Article

Four Weeks of Power Optimized Sprint Training Improves Sprint Performance in Adolescent Soccer Players

Authors:
To read the full-text of this research, you can request a copy directly from the authors.

Abstract

Purpose: This study compared the effects of heavy resisted sprint training (RST) versus unresisted sprint training (UST) on sprint performance among adolescent soccer players. Methods: Twenty-four male soccer players (age: 15.7 [0.5] y; body height: 175.7 [9.4] cm; body mass: 62.5 [9.2] kg) were randomly assigned to the RST group (n = 8), the UST group (n = 10), or the control group (n = 6). The UST group performed 8 × 20 m unresisted sprints twice weekly for 4 weeks, whereas the RST group performed 5 × 20-m heavy resisted sprints with a resistance set to maximize the horizontal power output. The control group performed only ordinary soccer training and match play. Magnitude-based decision and linear regression were used to analyze the data. Results: The RST group improved sprint performances with moderate to large effect sizes (0.76–1.41) across all distances, both within and between groups (>92% beneficial effect likelihood). Conversely, there were no clear improvements in the UST and control groups. The RST evoked the largest improvements over short distances (6%–8%) and was strongly associated with increased maximum horizontal force capacities (r = .9). Players with a preintervention deficit in force capacity appeared to benefit the most from RST. Conclusions: Four weeks of heavy RST led to superior improvements in short-sprint performance compared with UST among adolescent soccer players. Heavy RST, using a load individually selected to maximize horizontal power, is therefore highly recommended as a method to improve sprint acceleration in youth athletes.

No full-text available

Request Full-text Paper PDF

To read the full-text of this research,
you can request a copy directly from the authors.

... The literature search yielded a total of 22 studies from which 24 groups were used in the analyses (n = 6 for UDS [19][20][21][22][23]25] and n = 18 for RS [13,29,[39][40][41][42][43][44][45][46][47][48][49][50][51][52]). Each study's characteristics regarding participants, training programmes, and testing and outcome are listed in Tables 2 and 3. ...
... Resistive loads varied, ranging from % velocity loss (VL) (7.5-50%), % body mass (BM) (10.2-80%) or absolute loads (5 kg). Sprint testing was assessed in the studies through various automated methods such as, photocells, radar guns [42,44,48,51], video analysis and computation [19][20][21][22] or the use of the 1080 Sprint [52]. Within UDS groups, the degree of each slope was also defined in Table 2, with values ranging from 3° to 4°. ...
... When not accounting for distance tested, small to moderate differences were seen between the very heavy loads (≥ 80% BM or ≥ 50% VL) and all other groups, while differences between all other groups were not significant. Of note, the very heavy group also contained some reasonable variability due to the study by Derakhti et al. [52], which may have seen strong effects due to their sample being professional adolescent athletes. Additionally, when the relationship between test distance and SMD was analysed within each loading group (Fig. 4), the results of this meta-analysis and meta regression seem to indicate that the linear relationship further weakens within a loading prescription. ...
Article
Full-text available
Background Two specific sprint training methods that are present to varying degrees in research and practice are combined uphill–downhill sprinting (UDS) and resisted sprint training methods (RS). Both methods seem to improve sprint performance, but to the author’s knowledge a comparison does not exist investigating the differences between the two training protocols and traditional sprinting. Objective The present systematic review and meta-analysis investigated sprint performance changes between combined uphill–downhill sprinting and resisted sprinting methods (sleds, cables/bands, vests, uphill) and how these compared with traditional sprinting. Methods A literature search was performed on 19 December 2022, in the databases PubMed, SPORTDiscus, Web of Science and SCOPUS, which from 22 studies yielded a total of 24 eligible groups (UDS, n = 6; RS, n = 18). Studies that measured sprint performance, had a traditional sprinting control, and used either training intervention in healthy individuals of any age for ≥ 4 weeks were eligible for the meta-analysis. The change in sprint performance from baseline to post intervention was compared between the interventions and their traditional sprinting control group. Outcomes were expressed as standardized mean differences (SMD). Results The standardized changes in sprint performance between intervention groups and traditional-sprinting controls (negative in favour of intervention, positive in favour of traditional sprint) and 95% confidence interval (CI) were as follows: small for UDS (SMD − 0.41 [− 0.79, − 0.03]; p = 0.03), trivial for RS (SMD − 0.14 [− 0.36, 0.07]; p = 0.19). Conclusion Combined uphill–downhill sprinting was more effective than traditional sprinting, while resisted sprinting was not. It appears that resisted sprint interventions do not increase sprint performance any more than traditional sprinting. Subgroup analysis and meta-regression appear to show differences between sled loads and possible differences across distances tested. The results of this review and meta-analysis seem to warrant further investigations into the possibility that UDS may be a superior sprint training method to resisted and traditional sprinting.
... Among training modalities to develop faster and more efficient players when sprinting, execution of sled-resisted sprints is considered a sprint-specific training method. This well-known and effective technique involves pulling a resistive load in a horizontal plane of motion (Alcaraz et al., 2018;Derakhti et al., 2021;Petrakos et al., 2016). ...
... Lahti et al. (26) reported that heavy RST training at a 60% velocity decrement (V dec ) for 9 weeks resulted in no adverse changes in the unresisted sprint technique. Further, the literature supports the benefits of short-term (4 weeks) and long-term (8-10 weeks) heavy RST training (i.e., V dec 50%-80%, sled load of ∼90% body mass) on horizontal force production in the early acceleration phase and power output (27)(28)(29)(30). Given the linear relationship between the tested loads and the resistive force in this study, the regression equations can be used to calculate a higher F h value that may occur during extremely heavy training events, such as the "truck pull," which is commonly seen among strongman competitors (31). ...
