,JapanandtheEUmemberstatesattheNagoyaBiodiversitySummit
signedtheConventiononBiologicalDiversity.InordertoachieveitsEUbiodiversitypol‐
icygoalsandtoalignwithinternationalcommitmentsintheConventiononBiological
Diversity,inMay2011,theEUadoptedtheBiodiversityStrategyto2020.ToachieveTar‐
get2:”Maintainandrestoreecosystemsandtheirservices”,i.e.,therestorationofatleast
15%ofthedegradedecosystemsby2020,thedocumentproposesthatby2014eachmem‐
berstateshoulddevelopastrategicframeworkforestablishingtheprioritiesfortheres‐
torationofecosystemsatanationallevel.Inordertorespondtothedevelopmentneeds
andtocontributetotheEU2020Strategy,in2014,theLargeInfrastructureOperational
Program(LIOP)strategywaselaboratedinRomania.WithinLIOP,priorityaxis4was
establishedforthepromotionofecologicalreconstructionprojects[30].Therefore,anas‐
sessmentandmappingofRomaniandegradedecosystemswasnecessary.Giventheneed
Int.J.Environ.Res.PublicHealth2021,18,114163of22
forcompositeindicatorsonecosystemconditionthatcanreflecttheoverallqualityofan
ecosystemassetintermsofitscharacteristics,themappingandevaluatingofdegraded
ecosystemsinRomaniaweredone.
TheresultsofthispaperarebasedonresearchstartedinApril2016,comprisingde‐
tailedassessmentforeachtypeofecosystem.Thedatabasesusedwereprovidedbyvari‐
ousRomanianandEuropeaninstitutions.Theseweremainlyspatialdata,statisticaldata
andsatelliteimages.Inthefirstphase,thedegradationcriteriaandindicatorsforeach
typeofecosystem,thedegradationclassesandthesustainabilitythresholdswereestab‐
lished,aswellasthelimitsandthemethodologyforecosystemmapping.Inthesecond
phase,themappingandevaluationofthenaturalecosystemswereperformed,aswellas
thevalidationoftheresults.Theintegrationofalldatawasachievedandcompletedin
May2021.
EUBiodiversityStrategyto2020setobjectivestowardmappingandassessingthe
stateofecosystemsfromeachmemberstate.Thetargetofthisstrategywastorestore15%
ofdegradedecosystems[30]andthecurrentEU‐wideBiodiversityStrategyto2030aims
toprotectatleast30%oflandand30%ofseainEurope[31].
Themainobjectivesofourstudywereasfollows:todefineandidentifythetypesof
naturalandsemi‐naturalecosystemsexistinginRomania;todevelopanationallyappli‐
cablemethodologyfortheevaluationofeachtypeofnaturalandsemi‐naturalecosystem;
and,inthispaper,toassessthecompleteecosystem’sconditionacrossRomanianterritory
inordertooutlinedirectionsfortheirconservationstatus.
2.MaterialsandMethods
2.1.StudyArea
Romaniacovers238,391km2andislocatedinsoutheasternEurope,borderingonthe
BlackSeaandtheDanube.Themajorlandformsareconcentricallydistributed[32],the
Transylvaniandepressioninthecenter,surroundedbytheCarpathianMountainsand
hills.Twolargeplainssurroundthehigherarea,namelytheRomanianPlainandthe
WesternPlain,towhichisaddedinSEtheDanubeDeltaandDobrogeaPlateau(Figure
1).AccordingtotheKöppen–Geigerclimateclassification,Romaniahasatemperatecon‐
tinentalclimate[32].Fromabio‐geographicalpointofview,inRomania,therearefive
biogeographicalregions:Pannonian,Alpine,Continental,SteppicandBlackSea[33].
Inapreviousstudy,deliverableoftheprojectNatureinpublicdecisions—N4D,the
followingtypesofecosystemswereidentifiedwithintheRomanianterritory:terrestrial
(woodlandandforest,grassland,cave),freshwater(riversandlakes),andmarine
(coastal).Forestecosystemsoccupyatotalareaofabout71,890.84km2,andabout32,357.14
km2ofRomanianareaisgrassland.Therearealso339caves.Riversare84,068.17kmin
length,lakesrepresent2248.28km2,and1574km2arecoastalecosystems[10,34].
Int.J.Environ.Res.PublicHealth2021,18,114164of22
Figure1.LocationofRomaniaandmajorlandforms.
2.2.DataUsed
Duetothecomplexityofeachecosystem,alargenumberofdatawereusedfrom
differentnationalandinternationalsourcesavailablefortheentireterritoryofRomania.
SatelliteimagesandsatelliteimageryproductssuchasMODIS,LandsatandSentinel2
wereused.Furthermore,vectordatasuchaslanduselimits(CORINELandCoverorLand
parcelidentificationsystem),limitsofterritorialadministrativeunits(TAUs),limitsof
protectednaturalareas,thehydrographicnetwork,theroadnetwork,pollutionsources,
soiltypes,etc.andstatisticaldatasuchaslivestockandthenumberofinhabitantswere
used.ThedatasetsusedforeachecosystemaredescribedinTable1.
Table1.Usedgeo‐database.
Major
Ecosystem
Category
EcosystemType
forMappingand
Assessment
NameofDatasetsResolution/Minimum
MappingUnit
Time
ReferenceSource
Terrestrial
Forest
Land‐parcelidentification
system(LPIS)NA2013Land‐parcelidentificationsystem
fromRomania[35]
VegetationContinuous
Fields(MOD44B)250m2000–2013LAADSDAAC[36]
HansenGlobalForest
Change30m2000–2013GlobalForestChange[37]
Grassland
Land‐parcelidentification
system(LPIS)NA2017Land‐parcelidentificationsystem
fromRomania[38]
Limitsofterritorial
administrativeunits
(TAUs)
NA2016NationalAgencyforCadastreand
LandRegistrationofRomania[39]
Digitalsurfacemodel(EU‐
DEM)25m2011CopernicusLandMonitoring
Service[40]
Livestocknumbersand
typesfromTAUsNA2010NationalStatisticsInstituteof
Romania[41]
Int.J.Environ.Res.PublicHealth2021,18,114165of22
EuropeanSettlementMap10m2010–2013CopernicusLandMonitoring
Service[42]
Sentinel2images10m2015–2017CopernicusOpen‐AccessHub
[43]
Cave
Natura2000(N2K)NA2017MinistryofEnvironment,Waters
andForests[44]
Orthophotos0.5m2016NationalAgencyforCadastreand
LandRegistrationofRomania[39]
CORINELandCover
(CLC2012)100m2011–2012CopernicusLandMonitoring
Service[45]
EuropeanSettlementMap10m2010–2013CopernicusLandMonitoring
Service[42]
Europeancatchmentsand
Riversnetworksystem
(ECRINS—damson
rivers)
1:250,0002012EuropeanEnvironmentAgency
[46]
RoadsandrailwaysNA2016OpenStreetMap[47]
Freshwater
Rivers
EU‐Hydro—River
Network1ha2006–2012CopernicusLandMonitoring
Service[48]
Europeancatchmentsand
Riversnetworksystem
(ECRINS—damson
rivers)
1:250,0002012EuropeanEnvironmentAgency
[46]
Digitalsurfacemodel(EU‐
DEM)25m2011CopernicusLandMonitoring
Service[49]
CORINELandCover
(CLC2012)100m2011–2012CopernicusLandMonitoring
Service[45]
EuropeanSettlementMap10m2010–2013CopernicusLandMonitoring
Service[42]
RiparianZones2012—
LandUseLandCover0.5ha2011–2013CopernicusLandMonitoring
Service[49]
UrbanWastewater
Treatment(Water‐based
UWWTD)
NA2015EuropeanEnvironmentAgency
[50]
Natura2000(N2K)NA2017MinistryofEnvironment,Waters
andForests[44]
RoadsandrailwaysNA2016OpenStreetMap[47]
RomaniasoilsmapNA2017
NationalInstituteofResearchand
DevelopmentforPedology,Agro‐
chemistryandEnvironmental
Protection[51]
Numberofinhabitants
fromTAUsNA2017NationalStatisticsInstituteof
