ArticlePDF Available

Carpinus orientalis forests in Georgian Colchis: First insights

Authors:

Abstract and Figures

Colchis (Caucasus Ecoregion, Euxinian Province) is a region with unique Tertiary relict biota and high species and vegetation diversity. However, its vegetation has been only little studied by Braun-Blanquet methods so far. Based on original field data (20 phytosociological relevés), we describe a novel vegetation type of calciphilous and thermophilous Carpinus orientalis forests in western Geor-gia (Campanulo alliariifoliae-Carpinetum orientalis ass. nova). This species-rich community inhabits sunny limestone slopes and is developed under a humid warm-temperate climate. We present the community in the context of relevés from the literature (n = 105 in total) of Carpinus orientalis dominated or co-dominated forests across the whole Euxinian Province (southern Black Sea coast). Ordination and unsupervised classification analyses revealed the main pattern in their species composition closely linked to biogeography backed up by macroclimatic gradients and vegetation history. Eastwards, Bal-kan and Mediterranean species decrease gradually, while Euxinian and Euxino-Caucasian species are more frequent. Although the analysed forest communities were highly variable in species composition, they all shared a subset of submediterranean and Euxinian species. Numerous Eastern Euxinian and Euxino-Caucasian endemics (e.g. Campanula alliariifolia, Klasea quinquefolia) are characteristic of the community recorded in Georgia. These are accompanied by evergreen species (e.g. Smilax excelsa, Vinca major subsp. hirsuta) and common forest mesophytes (e.g. Campanula rapunculoides, Carex digitata) both indicating a relatively mild and precipitation-rich climate. The association Erico-Carpinetum described in NE Turkey was identified as the most similar unit to the new community. As it is the type association of the alliance Castaneo sativae-Carpinion orientalis, we adopted this assignment for the new association from Georgia.
Content may be subject to copyright.
37
Tuexenia 41: 37–51. Göttingen 2021.
doi: 10.14471/2021.41.012, available online at www.tuexenia.de
Carpinus orientalis forests in Georgian Colchis:
First insights
Carpinus orientalis-Wälder in der georgischen Kolchis: Erste Einblicke
Pavel Novák1 * , Vladimir Stupar2 & Veronika Kalníková1, 3
1Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 267/2,
61137 Brno, Czech Republic; 2Faculty of Forestry, University of Banja Luka, S. Stepanovića 75A,
78000 Banja Luka, Bosnia and Herzegovina; 3Beskydy Protected Landscape Area Administration,
Nádražní 36, 756 61 Rožnov pod Radhoštěm, Czech Republic
*Corresponding author, e-mail: pavenow@seznam.cz
Abstract
Colchis (Caucasus Ecoregion, Euxinian Province) is a region with unique Tertiary relict biota and
high species and vegetation diversity. However, its vegetation has been only little studied by Braun-
Blanquet methods so far. Based on original field data (20 phytosociological relevés), we describe
a novel vegetation type of calciphilous and thermophilous Carpinus orientalis forests in western Geor-
gia (Campanulo alliariifoliae-Carpinetum orientalis ass. nova). This species-rich community inhabits
sunny limestone slopes and is developed under a humid warm-temperate climate. We present the com-
munity in the context of relevés from the literature (n = 105 in total) of Carpinus orientalis dominated
or co-dominated forests across the whole Euxinian Province (southern Black Sea coast). Ordination and
unsupervised classification analyses revealed the main pattern in their species composition closely
linked to biogeography backed up by macroclimatic gradients and vegetation history. Eastwards, Bal-
kan and Mediterranean species decrease gradually, while Euxinian and Euxino-Caucasian species are
more frequent. Although the analysed forest communities were highly variable in species composition,
they all shared a subset of submediterranean and Euxinian species. Numerous Eastern Euxinian and
Euxino-Caucasian endemics (e.g. Campanula alliariifolia, Klasea quinquefolia) are characteristic of the
community recorded in Georgia. These are accompanied by evergreen species (e.g. Smilax excelsa,
Vinca major subsp. hirsuta) and common forest mesophytes (e.g. Campanula rapunculoides, Carex
digitata) both indicating a relatively mild and precipitation-rich climate. The association Erico-
Carpinetum described in NE Turkey was identified as the most similar unit to the new community. As
it is the type association of the alliance Castaneo sativae-Carpinion orientalis, we adopted this assign-
ment for the new association from Georgia.
Keywords: biogeography, Carpinus orientalis, Caucasus, Colchis, ecology, Euxinia, forest vegetation,
Georgia, phytosociology
Erweiterte deutsche Zusammenfassung am Ende des Artikels
1. Introduction
Colchis is an area encompassing the south-eastern shore of the Black Sea in Turkey,
Georgia and Russia. It covers the western slopes of the Greater and Lesser Caucasus, the
northern slopes of the Pontic range and the Colchic Lowland. It is well-known for its unique
Manuscript received 30 March 2021, accepted 10 August 2021
Published online 31 October 2021
Co-ordinating Editor: Péter Török
38
relict biota (ZAZANASHVILI et al. 2000, NAKHUTSRISHVILI et al. 2015). It is one of the most
important Tertiary refugia across the temperate zone of the northern hemisphere. The biolog-
ical legacy of those times has survived in only a few warm-temperate regions with an excep-
tionally stable environment (MILNE & ABBOTT 2002). Colchis is a part of the Caucasus
Ecoregion. The Caucasus is listed among the top 34 biologically richest and most endan-
gered biodiversity hotspots globally (MITTERMEIER et al. 2004, ZAZANASHVILI & MALLON
2009). In terms of phytogeography, Colchis represents an eastern sector of the Euxinian
Province encompassing the southern coast of the Black Sea between Bulgaria and Russia
(TAKHTAJAN 1986). Euxinia has diverse flora and vegetation reflecting its position between
the Balkans, the Mediterranean Basin, Anatolia and the Caucasus. Deciduous forests with
evergreen Tertiary relict shrubs (e.g. Ilex colchica, Prunus laurocerasus, Rhododendron
ponticum) are its unique feature (TAKHTAJAN 1986). They were identified as temperate rain-
forests by some authors (e.g. NAKHUTSRISHVILI et al. 2015). Recent phylogeographical and
phylogenetic research on forest vascular plants confirmed the unique biogeographical posi-
tion of the province within western Eurasia (e.g. GRIMM & DENK 2014, VOLKOVA et al.
2020). Euxinia is also a region of diverse climate regimes. Its Mediterranean character with
dry summer periods gradually disappears eastwards and the easternmost part of the province
is precipitation-rich throughout the year. The climate of Colchis is humid warm-temperate
(WALTER 1970). With annual precipitation of around 1800–2000 mm (but locally exceeding
4000 mm), it is one of the most humid regions of western Eurasia. The absence of regular
winter frosts at low elevations is another essential climatic feature of Colchis (DENK et al.
2001, NAKHUTSRISHVILI et al. 2015).
The forests of Euxinia have been a subject of phytosociological research mainly in Tur-
key (e.g. QUÉZEL et al. 1980, KORKMAZ et al. 2011, KAVGACI et al. 2012, ÇOBAN & WILL-
NER 2019) and Bulgaria (e.g. TZONEV et al. 2019). Studies from Georgia published to date
have dealt with mesophilous forest types (e.g. FILIBECK et al. 2004, NOVÁK et al. 2019),
while almost no attention has been paid to thermophilous types. The presented study is fo-
cused on Carpinus orientalis (hereafter “C. orientalis”) forests of the limestone massifs of
western Georgia. Carpinus orientalis is a submediterranean deciduous tree distributed in
south-eastern Europe, Anatolia, Syria, Crimea, Caucasus and northern Iran. It is a ther-
mophilous and xerophilous species preferring calcareous soils, well-known is its tolerance to
various traditional management practices (SIKKEMA & CAUDULLO 2016). Forests dominated
or co-dominated by C. orientalis occur across the entire Euxinia (QUÉZEL et al. 1980,
ÇOBAN & WILLNER 2019, AKHALKATSI 2019). Generally, they prefer sunny slopes on vari-
ous bedrock. However, they may represent a dominant forest type in coastal regions under
the influence of the Mediterranean climate. They form both low and open, as well as tall and
closed stands (QUÉZEL et al. 1980). Colchic C. orientalis forests are partly supposed to be
a regeneration stage after the degradation of oak or mixed forests (DOLUKHANOV 2010,
AKHALKATSI 2015). Locally, they served as coppices (AKHALKATSI 2015), similarly to the
Balkans (STUPAR et al. 2016) or Italy (BLASI et al. 2001).
The vegetation of thermophilous deciduous forests is still relatively understudied in Eux-
inia and the Caucasus, at least by Braun-Blanquet methods (cf. ÇOBAN & WILLNER 2019,
MUCINA et al. 2016). They have been investigated mainly in the western part of the area (see
citations above). Despite their broad distribution in the eastern part (GULISASHVILI et al.
1975, NAKHUTSRISHVILI 2013), they have been studied only marginally so far, although
some types are listed in national red lists of habitats (e.g. AKHALKATSI 2019). Within
39
the Caucasus Ecoregion, dry-mesic forests of C. orientalis and Zelkova carpinifolia have
recently been described phytosociologically in eastern Georgia (NOVÁK et al. 2020) and in
Hyrcania in northern Iran (GHOLIZADEH et al. 2020).
Due to the lack of knowledge on the phytosociology of thermophilous Colchic forests
and their position within the Euxinian forest vegetation, the goals of this study are (1) to
describe the ecology and species composition of the newly recorded C. orientalis forests in
western Georgia, and (2) to determine the ecological and floristic relationships between the
community studied here and the C. orientalis stands documented so far in Euxinia.
2. Study region
The study region stretches between the cities of Chiatura (Imereti Region) and Jvari
(Samegrelo Region) in western Georgia (42°17'–42°46' N, 42°02'–43°18' E). The sampling
sites were located at low elevations (90570 m a.s.l.) of the limestone massifs of Kvira,
Senaki, Askhi, Tskaltubo-Kutaisi, Racha and Chiatura. Rendzic leptosol developed on Cre-
taceous limestones is the main soil type of the sampling sites (URUSHADZE & GHAMBA-
SHIDZE 2013, ASANIDZE et al. 2019). The region represents a transition zone between the
Colchic and Greater Caucasian climatic zones (BONDYREV et al. 2015). The sampling sites
have mean annual temperature of 11.8–14.8 °C and annual precipitation of 999–2074 mm
(KARGER et al. 2017). The temperature may drop slightly below freezing point in the winter.
Rainfall is distributed almost evenly over the year (Fig. 1) and is accompanied by frequent
horizontal precipitations brought by moist air masses from the Black Sea. However, the
water-permeable limestone bedrock presumably weakens the effect of humid climate on
vegetation (DENK et al. 2001, DOLUKHANOV 2010, BONDYREV et al. 2015).
The region is covered by extensive forests, generally deciduous (BOHN et al. 2000–2003,
NAKHUTSRISHVILI 2013). They harbour a significant diversity of understorey species, includ-
ing narrow endemics (KOLAKOVSKII 1961), both shrubs (e.g. Corylus colchica, Staphylea
colchica) and herbs (e.g. Cyclamen colchicum, Peucedanum adae). It is an area with one of
the highest concentrations of endemic plant species within Georgia (SLODOWICZ et al. 2018).
In the study region, forests dominated or co-dominated by Carpinus orientalis are reported
as a distinctive vegetation type of steep limestone slopes at low elevations (DOLUKHANOV
2010, NAKHUTSRISHVILI 2013). They generally occur up to 800 m, i.e. within the zone of
mixed Colchic forests (e.g. Carpinus betulus, Castanea sativa, Fagus orientalis, Quercus
petraea subsp. iberica) with evergreen shrubs.
The forests in the study region have been disturbed by human activities in many ways,
especially since the middle of the 20th century. This includes overlogging, setting forest
fires, building activities and overgrazing by domestic animals, all followed by soil erosion
and landslides, tree pathogen outbreaks and general degradation of forest ecosystems
(AKHALKATSI 2015). Only a negligible part of these forests lies within protected areas.