Article
Full-text available
Sport performance coaches use a range of modalities to apply a horizontal force ( F h ) to athletes during resisted sprint training (RST). These modalities include parachutes, weighted vests, pulley devices, motored tethered devices, and, most notably, weighted sleds. Despite the widespread use of these devices, the resistance forces of the pulley devices have not been evaluated for reliability and accuracy. Therefore, the primary aim of this study is to quantify the F h of a commercially available pulley device (EXER-GENIE®) and determine how resistance force is related to the load settings on the device. The secondary aim is to identify the differences in the F h values between three EXER-GENIE® devices that use 36 m and 60 m ropes. The F h values in the Newtons (N) of the three EXER-GENIE® devices were analyzed using a motorized winch, a lead acid battery, and an S-beam load cell. Four 10 s winch-driven trials were performed using 15 different EXER-GENIE® loads, ranging from 0.028 kg to 3.628 kg, employing two different 36 m devices and one 60 m device. The mean ± standard deviation for F h was reported across the four trials for each load setting. All devices produced similar F h values across lighter load settings (loads ≤0.141 kg). However, at heavier loads (loads ≥0.226 kg), the 60 m device had F h values 50–85 N greater than those of the 36 m device. The coefficient of variation across the four trials was extremely high at light loads but sharply decreased to <10% at heavy loads. Absolute reliability was high for each device [intraclass correlation coefficient (ICC) = 0.99]. A regression analysis for F h values and EXER-GENIE® load indicated a strong positive relationship between load and F h values across all devices ( R 2 = 0.96–0.99). Caution should be exercised when using identical loads on the different-length pulley devices, as the 60 m device produced greater F h values than the 36 m devices at load settings higher than 0.226 kg. These results can provide coaches and practitioners with a better understanding of the magnitude of resistance that is applied when prescribing EXER-GENIE® devices for higher training loads.
Thesis
Full-text available
Aim The purposes of this study were to investigate if the load-velocity (L-V) profile parameters-force capacity and efficiency-differ between swimmers of different performance level, and to investigate if efficiency is the key performance indicator between international elite and national elite level swimmers. Method Fifty-four swimmers (27 female and 27 male) of either regional level, national elite or international elite level, participated in this study. The swimmers performed three 25 m semi-tethered maximum effort swims with ascending loads (1 kg, 5% and 10% of body mass). Mean velocity during three stroke cycles mid-effort was calculated and plotted as a function of the external added load. A linear regression was established, expressing the relationship between load and velocity, with the intercepts between the axes and the regression line being defined as the theoretical maximum velocity (V0) and load (force capacity, L0). The slope of the regression line (slopeLV) serves as an index of efficiency. Results A statistically significant difference was found between the three performance levels for all L-V profile variables for front crawl: V0 (F [2, 51] = 7.76, p<0.001), L0 (F [2, 51] = 5.18, p=0.009), and slopeLV (F [2, 51] = 3.36, p=0.043). A paired t-test revealed no difference in slopeLV between matched international elite and national elite level swimmers (t [9] = 1.42, p=0.188), but a near significant difference in L0 (t [9] = 2.11, p=0.064). Both slopeLV and L0 for front crawl had a strong correlation with personal best in 100 m front crawl (PB100). Conclusion Efficiency was not found to be the key performance indicator between matched international elite and national elite swimmers in this study, and neither was force capacity. Nevertheless, a significant difference in all front crawl L-V profile parameters was found between performance level groups, but post hoc analyses indicated no difference between adjacent performance levels neither in L0 nor slopeLV. There was however a strong correlation between both slopeLV, and L0, to the swimmers' PB100. All these findings imply that efficiency and force capacity seem to be of equal importance for high performance, but swimmers use different strategies to reach the high swim velocity. Abbreviation dictionary BM-body mass (kg) CD-coefficient of drag FP-propulsive force FD-drag force (in this study used as a representation of all resistive forces) L0-theoretical maximum load LCM-long course meter, i.e. a 50 m pool L-V-load-velocity rL0-theoretical maximum load relative to body mass rslopeLV-slope of regression line of velocity measurements and load relative to body mass SCM-short course meters, i.e. a 25 m pool SL-stroke length slopeLV-slope of the regression line of the load-velocity measurements SR-stroke rate V0-theoretical maximum velocity vmax-maximum velocity VPM-velocity perturbation method WA-World Aquatics, formerly known as FINA (Fédération Internationale de Natation)
Article
Full-text available
Background Sprint performance is an essential skill to target within soccer, which can be likely achieved with a variety of methods, including different on-field training options. One such method could be heavy resisted sprint training. However, the effects of such overload on sprint performance and the related kinetic changes are unknown in a professional setting. Another unknown factor is whether violating kinematic specificity via heavy resistance will lead to changes in unloaded sprinting kinematics. We investigated whether heavy resisted sled training (HS) affects sprint performance, kinetics, sagittal plane kinematics, and spatiotemporal parameters in professional male soccer players. Methods After familiarization, a nine-week training protocol and a two-week taper was completed with sprint performance and force-velocity (FV) profiles compared before and after. Out of the two recruited homogenous soccer teams ( N = 32, age: 24.1 ± 5.1 years: height: 180 ± 10 cm; body-mass: 76.7 ± 7.7 kg, 30-m split-time: 4.63 ± 0.13 s), one was used as a control group continuing training as normal with no systematic acceleration training (CON, N = 13), while the intervention team was matched into two HS subgroups based on their sprint performance. Subgroup one trained with a resistance that induced a 60% velocity decrement from maximal velocity ( N = 10, HS60%) and subgroup two used a 50% velocity decrement resistance ( N = 9, HS50%) based on individual load-velocity profiles. Results Both heavy resistance subgroups improved significantly all 10–30-m split times ( p < 0.05, d = − 1.25; −0.62). Post-hoc analysis showed that HS50% improved significantly more compared to CON in 0–10-m split-time ( d = 1.03) and peak power ( d = 1.16). Initial maximal theoretical horizontal force capacity (F0) and sprint FV-sprint profile properties showed a significant moderate relationship with F0 adaptation potential ( p < 0.05). No significant differences in sprinting kinematics or spatiotemporal variables were observed that remained under the between-session minimal detectable change. Conclusion With appropriate coaching, heavy resisted sprint training could be one pragmatic option to assist improvements in sprint performance without adverse changes in sprinting kinematics in professional soccer players. Assessing each player’s initial individual sprint FV-profile may assist in predicting adaptation potential. More studies are needed that compare heavy resisted sprinting in randomized conditions.