Romania[52]
Limitsofterritorial
administrativeunits
(TAUs)
NA2016NationalAgencyforCadastreand
LandRegistrationofRomania[39]
Lakes
Permanentwaterbodies20m2012CopernicusLandMonitoring
Service
CORINELandCover
(CLC2012)100m2011–2012CopernicusLandMonitoring
Service[45]
Digitalsurfacemodel
(EU‐DEM)25m2011CopernicusLandMonitoring
Service[40]
RoadsandrailwaysNA2016OpenStreetMap[47]
Exploitationareasof
naturalresourcesNA2017NationalAgencyforMineral
Resources
Natura2000(N2K)NA2017MinistryofEnvironment,Waters
andForests[44]
Int.J.Environ.Res.PublicHealth2021,18,114166of22
RomaniasoilsmapNA2017
NationalInstituteofResearchand
DevelopmentforPedology,Agro‐
chemistryandEnvironmental
Protection[51]
UrbanWastewater
Treatment(Waterbased
UWWTD)
NA2015EuropeanEnvironmentAgency
[50]
Limitsofterritorial
administrativeunits
(TAUs)
NA2016NationalAgencyforCadastreand
LandRegistrationofRomania[39]
Landsat830m2016[53]
MarineCoastal
CORINELandCover
(CLC2012)100m2011–2012CopernicusLandMonitoring
Service[45]
Digitalsurfacemodel
(EU‐DEM)25m2011CopernicusLandMonitoring
Service[40]
RoadsandrailwaysNA2016OpenStreetMap[47]
UrbanWastewater
Treatment(Waterbased
UWWTD)
NA2015EuropeanEnvironmentAgency
[50]
EuropeanSettlementMap10m2010–2013CopernicusLandMonitoring
Service[42]
Landsat830m2016[53]
Orthophotos0,5m2016NationalAgencyforCadastreand
LandRegistrationofRomania[39]
2.3.Methods
Theworkflowfortheevaluationoftheecosystem’scondition(Figure2)consistedin
threephases.Thefirstphaseincludedstate‐of‐the‐artmethodsforidentifyingthe
potentialpressuresoneachecosystem;searchingforecosystemsustainabilitythreshold
definitions;identificationofdatasetsavailableforthecalculationofdegradation
indicators;dataprocessingandanalysis;validationoftheappliedmethod.Foreach
ecosystem,aspecificassessmentmethodologywasinvolved.Thesecondphaseincluded
correctionandadjustmentofeachindicatorusedaccordingtothefieldresults;finaldata
processing,fieldverificationandvalidation.Inthefinalstage,atopologicalattribute
verificationwasperformed.
Int.J.Environ.Res.PublicHealth2021,18,114167of22
Figure2.Methodologicalflowinordertoassessthestateofecosystemdegradation.
Themethodologiesforestablishingthelevelofdegradationoftheanalyzed
ecosystemsincludedelementsthathaveanimpactontheirhealthandsustainability.The
determinationofthelevelofdegradationandtheclassesofdegradationalsotookinto
accountthecapacityofecosystemstosupportandprovideecosystemservicesin
accordancewiththeirbasicfunctions(SupplementaryMaterial).
Themethoddescribingtheforestecosystem’sstatuswasbasedontheidentification
ofdeforestedareasusingthechangedetectionalgorithmbetweenthelandusecategory
accordingtoLPISdata[38,54]andthelanduseinthereferenceyearof2000,accordingto
thetreecanopycoverfromLandsat[37].Theconservationstatusofforestecosystemswas
establishedbasedontheVCFMODIS[37]productfrom2000to2013andthecalculation
ofthelineartrendforeachpixel[10].Forestdegradationwasanalyzedbypermanent
changesintermsoflandcoverandlanduse.Thesechangesreduceecologicalintegrity
andhealth(SER,2004)affectingthebiodiversityandproductivityofforests.
Theevaluationofthegrasslandecosystemswasmadebasedonsixcriteria,each
criterionhavingaspecificweightinthefinalresult,Equation(1).Thesixcriteriareferto
theanthropo‐zoogenicimpact(proximitytolocalities,proximitytosheepfolds,thetotal
livestockdensity)[55],stationaryconditions(slope)andstructuralcharacteristics
(invasivespeciesandbaresoil/erosions).Eachcriterionwasdividedintothreeclassesof
values,andeachclassreceivedascorecorrespondingtotheecosystemcondition,as
follows:0—natural,1—semi‐degraded,2—degraded[10].Theidentificationofinvasive
speciesandsoilorbaresoilerosionwasbasedonmachinelearningalgorithmssuchas
RandomForest(RF)andSupportVectorMachine(SVM).Thedegradationstatewas
assignedaccordingtothevalueofthedegradationindex(DI).Thus,DIvaluesbetween0
and30indicatednaturalgrasslandecosystems,between35and60theyrepresentedsemi‐
degradedandbetween65and180degradedgrasslandecosystems.
DI=(5×C1)+(20×C2)+(5×C3)+(10×C4)+(50×C5)+(100×C6)[10](1)
where
Int.J.Environ.Res.PublicHealth2021,18,114168of22
C1=proximitytolocalities(>4km=natural,2–4km=semi‐degraded,<2km=
degraded);
C2=proximitytosheepfolds(>2km=natural,0.5–2km=semi‐degraded,<0.5km=
degraded);
C3=slope(<15°=natural,15°–30°=semi‐degraded,>30°=degraded);
C4=totallivestockdensity(<±10%=natural,±10–50%=semi‐degraded,>±30%=
degraded);
C5=invasivespecies(<5%=natural,5–20%=semi‐degraded,>20%=degraded);
C6=baresoil/erosions(<5%=natural,5–20%=semi‐degraded,>20%=degraded).
CaveecosystemshavebeenassessedonthebasisoftheCaveConservationIndex
(CCI),whichdeterminestheimpactofthecaveenvironmentandthethreatsandthe
vulnerabilityoftheintrinsiccharacteristicsofthecaves[56].CCIiscalculatedusingthe
scoreobtainedbycompletingtheformsforestablishingtheimpactontheenvironmentof
acave,RapidAssessmentProtocol(RAP‐cei)andthescoreobtainedbycompletingthe
formtoestablishthevulnerabilityofacave,inordertoprioritizeconservationand/or
restorationactions[57].Thus,forvaluesbetween0and34,thecaveecosystemwas
classifiedasnatural,between35and84wassemi‐degraded,andover85,itwasclassified
asdegraded[10].
Riverecosystemswereassessedbasedon13criteria,groupedinto4majorclasses:A.
Indicatorsofthehumanpressureonriparianareas(anthropization,vegetationcover,
humansettlements,sewagetreatmentplants,majorpollutionsources,transportnetwork,
naturalprotectedareas),B.Indicatorsofsubstrateofthelandadjacenttothewatercourse
(slope,soilpermeability),C.Indicatorsassociatedwithrivers(humaninterventions,
ecologicalstatusofwaterbodies)andD.Indicatorsofthemorphologicalcomplexityof
watercourses(sinuosity)[58].Eachindicatorusedinthemulticriteriaanalysiswas
assignedaweightinthefinalanalysis.Thehighestweightsusedinthemulticriteria
analysisforhumanpressureonriparianareaswereasfollows:theanthropizationofthe
adjacentterritoryofawatercourse,vegetationcoverinriparianareas,thepresenceof
majorpollutionsources,thelengthofthetransportnetwork,humaninterventionsinthe
riverbanksandtheecologicalstatusofwaterbodies[58].
Theassessmentoflakeecosystemswasperformedbycombiningthepotential
pollutantload(PPL)developedby[59],wastewater(W)–recreational(R)–agricultural
(A)–size(S)–transportation(T)–industrial(I)–cover(C)–pollutantload(WRASTIC)[59]
andlakevulnerability(LV)[60],resultinginanewindex:WRASTIC‐HIindex[61,62].This
methodologicalstageincludedtheanalysisofatotalof3189lakesandtheirclassification
bydegradationclasses.