3. Methods
3.1 Field sampling
During the field survey (2016–2019), we recorded 20 square-shaped phytosociological relevés
(100 m2). The aim was to sample forests dominated or co-dominated by Carpinus orientalis (except for
one relevé dominated by the ecologically similar Zelkova carpinifolia; DENK et al. 2001). In each
relevé, we assessed the percentage covers of tree (E3), shrub (E2), herb (E1) and moss (E0) layers and
40
covers of species of vascular plants in each layer using the nine-degree Braun-Blanquet scale
(DENGLER et al. 2008). Furthermore, we estimated mean heights of the tree, shrub and herb layers. For
each relevé, we determined slope inclination and aspect and cover of rocks. We collected soil samples
from a depth of 5–10 cm for soil pH measuring done in a suspension of a dried soil sample (particles
< 2 mm) with distilled water (2:5) by a portable Greisinger instrument. The geographical position
(WGS 84) and elevation of the relevés were acquired by a portable GPS device. The relevés were
stored in the Turboveg 2.1 database (HENNEKENS & SCHAMINÉE 2001) and processed in Juice 7.1
software (TICHÝ 2002). The vascular plant nomenclature was standardized following the Euro+Med
PlantBase (http://ww2.bgbm.org/EuroPlusMed/; accessed 2020–10–01) except for one ad hoc aggre-
gate (Carex muricata aggr. Carex divulsa, C. muricata, C. spicata) and all Rubus taxa recorded dur-
ing the field survey were merged as Rubus subgen. Rubus (SOCHOR & TRÁVNÍČEK 2016). The relevés
were also stored in the AS-00–005 Transcaucasian Vegetation Database included in the European
Vegetation Archive (CHYTRÝ et al. 2016).
3.2 Dataset and data analyses
We compiled a dataset of original relevés from Georgia and relevés from the literature to compare
biogeographical and environmental aspects of the newly described community with previously de-
scribed C. orientalis forests described to date from the rest of Euxinia. We included relevés of associa-
tions dominated or co-dominated by C. orientalis. These were extracted from the following sources:
QUÉZEL et al. (1980) (Carpinetum betulo-orientalis, n = 11 relevés; Crataego curvisepalae-Quercetum
cerridis, n = 7; Erico arboreae-Carpinetum orientalis, n = 16; Rusco aculeatae-Carpinetum orientalis,
n = 7; missing association assignment of the community, n = 3), KUTBAY & KILINÇ (1995) (Carpino
orientalis-Quercetum cerridis, n = 15; Carpino orientalis-Phillyrietum latifoliae, n = 6), YARCI (2002)
(Querco cerridis-Carpinetum orientalis, n = 10) and KORKMAZ et al. (2011) (Corno mari-Quercetum
cerridis, n = 10). The dataset contained 105 relevés in total. Relevés from the literature were georefer-
enced based on descriptions of sampling sites. Climatic data were obtained from the CHELSA Bioclim
dataset (KARGER et al. 2017). For each relevé, average values of essential climatic variables (mean
annual temperature, annual precipitation, temperature seasonality, precipitation seasonality) were re-
trieved as a mean value from a circular buffer zone of 25 km2. We applied classification (flexible beta
clustering with parameter β = -0.2 and Bray-Curtis distance) and ordination (NMDS) analyses to show
ecological and floristic patterns in the dataset. Taxa determined to only the genus level were omitted,
records of same-name species were merged across the layers (FISCHER 2015) and percentage cover
values of species were square-root transformed prior to the analyses (TICHÝ et al. 2020). The ordination
analysis was computed using the package vegan 2.5-7 (OKSANEN et al. 2020) in the R 4.0.2 environ-
ment (R CORE TEAM 2020). Species-to-cluster fidelity was expressed as the phi coefficient (CHYTRÝ et
al. 2002). Diagnostic (Φ ≥ 0.25) and highly diagnostic (Φ 0.55) species are provided for each cluster.
Before its calculation, the number of plots per cluster was virtually equalized (TICHÝ & CHYTRÝ 2006).
Fisher’s exact test (p ≥ 0.05) was applied to omit species with non-significance occurrence from the list
of diagnostic species.
The new association was formally described following the 4th edition of the Code of Phytosociolog-
ical Nomenclature (THEURILLAT et al. 2021). Due to the many unresolved issues in the syntaxonomy of
the Euxinian forest vegetation, the first mention of a syntaxon is accompanied by an author citation,
except for classes whose nomenclature follows MUCINA et al. (2016).
4. Results and discussion
4.1 Carpinus orientalis community in Georgian Colchis
In the study region, Carpinus orientalis forests inhabit various topographic positions,
generally with soil water shortage. They favour steep slopes (mean inclination 30°) with
rugged rock outcrops (Fig. 1). They also occur on hilltops and plateau edges. Stony topsoil
41
Fig. 1. a) Carpinus orientalis forests below the Motsameta Monastery near Kutaisi, site of the type
relevé of the association Campanulo alliariifoliae-Carpinetum orientalis ass. nova. b) Carpinus orien-
talis forests near Tsutskhvati. c) Limestone landscape around Katski Pilar Monastery where Carpinus
orientalis forests dominate (Photos: P. Novák, a) July 2019 b) July 2017 c) May 2018). d) Walter-type
climadiagram for Motsameta (based on CHELSA Bioclim dataset; KARGER et al. 2017). Additional
photos are provided in Supplement E4.
Abb. 1. a) Carpinus orientalis-Wälder unterhalb des Motsameta-Klosters bei Kutaisi, Lokalität der
Typusaufnahme des Campanulo alliariifoliae-Carpinetum orientalis ass. nova. b) Carpinus orientalis-
Wälder bei Tsutskhvati. c) Kalkgesteinslandschaft im Bereich des Klosters Katski Pilar, wo Carpinus
orientalis-Wälder dominieren (Fotos: P. Novák, a) Juli 2019 b) Juli 2017 c) Mai 2019). d) Klimadia-
gram nach Walter für Motsameta (basierend auf dem CHELSA Bioclim Datensatz; KARGER et al.
2017). Zusätzliche Fotos sind in Anhang E4 zu finden.
of neutral to slightly alkaline reaction (pH 6.67.8) reflects the limestone bedrock. It is
a relatively species-rich community (3045 species per 100 m2).
The tree canopy is rather closed (mean cover 83%), generally reaching around 10 m
in height. The dominant tree C. orientalis is often accompanied by other deciduous trees
(e.g. Acer campestre, Carpinus betulus, Fraxinus excelsior), and infrequently also endemic
and subendemic ones (e.g. Acer cappadocicum, Quercus hartwissiana and Zelkova carpini-
folia). Frequent multi-trunk C. orientalis trees indicate former coppice management. Smilax
excelsa, a widespread evergreen liana in the community, is a characteristic species of re-
gions with mild winters in Euxinia, the Caucasus and northern Iran (NAKHUTSRISHVILI 2013,
GHOLIZADEH et al. 2020, NOVÁK et al. 2020). In contrast to mesophilous Colchic for-
ests (NAKHUTSRISHVILI 2013, NOVÁK et al. 2019), endemic Hedera colchica is usually
a)
b)
c)
d)
42
substituted by H. helix which has lower air humidity requirements (DOLUKHANOV 1980).
The shrub layer is mostly developed (mean cover 14%). It consists of species of the canopy
accompanied by deciduous shrubs (e.g. Cornus mas, Corylus avellana, Staphylea colchica).
Evergreen Colchic shrubs are generally absent except for Ilex colchica which is remarkably
tolerant to shallow calcareous soils (DOLUKHANOV 1980). Buxus sempervirens was previous-
ly common (cf. DOLUKHANOV 2010, Supplement E4). Its ongoing massive dieback induced
by a co-invasion of alien fungus and insect pathogens has seriously damaged a large portion
of Colchic Buxus population since 2009 when damages were firstly detected (MATSIAKH et
al. 2018). That will presumably influence affected forest ecosystems by increasing slope
erosion, modifying forest succession and loss of species obligate on Buxus (MITCHELL et al.
2018). The herb layer (mean cover 37%) usually lacks a clear dominant species. Evergreen
species including Ruscus aculeatus and Vinca major subsp. hirsuta are frequent and co-
dominate in places together with lianas. The community is rich in Caucasian endemic and
subendemic forest mesophytes (e.g. Campanula alliariifolia, Symphytum grandiflorum,
Veronica peduncularis). However, species diagnostic for the Colchic mesophilous forests
(e.g. Polystichum woronowii, Pteris cretica, Ruscus colchicus; NOVÁK et al. 2019) are al-
most absent. A group of xerophilous species also shows rather high endemism (e.g. Digitalis
schischkinii, Peucedanum adae, Klasea quinquefolia), alongside broadly distributed species
(e.g. Asplenium adiantum-nigrum, Teucrium chamaedrys). A mixture of mesophilous and
xerophilous species in the undergrowth of C. orientalis forests has also been reported in
other regions of their common occurrence, e.g. the Balkans (STUPAR et al. 2015), Italy
(BLASI et al. 2001) and Crimea (DIDUKH 1996). Submediterranean forest generalists are
represented by Dioscorea communis, Potentilla micrantha and Viola alba for instance.
Shade-tolerant species of rock crevices (e.g. Asplenium ruta-muraria, A. trichomanes) in-
habit rock outcrops. The humid climate supports ferns (Adiantum capillus-veneris, Aspleni-
um scolopendrium) which generally avoid C. orientalis forests in south-eastern Europe ex-
cept for the bottoms of limestone canyons (STUPAR et al. 2020). Local populations of pasture
weeds (e.g. Leontodon hispidus, Plantago lanceolata, Pteridium aquilinum) indicate occa-
sional wood-pasture management. Alien species (sensu KIKODZE 2010) are mostly rare in
the community. There are two exceptions the stoloniferous grass Oplismenus hirtellus
subsp. undulatifolius which is common across Colchic forests (DOLUKHANOV 2010) and
Robinia pseudoacacia which used to be planted in Georgia and is now spreading spontane-
ously (AKHALKATSI 2015). The moss layer is mostly well-developed (mean cover 16%),
preferentially colonizing rock outcrops. Moreover, epiphytic bryophytes often cover tree
trunks, as a characteristic feature of Colchic forests, due to high rainfall and frequent fogs
(KÜRSCHNER et al. 2012).
The community resembles the formerly described forest type “Carpinuleto-Querceta
ruscosa (Ruscus colchicus)”, and partly also “Carpinuleto-Querceta seslerietosa” inhabiting
more rocky sites, both reported from the study region (DOLUKHANOV 2010, NAKHUTSRISH-
VILI 2013). In terms of nature protection, stands with Buxus sempervirens or Zelkova
carpinifolia are particularly important as both are listed among the priority habitat types of
Georgia (AKHALKATSI 2019).
It should be emphasized that the C. orientalis forests of Georgian Colchis require further
phytosociological research, as their occurrence is also reported on well-drained soils of
riverine terraces in the Colchic Lowland as well as on limestones and sands in the Black Sea
coastal zone in the north-western part of the country (KOLAKOVSKII 1961, DOLUKHANOV
2010, NAKHUTSRISHVILI 2013).
43
4.2 Colchic Carpinus orientalis forests in the context of Euxinian forest vegetation
The comparison of the newly recorded community (Supplements E1–E2) with previous-
ly reported Euxinian communities dominated or co-dominated by C. orientalis (Fig. 2–3,
Table 1) resulted in three biogeographically distinct main clusters recognized in the unsu-
pervised classification. We interpreted them at the alliance level.
The first main cluster involved C. orientalis forests of the eastern part of Euxinia. East-
ern Euxinian and Euxino-Caucasian endemics (e.g. Campanula alliariifolia, Klasea quin-
quefolia, Vinca major subsp. hirsuta) were among its highly diagnostic species. They were
accompanied by Mediterranean evergreen shrubs with a scattered distribution across the
whole of Euxinia (e.g. Arbutus andrachne, Buxus sempervirens, Cistus salviifolius, Erica
arborea; cf. DONNER 1990, DENK et al. 2001, NAKHUTSRISHVILI 2013). Its syntaxonomic
interpretation is discussed below. The second main cluster contained mainly C. orientalis
forests of the central part of Euxinia. Mesophytes, mostly Euxinian endemics and subendem-
ics (e.g. Asperula cimulosa, Cirsium hypoleucum), were diagnostic. Mesophilous tree spe-
cies (e.g. Carpinus betulus, Fagus orientalis) often co-dominated with C. orientalis. Numer-
ous mesophytes indicated its transitional position between thermophilous forests and meso-
philous Euxinian oak-hornbeam forests of the alliance Trachystemono orientalis-Carpinion
betuli Çoban & Willner 2019 (class Carpino-Fagetea). The third main cluster unified forests
of C. orientalis and Quercus cerris recorded predominantly in western Euxinia. Mediterra-
nean (e.g. Phillyrea latifolia, Styrax officinalis) and Balkan (e.g. Quercus cerris) species
with a limited distribution in Euxinia (cf. DONNER 1990) and nitrophytes (e.g. Alliaria petio-
lata, Viola odorata) were diagnostic. Following the classification presented by ÇOBAN &
WILLNER (2019), we assigned it under the alliance Quercion confertae Horvat 1958 (class
Quercetea pubescentis).