Article
Full-text available
Cahill, MJ, Oliver, JL, Cronin, JB, Clark, K, Cross, MR, Lloyd, RS, and Lee, JE. Influence of resisted sled-pull training on the sprint force-velocity profile of male high-school athletes. J Strength Cond Res XX(X): 000-000, 2020-Although resisted sled towing is a commonly used method of sprint-specific training, little uniformity exists around training guidelines for practitioners. The aim of this study was to assess the effectiveness of unresisted and resisted sled-pull training across multiple loads. Fifty-three male high-school athletes were assigned to an unresisted (n 5 12) or 1 of 3 resisted groups: light (n 5 15), moderate (n 5 14), and heavy (n 5 12) corresponding to loads of 44 6 4 %BM, 89 6 8 %BM, and 133 6 12 %BM that caused a 25, 50, and 75% velocity decrement in maximum sprint speed, respectively. All subjects performed 2 sled-pull training sessions twice weekly for 8 weeks. Split times of 5, 10, and 20 m improved across all resisted groups (d 5 0.40-1.04, p , 0.01) but did not improve with unresisted sprinting. However, the magnitude of the gains increased most within the heavy group, with the greatest improvement observed over the first 10 m (d $ 1.04). Changes in preintervention to postintervention force-velocity profiles were specific to the loading prescribed during training. Specifically, F 0 increased most in moderate to heavy groups (d 5 1.08-1.19); Vmax significantly decreased in the heavy group but increased in the unresisted group (d 5 012-0.44); whereas, Pmax increased across all resisted groups (d 5 0.39-1.03). The results of this study suggest that the greatest gains in short distance sprint performance, especially initial acceleration, are achieved using much heavier sled loads than previously studied in young athletes.
Article
Full-text available
We tested the hypothesis that the degree of adaptation to highly focused sprint training at opposite ends of the sprint Force-Velocity (FV) spectrum would be associated with initial sprint FV-profile in rugby athletes. Training-induced changes in sprint FV-profiles were computed before and after an 8-week in-season resisted or assisted sprint training protocol, including a 3-week taper. Professional male rugby players (age: 18.9 ± 1.0 years; body-height: 1.9 ± 0.0 m; body-mass: 88.3 ± 10.0 kg) were divided into two groups based on their initial sprint FV-profiles: 1) heavy sled training (RESISTED, N = 9, velocity loss 70-80%), and 2) assisted acceleration training (ASSISTED, N = 12, velocity increase 5-10%). A total of 16 athletes were able to finish all required measurements and sessions. According to the hypothesis, a significant correlation was found between initial sprint FV-profile and relative change in sprint FV-profile (RESISTED: r = -0.95, p<0.01, ASSISTED: r = -0.79, p<0.01). This study showed that initial FV-properties influence the degree of mechanical response when training at different ends of the FV-spectrum. Practitioners should consider utilizing the sprint FV-profile to improve the individual effectiveness of resisted and assisted sprint training programs in high-level rugby athletes.
Article
Full-text available
The aim of this study was to test individual adaptation kinetics to a high-resistance sprint training program designed to improve maximal horizontal power (Pmax), and compare the group and individual results of a classical “pre-post” analysis, and a “pre-peak” approach. Thirteen male and 9 female trained sprinters had their 30-m sprint performance and mechanical outputs assessed 1 week before (PRE), and one (POST, W1), 2 (W2), 3 (W3) and 4 (W4) weeks after a 10-week training block (10 repetitions of 20-m resisted sprints at the load associated to the apex of their velocity-power relationship: i.e., 90 ± 10% body mass on average (range: 75–112%). We observed clearly different outcomes on all variables for the PRE-POST vs. PRE-PEAK analyses. The PRE-PEAK analysis showed a larger (almost double) increase in Pmax (9.98 ± 5.27% on average, p < 0.01) than the PRE-POST (5.39 ± 5.87%, p < 0.01). Individual kinetics of post-training adaptations show that peak values were not captured in the POST (W1) assessment (generally observed at W3 and W4). Finally, the week of greatest Pmax output differed strongly among subjects, with most subjects (7/22) peaking at W4. In conclusion, after a 10-week high-resistance sprint training block, a classical 1-week-PRE to 1-week-POST assessment could not capture peak adaptation, which differed among athletes. Adopting a similar approach in practice or research should improve insight into the true effects of training stimuli on athletic capabilities.
Article
Full-text available
Sled pushing is a commonly used form of resisted sprint training, however little empirical evidence exists, especially in youth populations. The aim of this study was to assess the effectiveness of unresisted and resisted sled pushing across multiple loads. Fifty high school athletes were assigned to an unresisted (n=12), or 3 resisted groups; light (n=14), moderate (n=13) and heavy (n=11) resistance that caused a 25, 50 and 75% velocity decrement in maximum sprint speed, respectively. All participants performed two sled push training sessions twice weekly for 8 weeks. Before and after the training intervention, the participants performed a series of jump, strength and sprint testing to assess athletic performance. Split times between 5 – 20 m improved significantly across all resisted groups (all p<0.05, d = 0.34 – 1.16) but did not improve significantly with unresisted sprinting. For all resisted groups gains were greatest over the first 5 m (d = 0.67‐0.84) and then diminished over each subsequent 5 m split (d = 0.08‐0.57). The magnitude of gains in split times was greatest within the heavy group. Small but non‐significant within group effects were found in pre to post force‐velocity profiles. There was a main effect of time but no interaction effects as all groups increased force and power, although the greatest increases were observed with the heavy load (d = 0.50‐0.51). The results of this study suggest that resisted sled pushing with any load was superior to unresisted sprint training, and that heavy loads may elicit the greatest gains in sprint performance over short distances.