Theassessmentofdegradationstatusofthecoastalecosystemwasmadebasedon
eightindicators,whichcanbegroupedintobiologicalindicators(relatedtotheabsence
orpresenceofinvasivespecies),hydro‐morphologicalindicators(relatedtothepresence
ofwastewatertreatmentplants,thepresenceofdemographicaggregationpoles,shoreline
artificialization,shorelineerosionrate)andphysical–chemicalindicators,datarelatedto
transportinfrastructure(roadinfrastructure,navigationchannels)andintensityof
maritimetraffic.
Eachindicatorwasgivenascore,andthefinalresultwasobtainedbysummingall
thescores[10].Thus,intheterrestrialcoastalarea,scorevalues≤4meanthecoastal
ecosystemisnatural,between5and12itissemi‐degradedandover13itisdegraded,and
inthemarinecoastalarea,scorevalues≤5meanthecoastalecosystemisnatural,between
5and15itissemi‐degradedandover13itisdegraded.
Inordertoidentifythelocationofthemostdegradedecosystems,thedensityofeach
degradedecosystemandthehotspotanalysisbasedontheGetis–OrdGi*[63,64]was
computed.ThehotspotanalysiswasperformedinArcGISusingtheMappingClusters
tool[65],basedonEquation(2)[66].
Int.J.Environ.Res.PublicHealth2021,18,114169of22
𝐺∗ ∑𝑤,𝑥 𝑋
∑𝑤,
𝑆𝑛∑𝑤,
∑𝑤,
𝑛 1
(2)
whereG_j^*statisticsisaz‐score,xjistheattributevalueforfeaturej,wi,jisthespatial
weightbetweenfeatureiandj,nisequaltothetotalnumberoffeaturesand:
𝑋
∑
(3)
and
𝑆 ∑𝑥
𝑛 𝑋
(4)
Thedensityvaluesofeachecosystemwereclassifiedintofivedensityclasses,and
eachclasswasgivenascorefrom1to5.Value1representsverylowdensity,2—low
density,3—medium,4—high,and5—veryhighdensity.Thesumofallthelayersledto
anewlayerwiththedensityofdegradedecosystemsinRomaniaandthehotspotanalysis
basedontheGetis–OrdGi*wasperformed.Thepurposeofobtainingacumulativemap
ofalldegradedecosystemsistohighlighttheirspatialdistribution,especiallytheareasof
maximumconcentrationofdegradation,sothatstructuralandnon‐structuralmeasures
toreducedegradationcanbetakenintoaccount.
3.ResultsandDiscussions
TheintegrationofeachRomanianecosystemtypeassessmentindicatedthatthe
coastalecosystemisthemostdegradedecosystem,with86.55%degradedarea(1362.32
km2).Thegrasslandecosystem’sevaluationresultedinclassificationof38.59%areaof
grasslandasbeingdegraded(12,486.37km2),while27.64%ofriverecosystemswere
degraded(23,800.22kmlength),
Ashareof92.92%ofcaveecosystemsweresemi‐degraded,followedby67.67%for
lakesand52.94%forrivers.
Forestecosystemsoccupythelargestareaofallecosystems,andashareof88.54%of
thisecosystemwasnatural,non‐degraded.Thus,fortheidentificationofdegraded
forests,theVCFMODISsensorwasused,whichallowedthemappingofforestswitha
consistencybetween30%and80%,whichshowedaconsistencyreductionofover10%.
Accordingtotheanalysis,only8.52%offorestecosystemsweredegraded(Table2).
Table2.Summaryofecosystemassessmentresults.
EcosystemNatural%Semi‐Degraded%Degraded%Total
Forest(km2)63,651.3488.542115.272.946124.238.5271,890.84
Grassland(km2)7080.0521.8812,790.7239.5312,486.3738.5932,357.14
Cave(no.)154.4231592.9292.66339
Lake(km2)410.9518.281521.4167.67315.9114.052248.28
River(km)16,320.5219.4144,508.8252.942238.8227.6484,068.17
Coastal(km2)42.52.71362.3286.55169.1749.81574
ThelargestareaofforestecosystemswaslocatedintheCarpathianMountains,about
31%intheEasternCarpathians,16%intheWesternCarpathiansand14%intheSouthern
Carpathians(Figure3a).Thelargestdegradedforestecosystemareaswerelocatedinthe
EasternCarpathianMountains,areawheredeforestationhotspotshavebeenidentifiedin
severalsimilarstudies[67,68].Themaincauseisdeforestationresultinginecosystemloss
andfragmentation.Approximately1124km2weredeforestedintheEasternCarpathians,
fromwhich790km2weretransformedintounproductiveland,652.5km2intopastures
Int.J.Environ.Res.PublicHealth2021,18,1141610of22
and177km2intobuilt‐upareas.Atthesametime,significantforestareasweredeforested
intheWesternCarpathians(approximately320km2)andtheSouthernCarpathians(256
km2).Intheplateauandplainareas,themaincauseofdegradationwasconversionto
agriculturalland.
(a)(b)
(c)(d)
(e)(f)
Figure3.DistributionofecosystemsinRomania:(a)forestecosystems;(b)grasslandecosystems;(c)caveecosystems;(d)
riverecosystems;(e)lakeecosystems;(f)coastalecosystems.
ThegrasslandscoverthesecondlargestecosystemareawithinRomanianterritory
(Figure3b).Thelargestdegradedareaofthegrasslandecosystemwasinthe
TransylvanianDepression(approximately2340km2),followedbytheEastern
Carpathianswithapproximately2220km2andtheSub‐Carpathianswith1433km2.
SimilarstudiesongrasslanddegradationintheSub‐Carpathianareahavedrawn
attentiontothedegradationratesofgrasslandinthisareaandtheinfluenceofthisprocess
Int.J.Environ.Res.PublicHealth2021,18,1141611of22
inthemanifestationoflandslides[69].Thesethreelandformsareconcentratedon
approximately50%oftheareaofdegradedgrasslandecosystemsinRomania.Thecauses
aremultiple,fromthepresenceofinvasivespeciessuchasshrubstoagro‐pastoral
activitiessuchasexcessivegrazing.
MostofthecaveecosystemsinRomaniaarelocatedintheWesternCarpathians(179
caves),followedbytheSouthernCarpathians(101caves)andtheEasternCarpathians(21
caves),(Figure3c).Mostofthecaves(50.4%)arelocatedintheContinentalbiogeographic
region,47.8%inthetemperate‐continentalclimaticand1.8%inthecoldsemi‐aridclimate
(DobrogeaPlateau).
Theassessmentofthedegreeofcavedegradationinvolvedtheassessmentofthe
environmentalandundergroundimpactonthecaveecosystem’senvironmentalimpact
andundergroundimpact(slopecollapsesthatledtocloggingofentrancesoropeningof
newentrances,watercatchmentsinthekarstimpluvium,constructions,communication
routesintheperimeterofthecave,storageofhouseholdwasteorothermaterial,excessive
and/ordisorganizedtourism),evaluationofthepaleontologicaldeposit—thanatocoenosis
(fossildepositaffectedbyillegalexcavations/vandalism,presenceofvandalized
bioglyphs),archeologicevaluationofthedeposit(incisions/drawingswithvandalized
coal,stone/bone/metaltoolsdestroyedorremovedfromthe
archaeological/sedimentologicalcontext),assessmentofthebiodiversityofthe
undergroundenvironment—invertebratefauna,vertebratefauna(dependingon
diversityspecifictothefaunaofvertebratesandinvertebratesincaves).
Theanalysisshowedthatapproximately90%ofthecaveecosystemsweresemi‐
degradedandonly2.66%weredegraded.
MostriversinRomaniaspringintheCarpathianMountains,flowingintohillyareas
(smallrivers)andlowlandareas(largerivers).Theirconditionisinfluencedbythe
physical–geographicalandsocioeconomiccharacteristicsoftheareastheypassthrough.