The classification and ordination analyses revealed biogeography as the key factor de-
termining the variability of the Euxinian C. orientalis forests. Species characteristic of the
Balkan dry forests and partly also Mediterranean species gradually retreat eastwards while
Eastern Euxinian and Euxino-Caucasian endemics become more frequent (see the examples
above). Analogous patterns have been reported, for instance, for Euxinian oak-hornbeam
forests (NOVÁK et al. 2019) and to some extent also for oriental beech forests (KAVGACI et
al. 2012). This shift in species composition seems to be an essential pattern of the Euxinian
flora (cf. DONNER 1990). Moreover, in Euxinia, the precipitation seasonality characteristic of
Fig. 2. Distribution of relevé sites of the dataset. Different symbols refer to their cluster assignment.
Abb. 2. Verteilung der Lokalitäten der Vegetationsaufnahmen des Datensatzes. Unterschiedliche Sym-
bole beziehen sich auf ihre Cluster-Zuordnung.
44
Fig. 3. NMDS analysis of the dataset with relevé-to-cluster assignment and centroids of the clusters
based on the classification analysis (see dendrogram in the right upper part). Vectors of geographical
position (in black) and climatic variables (in blue) were passively plotted. Stress value = 0.214.
Abb. 3. NMDS-Analyse des Datensatzes mit Zuordnung der Vegetationsaufnahmen zu Clustern und
Zentroiden der Cluster basierend auf der Klassificationsanalyse (s. Dendrogramm rechts oben). Vekto-
ren der geographischen Lage (in Schwarz) und der klimatischen Variablen (in Blau) wurden passiv
geplottet. Stresswert = 0,214.
the Mediterranean and the southern Balkans is decreasing towards the humid Colchis
(QUÉZEL et al. 1980, DENK et al. 2001). Therefore, we assume that the observed biogeo-
graphical pattern is driven by both vegetation history and macroclimatic gradients.
The finer division of the dataset into nine clusters (Fig. 2–3, Table 1) reproduced most of
the analysed associations and communities relatively well, indicating their distinctive floris-
tic composition (see Supplement E3). The Georgian community formed its own cluster
within the first main cluster. Across the dataset, it possessed a unique combination of East-
ern Euxinian and Caucasian species.
In the finer classification, the association Erico-Carpinetum Quézel et al. 1992 was iden-
tified as the association most similar to the Georgian community. Erico-Carpinetum is the
type association of the alliance Castaneo sativae-Carpinion orientalis Quézel et al. 1992. In
the EuroVegChecklist (MUCINA et al. 2016), the alliance was assigned to the order
45
Carpinetalia betuli P. Fukarek 1968, class Carpino-Fagetea. However, Çoban & Willner
(2019) emphasized that this classification was in contradiction with its typification per-
formed by QUÉZEL et al. (1992). As Erico-Carpinetum was identified as its type association,
the alliance should unify thermophilous and xerophilous forests. Therefore, we classify the
Georgian community under the alliance Castaneo-Carpinion. However, the position of the
alliance itself deserves further study, as QUÉZEL et al. (1992) designated it as the type of the
order Rhododendro pontici-Fagetalia orientalis Quézel et al. 1992, encompassing Euxinian
deciduous forests, whose syntaxonomic concept is disputed (cf. MUCINA et al. 2016).
In the context of the Caucasian vegetation, there are many striking differences between
the Colchic community and the C. orientalis stands of central and eastern Georgia (cf.
DOLUKHANOV 2010, NAKHUTSRISHVILI 2013). The Colchic community harbours numerous
Euxinian species, though it lacks characteristic flora of more arid regions of Transcaucasia
(e.g. Astragalus spp., Juniperus spp., Rhamnus pallasii, Spiraea hypericifolia). Compared to
C. orientalis forests reported in Hyrcania (GHOLIZADEH et al. 2020), there is a notable ab-
sence of the Hyrcanian floral element (e.g. Centaurea hyrcanica, Digitalis nervosa) and the
presence of Euxinian and Euxino-Caucasian species. However, some species are shared (e.g.
Acer cappadocicum, Quercus petraea subsp. iberica, Sanicula europaea).
4.3 Syntaxonomic outline
Based on the presented numerical comparison of Euxinian C. orientalis forests, we
describe the Georgian community as a new association and classify it within the alliance
Castaneo sativae-Carpinion orientalis.
Campanulo alliariifoliae-Carpinetum orientalis ass. nova hoc loco
Holotypus (hoc loco) of the association: Georgia, Motsameta (Imereti Region): a forest on
a limestone slope ca 0.1 km N of the Motsameta Monastery, 42.28257° N, 42.75938° E,
10 × 10 m2, 24 July 2019, elevation: 210 m, aspect: 40°, inclination: 30°, soil pH (H2O):
7.33, cover of rocks: 10%, author: P. Novák. Relevé 19 in Supplements E1 and E2.
E3 (85%, mean height = 9 m): Carpinus orientalis 5, Fraxinus excelsior 2b; E2 (1%, mean
height = 0.8 m): Hedera helix +, Smilax excelsa +, Staphylea colchica +; E1 (30%, mean
height = 0.2 m): Hedera helix 2a, Brachypodium sylvaticum 1, Primula acaulis 1, Ruscus
aculeatus 1, Sedum stoloniferum 1, Vinca major subsp. hirsuta 1, Viola alba 1, Acer cam-
pestre +, Asplenium adiantum-nigrum +, A. trichomanes +, Campanula alliariifolia +, Carex
muricata aggr. +, C. sylvatica +, Clinopodium umbrosum +, Klasea quinquefolia +, Lamium
galeobdolon +, Lapsana communis +, Lathyrus laxiflorus +, Orobanche laxissima +, Poly-
podium cambricum +, Quercus petraea subsp. iberica +, Sanicula europaea +, Silene bal-
ansae +, Smilax excelsa +, Teucrium chamaedrys +, Veronica peduncularis +, Gleditsia
triacanthos r, Prunus avium r, Schedonorus giganteus r, Trachycarpus fortunei r; E0 (15%):
indet.
Diagnostic species of the new association: Asplenium adiantum-nigrum, Buxus sempervi-
rens, Campanula alliariifolia, Carpinus orientalis, Hedera helix, Klasea quinquefolia,
Lathyrus laxiflorus, Potentilla micrantha, Ruscus aculeatus, Smilax excelsa, Teucrium
chamaedrys, Vinca major subsp. hirsuta.
46
Table 1. Shortened synoptic table summarizing the classification results, species percentage frequen-
cies are provided. Highly diagnostic species (Φ ≥ 0.55; grey shaded) for each cluster are shown. Highly
diagnostic species for three main clusters are provided separately or marked by an asterisk if concur-
rently highly diagnostic for some of the clusters. Full version of the table is stored in Supplement E3.
Tabelle 1. Gekürzte Übersichtstabelle, die die Klassifikationsergebnisse zusammenfasst, prozentuale
Stetigkeiten sind dargestellt. Hochdiagnostische Arten für die drei Hauptcluster werden separat darge-
stellt oder mit einem Sternchen gekennzeichnet, wenn sie gleichzeitig für einige der Cluster hochdiag-
nostisch sind. Die vollständige Version der Tabelle befindet sich in Anhang E3.
Cluster
1
2
3
4
5
6
7
8
9
Number of relevés
10
4
20
12
3
7
22
15
12
Main cluster 1
Campanula alliariifolia
60
50
80
.
.
.
.
.
.
Oplismenus hirtellus subsp. undulatifolius
.
50
60
.
.
.
.
.
.
Cluster 1
Arbutus andrachne
70
.
.
.
.
.
.
.
.
Cistus salviifolius
60
.
.
.
.
.
.
.
.
Laurus nobilis
60
.
5
.
.
14
.
.
.
Rhododendron ponticum
60
25
.
.
.
.
5
.
.
Cluster 2
Buxus sempervirens
.
75
25
.
.
.
.
.
.
Vinca minor
.
50
.
.
.
.
.
.
.
Vincetoxicum nigrum
.
50
.
.
.
.
.
.
.
Datisca cannabina
10
50
.
.
.
.
.
.
.
Rhamnus imeretina
.
50
.
.
.
14
.
.
.
Hypericum xylosteifolium
10
50
.
.
.
.
5
.
.
Cluster 3
Vinca major subsp. hirsuta*
.
.
90
.
.
.
.
.
.
Viola alba*
.
.
85
.
.
.
.
.
.
Klasea quinquefolia*
.
.
75
.
.
.
.
.
.
Carex digitata
.
.
60
.
.
.
.
.
.
Clinopodium umbrosum
.
.
55
.
.
.
.
.
.
Veronica peduncularis
.
.
50
.
.
.
.
.
.
Diospyros lotus
.
.
40
.
.
.
.
.
.
Asplenium trichomanes
.
.
50
.
.
.
14
.
.
Viola reichenbachiana
.
.
35
.
.
.
.
.
.
Main cluster 2
Epimedium pubigerum
20
25
.
83
67
57
.
13
8
Salvia forsskaolei
20
50
.
83
33
71
.
13
8
Asperula cimulosa
30
25
.
83
33
57
.
.
33
Carpinus betulus
.
.
35
58
100
86
9
.
8
Cirsium hypoleucum
30
25
.
75
33
57
5
.
17
Fagus orientalis
.
.
15
67
100
14
.
7
.
Cluster 4
Euphorbia oblongifolia*
.
.
.
75
.
14
.
.
.
Cluster 5
Sesleria phleoides
.
.
.
.
100
.
.
.
.
Dictamnus albus
.
.
.
8
100
.
.
.
.
Cotinus coggygria
.
.
5
.
100
.
5
7
.
Tilia platyphyllos
.
.
.
8
100
14
.
.
.
Quercus pubescens
.
.
.
.
100
.
.
.
25
Frangula alnus
.
.
.
.
67
.
.
.
.
Pimpinella tripartita
.
.
5
.
67
.
.
.
.
Corylus avellana
20
.
20
17
100
14
27
.
.
Colutea cilicica
.
.
.
.
67
.
5
.
25
Campanula glomerata
.
.
.
17
67
.
.
.
17
Tanacetum poteriifolium
.
.
.
8
67
.
9
.
25
47
Cluster
1
2
3
4
5
6
7
8
9
Number of relevés
10
4
20
12
3
7
22
15
12
Fraxinus ornus
.
25
.
8
67
14
.
.
.
Cota tinctoria
.
.
.
.
33
.
.
.
.
Cluster 6
Hedera colchica
.
.
20
8
.
57
.
.
.
Main cluster 3
Crataegus monogyna
.
.
.
.
.
.
59
93
.
Quercus cerris
.
.
.
58
33
57
82
100
100
Cluster 7
Potentilla reptans
.
.
.
.
.
.
36
.
.
Cluster 8
Rubus ulmifolius
.
.
.
.
.
.
.
40
.
Cluster 9
Vicia cracca
.
.
.
17
.
.
5
.
83
Crataegus rhipidophylla
.
.
.
.
.
.
.
.
42
Lathyrus roseus
.
.
.
.
.
.
.
.
42
Nepeta nuda subsp. albiflora
.
.
.
.
.
.
.
.
42
Sorbus umbellata
.
.
.
.
.
.
.
.
42
Cephalanthera rubra
.
.
.
17
.
.
9
.
58
Aristolochia pallida
.
.
.
.
.
.
.
.
33
Silene latifolia
.
.
.
.
.
.
.
.
33
Erweiterte deutsche Zusammenfassung
EinleitungDie Wälder der Kolchis (Ökoregion Kaukasus, euxinische Provinz) stellen ein einzig-
artiges Refugium tertiärer Reliktbiota dar (NAKHUTSRISHVILI et al. 2015). Sie wurden jedoch haupt-
sächlich in Bulgarien und der Türkei pflanzensoziologisch untersucht (z. B. QUÉZEL et al. 1980), wäh-
rend in Georgien nur eine begrenzte Anzahl von Studien existiert (z. B. NOVÁK et al. 2019). Eine pflan-
zensoziologische Untersuchung mit Schwerpunkt auf thermophilen Laubwäldern der georgischen Kol-
chis fehlte bisher. Daher waren die Ziele dieser Studie (1) die Ökologie und Artenzusammensetzung der
Carpinus orientalis-Wälder der georgischen Kolchis als ein Beispiel für kolchische thermophile Wälder
zu beschreiben; (2) die ökologischen und floristischen Beziehungen zwischen der hier untersuchten
Gesellschaft und analogen, bisher in der euxinischen Provinz erfassten Gesellschaften zu ermitteln.
UntersuchungsgebietDie Stichprobenerhebung konzentrierte sich auf mesozoische Kalksteinge-
biete in den Ausläufern des Großkaukasus im westlichen Georgien (BONDYREV et al. 2015). Das Un-
tersuchungsgebiet hat ein feuchtes warm-gemäßigtes Klima, die Probenahmestellen hatten eine mittlere
Jahrestemperatur von 11,814,8 °C und einen jährlichen Niederschlag von 999–2074 mm. Innerhalb
Georgiens gilt es als das Gebiet, das außerordentlich reich an endemischen Gefäßpflanzenarten ist
(SLODOWICZ et al. 2018).