Article
Full-text available
The purpose of this study was to examine the usefulness of individual load-velocity profiles and the between-athlete variation using the decrement in maximal velocity (Vdec) approach to prescribe training loads in resisted sled pulling in young athletes. Seventy high school, team sport, male athletes (age 16.7 ± 0.8 years) were recruited for the study. All participants performed one un-resisted and four resisted sled-pull sprints with incremental resistance of 20% BM. Maximal velocity was measured with a radar gun during each sprint and the load-velocity relationship established for each participant. A subset of 15 participants was used to examine the reliability of sled pulling on three separate occasions. For all individual participants, the load-velocity relationship was highly linear (r > 0.95). The slope of the load-velocity relationship was found to be reliable (coefficient of variation (CV) = 3.1%), with the loads that caused a decrement in velocity of 10, 25, 50, and 75% also found to be reliable (CVs = <5%). However, there was a large between-participant variation (95% confidence intervals (CIs)) in the load that caused a given Vdec, with loads of 14-21% body mass (% BM) causing a Vdec of 10%, 36-53% BM causing a Vdec of 25%, 71-107% BM causing a Vdec of 50%, and 107-160% BM causing a Vdec of 75%. The Vdec method can be reliably used to prescribe sled-pulling loads in young athletes, but practitioners should be aware that the load required to cause a given Vdec is highly individualized.
Article
Full-text available
The assessment of horizontal force during overground sprinting is increasingly prevalent in practice and research, stemming from advances in technology and access to simplified yet valid field methods. As researchers search out optimal means of targeting the development of horizontal force, there is considerable interest in the effectiveness of external resistance. Increasing attention in research provides more information surrounding the biomechanics of sprinting in general and insight into the potential methods of developing determinant capacities. However, there is a general lack of consensus on the assessment and computation of horizontal force under resistance, which has resulted in a confusing narrative surrounding the practical applicability of loading parameters for performance enhancement. As such, the aim of this commentary was twofold: to provide a clear narrative of the assessment and computation of horizontal force in resisted sprinting and to clarify and discuss the impact of methodological approaches to subsequent training implementation. Horizontal force computation during resisted sleds, a common sprint-training apparatus in the field, is used as a test case to illustrate the risks associated with substandard methodological practices and improperly accounting for the effects of friction. A practical and operational synthesis is provided to help guide researchers and practitioners in selecting appropriate resistance methods. Finally, an outline of future challenges is presented to aid the development of these approaches.
Article
Full-text available
Background: Sprinting is key in the development and final results of competitions in a range of sport disciplines, both individual (e.g., athletics) and team sports. Resisted sled training (RST) might provide an effective training method to improve sprinting, in both the acceleration and the maximum-velocity phases. However, substantial discrepancies exist in the literature regarding the influence of training status and sled load prescription in relation to the specific components of sprint performance to be developed and the phase of sprint. Objectives: Our objectives were to review the state of the current literature on intervention studies that have analyzed the effects of RST on sprint performance in both the acceleration and the maximum-velocity phases in healthy athletes and to establish which RST load characteristics produce the largest improvements in sprint performance. Methods: We performed a literature search in PubMed, SPORTDiscus, and Web of Science up to and including 9 January 2018. Peer-reviewed studies were included if they met all the following eligibility criteria: (1) published in a scientific journal; (2) original experimental and longitudinal study; (3) participants were at least recreationally active and towed or pulled the sled while running at maximum intensity; (4) RST was one of the main training methods used; (5) studies identified the load of the sled, distance covered, and sprint time and/or sprint velocity for both baseline and post-training results; (6) sprint performance was measured using timing gates, radar gun, or stopwatch; (7) published in the English language; and (8) had a quality assessment score > 6 points. Results: A total of 2376 articles were found. After filtering procedures, only 13 studies were included in this meta-analysis. In the included studies, 32 RST groups and 15 control groups were analyzed for sprint time in the different phases and full sprint. Significant improvements were found between baseline and post-training in sprint performance in the acceleration phase (effect size [ES] 0.61; p = 0.0001; standardized mean difference [SMD] 0.57; 95% confidence interval [CI] - 0.85 to - 0.28) and full sprint (ES 0.36; p = 0.009; SMD 0.38; 95% CI - 0.67 to - 0.10). However, non-significant improvements were observed between pre- and post-test in sprint time in the maximum-velocity phase (ES 0.27; p = 0.25; SMD 0.18; 95% CI - 0.49 to 0.13). Furthermore, studies that included a control group found a non-significant improvement in participants in the RST group compared with the control group, independent of the analyzed phase. Conclusions: RST is an effective method to improve sprint performance, specifically in the early acceleration phase. However, it cannot be said that this method is more effective than the same training without overload. The effect of RST is greatest in recreationally active or trained men who practice team sports such as football or rugby. Moreover, the intensity (load) is not a determinant of sprint performance improvement, but the recommended volume is > 160 m per session, and approximately 2680 m per week, with a training frequency of two to three times per week, for at least 6 weeks. Finally, rigid surfaces appear to enhance the effect of RST on sprint performance.
Article
Full-text available
Aims In the current study we investigated the effects of resisted sprint training on sprinting performance and underlying mechanical parameters (force-velocity-power profile) based on two different training protocols: (i) loads that represented maximum power output (Lopt) and a 50% decrease in maximum unresisted sprinting velocity and (ii) lighter loads that represented a 10% decrease in maximum unresisted sprinting velocity, as drawn from previous research (L10). Methods Soccer [n = 15 male] and rugby [n = 21; 9 male and 12 female] club-level athletes were individually assessed for horizontal force-velocity and load-velocity profiles using a battery of resisted sprints, sled or robotic resistance respectively. Athletes then performed a 12-session resisted (10 × 20-m; and pre- post-profiling) sprint training intervention following the L10 or Lopt protocol. Results Both L10 and Lopt training protocols had minor effects on sprinting performance (average of -1.4 to -2.3% split-times respectively), and provided trivial, small and unclear changes in mechanical sprinting parameters. Unexpectedly, Lopt impacted velocity dominant variables to a greater degree than L10 (trivial benefit in maximum velocity; small increase in slope of the force-velocity relationship), while L10 improved force and power dominant metrics (trivial benefit in maximal power; small benefit in maximal effectiveness of ground force orientation). Conclusions Both resisted-sprint training protocols were likely to improve performance after a short training intervention in already sprint trained athletes. However, widely varied individualised results indicated that adaptations may be dependent on pre-training force-velocity characteristics.