Themountainousareascover46.2%ofthelengthoftheriversinRomania,thehilland
plateauareaconstitutes35.8%andplainandDanubeDeltaareas18%.
Apreponderanceofdegradedandsemi‐degradedriverecosystemswereobserved
inareaswithlowattitudes,intheplains(Figure3d).Therewereapproximately4700km
ofdegradedriversintheRomanianPlainandanother5000kminasemi‐degradedstate,
and685kmwereinanaturalstate.
IntheTransylvanianDepression,approximately4150kmwereclassifiedtoastateof
degradation,towhichwereadded5450kminastateofsemi‐degradation,leavingonly
390kminanaturalstate.
MostlakeecosystemsarelocatedinthesoutheasternandeasternpartofRomania,
respectively,intheDanubeDelta(43.1%),theRomanianPlain(22.17%),theDobrogea
Plateau(6.62%)andtheMoldavianPlateau(5.39%),(Figure3e).Thelargestdegradedarea
oflakeecosystemswaslocatedintheRomanianPlainwithanareaof177.06km2,
representing35.52%ofthelakeecosystemsinthisarea,followedbytheMoldavian
Plateauwith45.9km2andtheDobrogeaPlateauwith32.16km2.Moreover,inthe
DobrogeaPlateauandintheMoldavianPlateauwerethelargestareasofsemi‐degraded
lakeecosystems,116.48and116.09km2,respectively.
ThelargestdegradedareasofcoastalecosystemswereinthePeriboina–CapSingol
area(71.05km2),theMangaliaPlateau(20.34km2)andtheChitucGrind(18.49km2)
(Figure3f).Thelargestsemi‐degradedareaswereintheareasSulina–Periboina(963.83
km2),Periboina–CapSingol(258.11km2)andEforie–VamaVeche(88.81km2).
ThehighestdensityofdegradedforestecosystemswasidentifiedintheNortheastern
Carpathians,thenortherngroupoftheWesternCarpathiansandintheSouthern
CarpathiansandalsointheSub‐Carpathians(Figure4).Moreover,intheseareas,the
confidencelevelofthehotspotwasover99%.Theextensiveforestareasthatwere
deforestedinnorthernRomania,intheMaramureș Mountainarealedtolandscape
degradationanddecreasedairqualityandcontributedtotheaggravationofthenegative
effectsoftorrentialfloodsduetothelimitedcapacitytoretainwaterinthecanopy.
Int.J.Environ.Res.PublicHealth2021,18,1141612of22
Figure4.Forestdegradedecosystemdensityandhotspotanalysis.
Thehighestdensityofdegradedgrasslandecosystemswasidentifiedinthe
NortheasternCarpathians,intheTransylvanianDepression,thenorth,central‐eastern
andsouthernparts,andtheconfidencelevelofthehotspotwasover99%(Figure5).A
highdensitywasalsoobservedintheNordicgroupoftheWesternCarpathians.
Figure5.Grasslanddegradedecosystemdensityandhotspotanalysis.
Int.J.Environ.Res.PublicHealth2021,18,1141613of22
ThedensityofdegradedcaveecosystemsinRomaniaisverylow;however,some
hotspotscanbeobservedinthesouthoftheWesternCarpathiansandintheSouthern
Carpathians(Figure6).Coldspotsidentifiedformountainareaswithahighdensityof
cavesinthecaseoftheApuseniMountainswereduetotheirlowdegradation,manyof
thempresentingspeciesfromtheRedListofRomaniancavefauna[70].Thehotspots
identifiedforthedegradedcaveswereconcentratedinthenorthernApuseniMountains,
theBanatMountains,thesouthernRetezatandParângmountains,aswellasinFagaraș
(Figure6).Intheseareas,therearenumerouscaveswithahighnumberoftourists,which
increasesintemperaturebyupto2degreesandincreasesthepathogenicmicroorganisms,
asdeterminedlocallyandinstudiesconductedforMuierilorCaveandPolovragiCave
(fromParângMountains)andUrșilorCaveandMeziadCave(fromApuseniMountain)[71].
Figure6.Cavedegradedecosystemdensityandhotspotanalysis.
Thedensityofdegradedriverecosystemswasveryhighinthenorthernandcentral
partoftheTransylvanianDepression,inthenorthernhalfoftheWesternPlainbutalsoin
thesouthoftheMoldavianPlateau(Figure7).Statisticallysignificanthotspotswerealso
registeredinthecentralnorthernpartoftheRomanianPlain,inthenortheastofthe
MoldavianPlateauandinthesouthoftheEasternCarpathians.
Theconcentrationofriversinthehighdegradationclassintheplainareas
(MoldavianPlainlocatedinnortheasternRomania,WesternPlainandcenterofthe
RomanianPlain)iscausedbyagriculturalpracticesthatleadtowaterpollutionduetothe
useofclimaticfertilizersandincreaseinsalinizationagainstthebackgroundofincreasing
averagetemperatures.InthecaseoftheTransylvanianDepression,ahighconcentration
ofdegradedareaswasalsoidentified.Thisareaisknowntobedegradedduetothe
expansionofurbanagglomerationsbutalsobecauseofthenumerousruralsettlements
wheretheseweragesystemsdonotcomplywiththeenvironmentalregulationsinforce
sothatnitrogenpollutionishigh[72]sothattheriverdegradationclassishigh.
Thehighestdensityoflakeecosystemswasidentifiedinthecentralpartofthe
RomanianPlain,inthesouthoftheTransylvanianDepressionandinthenorthofthe
MoldavianPlateau(Figure8).Statisticallysignificanthotspotscouldalsobeobservedin
theWesternPlain.
Int.J.Environ.Res.PublicHealth2021,18,1141614of22
Theanalysisofthestateofdegradationofthecoastalenvironmenthighlightedtheareas
ofexpansionofinvasivespeciessuchasAilanthusaltissima,Amorphafruticosa,Elaeagnus
angustifoliaand,fromthecategoryofmarinespecies,RapanavenosaandMnemiopsisleidyi[73].
Figure7.Riverdegradedecosystemdensityandhotspotanalysis.
Figure8.Lakedegradedecosystemdensityandhotspotanalysis.
Theinfluenceofwastewaterdischargesandtheinfluenceoftouristactivitieswas
visiblefortheterrestrialenvironmentofthecoastalarea,notinginparticularthecoastal
Int.J.Environ.Res.PublicHealth2021,18,1141615of22
areasouthoftheDobrogeaPlateau,aswellasthesouthoftheDanubeDelta,territories
wherethedensityoftouristresortsishigh,thusinducinganegativeeffectonthestudied
ecosystem(Figure9).
Figure9.Coastaldegradedecosystemdensityandhotspotanalysis.
Finally,bycombiningthedensitiesofalltheanalyzedecosystems,themapofthe
densityofdegradedecosystemsinRomaniawasobtained(Figure10).
Figure10.Densityofdegradedecosystemsandhotspotanalysis.
Int.J.Environ.Res.PublicHealth2021,18,1141616of22
Thishighlightsastatisticallysignificanthighdensityinthecentralpartofthecountry
duetothenumerousnaturalmeadowsthatareinamediumandhighdegradationstage
duetotheanthropogenicpressureonthem,thehighnumberofriversegmentsthatarein
anadvancedstageofdegradationduetonumeroussourcesofpollutionmainlycaused
bythelackofseptictanksandtheinefficientuseofchemicalfertilizersinagricultureand
thesouthoftheCarpathianMountains,where,alongwiththedecliningforest,thereare
ahighnumberofdegradedmeadowsbutalsodegradedriversegments.
StatisticallysignificanthotspotswerealsoobservedintheMoldavianPlateauandin
thenorthoftheWesternPlainwheretherewasahighnumberofdegradedlakesand
riversashighlightedbytheexpertsinvolvedintheprojecton‐site(Table3).
Table3.ClassificationofreliefunitsinRomaniabydegradationclasses.