MethodenWir erhoben 20 Vegetationsaufnahmen der Waldvegetation, die von Carpinus orienta-
lis dominiert oder mitdominiert wurde. Anschließend haben wir einen Datensatz sowohl dieser Vegeta-
tionsaufnahmen, als auch der Aufnahmen analoger Assoziationen und Gesellschaften aus dem türki-
schen Teil der euxinischen Provinz (n = 105 Aufnahmen insgesamt) zusammengestellt. Wir haben
flexibles Beta-Clustering (β = -0,2, Bray-Curtis-Distanz) und eine NMDS-Ordinationsanalyse ange-
wendet, um Hauptmuster in ihrer Artenzusammensetzung zu erkennen.
Ergebnisse und DiskussionDie in Georgien erfassten Carpinus orientalis-Wälder besetzten
normalerweise steile und oft felsige Hänge mit steinigem Oberboden mit neutraler bis schwach alkali-
scher Reaktion (pH 6,6–7,8). In der Baumschicht wurde C. orientalis häufig von anderen Laubbaumar-
ten begleitet. Das Unterholz enthielt zahlreiche immergrüne Arten (z. B. Hedera helix, Ruscus aculea-
tus, Smilax excelsa, Vinca major subsp. hirsuta). Waldmesophyten (z. B. Carex digitata, Veronica
48
peduncularis) waren in der Krautschicht häufig, begleitet von Xerophyten (z. B. Klasea quinquefolia,
Teucrium chamaedrys). Chasmophyten waren ebenfalls vorhanden (z. B. Asplenium scolopendrium,
A. trichomanes).
Die Clusteranalyse des Datensatzes ergab drei Hauptcluster, die eng mit der Biogeographie ver-
knüpft sind. Bei dem ersten, dem östlichsten, handelte es sich um Typen mit signifikantem kaukasi-
schem und ostauxinischem floristischem Einfluss. Er enthielt die georgische Gesellschaft und die Asso-
ziation Erico-Carpinetum, Typusassoziation des Verbandes Castaneo sativae-Carpinion orientalis. Der
zweite Hauptcluster war auf den zentralen Teil der euxinischen Provinz beschränkt. Aufgrund seines
eher mesophilen Charakters, der oft von Carpinus betulus oder Fagus orientalis mitdominiert wird,
scheint er einen Übergang zwischen thermophilen Wäldern und Eichen-Hainbuchen-Wäldern des
Verbandes Trachystemono orientalis-Carpinion betuli darzustellen. Die dritte Hauptgruppe umfasste
insbesondere Mischwälder aus C. orientalis und Quercus cerris. Sie wurden fast ausschließlich im
westlichen Teil der Provinz nachgewiesen und enthielten mehr Balkan- oder Mittelmeerarten, die auf
den westlichen Teil der euxinischen Provinz beschränkt sind. Diese Einheit wurde nach der Klassifizie-
rung von ÇOBAN & WILLNER (2019) dem Verband Quercion confertae zugeordnet. In der feineren
Unterteilung des Datensatzes waren die meisten beteiligten Assoziationen und Gesellschaften gut
erkannt, was auf ihre charakteristische floristische Zusammensetzung hinweist. Diese zeigte auch viele
einzigartige floristische Merkmale der georgischen Gesellschaft, die daher als neue Assoziation Cam-
panulo alliariifolae-Carpinetum orientalis ass. nova hoc loco beschrieben wurde (Verband Castaneo-
Carpinion). Die Ordinationsanalyse betonte auch die Bedeutung der Biogeographie für die Diversität
der euxinischen Carpinus orientalis-Wälder, die vermutlich durch das Makroklima und die Vegetati-
onsgeschichte bedingt wird.
Acknowledgements
We thank Goffredo Filibeck and one anonymous reviewer for their helpful comments on a previous
version of this study, Kryštof Chytrý, Anna Hlaváčková, Jakub Salaš and Dominik Zukal for help with
the field research, Ali Kavgacı for providing the phytosociological literature from Turkey and Renata
Piwowarczyk for determination of herbarium specimens of the genus Orobanche. This study was con-
ducted in the Centre for European Vegetation Syntheses (CEVS) funded by the Czech Science Founda-
tion (project no. 19-28491X).
Author contributions
P.N. led the writing and performed analyses. P.N. and V.S. conceived the idea of the research. P.N
and V.K. participated in the field sampling. All the authors critically revised the manuscript.
ORCID iDs
Veronika Kalníková https://orcid.org/0000-0003-2361-0816
Pavel Novák https://orcid.org/0000-0002-3758-5757
Vladimir Stupar https://orcid.org/0000-0003-0835-2249
Supplements
Additional supporting information may be found in the online version of this article.
Zusätzliche unterstützende Information ist in der Online-Version dieses Artikels zu finden.
Supplement E1. Relevé table of the association Campanulo alliariifoliae-Carpinetum orientalis.
Anhang E1. Tabelle der Vegetationsaufnahmen des Campanulo alliariifoliae-Carpinetum orientalis.
49
Supplement E2. Header data for the original relevés of Supplement E1.
Anhang E2. Kopfdaten der Vegetationsaufnahmen von Anhang E1.
Supplement E3. Full synoptic table and correspondence between associations and clusters.
Anhang E3. Vollständige Übersichtstabelle und Übereinstimmung zwischen den Assoziationen und
Clustern.
Supplement E4. Additional photos of the vegetation of the association Campanulo alliariifoliae-
Carpinetum orientalis.
Anhang E4. Zusätzliche Fotos der Vegetation des Campanulo alliariifoliae-Carpinetum orientalis.
References
AKHALKATSI, M. (2015): Forest habitat restoration in Georgia, Caucasus Ecoregion. Mtsignobari,
Tbilisi: 102 pp.
AKHALKATSI, M. (2019): Plant species in NATURA 2000 habitats in Georgia. Publisher of Plant
Genetic Resources Division of Botany Institute, Tbilisi: 310 pp.
ASANIDZE, L., LEZHAVA, Z., TSIKARISHVILI, K., GAPRINDASHVILI, G., CHIKHRADZE, N. & POLK, J.
(2019): Karst map of Georgia (Caucasus region) scale: 1:1 500 000. Carbonates Evaporites 34:
1205–1212.
BLASI, C., DI PIETRO, R., FILESI, L. & FORTINI, P. (2001): Syntaxonomy, chorology and syndynamics
of Carpinus orientalis communities in central Italy. Phytocoenologia 31: 33–62.
BOHN, U., NEUHÄUSL, R., GOLLUB, G., HETTWER, C., NEUHÄUSLOVÁ, Z., RAUS, T., SCHLÜTER, H. &
WEBER, H.E. (Eds.) (2000–2003): Karte der natürlichen Vegetation Europas / Map of the natural
vegetation of Europe. Maßstab / Scale 1:2 500 000. Landwirtschaftsverlag, Münster: 512 pp.
BONDYREV, I.V., DAVITASHVILI, Z.V. & SINGH, V.P. (2015): The geography of Georgia: problems and
perspectives. Springer, Cham: 228 pp.
CHYTRÝ, M., HENNEKENS, S.M., JIMÉNEZ-ALFARO, B. YAMALOV, S. (2016): European Vegetation
Archive (EVA): an integrated database of European vegetation plots. Appl. Veg. Sci. 19: 173–180.
CHYTRÝ, M., TICHÝ, L., HOLT, J. & BOTTA‐DUKÁT, Z. (2002): Determination of diagnostic species
with statistical fidelity measures. J. Veg. Sci. 13: 79–90.
ÇOBAN, S. & WILLNER, W. (2019): Numerical classification of the forest vegetation in the western
Euxine region of Turkey. Phytocoenologia 49: 71–106.
DENGLER, J., CHYTRÝ, M. & EWALD, J. (2008): Phytosociology. In: JØRGENSE, S.E. & FATH, B.D.
(Eds.): Encyclopedia of Ecology, Vol. 4: 2767–2779. Elsevier, Oxford.
DENK, T., FROTZLER, N. & DAVITASHVILI, N. (2001): Vegetational patterns and distribution of relict
taxa in humid temperate forests and wetlands of Georgia (Transcaucasia). Biol. J. Linn. Soc. 72:
287–332.
DIDUKH, Y.P. (1996): The communities of the class Quercetea pubescenti-petraeae at the Crimean
Mountains. – Ukr. Fitotsenol. Zbirn., Ser. A, 1: 63–77.
DOLUKHANOV, A.G. (1980): Kolkhidskii podlesok (Colchic understorey) [in Russian]. – Metsniereba,
Tbilisi: 261 pp.
DOLUKHANOV, A.G. (2010): Lesnaya rastitelnost Gruzii (Forest vegetation of Georgia) [in Russian].
Universal, Tbilisi: 532 pp.
DONNER, J. (1990): Distribution maps to P.H. Davis, “Flora of Turkey, 1–10”. – Linzer Biol. Beitr. 22:
385–515.
FILIBECK, G., ARRIGONI, P.V. & BLASI, C. (2004): Some phytogeographical remarks on the forest
vegetation of Colchis (Western Georgia). Webbia 59: 189–214.
FISCHER, H.S. (2015): On the combination of species cover values from different vegetation layers.
Appl. Veg. Sci. 18: 169–170.
GHOLIZADEH, H., NAQINEZHAD, A. & CHYTRÝ, M. (2020): Classification of the Hyrcanian forest
vegetation, Northern Iran. Appl. Veg. Sci. 23: 107–126.
GRIMM, G.W. & DENK, T. (2014): The Colchic region as refuge for relict tree lineages: cryptic specia-
tion in field maples. Turk J. Bot. 38: 1050–1066.
50
GULISASHVILI, V.Z., MAKHATADZE, L.B. & PRILIPKO, L.I. (1975): Rastitelnost Kavkaza (Vegetation of
the Caucasus) [in Russian]. Nauka, Moskva: 232 pp.
HENNEKENS, S.M. & SCHAMINÉE, J.H.J. (2001): TURBOVEG, a comprehensive database management
system for vegetation data. J. Veg. Sci. 12: 589–591.
KARGER, D.N., CONRAD, O., BÖHNER, J., KAWOHL, T., KREFT, H., SORIA-AUZA, R.W., ZIMMERMANN,
N.E., LINDER, P. & KESSLER, M. (2017): Climatologies at high resolution for the Earth land surface
areas. – Sci. Data 4: 170122.
KAVGACI, A., ARSLAN, M., BINGÖL, Ü., ERDOĞAN, N. & ČARNI, A. (2012): Classification and phyto-
geographical differentiation of oriental beech forests in Turkey and Bulgaria. Biologia 67: 461–
473.
KIKODZE, D., MEMIADZE, N., KHARAZISHVILI, D., MANVELIDZE, Z. & MUELLER-SCHAERER, H.
(2010): The alien flora of Georgia. 2nd ed. – Joint SNSF SCOPES and FOEN publication, Ascona &
Tbilisi: 36 pp.
KOLAKOVSKII, A.A. (1961): Rastitelnyi mir Kolkhidy (Plant World of Colchis) [in Russian].
Izdatelstvo Moskovskogo universiteta, Moskva: 460 pp.
KORKMAZ, H., ENGIN, A., KUTBAY, H.G. & YALÇIN, E. (2011): A syntaxonomical study on the scrub,
forest, and stepe vegetation of the Kızılırmak valley. Turk. J. Bot. 35: 121–165.
KUTBAY, H.G. & KILINÇ, M. (1995): Bafra Nebyan Dağı (Samsun) ve çevresinin vejetasyonu üzerinde
fitososyolojik ve ekolojik bir araştırma (A phytosociological and ecological investigation of Bafra
Nebyan Mountains (Samsun) and its environs) [in Turkish with English summary]. Turk. J. Bot.
19: 41–63.
KÜRSCHNER, H., KIRMACI, M., ERDAĞ, A., BATSATSASHVILI, K. & PAROLLY, G. (2012): Ecology and
life strategies of epiphytic bryophyte communities from the Arcto-Tertiary relict forests of the Black
and Caspian Sea areas. Nova Hedwigia 94: 31–65.
MATSIAKH, I., KRAMARETS, V. & MAMADASHVILI, G. (2018): Box tree moth Cydalima perspectalis as
a threat to the native populations of Buxus colchica in Republic of Georgia. J. Entomol. Res. Soc.
20(2): 29–42.
MILNE, R.I. & ABBOTT, R.J. (2002): The origin and evolution of Tertiary relict floras. Adv. Bot. Res.
38: 281–314.