Article
Full-text available
PurposeWe sought to compare force–velocity relationships developed from unloaded sprinting acceleration to that compiled from multiple sled-resisted sprints. Methods Twenty-seven mixed-code athletes performed six to seven maximal sprints, unloaded and towing a sled (20–120% of body-mass), while measured using a sports radar. Two methods were used to draw force–velocity relationships for each athlete: A multiple trial method compiling kinetic data using pre-determined friction coefficients and aerodynamic drag at maximum velocity from each sprint; and a validated single trial method plotting external force due to acceleration and aerodynamic drag and velocity throughout an acceleration phase of an unloaded sprint (only). Maximal theoretical force, velocity and power were determined from each force–velocity relationship and compared using regression analysis and absolute bias (± 90% confidence intervals), Pearson correlations and typical error of the estimate (TEE). ResultsThe average bias between the methods was between − 6.4 and − 0.4%. Power and maximal force showed strong correlations (r = 0.71 to 0.86), but large error (TEE = 0.53 to 0.71). Theoretical maximal velocity was nearly identical between the methods (r = 0.99), with little bias (− 0.04 to 0.00 m s−1) and error (TEE = 0.12). Conclusions When horizontal force or power output is considered for a given speed, resisted sprinting is similar to its associated phase during an unloaded sprint acceleration [e.g. first steps (~ 3 m s−1) = heavy resistance]. Error associated with increasing loading could be resultant of error, fatigue, or technique, and more research is needed. This research provides a basis for simplified assessment of optimal loading from a single unloaded sprint.
Article
Full-text available
Purpose: To ascertain whether force-velocity-power relationships could be compiled from a battery of sled-resisted overground sprints and to clarify and compare the optimal loading conditions for maximizing power production for different athlete cohorts. Methods: Recreational mixed-sport athletes (n = 12) and sprinters (n = 15) performed multiple trials of maximal sprints unloaded and towing a selection of sled masses (20-120% body mass [BM]). Velocity data were collected by sports radar, and kinetics at peak velocity were quantified using friction coefficients and aerodynamic drag. Individual force-velocity and power-velocity relationships were generated using linear and quadratic relationships, respectively. Mechanical and optimal loading variables were subsequently calculated and test-retest reliability assessed. Results: Individual force-velocity and power-velocity relationships were accurately fitted with regression models (R2> .977, P < .001) and were reliable (ES = 0.05-0.50, ICC = .73-.97, CV = 1.0-5.4%). The normal loading that maximized peak power was 78% ± 6% and 82% ± 8% of BM, representing a resistance of 3.37 and 3.62 N/kg at 4.19 ± 0.19 and 4.90 ± 0.18 m/s (recreational athletes and sprinters, respectively). Optimal force and normal load did not clearly differentiate between cohorts, although sprinters developed greater maximal power (17.2-26.5%, ES = 0.97-2.13, P < .02) at much greater velocities (16.9%, ES = 3.73, P < .001). Conclusions: Mechanical relationships can be accurately profiled using common sled-training equipment. Notably, the optimal loading conditions determined in this study (69-96% of BM, dependent on friction conditions) represent much greater resistance than current guidelines (~7-20% of BM). This method has potential value in quantifying individualized training parameters for optimized development of horizontal power.
Article
Full-text available
The ability of the human body to generate maximal power is linked to a host of performance outcomes and sporting success. Power-force-velocity relationships characterize limits of the neuromuscular system to produce power, and their measurement has been a common topic in research for the past century. Unfortunately, the narrative of the available literature is complex, with development occurring across a variety of methods and technology. This review focuses on the different equipment and methods used to determine mechanical characteristics of maximal exertion human sprinting. Stationary cycle ergometers have been the most common mode of assessment to date, followed by specialized treadmills used to profile the mechanical outputs of the limbs during sprint running. The most recent methods use complex multiple-force plate lengths in-ground to create a composite profile of over-ground sprint running kinetics across repeated sprints, and macroscopic inverse dynamic approaches to model mechanical variables
Article
Full-text available
Background: Sprint running acceleration is a key feature of physical performance in team sports, and recent literature shows that the ability to generate large magnitudes of horizontal ground-reaction force and mechanical effectiveness of force application are paramount. The authors tested the hypothesis that very-heavy loaded sled sprint training would induce an improvement in horizontal-force production, via an increased effectiveness of application. Methods: Training-induced changes in sprint performance and mechanical outputs were computed using a field method based on velocity-time data, before and after an 8-wk protocol (16 sessions of 10- × 20-m sprints). Sixteen male amateur soccer players were assigned to either a very-heavy sled (80% body mass sled load) or a control group (unresisted sprints). Results: The main outcome of this pilot study is that very-heavy sled-resisted sprint training, using much greater loads than traditionally recommended, clearly increased maximal horizontal-force production compared with standard unloaded sprint training (effect size of 0.80 vs 0.20 for controls, unclear between-groups difference) and mechanical effectiveness (ie, more horizontally applied force; effect size of 0.95 vs -0.11, moderate between-groups difference). In addition, 5-m and 20-m sprint performance improvements were moderate and small for the very-heavy sled group and small and trivial for the control group, respectively. Practical Applications: This brief report highlights the usefulness of very-heavy sled (80% body mass) training, which may suggest value for practical improvement of mechanical effectiveness and maximal horizontal-force capabilities in soccer players and other team-sport athletes. Results: This study may encourage further research to confirm the usefulness of very-heavy sled in this context.