Degradation.Low
(1–11)
Medium
(11–15)
High
(15–22)
Reliefunitskmp%kmp%kmp%
EasternCarpathians2778.98.123,597.668.77949.823.2
SouthernCarpathians2759.619.57120.750.34265.830.2
BanatMountains1747.825.14448.463.8780.311.2
Sub‐Carpathians215.51.36884.741.59473.057.2
ApuseniMountains275.62.65976.256.14399.741.3
TransylvanianDepression0.00.02079.08.223
,
183.691.8
TheWesternHills951.67.48034.862.73825.729.9
MehedintiPlateau18.12.3519.565.1259.732.6
TheGeticPlateau1879.413.67247.752.64654.933.8
ThePlateauofMoldova1215.95.312,506.054.89091.939.9
WesternCamp4059.425.310,012.962.32001.912.5
TheRomanianPlain24
,
664.950.622
,
218.345.51903.23.9
DobrogeaPlateau6587.665.13424.233.8105.51.0
TheDanubeDelta4403.199.043.11.00.00.0
Low,mediumandhighclasseswereobtainedusinganatural‐breakclassificationofthedensityofdegradedraster
ecosystemspresentedinFigure10.
Relativeoperatingcharacteristics(ROC)analysiswasusedtodeterminetheaccuracy
ofdeterminingthedegradationstageforthesixtypesofecosystemsanalyzed.The
methodprovidesacurvegivenbyaconfusionmatrixofbinaryclassificationaccordingto
fourpossibleoutcomes:truepositive,truenegative,falsepositiveandfalsenegative.The
resultsarederivedbycomparingresultsofthemodelwiththegroundtruthsurvey(GTS),
whichareestablishedbythroughfieldcampaignscarriedoutinspring,summerand
autumnforall6typesofecosystemswiththehelpof35environmentalexpertsfromthe
project,whoaimedtoidentifythestateofecosystemswithanemphasisontheir
degradation.StatisticalanalyseswereconductedusingtheSPSSsoftwareprogram.
Theoutcomesarederivedbycomparingresultsofthemodelwiththegroundtruth
survey(GTS),approximately100pointschosenrandomlyforeachtypeofecosystemso
astocoverallthecountiesofRomania.TheROCcurveisamethodthatcomparestrue‐
positiveratesagainstfalse‐positiverates.Foreachrandompoint,abufferareaof300m
wasanalyzedtoverifythepresenceorabsenceofdegradation.
FollowingtheanalysisofROCcurvesforthesixtypesofdegradedecosystems,itcan
beseenthatthemodelsthathaveahighdegreeofrepresentativenessfortheanalyzed
problemwerethosethatfocusedonidentifyingdegradedecosystems(characterizedbya
valueoftheareaofundertheROCcureof0.916)andthemodelfordeterminingthe
degradedlakes(characterizedbyavalueoftheareaundertheROCcureof0.918)(Figure
11).
Int.J.Environ.Res.PublicHealth2021,18,1141617of22
(a)(b)
(c)(d)
(e)(f)
Figure11.Relativeoperatingcharacteristics(ROC)curveandAUROCvaluefordegraded
ecosystems.(a)Forestecosystems;(b)grasslandecosystems;(c)caveecosystems;(d)river
ecosystems;(e)lakeecosystems;(f)coastalecosystems.
Inthecaseofthemodelsthattargetedtheecosystemsofforests,cavesandrivers,
lowervalueswerecalculatedbutlocatedabovethelimitof0.800,consideredathreshold
valueinordertoframetheresultsinthecategoryofstrongandmoderatemodels[74].
However,thesevaluesarejustified,takingintoaccountthediversityofthecausesof
degradationaswellastheirunevendistributionatthenationallevel[75].Themodelwith
alowvalidationratewasthecoastalecosystemsmodelforwhichimprovementscanbe
madeinfuturestudies,aimedatloweringthedistinctionbetweenthedistributionof
disturbingfactorsonlandandwaterandtheirdispersionwithdistancefromshore[76].
Int.J.Environ.Res.PublicHealth2021,18,1141618of22
However,weconsideredthat,forthepresentstudy,weshouldkeepallsixmodelssothat
thefinalmapofcumulativedegradationofallecosystemscanbemadeatthenational
levelanddrawattentiontohotspotsthatrequiredetailedstudiesorcasestudiestoanalyze
intimethecurrentsituationofdegradation.
4.Conclusions
Identifyingdegradedecosystemsisakeyelementoftheecologicalreconstruction
strategy.Inthissense,theiranalysiscontributestoabetterunderstandingofthe
mechanismsthathaveledtochangesinthestructureandfunctioningofecosystems,with
adirectimpactonecosystemservices.Theconceptualapproachbasedonthemapping
andassessmentofecosystemservicescontributessignificantlytothedevelopmentofan
integratedvisionofecologicalreconstruction.
Representedbythevarietyofecosystems,speciesandgenes,thebiodiversityin
Romaniaisthenationalnaturalcapital,beinganintegralpartofsustainabledevelopment,
byprovidinggoodsandservicessuchasfood,carbonsequestrationandredistributionof
marineandterrestrialwater,whichunderlieprosperity,economicdevelopment,social
welfareandqualityoflife.
Humanactivitiesareassessedintermsofdirectorindirectimpactonthecomponents
ofbiologicaldiversityinordertoapplyappropriatemeasurestominimizeadverseeffects,
reconstruction,rehabilitationandremediationofaffectedecosystems.
Consideringthefactthatforall6typesofecosystemsagroupof35environmental
professionalsperformedfieldstudiesandidentifiedthestateoftheecosystemswithan
emphasisontheirdegradation,weconsiderthatthedatabaseusedreachesthedegreeof
detailnecessarytodrawgeneralconclusionsintermsoftheconcentrationofdegraded
areasinRomania.Followingthehotspotanalysis,itwasidentifiedthatthelargest
degradedsurfacesarethecoastalones(49.80%),followedbythegrasslandecosystems
(38.59%)andthecaveecosystems(2.66%),whilethedegradedriversecosystemsare
degradedbyaproportionof27.64%,degradedforestecosystemsby8.52%,anddegraded
lakesecosystemsby14.05%.Relativeoperatingcharacteristics(ROC)analysishighlights
thatthemodelsthathaveahighdegreeofrepresentativenessarethegrassland
ecosystems(characterizedbyavalueoftheareaofundertheROCcurveof0.916)and
lakeecosystems(withROCcurevalueof0.918).Ecosystemscharacterizedbyagreat
diversityofthecausesofdegradationaswellastheirunevendistributionatthenational
levelsuchastheecosystemsofforests,cavesandriverswithaROCvalueabovethelimit
of0.800.
Thedegradationofaparticularecosystemmustbeassessedbythecharacteristicsof
theecosystemtoberestored.Themethodologyforassessingthedegreeofdegradationof
ecosystemsisbasedonaseriesofactivities,criteria,methodsandproceduresfor
estimatingthevaluesoftheparametersthatindicatethestateoftheseecosystems.
Therefore,itisimportanttodiscoverthenaturalprocessesthattakeplaceinthesystem
andtoanalyzethechangesproducedbytheimpactofanthropogenicactivities.
Conservationstatusassessmentandmonitoringconsistsofidentifyingdirectorindirect
risksandassessingthedegreeofhabitatthreat.
Thestudycarriedoutonthechangesthatoccurredinthenaturalenvironmentonthe
Romanianterritoryshowshowthedeteriorationandpollutionoftheareasisdirectly
relatedbothtotheindustrialactivitiesintheareaandtotheinevitableclimaticchanges
andothernaturalphenomena.
Inconclusion,thehighestdensityofdegradedecosystemsinRomaniaislocatedin
thecentralpart,intheTransylvanianDepressionandsouthoftheCarpathianMountains,
intheSub‐Carpathians.Themainfactorsthatledtothedegradationofecosystemsin
Romaniawereanthropogenicbutalsonatural.