MITCHELL, R., CHITANAVA, S., DBAR, R. ... KENIS, M. (2018): Identifying the ecological and societal
consequences of a decline in Buxus forests in Europe and the Caucasus. Biol. Inv. 20: 3605–3620.
MITTERMEIER, R.A., ROBLES GIL, P., HOFFMANN, M., PILGRIM, J., BROOKS, T., MITTERMEIER, C.G.,
LAMOREUX, J. & DA FONSECA, G.A.B. (2004): Hotspots revisited: Earth’s biologically richest and
most endangered terrestrial ecoregions. CEMEX, Mexico City: 390 pp.
MUCINA, L, BÜLTMANN, H., DIERßEN, K. TICHÝ, L. (2016): Vegetation of Europe: hierarchical
floristic classification system of vascular plant, bryophyte, lichen, and algal communities. Appl.
Veg. Sci. 19: 3–264.
NAKHUTSRISHVILI, G. (2013): The Vegetation of Georgia (South Caucasus). Springer, Berlin: 235 pp.
NAKHUTSRISHVILI, G., ZAZANASHVILI, N., BATSATSASHVILI, K. & MONTALVO MANCHENO, C.S.
(2015): Colchic and Hyrcanian forests of the Caucasus: similarities, differences and conservation
status. Flora Medit. 25: 185–192.
NOVÁK, P., ZUKAL, D., HARÁSEK, M., VLČKOVÁ, P., ABDALADZE, O. & WILLNER, W. (2020): Ecology
and vegetation types of oak-hornbeam and ravine forests of the Eastern Greater Caucasus, Georgia.
Folia Geobot. 55: 333–349.
NOVÁK, P., ZUKAL, D., KALNÍKOVÁ, V., CHYTRÝ, K. & KAVGACI, A. (2019): Ecology and syntaxono-
my of Colchic forests in south-western Georgia (Caucasus region). – Phytocoenologia 49: 231–248.
OKSANEN, J., GUILLAUME BLANCHET, F., FRIENDLY, M. WAGNER, H. (2020): vegan: Community
Ecology Package. R package version 2.5-7. URL: cran.r-project.org/web/packages/vegan/.
QUÉZEL, P., BARBÉRO, M. & AKMAN, Y. (1980): Contribution à l’étude de la végétation forestière
d'Anatolie septentrionale (Contribution to study of the forest vegetation of northern Anatolia) [in
French with English summary]. – Phytocoenologia 8: 365–519.
QUÉZEL, P., BARBERO, M. & AKMAN, Y. (1992): Typification de syntaxa décrits en région méditerra-
néenne orientale (Typification of syntaxa described in the eastern Mediterranean region) [in French
with English summary]. – Ecol. Medit. 18: 81–87.
R Core Team (2020): R: A language and environment for statistical computing. Version 4.0.2. R
Foundation for Statistical Computing. URL www.R-project.org.
51
SIKKEMA, R. & CAUDULLO, G. (2016): Carpinus orientalis in Europe: distribution, habitat, usage and
threats. – In: SAN-MIGUEL-AYANZ, J., DE RIGO, D., CAUDULLO, G., HOUSTON DURRANT, T. &
MAURI, A. (Eds.): European atlas of forest tree species: 73–75. Publication Office of the European
Union, Luxembourg.
SLODOWICZ, D., DESCOMBES, P., KIKODZE, D., BROENNIMANN, O. & MÜLLER‐SCHÄRER, H. (2018):
Areas of high conservation value at risk by plant invaders in Georgia under climate change. Ecol.
Evol. 8: 4431–4442.
SOCHOR, M. & TRÁVNÍČEK, B. (2016): Melting pot of biodiversity: first insights into the evolutionary
patterns of the Colchic bramble flora (Rubus subgenus Rubus, Rosaceae). Bot. J. Linn. Soc. 181:
610–620.
STUPAR, V., BRUJIĆ, J. & LUKIĆ, O. (2020): Two new mesophilous oriental hornbeam communities
from the northern Dinaric Alps (Bosnia and Herzegovina). Hacquetia 19: 259–273.
STUPAR, V., BRUJIĆ, J., ŠKVORC, Ž. & ČARNI, A. (2016): Vegetation types of thermophilous deciduous
forests (Quercetea pubescentis) in the Western Balkans. Phytocoenologia 46: 49–68.
STUPAR, V., MILANOVIĆ, Đ., BRUJIĆ, J. & ČARNI, A. (2015): Formalized classification and nomencla-
tural revision of thermophilous deciduous forests (Quercetalia pubescentis) of Bosnia and Herze-
govina. – Tuexenia 35: 85–130.
TAKHTAJAN, A.L. (1986): Floristic regions of the world. University of California Press, Berkeley:
522 pp.
THEURILLAT, J.P., WILLNER, W., FERNÁNDEZ-GONZÁLEZ, F., BÜLTMANN, H., ČARNI, A., GIGANTE,
D., MUCINA, L. & WEBER, H. (2021): International Code of Phytosociological Nomenclature. 4th
edition. – Appl. Veg. Sci. 24: e12491.
TICHÝ, L. (2002): JUICE, software for vegetation classification. J. Veg. Sci. 13: 451–453.
TICHÝ, L. & CHYTRÝ, M. (2006): Statistical determination of diagnostic species for site groups of
unequal size. J. Veg. Sci. 17: 809–818.
TICHÝ, L., HENNEKENS, S.M., NOVÁK, P., RODWELL, J.S., SCHAMINÉE, J.H. & CHYTRÝ, M. (2020):
Optimal transformation of species cover for vegetation classification. Appl. Veg. Sci. 23: 710–
717.
TZONEV, R., DIMITROV, M., GUSSEV, C. GLOGOV, P. (2019): Phytosociological classification of the
thermophilous oak forests in Bulgaria: new interpretations and gaps in knowledge. – Phytocoenolo-
gia 49: 369–391.
URUSHADZE, T.F. & GHAMBASHIDZE, G.O. (2013): Soils of Georgia. In: YIGINI, Y., PANAGOS, P. &
MONTANARELLA, L. (Eds.): Soil resources of Mediterranean and Caucasus countries: 78–96. Office
for Official Publications of the European Communities, Luxembourg.
VOLKOVA, P., LACZKÓ, L., DEMINA, O., SCHANZER, I. & SRAMKÓ, G. (2020): Out of Colchis: The
colonization of Europe by Primula vulgaris Huds. (Primulaceae). Acta Soc. Bot. Polon. 89: Art.
89313.
WALTER, H. (1970): Vegetationszonen und Klima. Ulmer, Stuttgart: 309 pp.
YARCI, C. (2002): Istranca Dağları'ndan (Trakya Bölgesi) iki yeni birlik: Carpino betuli-Fagetum
orientalis Yarcı ass. nov. ve Querco cerridis-Carpinetum orientalis Yarcı ass. nov. (Two new asso-
ciations from the Istranca Mountains [Thrace Region]: Carpino betuli-Fagetum orientalis Yarcı ass.
nov. and Querco cerridis-Carpinetum orientalis Yarcı ass. nov.) [in Turkish with English sum-
mary]. Ekoloji Çevre Dergisi 11(42): 1–7.
ZAZANASHVILI, N., GAGNIDZE, R. & NAKHUTSRISHVILI, G. (2000): Main types of vegetation zonation
on the mountains of the Caucasus. Acta Phytogeogr. Suec. 85: 716.
ZAZANASHVILI, N. & MALLON, D. (Eds.) (2009): Status and protection of globally threatened species in
the Caucasus. CEPF & WWF, Tbilisi: 232 pp.
Novák et al.: Carpinus orientalis forests in Georgian Colchis: First insights
Supplement E2. Header data (location, area, site conditions, vegetation height and date) for the original relevés of Supplement E1.
Anhang E2. Kopfdaten (Ort, Region, Standortsbedingungen, Vegetationshöhe und Datum) der Vegetationsaufnahmen von Anhang E1.
1Banoja Imereti 42.30944 42.67333 100 7.02 450 170 10 012 20.3 2016-07-22
2Chiatura Imereti 42.28556 43.30944 100 7.14 490 240 15 115 20.9 2017-07-03
3Khidi Imereti 42.42111 42.49528 100 7.57 250 140 35 311 30.75 2017-07-09
4Martvili Imereti 42.45361 42.37472 100 7.61 220 35 10 315 10.5 2017-07-09
5Nokalakevi Samegrelo 42.36528 42.19417 100 6.53 110 180 35 1 8 3 0.7 2017-07-10
6Senaki Samegrelo 42.29222 42.04139 100 6.83 90 250 25 713 30.5 2017-07-10
7Tsutskhvati Imereti 42.27333 42.85417 100 7.5 410 315 30 30 19 60.35 2017-07-04
8Khidi Imereti 42.42222 42.495 100 7.76 250 270 30 20 10 40.35 2017-07-09
9Nokalakevi Samegrelo 42.49 42.41806 100 7.67 130 10 30 5 8 2 0.4 2017-07-10
10 Nokalakevi Samegrelo 42.37194 42.18778 100 7.71 145 360 35 30 10 40.6 2017-07-10
11 Katskhi Imereti 42.28444 43.21556 100 7.2 570 280 35 25 8 2 0.5 2018-05-02
12 Banoja Imereti 42.30972 42.67417 100 6.59 461 180 5 0 10 20.2 2016-07-22
13 Jvari Samegrelo 42.75639 42.04361 100 6.75 510 135 30 3 8 1.5 0.25 2019-07-20
14 Jvari Samegrelo 42.75417 42.04333 100 6.87 490 200 30 381.2 0.35 2019-07-20
15 Martvili Imereti 42.45306 42.37639 100 7.09 220 225 35 112 1.5 0.35 2019-07-22
16 Matkhoji Imereti 42.38944 42.44722 100 7.71 220 180 40 022 2.5 0.2 2019-07-23
17 Matkhoji Imereti 42.39111 42.45083 100 7.16 270 180 35 8 7 1.2 0.2 2019-07-23
18 Matkhoji Imereti 42.39167 42.44889 100 7.33 270 180 40 271.5 0.3 2019-07-23
19 Motsameta Imereti 42.28257 42.75938 100 7.33 210 40 30 10 90.8 0.2 2019-07-24
20 Motsameta Imereti 42.28194 42.76 100 7.41 240 80 55 510 1.5 0.25 2019-07-24
Soil pH
#
Municipality
Region
N (°)
E (°)
area
(m2)
Date
Slope
(°)
Elevation
(m)
Aspect
(°)
Cover of
rocks
(%)
Mean
height E3
(m)
Mean
height E2
(m)
Mean
height E1
(m)
Novák et al.: Carpinus orientalis forests in Geo rgian Colc his: First insights
Cluster 1 2 3 4 5 6 7 8 9
Number of relevés 10 4 20 12 3 7 22 15 12
Cluster 1
Arbutus andrachne 70 . . . . . . . .
Cistus salviifolius 60 . . . . . . . .
Laurus nobilis 60 . 5 . . 14 . . .
Rhododendron ponticum 60 25 . . . . 5 . .
Bituminaria bituminosa 40 . . . . . 9 . .
Trifolium campestr e 30 . . . . . . . .
Castanea sativa 70 25 20 17 . 14 . . .
Paliurus spina-christi 20 ........
Ligustrum vulgare 50 . 30 17 . 14 . . .
Cornus sanguinea 50 50 35 . . 14 . 7 .
Rubia tinctorium 20 . . . . 14 . . .
Hyper icum calycinum 30 25 . . . 14 . . .
Vaccinium arctostaphylos 50 50 . 33 . 29 . 7 .
Tilia begoniifolia 30 25 15 . . 14 . . .
Dorycnium pentaphyllum 30 25 . 25 . . 5 .8
Brachypodium pinnatum 60 50 5 42 33 43 18 . 42
Cluster 2
Buxus sempervirens .75 25 . . . . . .
Vinca minor .50 . . . . . . .
Vincetoxicum nigrum .50 . . . . . . .
Datisca cannabina 10 50 . . . . . . .
Rhamnus imeretina .50 . . . 14 . . .
Hyper icum xylosteifolium 10 50 . . . . 5 . .
Briza media 10 50 . . . 14 . . .
Pyrus communis .50 15 .....17
Arbutus unedo . 25 . . . . . . .
Calluna vulgaris . 25 . . . . . . .
Drymochloa drymeja 50 100 50 50 33 43 . . .
Cluster 3
Vinca major subsp. hirs uta . . 90 . . . . . .
Viola alba . . 85 . . . . . .
Klasea quinquefolia . . 75 ......
Carex digitata . . 60 . . . . . .
Clinopodium umbrosum ..55 ......
Veronica peduncularis ..50 ......
Diospyros lotus . . 40 . . . . . .
Asplenium trichomanes . . 50 ...14 ..
Viola reichenbachiana ..35 ......