Article
Full-text available
Recent studies have brought new insights into the evaluation of power-force-velocity profiles in both ballistic push-offs (e.g. jumps) and sprint movements. These are major physical components of performance in many sports, and the methods we developed and validated are based on data that are now rather simple to obtain in field conditions (e.g. body mass, jump height, sprint times or velocity). The promising aspect of these approaches is that they allow for a more individualized and accurate evaluation, monitoring, and training practices; the success of which are highly dependent on the correct collection, generation and interpretation of athletes' mechanical outputs. We therefore wanted to provide a practical vade mecum to sports practitioners interested in implementing these power-force-velocity profiling approaches. After providing a summary of theoretical and practical definitions for the main variables, we have first detailed how vertical profiling can be used to manage ballistic push-off performance with emphasis on the concept of optimal force-velocity profile and the associated force-velocity imbalance. Further, we have discussed these same concepts with regards to horizontal profiling in the management of sprinting performance. These sections have been illustrated by typical examples from our own practice. Finally, we have provided a practical and operational synthesis, and outlined future challenges that will help in further developing these approaches.
Article
Full-text available
The aim of this study was to investigate the occurrence of repeated sprinting bouts in elite football. Furthermore, the construct validity of current tests assessing repeated-sprint ability (RSA) was analysed using information of sprinting sequences as they actually occurred during match-play. Sprinting behaviour in official competition was analysed for 19 games of the German national team between August 2012 and June 2014. A sprinting threshold was individually calculated based on the peak velocity reached during in-game sprinting. Players performed 17.2 ± 3.9 sprints per game and during the entire 19 games a total of 35 bouts of repeated sprinting (a minimum of three consecutive sprints with a recovery duration <30 s separating efforts). This averages one bout of repeated sprinting per player every 463 min. No general decrement in maximal sprinting speed was observed during bouts with up to five consecutive sprints. Results of the present study question the importance of RSA as it is classically defined. They indicate that shorter accelerations are more important in game-specific situations which do not reach speeds necessary to qualify them as sprints. The construct validity of classic tests of RSA in football is not supported by these observations.
Article
Full-text available
The present review introduces innovative concepts of training periodization and summarizes a large body of findings characterizing their potential benefits and possible limitations. Evidence-based analysis of the traditional periodization model led to elaboration of alternative versions of athletic preparation. These alternative versions postulated the superiority of training programs with a high concentration of selected workloads compared with traditionally designed plans directed at the concurrent development of many athletic abilities at low/medium workload concentration. The training cycles of highly concentrated specialized workloads were coined "training blocks" by experts and practitioners; correspondingly, the alternative versions were termed "block periodized (BP) preparation systems" by their presenters. Ultimately, two BP training models were proposed: a concentrated unidirectional training model (CU) and a multi-targeted BP approach to athletes' preparation. The first innovative version postulated administration of highly concentrated training means for enhancement of one leading fitness component, whereas the second version proposed the development of many targeted abilities within sequenced block mesocycles containing a minimal number of compatible training modalities. Both versions differ in their methodological background, duration and content of training blocks, possibilities of providing multi-peak performances, and applicability to various sports. In recent decades, many studies have evaluated the effects of both BP training versions in different sports. Examination of the training effects producing by the CU model in combat and team sports has found significant gains in various fitness estimates but not in sport-specific performances. Similarly, utilization of a CU program by elite swimmers did not lead to substantial enhancement of their peak performances. In contrast, studies of multi-targeted BP training programs have revealed their distinct superiority compared with traditional preparation in endurance, team, and dual sports, and strength/power training and recreational athletes (28 studies). It is suggested that the CU training strategy suits athletic disciplines demanding one fitness component like explosive strength in jumping performances. Unlike this limitation, the multi-targeted BP system prompted a beneficial increase of specific preparedness in sports and disciplines in which peak performances require the application of many targeted athletic abilities.
Article
Full-text available
Background: Based on recent findings regarding the mechanical determinants of sprint performance, resisted sled sprint (RSS) training may provide an effective tool for the improvement of sprint acceleration and maximal velocity. However, the volume and intensity for effective RSS training in different populations is unclear. Objectives: The primary objective was to evaluate the effectiveness of RSS training compared with unresisted sprint (URS) training, and the differential effects of sled load on RSS training outcomes. Data sources: STUDY ELIGIBILITY AND APPRAISAL: A systematic review was performed primarily using PubMed and SPORTDiscus databases. Peer-reviewed studies were accepted only if the participants used a sled towing device for a longitudinal intervention of resisted sprint training, and if RSS training was the primary difference in training intervention between groups. Effect size (ES) reported using Cohen's d was presented to compare the magnitude of effect between both dependent and independent groups. Results: A total of 11 studies fulfilled the eligibility criteria. Sled loads were prescribed either as a percentage of body mass (%BM), a targeted reduction in velocity compared with unresisted sprint velocity (%V dec) or as an absolute load (kg). RSS training with 'light' (<10 %BM or <10 %V dec) loads provide 'small' decrements in acceleration (-1.5 %, ES = 0.50) to 'moderate' improvements in maximal sprint velocity (2.4 %, ES = 0.80) in sprint-trained individuals. 'Moderate' (10-19.9 %BM or 10-14.9 %V dec) to 'very heavy' (>30 %BM or >30 %V dec) sled loads provide 'trivial' to 'extremely large' improvements in acceleration performance (0.5-9.1 %, ES = 0.14-4.00) in strength-trained or team sport individuals. Whether RSS training is more effective than URS training in the improvement of acceleration or maximal sprint velocity remains equivocal. Conclusions: RSS training is a novel training method with potential for the improvement of sprint performance, but its performance benefits over URS training remain to be conclusively demonstrated. Between-study comparisons are limited primarily by discrepancies in the training status and phase of the participants, and sled load prescription. Future work is required to define the optimal load and volume for RSS depending on the specific components of sprint performance to be enhanced.