Thiscomprehensivestudyisanimportantstepinthefieldofecological
reconstructioninRomania,asthestartingpointforfuturestudiesandsupplementary
rehabilitationactions.
Int.J.Environ.Res.PublicHealth2021,18,1141619of22
SupplementaryMaterials:Thefollowingareavailableonlineat
www.mdpi.com/article/10.3390/ijerph182111416/s1,Ecosystemservicesandtypeandsourcesof
degradationusedinthisstudy.
AuthorContributions:Conceptualization,S.A.andC.G.;methodology,S.A.andI.O.;software,I.O.
andS.R.(StelianaRodino);validationS.R.(SandaRoșca);formalanalysis,S.A.andC.G.;
investigation,C.G.,S.A.andI.O.;resources,C.G.,S.A.andI.O.;datacurationI.O.andS.R.(Steliana
Rodino);writing—originaldraftpreparation,S.A.andI.O,;writing—reviewandediting,S.R.
(SandaRoșca);visualization,I.O.;supervision,S.A.andC.G.Allauthorshavereadandagreedto
thepublishedversionofthemanuscript.
Funding:Thisresearchreceivednoexternalfunding.
InstitutionalReviewBoardStatement:Notapplicable.
InformedConsentStatement:Notapplicable.
ConflictsofInterest:Theauthorsdeclarenoconflictofinterest.
References
1. Chu,E.W.;Karr,J.R.Environmentalimpact:Concept,consequences,measurement.Ref.Modul.LifeSci.2017,doi:10.1016/b978‐
0‐12‐809633‐8.02380‐3.
2. Brumă,I.S.TheevolutionoforganicagriculturallandareasintheemergingcountriesoftheEuropeanUnionAgric.Econ.Rural
Dev.2014,XI,167–179.
3. Malhi,Y.;Franklin,J.;Seddon,N.;Solan,M.;Turner,M.G.;Field,C.B.;Knowlton,N.Climatechangeandecosystems:Threats,
opportunitiesandsolutions.Philos.Trans.R.Soc.B:Biol.Sci.2020,375,20190104,doi:10.1098/rstb.2019.0104.
4. Popescu,V.D.;Rozylowicz,L.;Niculae,I.M.;Cucu,A.L.;Hartel,T.Species,habitats,society:Anevaluationofresearch
supportingEU’sNatura2000network.PLoSONE2014,9,e113648.
5. Rosca,S.‐M.;Simonca,V.;Bilasco,S.;Vescan,I.;Fodorean,I.;Petrea,D.‐P.Theassessmentoffavourabilityandspatio‐temporal
dynamicsofpinusmugointheromaniancarpathiansusingGIStechnologyandlandsatimages.Sustainability2019,11,1–30,
doi:10.3390/su11133678.
6. Corpade,A.M.;Corpade,C.;Petrea,D.;Moldovan,C.Integratingenvironmentalconsiderationsintotransportationplanning
throughstrategicenvironmentalassessment.J.Settl.Spat.Plan.2012,3,115–120.
7. Plesnik,J.;Hosek,M.;Condé,S.AConceptofaDegradedEcosysteminTheoryandPractice—AReview;ETC/BDReporttotheEEA;
EuropeanEnvironmentAgency:Paris,France,2011;pp.1–11.
8. Ghazoul,J.;Burivalova,Z.;Garcia‐Ulloa,J.;King,L.A.Conceptualizingforestdegradation.TrendsEcol.Evol.2015,30,622–632,
doi:10.1016/j.tree.2015.08.001.
9. Maes,J.;Teller,A.;Erhard,M.;Grizzetti,B.;Barredo,J.I.;Paracchini,M.L.;Condé,S.;Somma,F.;Orgiazzi,A.;Jones,A.;etal.
MappingandAssessmentofEcosystemsandtheirServices:AnAnalyticalFrameworkforEcosystemCondition;PublicationsOfficeof
theEuropeanUnion:Luxembourg,2018;Availableonline:https://publications.europa.eu/en/publication‐detail/‐
/publication/42d646b6‐1c3a‐11e8‐ac73‐01aa75ed71a1/language‐en(accessedon01March2021).
10. Avram,S.;Croitoru,A.;Gheorghe,C.A.;Nicolae,M.;Badarau,S.A.;Barbos,I.M.;Radu,B.;Ciocanea,C.M.;Ciornei,L.;Corpade,
A.M.;etal.CartareaEcosistemelorNaturalesiSeminaturaleDegradate;RomanianAcademyPublishingHouse:Bucharest,Romania,
2018.
11. Grădinaru,S.R.;Iojă,C.I.;Vânău,G.O.;Onose,D.A.Multi‐dimensionalityoflandtransformations:fromdefinitionto
perspectivesonlandabandonment.CarpathianJ.EarthEnviron.Sci.2020,15,167–177,doi:10.26471/cjees/2020/015/119.
12. Senf,C.;Seidl,R.MappingtheforestdisturbanceregimesofEurope.Nat.Sustain.2021,4,63–70,doi:10.1038/s41893‐020‐00609‐
y.
13. Potapov,P.;Li,X.;Hernandez‐Serna,A.;Tyukavina,A.;Hansen,M.C.;Kommareddy,A.;Pickens,A.;Turubanova,S.;Tang,
H.;Silva,C.E.;etal.MappingglobalforestcanopyheightthroughintegrationofGEDIandLandsatdata.RemoteSens.Environ.
2021,253,112165,doi:10.1016/j.rse.2020.112165.
14. Kumar,P.;Krishna,A.P.;Rasmussen,T.M.;Pal,M.K.RapidEvaluationandvalidationmethodofabovegroundforestbiomass
estimationusingopticalremotesensingintundireservedforestarea,India.ISPRSInt.J.Geo‐Inf.2021,10,29,
doi:10.3390/ijgi10010029.
15. Williams,L.J.;Cavender‐Bares,J.;Townsend,P.A.;Couture,J.J.;Wang,Z.;Stefanski,A.;Messier,C.;Reich,P.B.Remotespectral
detectionofbiodiversityeffectsonforestbiomass.Nat.Ecol.Evol.2021,5,46–54,doi:10.1038/s41559‐020‐01329‐4.
16. Meng,B.;Liang,T.;Yi,S.;Yin,J.;Cui,X.;Ge,J.;Hou,M.;Lv,Y.;Sun,Y.Modelingalpinegrasslandabovegroundbiomassbased
onremotesensingdataandmachinelearningalgorithm:AcasestudyineastoftheTibetanPlateau,China.IEEEJ.Sel.Top.
Appl.EarthObs.Remote.Sens.2020,13,2986–2995,doi:10.1109/JSTARS.2020.2999348.
17. Wu,J.;Liang,S.Assessingterrestrialecosystemresilienceusingsatelliteleafareaindex.RemoteSens.2020,12,1–20,
doi:10.3390/rs12040595.
Int.J.Environ.Res.PublicHealth2021,18,1141620of22
18. Kang,W.;Wang,T.;Liu,S.Theresponseofvegetationphenologyandproductivitytodroughtinsemi‐aridregionsofnorthern
China.RemoteSens.2018,10,727,doi:10.3390/rs10050727.
19. Pastick,N.J.;Wylie,B.K.;Wu,Z.SpatiotemporalanalysisofLandsat‐8andSentinel‐2datatosupportmonitoringofdryland
ecosystems.RemoteSens.2018,10,791,doi:10.3390/rs10050791.
20. Maurya,P.;Das,A.K.;Kumari,R.Managingthebluecarbonecosystem:AremotesensingandGISapproach.InAdvancesin
RemoteSensingforNaturalResourceMonitoring;WileyOnlineBooks:London,UK,2021;doi:10.1002/9781119616016.ch13.
21. Woodgate,W.;Disney,M.;Armston,J.D.;Jones,S.D.;Suarez,L.;Hill,M.J.;Wilkes,P.;Soto‐Berelov,M.;Haywood,A.;Mellor,
A.AnimprovedtheoreticalmodelofcanopygapprobabilityforLeafAreaIndexestimationinwoodyecosystems.For.Ecol.