Carex muricata aggr. . . 45 . . . . . 17
Asplenium scolopendrium . . 30 . . . . . .
Hieracium sabaudum . . 30 . . . . . .
Lathyrus vernus ..30 ......
Symphytum grandiflorum . . 30 . . . . . .
Oplis menus hirtellus subsp. undulatifolius . 50 60 . . . . . .
Carpesium cernuum ..25 ......
Digitalis schischkinii . . 25 . . . . . .
Campanula rapunculoides ..60 ..14 .20 42
Brachypodium sylvaticum 30 25 90 42 . 43 27 20 17
Carex sylvatica . 25 45 . . 14 ...
Prunella vulgaris . . 30 . . . 5 7 .
Calystegia silv atica . . 20 . . . . . .
Carex flacca subsp. serrulata ..20 ......
Carex michelii . . 20 . . . . . .
Euphorbia macroceras ..20 ......
Plantago lanceolata ..20 ......
Robinia pseudoacacia . . 20 . . . . . .
Sedum stoloniferum . . 20 . . . . . .
Schedonorus giganteus . . 20 . . . . . .
Silene balansae ..20 ......
Ulmus glabra . . 20 . . . . . .
Primula acaulis 10 25 85 42 . 57 9 27 17
Leontodon hispidus ..35 ...5.17
Fraxinus excelsior 10 . 25 . . . . . .
Epimedium pinnatum subsp. colchicum ..15 ......
Lamium galeobdolon ..15 ......
Lonicera caprifolium . . 15 . .....
Medicago lupulina . . 15 . . . . . .
Peucedanum adae . . 15 . . . . . .
Peucedanum caucasicum ..15 ......
Pimpinella saxifraga . . 15 . . . . . .
Poa angustifolia ..15 ......
Ruscus colchicus ..15 ......
Staphylea colchica . . 15 . . . . . .
Taxus baccata . . 15 . . . . . .
Trifolium r epens . . 15 . . . . . .
Zelkova carpinifolia ..15 ......
Ajuga reptans . . 20 . . . . 7 .
Origanum vulgare . . 15 . . . 5..
Arabis nordmanniana ..10 ......
Brunnera macrophylla . . 10 . . . . . .
Cephalanthera longifolia . . 10 . . . . . .
Cruciata glabra . . 10 . . . . . .
Euonymus latifolius . . 10 ......
Euphorbia squamosa . . 10 . . . . . .
Galium valantioides . . 10 . . . . . .
Hypericum androsaemum ..10 ......
Orobanche laxissima . . 10 . . . . . .
Paeonia caucasica ..10 ......
Periploca graeca ..10 ......
Philadelphus coronarius . . 10 . . . . . .
Polypodium cambricum . . 10 . . . . . .
Potentilla indica . . 10 . . . . . .
Prunella ×intermedia ..10 ......
Sesleria alba . . 10 . . . . . .
Solidago virgaurea . . 10 . . ....
Prunus avium ..20 17 .....
Ficus carica 30 25 35 . . . 9 . .
Cluster 4
Euphorbia oblongifolia ...75 . 14 . . .
Crataegus pentagyna 20 25 15 92 .43 ..33
Rhododendron luteum 10 50 5 67 . 29 . . .
Aegonychon purpurocaeruleum . . . 58 33 . . 13 25
Acer cappadocicum 10 25 25 58 .14 ...
Lysimachia punctata . . . 25 . . . . 8
Galium rotundifolium ...17 .....
Phlomis samia ...17 .....
Viola sieheana . 50 . 92 33 71 41 33 33
Bromopsis benekenii . . . 17 . . . . 8
Luz ula for steri . . 20 33 . 14 . . 25
Silene compacta ...17 .14 ...
Asyneuma rigidum 40 . . 58 67 29 9 . 42
Daphne pontica 40 25 . 58 33 43 .53 .
Cluster 5
Sesleria phleoides . . . . 100 . . . .
Dictamnus albus . . . 8 100 . . . .
Cotinus coggygria . . 5 . 100 . 5 7 .
Tilia platyphyllos ...8100 14 ...
Quercus pubescens . . . . 100 . . . 25
Frangula alnus . . . . 67 . . . .
Pimpinella tripartita ..5.67 ....
Corylus avellana 20 . 20 17 100 14 27 . .
Colutea cilicica ....67 .5.25
Campanula glomerata ...17 67 ...17
Tanacetum poteriifolium . . . 8 67 . 9 .25
Fraxinus ornus . 25 . 8 67 14 . . .
Cota tinctoria . . . . 33 . . . .
Milium vernale ...33 67 29 ..8
Cluster 6
Heder a colchica . . 20 8.57 ...
Oenanthe pimpinelloides 30 25 .33 .86 .40 8
Trachystemon orientalis 20 50 30 8 . 86 5 47 .
Asplenium adiantum-nigrum 50 75 55 . . 86 5 27 .
Staphylea pinnata . 25 . . . 29 . . .
Galium paschale .25 .17 33 43 ...
Ruscus hypoglossum . 25 . . . 29 . 7 .
Cluster 7
Potentilla r eptans ......36 ..
Agrimonia eupatoria . . . . . . 27 . .
Festuca jeanpertii ......27 ..
Hypericum perforatum ..5...32 ..
Geranium purpureum . . . . . . 23 ..
Lonicera etrusca . . . . . . 23 . .
Styrax officinalis . . . . . . 23 . .
Arum maculatum ......18 ..
Chaerophyllum nodosum . . . . . . 18 . .
Rostr aria cristata ......18 ..
Teucrium polium ......18 ..
Doronicum orientale ......23 .8
Epipactis helleborine . . . . . . 14 . .
Alliaria petiolata ......23 .17
Scutellaria albida . . . . . . 23 . 17
Viola odorata . . . . . . 23 . 17
Phillyrea latifolia . . . . . . 23 20 .
Rosa canina . . 5 . . .23 .17
Carlina corymbosa ......9..
Cynosurus echinatus . . . . . . 9 . .
Daucus carota . . . . . . 9 . .
Erysimum cuspidatum . . . . . . 9 . .
Geranium dissectum . . . . . . 9 . .
Neottia nidus-avis ......9..
Piptather um coer ulescens . . . . . . 9 . .
Rubus sanctus ......9..
Tilia tomentos a ......9..
Torilis arvensis ......9..
Trifolium pannonicum ......9..
Vicia tenuifolia subsp. dalmatica . . . . . . 9 ..
Juniperus oxycedrus 10 .....27 .25
Stachys officinalis . . . 8 . . 18 7 .
Galium aparine . . . . . . 18 . 17
Campanula rapunculus . . . . . . 14 . 8
Digitalis lamarckii ......14 .8
Galium verum ......14 .8
Teucrium chamaedrys 10 50 30 . . . 41 . 17
Cluster 8
Rubus ulmifolius . . . . . . . 40 .
Cirsium pseudopersonata . . . . . . . 20 .
Arum italicum .......13 .
Veronica serpyllifolia . . . . . . . 13 .
Cluster 9
Vicia cracca . . . 17 . . 5 . 83
Crataegus rhipidophylla ........42
Lathyrus roseus . . . . . . . . 42
Nepeta nuda subsp. albiflora . . . . . . ..42
Sorbus umbellata ........42
Cephalanthera rubra . . . 17 . . 9 . 58
Aristolochia pallida . . . . . . . . 33
Silene latifolia . . . . . . . . 33
Asperula involucrata ......14 .42
Cephalanthera damasonium ........25
Vicia abbreviata . . . . . . . . 25
Silene italica . . . . . . 9.33
Trifolium m edium . . . 8 . . 5 . 33
Poa nemoralis . . 5 33 67 . . . 67
Astragalus ornithopodioides ........17
Astragalus ponticus . . . . . . . . 17
Hippocrepis emerus . . ......17
Moehringia trinervia . . . . . . . . 17
Onobrychis arenaria subsp. cana . . . . . . . . 17
Prunus mahaleb . . . . . . . . 17
Tanacetum parthenium 20 25 . . . .27 .50
Astragalus glycyphylloides .25 .8.14 ..42
Cornus mas 10 25 10 75 100 57 50 7 100
Dianthus calocephalus . . . . . . 5 . 17
Geranium molle . . . . . . 5 . 17
Hedysarum varium . . . . . . 5 . 17
Salv ia verticillata ......5.17
Clematis vitalba 10 25 15 8 . . 5 7 33
Securigera varia 20 50 15 8 33 .5.42
Specie s diagnostic for two or more clusters
Erica arborea 100 100 . . . 14 5 . .
Cistus creticus 60 75 ...14 97.
Campanula alliariifolia 60 50 80 . . . . . .
Vitis v inifera 50 50 .8.43 5..
Iris lazica 40 75 .......
Pteridium aquilinum 70 50 25 42 . 71 5 33 8
Rubus subgen. Rubus 40 25 35 8 . . 5 7 8
Ilex colchica 40 . 15 25 . 57 5..
Heder a helix 90 75 90 50 67 14 987 50
Genis ta tinctor ia 10 75 . 67 . . . . .
Verbascum lagurus subsp. ponticum . 50 . . . 43 . ..
Potentilla m icrantha 30 . 60 50 . 43 . . 8
Sanicula europaea 10 . 60 42 . 86 . . .
Acer cam pestre ..55 ..71 45 40 .
Dioscorea communis 20 50 60 58 . 57 . . 17
Festuca heterophylla . . . 58 ...53 .
Sorbus torminalis 10 . 10 83 . 29 32 . 83
Asperula cimulosa 30 25 . 83 33 57 . . 33
Epimedium pubigerum 20 25 . 83 67 57 . 13 8
Salvia forsskaolei 20 50 . 83 33 71 . 13 8
Prunus domestica subsp. insititia ...33 ....25
Digitalis lanata . . . 33 . . . . 25
Cirsium hypoleucum 30 25 . 75 33 57 5 . 17
Fagus orientalis . . 15 67 100 14 . 7 .
Lathyrus aureus 20 50 .58 .43 ...
Lathyrus laxiflorus 20 .70 92 67 100 32 .75
Stellaria holostea . . . 50 33 . 41 . 50
Cardamine bulbifera . . . 33 67 . 5 . .
Helleborus orientalis 10 50 30 75 33 86 5 40 50
Geranium asphodeloides . . . 33 . 43 . 13 25
Lathyrus tukhtensis ....67 ...42
Carpinus betulus . . 35 58 100 86 9 . 8
Clinopodium vulgare 10 ...67 .18 .50
Physospermum cornubiense . . 20 8 67 . . . 50
Cyclamen coum . . 5 42 100 71 14 33 50
Laser trilobum . . 5 17 67 43 . . 17
Lapsana communis 30 25 30 58 100 43 27 . 75
Euonymus europaeus .25 .17 67 71 ..25
Quercus hartwissiana . . 5 . . 57 27 . .
Crataegus monogyna . . . . . . 59 93 .
Euphorbia amygdaloides . . 5 . . . 36 60 8
Quercus petraea 80 25 65 75 .29 .78
Ruscus aculeatus 90 100 75 8.100 36 100 .
Smilax excelsa 80 75 95 25 . 100 5 47 .
Quercus cerris . . . 58 33 57 82 100 100
Other species
Carpinus orientalis 80 100 100 83 100 100 100 100 100
Crataegus germanica 40 50 10 25 33 43 5 27 8
Geum urbanum 20 50 . 33 . 29 32 . 25
Dactylis glomerata ..533 ..27 725
Fragaria vesca 20 . 10 25 33 . 5 7 25
Melica uniflora . . . 25 33 29 . . .
Pyracantha coccinea 20 . . 8 . 14 5 . .
Salvia glutinosa . 25 15 . . 14 . . .
Salvia tomentosa ....33 .18 ..
Trifolium pratense . . 10 . . . 5 . 17
Geranium lucidum . . . . . . 9 . 17
Geranium robertianum 10 . 5 8 . 14 . . .
Veronica chamaedrys . . . . . . 9 7 8
Athyrium filix-femina ......9.8
Campanula involucrata . . . . . . 9 . 8
Lactuca muralis ..5...9..
Petrorhagia saxifraga . . 5 . . . 9 . .
Polypodium vulgare . . 10 . . . . 7 .
Vicia hirsuta ... . . . 9 . 8
Achillea bis errata . 25 . . . . 5 . .
Anthemis kotschyana ......5.8
Anthemis tinctor ia . . . . . . 5 . 8
Astragalus leucothrix . . . . . . 5 . 8
Calystegia sepium . . . 8 . 14 . . .
Celtis australis 10 .....5..
Circaea lutetiana 10 25 .......
Epipactis condensata . . . . . . 5 . 8
Epipactis pontica . . . . . . 5 . 8
Hieracium murorum . . 5 . . . . . 8
Lathyrus nissolia . . . . . . 5 . 8
Ochlopoa annua . . . . . . 5 . 8
Ononis pusilla . . . . . . 5 . 8
Pimpinella tragium ...8. 14 . . .