Article
Full-text available
This study aimed to validate a simple field method for determining force- and power-velocity relationships and mechanical effectiveness of force application during sprint running. The proposed method, based on an inverse dynamic approach applied to the body center of mass, estimates the step-averaged ground reaction forces in runner's sagittal plane of motion during overground sprint acceleration from only anthropometric and spatiotemporal data. Force- and power-velocity relationships, the associated variables, and mechanical effectiveness were determined (a) on nine sprinters using both the proposed method and force plate measurements and (b) on six other sprinters using the proposed method during several consecutive trials to assess the inter-trial reliability. The low bias (<5%) and narrow limits of agreement between both methods for maximal horizontal force (638 ± 84 N), velocity (10.5 ± 0.74 m/s), and power output (1680 ± 280 W); for the slope of the force-velocity relationships; and for the mechanical effectiveness of force application showed high concurrent validity of the proposed method. The low standard errors of measurements between trials (<5%) highlighted the high reliability of the method. These findings support the validity of the proposed simple method, convenient for field use, to determine power, force, velocity properties, and mechanical effectiveness in sprint running. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Article
Full-text available
The objective of this study was to characterize the mechanics of maximal running sprint acceleration in high-level athletes. Four elite (100-m best time 9.95–10.29 s) and five sub-elite (10.40–10.60 s) sprinters performed seven sprints in overground conditions. A single virtual 40-m sprint was reconstructed and kinetics parameters were calculated for each step using a force platform system and video analyses. Anteroposterior force (FY), power (PY), and the ratio of the horizontal force component to the resultant (total) force (RF, which reflects the orientation of the resultant ground reaction force for each support phase) were computed as a function of velocity (V). FY-V, RF-V, and PY-V relationships were well described by significant linear (mean R2 of 0.892 ± 0.049 and 0.950 ± 0.023) and quadratic (mean R2 = 0.732 ± 0.114) models, respectively. The current study allows a better understanding of the mechanics of the sprint acceleration notably by modeling the relationships between the forward velocity and the main mechanical key variables of the sprint. As these findings partly concern world-class sprinters tested in overground conditions, they give new insights into some aspects of the biomechanical limits of human locomotion.
Article
Full-text available
The aim of the present study was to examine, in highly trained young soccer players, the mechanical horizontal determinants of acceleration (Acc) and maximal sprinting speed (MSS). Eighty-six players (14.1 ± 2.4 year) performed a 40-m sprint to assess Acc and MSS. Speed was measured with a 100-Hz radar, and theoretical maximal velocity (V 0), horizontal force (F 0) and horizontal power (P max) were calculated. Within each age group, players were classified as high Acc/fast MSS (>2% faster than group mean), medium (between −2% and +2%), and low/slow (>2% slower). Acc and MSS were very largely correlated (−0.79; 90% confidence limit [−0.85; −0.71]). The determinants (multiple regression r 2 = 0.84 [0.78; 0.89]) of Acc were V 0 (partial r: 0.80 [0.72; 0.86]) and F 0 (0.57 [0.44; 0.68]); those of MSS (r 2 = 0.96 [0.94; 0.97]) were V 0 (0.96 [0.94; 0.97]) and P max (0.73 [0.63; −0.80]). High/Med have likely greater F 0 (Cohen’s d: +0.8 [0.0; 1.5]), V 0 (+0.6 [−0.1; 1.3]) and P max (+0.9 [0.2; 1.7]) than Low/Med. High/Fast have an almost certainly faster V 0 (+2.1 [1.5; 2.7]) and a likely greater P max (+0.6 [−0.1; 1.3]) than High/Med, with no clear differences in F 0 (−0.0 [−0.7; 0.6]). Speed may be a generic quality, but the mechanical horizontal determinants of Acc and MSS differ. While maximal speed training may improve both Acc and MSS, improving horizontal force production capability may be efficient to enhance sprinting performance over short distances.
Article
Full-text available
The overall objective of this review was to investigate the role and development of sprinting speed in soccer. Time motion analyses show that short sprints occur frequently during soccer games. Straight sprinting is the most frequent action prior to goals, both for the scoring and assisting player. Straight line sprinting velocity (both acceleration and maximal sprinting speed), certain agility skills and repeated sprint ability are shown to distinguish groups from different performance levels. Professional players have become faster over time, indicating that sprinting skills are becoming more and more important in modern soccer. In research literature, the majority of soccer related training interventions have provided positive effects on sprinting capabilities, leading to the assumption that all kinds of training can be performed with success. However, most successful intervention studies are time consuming and challenging to incorporate into the overall soccer training program. Even though the principle of specificity is clearly present, several questions remain regarding the optimal training methods within the larger context of the team sport setting. Considering time-efficiency effects, soccer players may benefit more by performing sprint training regimes similar to the progression model used in strength training and by world leading athletics practitioners, compared to the majority of guidelines that traditionally have been presented in research literature.
Article
Full-text available
Sprint mechanics and field 100-m performances were tested in 13 subjects including 9 non-specialists, 3 French national-level sprinters and a world-class sprinter, to further study the mechanical factors associated with sprint performance. 6-s sprints performed on an instrumented treadmill allowed continuous recording of step kinematics, ground reaction forces (GRF), and belt velocity and computation of mechanical power output and linear force-velocity relationships. An index of the force application technique was computed as the slope of the linear relationship between the decrease in the ratio of horizontal-to-resultant GRF and the increase in velocity. Mechanical power output was positively correlated to mean 100-m speed (P < 0.01), as was the theoretical maximal velocity production capability (P < 0.011), whereas the theoretical maximal force production capability was not. The ability to apply the resultant force backward during acceleration was positively correlated to 100-m performance (r (s) > 0.683; P < 0.018), but the magnitude of resultant force was not (P = 0.16). Step frequency, contact and swing time were significantly correlated to acceleration and 100-m performance (positively for the former, negatively for the two latter, all P < 0.05), whereas aerial time and step length were not (all P > 0.21). Last, anthropometric data of body mass index and lower-limb-to-height ratio showed no significant correlation with 100-m performance. We concluded that the main mechanical determinants of 100-m performance were (1) a "velocity-oriented" force-velocity profile, likely explained by (2) a higher ability to apply the resultant GRF vector with a forward orientation over the acceleration, and (3) a higher step frequency resulting from a shorter contact time.