Manag.2015,358,303–320,doi:10.1016/j.foreco.2015.09.030.
22. Li,Z.;Xu,D.;Guo,X.Remotesensingofecosystemhealth:Opportunities,challenges,andfutureperspectives.Sensors2014,14,
21117–21139,doi:10.3390/s141121117.
23. Weiskopf,S.R.;Rubenstein,M.A.;Crozier,L.G.;Gaichas,S.;Griffis,R.;Halofsky,J.E.;Hyde,K.J.W.;Morelli,T.L.;Morisette,
J.T.;Muñoz,R.C.;etal.Climatechangeeffectsonbiodiversity,ecosystems,ecosystemservices,andnaturalresource
managementintheUnitedStates.Sci.TotalEnviron.2020,733,137782,doi:10.1016/j.scitotenv.2020.137782.
24. Praticò,S.;Solano,F.;DiFazio,S.;Modica,G.Machinelearningclassificationofmediterraneanforesthabitatsingoogleearth
enginebasedonseasonalsentinel‐2time‐seriesandinputimagecompositionoptimisation.RemoteSens.2021,13,586,
https://doi.org/10.3390/rs13040586.
25. Yousefi,S.;Pourghasemi,H.R.;Avand,M.;Janizadeh,S.;Tavangar,S.;Santosh,M.Assessmentoflanddegradationusing
machine‐learningtechniques:Acaseofdecliningrangelands.LandDegrad.Develop.2021,32,1452–1466,doi:10.1002/ldr.3794.
26. Papp,L.;vanLeeuwen,B.;Szilassi,P.;Tobak,Z.;Szatmári,J.;Árvai,M.;Mészáros,J.;Pásztor,L.Monitoringinvasiveplant
speciesusinghyperspectralremotesensingdata.Land2021,10,29,doi:10.3390/land10010029.
27. Roman,A.;Gafta,D.Proximitytosuccessionallyadvancedvegetationpatchescanmakeallthedifferencetoplantcommunity
assembly.PlantEcol.Divers.2013,6,269–278,doi:10.1080/17550874.2013.771222.
28. Palaiologou,P.;Essen,M.;Hogland,J.;Kalabokidis,K.Locatingforestmanagementunitsusingremotesensingand
geostatisticaltoolsinnorth‐centralWashington,USA.Sensors2020,20,2454,dou:10.3390/s20092454.
29. Maes,J.;Teller,A.;Erhard,M.;Condé,,S.;Vallecillo,S.;Barredo,J.I.;Paracchini,M.L.;AbdulMalak,D.;Trombetti,M.;Vigiak,
O.;etal.MappingandAssessmentofEcosystemsandtheirServices:AnEUEcosystemAssessment;JRCScienceforPolicyReport;
PublicationsOfficeoftheEuropeanUnion:Ispra,Italy,2020;p.452,doi:10.2760/757183.
30. EuropeanCommission.Directorate‐GeneralfortheEnvironment,MappingandAssessmentofEcosystemsandtheirServices
MappingandAssessingtheConditionofEurope’sEcosystems:ProgressandChallenges:3rdReport—Final,March2016.
Availableonline:https://doi.org/10.2779/351581(accessedon08February2021).
31. EC,2020.CommunicationfromtheCommissiontotheEuropeanParliament,theCouncil,theEuropeanEconomicandSocialCommittee
andtheCommitteeoftheRegions,EUBiodiversityStrategyfor2030;EuropeanCommission:Brussels,Belgium,2020.
32. Kottek,M.;Grieser,J.;Beck,C.;Rudolf,B.;Rubel,F.WorldmapoftheKöppen‐Geigerclimateclassificationupdated.Meteorol.
Z.2006,15,259–263,doi:10.1127/0941‐2948/2006/0130.
33. EEA.BiogeographicalRegions[WWWDocument].2016.Availableonline:https://www.eea.europa.eu/data‐and‐
maps/data/biogeographical‐regions‐europe‐3(accessedon10February2021).
34. Winkler,M.;Lamprecht,A.;Steinbauer,K.;Hülber,K.;Theurillat,J.‐P.;Breiner,F.;Choler,P.;Ertl,S.;GutiérrezGirón,A.;Rossi,
G.;etal.Therichsidesofmountainsummits—Apan‐Europeanviewonaspectpreferencesofalpineplants.J.Biogeogr.2016,
43,2261–2273,doi:10.1111/jbi.12835.
35. APIA.LPIS[WWWDocument].2017.Availableonline:https://lpis.apia.org.ro(accessedon14January2021).
36. DiMiceli,C.;Carroll,M.;Sohlberg,R.;Kim,D.;Kelly,M.;Townshend,J.MOD44BMODIS/TerraVegetationContinuousFields
YearlyL3Global250mSINGrid[WWWDocument].2015.ASAEOSDISLandProcessesDAAC.Availableonline:
https://doi.org/https://doi.org/10.5067/MODIS/MOD44B.006(accessedon09February2021).
37. Hansen,M.C.;Potapov,P.V.;Moore,R.;Hancher,M.;Turubanova,S.A.;Tyukavina,A.;Thau,D.;Stehman,S.V.;Goetz,S.J.;
Loveland,T.R.;etal.High‐resolutionglobalmapsof21st‐centuryforestcoverchange.Science2013,342,850–853,
doi:10.1126/science.1244693.
38. APIA.LPIS[WWWDocument]2013.Availableonline:https://lpis.apia.org.ro(accessedon11February2021).
39. ANCPI.Geoportal[WWWDocument]2017.Availableonline:http://geoportal.ancpi.ro/geoportal(accessedon15February
2021).
40. EEA2016b.EU‐DEM[WWWDocument].CopernicusLandMonitoringService.Availableonline:
https://land.copernicus.eu/imagery‐in‐situ/eu‐dem/eu‐dem‐v1‐0‐and‐derived‐products/eu‐dem‐v1.0/view(accessedon03
January2021).
41. INS.TheGeneralAgriculturalCensus[WWWDocument].2017.Availableonline:https://insse.ro/cms(accessedon18February
2021).
42. JRC.EuropeanSettlementMap[WWWDocument].2016.Availableonline:https://land.copernicus.eu/pan‐
european/GHSL/european‐settlement‐map/EUGHSL2014/view(accessedon22February2021).
43. ESA.CopernicusOpenAccessHub[WWWDocument].2017.Availableonline:https://scihub.copernicus.eu/dhus/#/home
(accessedon28March2021).
Int.J.Environ.Res.PublicHealth2021,18,1141621of22
44. Natura2000Sites.[WWWDocument].2017.Availableonline:http://www.mmediu.ro/articol/date‐gis/434(accessedon20
December2020).
45. EEA.CorineLandCover(CLC)2012[WWWDocument].2016.Availableonline:http://land.copernicus.eu/pan‐
european/corine‐land‐cover/clc‐2012/view(accessedon16December2020).
46. EEA.EuropeanCatchmentsandRiversNetworkSystem(Ecrins).[WWWDocument].2012.Availableonline:
https://www.eea.europa.eu/data‐and‐maps/data/european‐catchments‐and‐rivers‐network(accessedon14November2020).
47. OSM.OpenStreetMap[WWWDocument].2017.Availableonline:https://download.geofabrik.de(accessedon04April2021).
48. EEA.EU‐Hydro—RiverNetworkDatabase[WWWDocument]2017.Availableonline:https://land.copernicus.eu/imagery‐in‐
situ/eu‐hydro/eu‐hydro‐river‐network‐database(accessedon11December2020).
49. EEA.RiparianZones2012 —LandUseLandCover[WWWDocument].2012.Availableonline:
http://land.copernicus.eu/local/riparian‐zones/land‐cover‐land‐use‐lclu‐image/view(accessedon09November2020).
50. EEA.Waterbase—UWWTD:UrbanWasteWaterTreatmentDirective[WWWDocument].2015.Availableonline:
https://www.eea.europa.eu/data‐and‐maps/data/waterbase‐uwwtd‐urban‐waste‐water‐treatment‐directive(accessedon06
February2021).