Poa bulbosa .. . . . . 5 . 8
Securigera cretica . . . . 33 . . . 8
Sideritis montana . . . . . . 5 . 8
Ulmus minor . . 5 . . 14 . . .
Vicia sativa subsp. nigra .. . . . . 5 . 8
Acer trautvetteri 10 . . . . . . . .
Adiantum capillus-veneris . . 5 . . . . . .
Alnus glutinosa subsp. barbata 10 . . . . . . . .
Argyrolobium biebersteinii ..... . . 7 .
Aristolochia parvifolia ........8
Aristolochia pontica . . 5 . . . . . .
Asplenium ruta-muraria ..5......
Blackstonia perfoliata .... . . 5 . .
Campanula raddeana ..5......
Cardamine parviflora ..5......
Carex humilis ..5......
Cirsium vulgare ..5. . . . . .
Cleistogenes serotina 10 . . . . . . . .
Crepis reuteriana . . . . . . 5 . .
Cyanus depressus . . . . . . . . 8
Echinops spinosissimus . . . . . . 5 . .
Epilobium montanum . . . . . . . 7 .
Epilobium parviflorum . . . . . . . 7 .
Erigeron annuus . . 5 . . . . . .
Erysimum pulchellum . . . . . . 5 . .
Euphorbia orientalis . . . . . . 5 . .
Euphorbia stricta . . 5 . . . . . .
Fallopia convolvulus . . . . . . 5 . .
Filago pyramidata . . . . . . . 7 .
Galium album ..5 . . . . . .
Geranium sanguineum . . . . . . . 7 .
Gledits ia triacanthos . . 5 . . . . . .
Hordeum bulbosum . . . . . . . . 8
Jacobaea vulgaris ..5 . . . . . .
Jasminum fruticans . . . . . . 5 . .
Legousia speculum-veneris . . . . . . 5 . .
Leptopus chinensis . . 5 .. . .. .
Lonicera caucasica . . 5 . . . . . .
Lotus corniculatus . . 5 . . . . . .
Malus sylvestris ..5 . . . . . .
Medicago ×v aria ......5 . .
Melampyrum elatius . . 5 . .. . . .
Melilotus officinalis .. . . . . 5 . .
Mercurialis perennis . . 5 . . . . . .
Morus alba . . 5 .. . . . .
Myosotis sylvatica ..... . . . 8
Ornithogalum sigmoideum . . . . . . . 7 .
Paeonia mascula .. . . . . . 7 .
Pachyphragma macrophylla . . 5 . . .. . .
Pinus sylvestris . . 5 . .. . ..
Plantago major . . 5 . . . . . .
Polygonatum glaberrimum . . 5 . . . . . .
Primula veris subsp. macrocalyx ..5 . . . . . .
Pulmonaria dacica . . 5 .. . ...
Punica granatum . . 5 . . . . . .
Ranunculus bulbosus . . 5 . . . . . .
Ranunculus polyanthemos ..5 . . . . . .
Rhagadiolus stellatus .... . .. . 8
Rhamnus alaternus . . . . . 14 . . .
Sambucus nigra . . 5 . . . . . .
Scabiosa sosnowskyi . . 5 . . . . . .
Sison amomum . . 5 . . . . ..
Smilax aspera .... . 14 . ..
Sonchus asper . . . . . . 5 . .
Sorbaria tomentosa . . . 8 . . . . .
Sorbus aucuparia . . . 8 . . . . .
Tanacetum partheniifolium . . 5 . . . . . .
Taraxacum sect. Taraxacum . . 5 . . . . . .
Thalictrum minus . . . . . . 5 . .
Torilis japonica . . 5 . . . . . .
Trachycarpus fortunei . . 5 . . . . . .
Trachynia distachya . . . . .. 5 . .
Trifolium diffusum . . 5 . .. . . .
Trifolium ochroleucon .. . . . . 5 . .
Veronica officinalis . . . . . 14 . . .
Veronica orientalis ..... . 5 . .
Vicia sepium . . 5 . . . . . .
Number of relevés per associati on
Campanulo alliariifoliae-Carpinetum orientalis . . 20 . . . . . .
Carpino betulo-orientalis . . . 11 . . . . .
Carpino or ientalis-Phillyrietum latifoliae .... . . 6 . .
Carpino orientalis-Quercetum cerridis . . . . . . . 15 .
Corno maris-Quercetum cerridis . . . . . . 5 . 5
Crataego curvisepalae-Quercetum cerridis . . . . . . . . 7
Erico arboreae-Carpinetum orientalis 10 4 . . . 1 1 . .
missing associat ion assignment . . . . 3 . . . .
Querco cerridis-Carpinetum orientalis . . . . . . 10 . .
Rusco aculeate-Carpinetum orientalis .. . 1 . 6 . . .
Supplement E3. Full synop tic table. Species p ercentage frequencies in the clusters are provided. Diagnostic (Φ ≥ 0.2,
gre y shaded) and highly diagnostic (Φ ≥ 0.55, gr ey shaded, in bold) species for each cluster are in the upper part of the
table, sorted by decreasing fidelity . Other species are provided below, sorted by decreasing frequency in the dataset.
Correspondence between associations and clusters is at the bottom of the table.
AnhangtE3. Vollständige Übersichtstabelle und Übereinstimmung zwischen den Assoziationen und Clust ern.
Diagnostische (Φ ≥ 0.2, grau schattiert ) and hoch diagrnostische (Φ ≥ 0.55, grau schattiert, in Fettdruck) Art en für
jeden Cluster sind im oberen Teil der T abelle, sortiert nach abnehmender Treue. Andere Arten sind darunter
aufgeführt, nach abnehmender Frequenz im Dat ensat z sortiert. Die Übereinstimmung zwischen Assoziationen und
Clustern findet sich am Fuß der Tabelle.
Novák et al.: Carpinus orientalis forests in Georgian Colchis: First insights
Supplement E4. Additional photos of the vegetation of the association Campanulo alliariifoliae-Carpinetum orientalis ass. nova hoc loco and
its sites in western Georgia. a) Forested landscape of the southern macroslope of the Racha Massif. Carpinus orientalis forests occupy mainly
limestone rock outcrops here, while mixed forests of Carpinus betulus, Castanea sativa and Fagus orientalis dominate on zonal sites (July
2017). b) River Tskaltsitela limestone canyon above the Motsameta Monastery with extensive Carpinus orientalis forests (July 2019). c)
Forests of Carpinus orientalis colonizing the upper part of a sunny limestone rock near the city Tkibuli (July 2017). d) Mixed Carpinus betulus
and C. orientalis forests on a limestone ridge near the Sataplia Cave above the city Tskaltubo (July 2016). e) Carpinus orientalis forest below
the Motsameta Monastery near the city Kutaisi. Recent massive dieback of Buxus sempervirens shrubs is apparent (July 2019). f) Undergrowth
of an open Carpinus orientalis forest near the city Martvili. Festuca drymeja, Laser trilobum and Leptopus chinensis are visible in the
understorey (July 2017). All photos by P. Novák.
Anhang E4. Zusätzliche Fotos der Vegetation des Campanulo alliariifolae-Carpinetum orientalis ass. nova hoc loco und ihrer Standorte in
Westgeorgien. a) Waldlandschaft des südlichen Abhangs des Racha-Massivs. Carpinus orientalis-Wälder besetzen hier hauptsächlich
Kalksteinfel-sen, während Mischwälder aus Carpinus betulus, Castanea sativa und Fagus orientalis an zonalen Standorten dominieren (Juli
2017). b) Kalksteinschlucht des Flusses Tskaltsitela oberhalb des Klosters Motsameta mit ausgedehnten Carpinus orientalis-Wäldern (Juli
2019). c) Carpinus orientalis-Wälder, die den oberen Teil eines sonnigen Kalksteinfelsens in der Nähe der Stadt Tkibuli besiedeln (Juli 2017).
d) Mischwälder aus Carpinus betulus und C. orientalis auf einem Kalksteinrücken in der Nähe der Sataplia-Höhle oberhalb der Stadt Tskaltubo
(Juli 2016). e) Carpinus orientalis-Wald unterhalb des Klosters Motsameta in der Nähe der Stadt Kutaisi. Das kürzliche massive Absterben
von Buxus sempervirens-Sträuchern ist offensichtlich (Juli 2019). f) Unterholz eines offenen Carpinus orientalis-Waldes in der Nähe der Stadt
Martvili. Festuca drymeja, Laser trilobum und Leptopus chinensis sind im Unterwuchs sichtbar (Juli 2017). Alle Fotos von P. Novák.
... The natural habitats of K. quinquefolia are deciduous forests or open areas at 300-2,200 m above sea level in: a) Carpinus orientalis Mill. forests (Georgian Colchis) as a diagnostic species of the association Campanulo alliariifoliae-Carpinetum orientalis Novák, Stupar & Kalníková, 2021(Novák et al. 2021; b) Zelkova carpinifolia (Pall.) K.Koch forests (Georgia) as frequent species in the vegetation type Zelkova carpinifolia-Carpinus betulus (Novák et al. 2020); c) beech forest (Fagus orientalis Lipsky) of northern Iran in the Hyrcanian ecosystem (Bakhshandeh Navroud et al. 2017;Ghorbanalizadeh and Akhani 2022); d) open areas along road sides (Karaköse 2021). ...
... The natural habitats of K. quinquefolia are deciduous forests or open areas at 300-2,200 m above sea level in: a) Carpinus orientalis Mill. forests (Georgian Colchis) as a diagnostic species of the association Campanulo alliariifoliae-Carpinetum orientalis Novák, Stupar & Kalníková, 2021(Novák et al. 2021; b) Zelkova carpinifolia (Pall.) K.Koch forests (Georgia) as frequent species in the vegetation type Zelkova carpinifolia-Carpinus betulus (Novák et al. 2020); c) beech forest (Fagus orientalis Lipsky) of northern Iran in the Hyrcanian ecosystem (Bakhshandeh Navroud et al. 2017;Ghorbanalizadeh and Akhani 2022); d) open areas along road sides (Karaköse 2021). ...
... In its native range, the species is commonly found in deciduous temperate forests, along with species with European-Caucasian distribution such as Acer campestre L., Carpinus betulus, and Fraxinus excelsior L. subsp. excelsior (Novák et al. 2021). These wood species are widespread in the Monza Park and across the Po Valley suggesting a suitability of the temperate forests of the Po Valley (mixed deciduous woodland dominated by Carpinus betulus and Quercus robur) to be invaded by K. quinquefolia. ...
Article
Full-text available
Klasea quinquefolia (M.Bieb. ex Willd.) Greuter & Wagenitz is a perennial and rhizomatous herb native to the Russian Caucasus, Armenia, Azerbaijan, Georgia, Iran, and Asian Turkey. The natural habitats of the species are deciduous forests or open areas in hill/mountain areas. Outside the native range, the species is mainly known for its ethnobotanical and pharmaceutical uses but in recent years, it has been also recorded as an alien species in Austria. In this work, we reported the first occurrence of K. quinquefolia in Italy. The species was recorded in August 2023 in the Monza Park (Lombardy, N-Italy) in a mesophilous woodland dominated by Carpinus betulus. The new population was subdivided in 10 subpopulations distributed in habitat patches with surface areas ranging from 0.085 to 95,008 m2. The total population accounted almost 500 individuals with a flowering population size of about 350 individuals. Likely, the establishment of K. quinquefolia is linked to the presence of internationally frequented facilities that might have favoured its unintentional arrival (e.g. the Monza Racetrack) or to historical reasons of past introductions to Royal Gardens of the Monza Palace. Presently, it should be treated as a naturalized alien species in Italy even if its further spreading could be favoured by the species’ habitat preference and climate change.
... It included the Colchic Dataset and relevés of associations dominated or co-dominated by Carpinus orientalis, the most abundant canopy companion of Z. carpinifolia in the Colchic stands, extracted from the following sources: Quézel et al. 1980 (association Carpinetum betulo-orientalis, n = 11 relevés; Crataego curvisepalae-Quercetum cerridis, n = 7; Erico arboreae-Carpinetum orientalis, n = 16; Rusco aculeatae-Carpinetum orientalis, n = 7; missing association assignment of the community, n = 3), Kutbay & Kilinç 1995 (Carpino orientalis-Quercetum cerridis, n = 15; Carpino orientalis-Phillyrietum latifoliae, n = 6), Yarcı 2002 (Querco cerridis-Carpinetum orientalis, n = 10) and Korkmaz et al. 2011 (Corno mari-Quercetum cerridis, n = 10). Moreover, we included relevés of 6 the association Campanulo alliariifoliae-Carpinetum orientalis (n = 20; Novák et al. 2021) representing xeromesophilous Carpinus orientalis forests with sparse occurrence of Z. carpinifolia, described from limestone areas bordering the Colchis Lowland in the north. ...