51. INCPA.RomaniaSoilsMap[WWWDocument].2017.Availableonline:https://www.icpa.ro(accessedon02April2021).
52. INS.NumberofInhabitants[WWWDocument].2017.Availableonline:https://insse.ro/cms(accessedon07November2020).
53. NASAUSGS.EarthExplorer[WWWDocument],2017.Availableonline:https://earthexplorer.usgs.gov(accessedon17
November2020).
54. Niculae,M.I.;Avram,S.;Vanau,G.O.;Patroescu,M.EffectivenessofNatura2000networkinRomanianAlpineBiogeographical
Region:Anassessmentbasedonforestlandscapeconnectivity.Ann.For.Res.2014,60,19–32,doi:10.15287/afr.2016.793.
55. Roman,A.;Ursu,T.‐M.;Onțel,I.;Marușca,T.;GrigorePop,O.;Milanovici,S.;Sin‐Schneider,A.;AdrianaGheorghe,C.;Avram,
S.;Fărcaș,S.;etal.DeviationfromgrazingoptimuminthegrasslandhabitatsofRomaniawithinandoutsidethenatura2000
network.InHabitatsoftheWorld
—
BiodiversityandThreats;IntechOpen:London,UK,2019,doi:10.5772/intechopen.85734.
56. Donato,C.R.;RibeiroAD,S.;Souto,L.D.S.Aconservationstatusindex,asanauxiliarytoolforthemanagementofcave
environments.Int.J.Speleol.2014,43,315–322,doi:10.5038/1827‐806x.43.3.8.
57. Avram,S.;Ciuinel,A.M.;Iu,C.;Manolache,A.M.;Negreanu,S.Ș.;Manta,N.Applyinganewmethodologyforcavedegradation
assessmentinRomania—CasestudyonRodnaMountainsNationalPark.Extrem.LifeBiospeol.Astrobiol.2017,9,22–31.
58. Ciocănea,C.M.;Corpade,P.C.;Onose,D.A.;Vânău,G.O.;Maloş,C.;Petrovici,M.;Gheorghe,C.;Dedu,S.;Manta,N.;Szép,R.E.
TheassessmentofloticecosystemsdeFgradationusingmulti‐Criteriaanalysisandgistechniques.CarpathianJ.EarthEnviron.
Sci.2019,14,255–268,doi:10.26471/cjees/2019/014/077.
59. Romanelli,A.;Esquius,K.S.;Massone,H.E.;Escalante,A.H.GIS‐basedpollutionhazardmappingandassessmentframework
ofshallowlakes:SoutheasternPampeanlakes(Argentina)asacasestudy.Environ.Monit.Assess.2013,185,6943–6961,
doi:10.1007/s10661‐013‐3077‐7.
60. Mirzaei,M.;Solgi,E.;Salman‐Mahiny,A.Evaluationofsurfacewaterquality.Arch.Hyg.Sci.2016,5,265–277.
61. Niculae,M.I.;Avram,S.;Corpade,A.M.;Dedu,S.;Gheorghe,C.A.;Pascu,I.S.;Ontel,I.;Rodino,S.Evaluationofthequalityof
lenticecosystemsinRomaniabyaGISbasedWRASTICmodel.Scient.Rep.2021,11,1–10,doi:10.1038/s41598‐021‐84802‐9.
62. Avram,S.;Cipu,C.;Corpade,A.‐M.;Gheorghe,C.A.;Manta,N.;Niculae,M.‐I.;Pascu,I.S.;Szép,R.E.;Rodino,S.GIS‐Based
multi‐criteriaanalysismethodforassessmentoflakeecosystemsdegradation—CasestudyinRomania.Int.J.Environ.Res.
PublicHealth2021,18,5915,doi:10.3390/ijerph18115915.
63. Getis,A.;Ord,J.K.Theanalysisofspatialassociationbyuseofdistancestatistics.Geogr.Anal.1992,24,189–206,
doi:10.1111/j.1538‐4632.1992.tb00261.x.
64. Ord,J.K.;Getis,A.Localspatialautocorrelationstatistics:Distributionalissuesandanapplication.Geogr.Anal.1995,27,286–
306,doi:10.1111/j.1538‐4632.1995.tb00912.x.
65. Sánchez‐Martín,J.M.;Rengifo‐Gallego,J.I.;Blas‐Morato,R.Hotspotanalysisversusclusterandoutlieranalysis:Anenquiry
intothegroupingofruralaccommodationinExtremadura(Spain).ISPRSInt.J.Geo‐Inf.2019,8,176,doi:10.3390/ijgi8040176.
66. ESRI.HowHotSpotAnalysis(Getis‐OrdGi*)Works[WWWDocument].2020.Availableonline:
https://desktop.arcgis.com/en/arcmap/10.3/tools/spatial‐statistics‐toolbox/h‐how‐hot‐spot‐analysis‐getis‐ord‐gi‐spatial‐
stati.htm(accessedon21April2021).
67. Griffiths,P.;Kuemmerle,T.;Baumann,M.;Radeloff,V.C.;Abrudan,I.V.;Lieskovsky,J.;Hostert,P.Forestdisturbances,forest
recovery,andchangesinforesttypesacrosstheCarpathianecoregionfrom1985to2010basedonLandsatimagecomposites.
RemoteSens.Environ.2014,151,72–88.
68. Drăgan,M.;Mureşan,G.‐A.;Benedek,J.Mountainwood‐pasturesandforestcoverlossinRomania.J.LandUseSci.2020,14,
397–409,doi:10.1080/1747423X.2020.1719224.
69. Malek,Z.;Zumpano,V.;Haydar,H.ForestmanagementandfuturechangestoecosystemservicesintheRomanian
Carpathians.Environ.Dev.Sustain.2018,20,1275–1291,doi:10.1080/1747423X.2020.1719224.
70. Moldovan,O.T.;Iepure,S.;Brad,T.;Kenesz,M.;Mirea,I.C.;Năstase‐Bucur,R.DatabaseofRomaniancaveinvertebrateswith
aRedListofcavespeciesandalistofhotspot/coldspotcaves.Biodivers.DataJ.2020,8,e53571,doi:10.3897/BDJ.8.e53571.
71. Constantin,S.;Mirea,I.C.;Petculescu,A.;Arghir,R.A.;Măntoiu,D.S.;Kenesz,M.;Robu,M.;Moldovan,O.T.Monitoringhuman
impactinshowcaves.AstudyoffourRomaniancaves.Sustainability2021,13,1619.
Int.J.Environ.Res.PublicHealth2021,18,1141622of22
72. WorldBank.RomaniaWaterDiagnosticReport:MovingtowardEUCompliance,Inclusion,andWaterSecurity;WorldBank:
Washington,DC,USA,2018.
73. Sitar,C.;Barbu‐Tudoran,L.;Moldovan,O.T.Morphologicalandmicromorphologicaldescriptionofthelarvaeoftwoendemic
speciesofduvalius(Coleoptera,Carabidae,Trechini).Biology2021,10,627.
74. Moresi,F.V.;Maesano,M.;Collalti,A.;Sidle,R.C.;Matteucci,G.;ScarasciaMugnozza,G.Mappinglandslidepredictionthrough
aGIS‐basedmodel:AcasestudyinacatchmentinsouthernItaly.Geosciences2020,10,309,doi:10.3390/geosciences10080309.
75. Hysa,A.;Spalevic,V.;Dudic,B.;Roșca,S.;Kuriqi,A.;Bilașco,Ș.;Sestras,P.Utilizingtheavailableopen‐sourceremotelysensed
datainassessingthewildfireignitionandspreadcapacitiesofvegetatedsurfacesinRomania.RemoteSens.2021,13,2737,
doi:10.3390/rs13142737.
76. Shidong,Z.ConceptofEcosystemServicesandEcosystemManagement;Springer:Berlin/Heidelberg,Germany,2013,
doi:10.1007/978‐3‐642‐38733‐3_2.