... The lower level of the classification revealed that the closest cluster to the Colchic Z. carpinifolia forests are the Colchic-Caucasian dry forests occurring in the limestone foothills of the Greater Caucasus in western Georgia (association Campanulo-Carpinetum; Novák et al 2021). Unlike the Z. carpinifolia forests, this community was richer in nemoral species slightly tolerant to drier substrates, both graminoids (e.g. ...
Article
Full-text available
Zelkova (Ulmaceae) represents a relict woody genus comprising six extant species with a disjunctive distribution in eastern and southwestern Eurasia. Zelkova carpinifolia is a deciduous tree limited to the Caucasian Ecoregion and its surroundings. Most of its sites are located in the two essential Tertiary refugia of the Northern Hemisphere – Colchis (western Georgia, northeastern Turkey) and Hyrcania (northern Iran, southeastern Azerbaijan). In Georgia, Z. carpinifolia stands are recognized as a national priority habitat. However, data on their environmental conditions, structure and species composition were partial, sometimes contradicting and scattered in the literature. Our main goal was to describe Georgian Colchic Z. carpinifolia forests based a novel dataset of vegetation-plot records and to present them in the broader vegetation context using available phytosociological data. To address this issue we led a phytosociological survey of Z. carpinifolia forests in Georgian Colchis and obtained 35 vegetation-plot records supplemented by the original field data on slope inclination, aspect and soil pH. To explore Z. carpinifolia stands within the broader regional vegetation context, we combined our new dataset with relevés of similar vegetation types from northern Iran, northern Turkey and western Georgia extracted from databases and literature. We classified the vegetation datasets using classification algorithms (beta-flexible clustering and Modified TWINSPAN) and examined the resulting clusters with detrended correspondence analysis (DCA) in terms of diagnostic species and selected environmental variables. Colchic Z. carpinifolia forests exhibited a relatively uniform species composition and structure, with Carpinus orientalis and Quercus robur subsp. imeretina representing the most frequent canopy companions of Z. carpinifolia. The evergreen submediterranean species Ruscus aculeatus often dominated the understory, accompanied by forest generalists, while herbs of dry forests and evergreen species were also frequent. The average vascular plant richness was 24.7 species per 100 m2. The investigated forests mainly inhabited soils of slightly acidic to subneutral reaction (average pH 6.2). A numerical comparison of Colchic and Hyrcanian Z. carpinifolia forests revealed significant differences: The Hyrcanian ones were much more mesophilous, with Hyrcanian endemics and forest esophytes being diagnostic species. The underlying causes of this ecological discrepancy remain unclear. In the context of dry deciduous forests of the Euxinian Province, Colchic Z. carpinifolia forests were most similar to the Colchic-Caucasian association Campanulo alliariifoliae-Carpinetum orientalis described from western Georgia. However, Z. carpinifolia stands formed their own sharply delimited cluster, indicating deeper differences than just the canopy dominance. Based on the classification results, we described a new alliance Smilaco excelsae-Carpinion orientalis for the Colchic-Caucasian lowland and mid-mountain dry and xeromesophilous deciduous forests. A mixture of species characteristic of the Caucasus and Colchis is diagnostic for this alliance, including Campanula alliariifolia, Klasea quinquefolia, Polygonatum glaberrimum, Quercus robur subsp. imeretina, Vinca major subsp. hirsuta, Z. carpinifolia. Colchic Z. carpinifolia stands face numerous threats, especially overgrazing by cattle, invasions of alien species and infrastructure development.
... The deciduous forests of the Colchic region are included in the classes Carpino-Fagetea sylvaticae and Quercetea pubescentis (Novák et al. 2020(Novák et al. , 2021. In this study, newly identified Carpino orientali-Quercetum polycarpae were included in the Carpino-Fagetea sylvaticae class, Carpinetalia betuli order, and Castaneo sativae-Carpinion orientalis alliance. ...
... Although Castaneo sativae-Carpinion orientalis alliance was assigned to Carpinetalia betuli by Mucina et al. (2016) in the EuroVegChecklist, it was included in the order of Rhododendro-Fagetalia orientalis in some studies (Novák et al. 2019). Novák et al. (2021) assigned Carpinus orientalis forests in Georgian Colchis to Quercion conferta, Trachystemono orientalis-Carpinion betuli and Castaneo sativae-Carpinion orientalis at the alliance level. Although Carpino orientali-Quercetum polycarpae is a plant community containing thermophilic Mediterranean origin taxa (e.g., Quercus petraea subsp. ...
Article
Full-text available
This investigation was carried out between 2019 and 2020 to reveal the forest vegetation of Beşpare villages in Artvin. This vegetation has been studied according to the conventional Braun-Blanquet approach. A total of 96 relevés were sampled. The cover-abundance of plant species and environmental data in plots were analyzed using multivariate analyses techniques. Raunkiaer life-form ratios, Shannon–Wiener index values, species richness, and chorological spectrum of syntaxa were calculated and interpreted. EUNIS habitat code and names for described syntaxa were assigned. In the area under review, forest vegetation is represented by Querco polycarpo-Piceetum orientalis ass., Carpino orientali-Quercetum polycarpae ass., Carpino betuli-Piceetum orientalis ass., Thelypterido limbospermae-Alnetum barbatae ass., Rubo caucasici-Fagetum orientali ass., Fago orientalis-Abietum nordmannianae ass., Fago orientalis-Piceetum orientalis ass., Abieti nordmanniana-Piceetum orientalis ass., Pino sylvestris-Piceetum orientalis ass. Two new plant associations were identified. Some previously defined syntaxa names have been re-arranged according to The International Code of Phytosociological Nomenclature.
... The easternmost part of their itinerary also includes semideserts, dry steppes and arid open forests. For more details on the plant communities of the area, refer to Nakhutsrishvili (1999Nakhutsrishvili ( , 2013, Nakhutsrishvili et al. (2015), and Novák et al. (2020Novák et al. ( , 2021Novák et al. ( , 2023. By superimposing the itinerary on the current vegetation, which is more anthropized than that encountered by the two explorers, one can appreciate the great variety of environments (see Figure 2). ...
... In the last decade, more Braun-Blanquetian studies appeared, both local (e.g. Novák et al. 2020Novák et al. , 2021Goginashvili et al. 2021) or focusing on large areas or whole national territories (e.g. Jabbarov et al. 2020;Kalníková et al. 2020;Nakhutsrishvili et al. 2022). ...
Article
Full-text available
The Caucasus is a hotspot of global biodiversity. However, even in the era of big data, this region remains underrepresented in public vegetation-plot databases. The Transcaucasian Vegetation Database (GIVD code AS-00-005) is a novel dataset which primarily aims to compile, store and share vegetation-plot records sampled by the Braun-Blanquet approach and originating from Transcaucasia (the Southern Caucasus), i.e. the countries of Armenia, Azerbaijan and Georgia. The database currently contains 2,882 vegetation plots. The oldest plots originate from 1929, the newest from 2022, and their collection is ongoing. The data include mesophilous forests (phytosociological class Carpino-Fagetea ) and various alpine and subalpine communities (e.g. Carici-Kobresietea , Loiseleurio-Vaccinietea ) – selected other habitats are also represented. Most of the plots (84%) are georeferenced, 36% with high precision of 25 m or less. The database includes 2,500 taxon names; Asteraceae , Poaceae , Fabaceae and Rosaceae represent the most common families. Vascular plants are recorded in all plots, while data on species composition of bryophytes are available for 11% of plots. The database intends to contribute to the complex biodiversity research of this biologically unique territory. The data might be used in diverse projects in botany, biogeography, ecology and nature protection. Taxonomic reference : The Plant List (http://www.theplantlist.org/ [Accessed 10 Jan 2023]). Syntaxonomic reference : Mucina et al. (2016). Abbreviations : TVD = Transcaucasian Vegetation Database.
... & Körte, and Isopyrum thalictroides L.). A mixture of mesophilous and thermophilous species in stands dominated by C. orientalis has also been reported in other regions, not only in the Balkans (Stupar et al. 2020), but also in Italy (Blasi 2001) and Georgia (Novák et al. 2021). ...
Article
Full-text available
We investigated stands dominated by Carpinus orientalis Mill. in five gorges and canyons across eastern Serbia. Floristic and ecological analyses were conducted on a dataset of 102 phytosociological relevés collected in the field and 33 relevés from the existing literature. Hierarchical classification distinguished four groups of phytosociological relevés within the dataset. Floristic composition, diversity and phytogeographical characteristics of the groups were determined. These groups occur in ecologically different habitats and differ with respect to ecological gradients. Non-metric multidimensional scaling revealed that the main gradients that influence the variation in the floristic composition were moisture, nutrients, temperature and light. The results obtained in our analyses allowed us to describe the new association Seslerio filifoliae–Carpinetum orientalis ass. nova hoc loco, that occupies very steep and stony slopes, and is developing at altitudes between 80 and 550 m a.s.l. in all aspects.
... Studies investigated various forest vegetation (e.g. Passarge 1980;Novák et al. 2021), rocks and screes (e.g. Ermolaeva 2007; Belonovskaya 2012), diversity of grasslands (e.g. ...
Article
https://rdcu.be/dhEmw Relict vegetation of water-splashed petrifying rocks with calcareous tufa formation dominated by the fern Adiantum capillus-veneris and wetland bryophytes (phytosociological class Adiantetea) was investigated in Georgia, Caucasus biodiversity hotspot. The study brings the first phytosociological data on this scarce community in the Caucasus based on a novel dataset of vegetation plot records. A classification analysis revealed two main vegetation communities. They are represented by the Caucasian community recorded in the Mtkvari River valley inside the Tbilisi city (E Georgia) and the Colchic community developed under the humid, warm-temperate climate of Colchis (W Georgia), one of the key refugia of Tertiary flora across W Eurasia. To compare newly recorded vegetation types and so far described associations of the Adiantetea class, we used a broader dataset of the analogous communities reported from Europe and surroundings. It associated the Caucasian community with the pan-Mediterranean association Eucladio-Adiantetum. It was characterized by subhalophytes (e.g. Samolus valerandi), Eucladium verticillatum as a dominant bryophyte, and the absence of relict or endemic vascular plant species. The Colchic community represented a previously undescribed community. Therefore, we designated a new association Saxifrago cymbalariae-Adiantetum capilli-veneris delineated by the characteristic species of the Colchic-Caucasian territory (e.g. Hedera colchica, Saxifraga cymbalaria) and Palustriella commutata as the dominant bryophyte. Both associations belong to the Mediterranean-Atlantic alliance Adiantion. Described communities require conservation attention for their rarity, refugial character and presence of relict and endemic species. Modifications of the hydrological regime and construction activities are among their most important potential threats.
Article
Full-text available
Questions What are the main vegetation types of forest and shrubland vegetation in central and eastern Euxine Turkey and SW Georgia? What are the main environmental factors affecting their diversity? What is their syntaxonomic position? Can we integrate them into the European vegetation classification system? Location Central and eastern Euxine Turkey and SW Georgia. Methods We collected 3104 vegetation plots of forest and shrubland vegetation in the study region and performed Two-Way Indicator Species Analysis (TWINSPAN) classification. We described vegetation types based on the classification results, expert knowledge and information from literature sources. We defined diagnostic species and prepared distribution maps for each vegetation type. To determine the most significant environmental variables on floristic differentiation, we used canonical correspondence analysis. Detrended correspondence analysis with passive projection of most significant environmental variables was run to interpret the environmental variation of vegetation types. Results The studied vegetation was divided into 29 vegetation types related to seven main vegetation groups: relict Mediterranean forests and shrubland (mainly along the coastline, beside some inland localities), lowland to submontane forests, central Euxine mountain forests, eastern Euxine (Colchic) mountain forests, subeuxine forests, azonal riparian forests and subalpine and alpine shrubland. Elevation is the most important factor causing the differentiation in vegetation. It is followed by longitude and latitude. Among climatic variables, temperature seasonality, annual precipitation and precipitation of the wettest quarter are the most significant factors for vegetation differentiation. These factors correlate with the reduction of maritime climate and geomorphological features. Conclusions Vegetation types mostly correspond to the syntaxa accepted in the EuroVegChecklist. However, some of them do not appear in the EuroVegChecklist since they appear only beyond Europe. We described three syntaxa as new: Abietion equi-trojani, Querco cerridis-Carpinion orientalis and Piceo orientalis-Fagenion orientalis. The study revealed high vegetation diversity of the region that should be taken into consideration in ecosystem management and used as a reference in restoration and mitigation of the effects of global changes.
ResearchGate has not been able to resolve any references for this publication.