Article
Full-text available
The purpose of this study was to analyse the activity profile of players in a top-class team in the Italian national football league over the course of a season (n=388). The effect of playing position and the two halves on the number and duration of short, intense bursts of effort and recovery phases was studied. The main results show that midfielders cover significantly more distance than players in other positions (p<0.001). For midfielders, the number of displacements of 2-40 m and the number of sprints covering between 2 and 9 m and between 30 and 40 m are considerably greater than for other positions (p<0.05). The distances covered in the second half compared to the first half are significantly lower for all categories of run (p<0.05). In the second half, the distance covered at very high intensity is significantly lower (p<0.01), whilst the number of recovery times greater than 120 s increases significantly compared to the first half (p<0.01). This study provides data which could be used as a basis for the work of scientists as well as football professionals.
Article
Full-text available
Information about the influence of different practice levels on physical characteristics of a large number of soccer players is lacking. Therefore we assessed muscular strength and anaerobic power of elite, subelite and amateur soccer players to clarify what parameters distinguish the top players from the less successful. We tested 95 soccer players from the French first division (elite), second division (subelite), and amateurs and determined the isokinetic strength of the knee extensor and flexor muscles at angular velocities from -120 degrees x s(-1) to 300 degrees x s(-1). Vertical jump, 10 m sprint, 30 m sprint and maximum ball speed during shooting were also measured. The elite players had higher knee flexor torque than the amateurs at all angular velocities (p < 0.05), except at 300 degrees x s(-1). The hamstring/quadriceps ratios proposed with two different methods were significantly lower in the amateur group than in the elite group (p < 0.05), except at 300 degrees x s(-1). Maximum ball speed during shooting and speed over 30 m sprint were not different between elite, subelite, and amateur players while speed over a 10 m sprint was significantly slower in amateur players and faster in the elite group (p < 0.05). Although performance in soccer is not determined only by measurable variables, professional players differ from amateurs in terms of knee flexor muscle strength and short-distance sprinting speed. Based on these findings we conclude that hamstring strength is extremely important in soccer players for joint stabilization during various tasks, notably in eccentric action. Further, short-sprinting performance may mirror actual game situations at high level and could be an important determinant of match-winning actions.
Article
Full-text available
Field-based team sports, such as soccer, rugby and hockey are popular worldwide. There have been many studies that have investigated the physiology of these sports, especially soccer. However, some fitness components of these field-based team sports are poorly understood. In particular, repeated-sprint ability (RSA) is one area that has received relatively little research attention until recent times. Historically, it has been difficult to investigate the nature of RSA, because of the unpredictability of player movements performed during field-based team sports. However, with improvements in technology, time-motion analysis has allowed researchers to document the detailed movement patterns of team-sport athletes. Studies that have published time-motion analysis during competition, in general, have reported the mean distance and duration of sprints during field-based team sports to be between 10-20 m and 2-3 seconds, respectively. Unfortunately, the vast majority of these studies have not reported the specific movement patterns of RSA, which is proposed as an important fitness component of team sports. Furthermore, there have been few studies that have investigated the physiological requirements of one-off, short-duration sprinting and repeated sprints (<10 seconds duration) that is specific to field-based team sports. This review examines the limited data concerning the metabolic changes occurring during this type of exercise, such as energy system contribution, adenosine triphosphate depletion and resynthesis, phosphocreatine degradation and resynthesis, glycolysis and glycogenolysis, and purine nucleotide loss. Assessment of RSA, as a training and research tool, is also discussed.
Article
Full-text available
In soccer, the players perform intermittent work. Despite the players performing low-intensity activities for more than 70% of the game, heart rate and body temperature measurements suggest that the average oxygen uptake for elite soccer players is around 70% of maximum (VO(2max). This may be partly explained by the 150 - 250 brief intense actions a top-class player performs during a game, which also indicates that the rates of creatine phosphate (CP) utilization and glycolysis are frequently high during a game. Muscle glycogen is probably the most important substrate for energy production, and fatigue towards the end of a game may be related to depletion of glycogen in some muscle fibres. Blood free-fatty acids (FFAs) increase progressively during a game, partly compensating for the progressive lowering of muscle glycogen. Fatigue also occurs temporarily during matches, but it is still unclear what causes the reduced ability to perform maximally. There are major individual differences in the physical demands of players during a game related to physical capacity and tactical role in the team. These differences should be taken into account when planning the training and nutritional strategies of top-class players, who require a significant energy intake during a week.
Article
Full-text available
Weighted sled towing is a common resisted sprint training technique even though relatively little is known about the effects that such practice has on sprint kinematics. The purpose of this study was to explore the effects of sled towing on acceleration sprint kinematics in field-sport athletes. Twenty men completed a series of sprints without resistance and with loads equating to 12.6 and 32.2% of body mass. Stride length was significantly reduced by approximately 10 and approximately 24% for each load, respectively. Stride frequency also decreased, but not to the extent of stride length. In addition, sled towing increased ground contact time, trunk lean, and hip flexion. Upper-body results showed an increase in shoulder range of motion with added resistance. The heavier load generally resulted in a greater disruption to normal acceleration kinematics compared with the lighter load. The lighter load is likely best for use in a training program.
Article
The effectiveness of 8-week force-velocity optimised training was assessed in highly trained professional rugby league athletes. Players (age 24 ± 3 years; body mass 94.9 ± 21.6 kg; height 181.3 ± 6.0 cm) were strength-matched and assigned to a force-velocity optimised group (OP; n = 15) or a general strength-power group (GP; n = 14). Tests included 10-m, 20-m sprints, 3 repetition-maximum squat and squat jumps over five load conditions to ascertain vertical force-velocity relationship. ANCOVA revealed there was a group effect for force-velocity deficit (P < 0.001), with the OP two-fold greater than the GP group (OP pre: 51.13 ± 31.42%, post: 62.26 ± 31.45%, GP pre: 33.00 ± 19.60%, post: 31.14 ± 31.45%, P < 0.001). There were further group effects for 3RM squat (OP pre: 151.17 ± 22.95 kg, post: 162.17 ± 24.16 kg, GP pre: 156.43 ± 25.07 kg, post: 163.39 ± 25.39 kg, P < 0.001), peak power (OP pre: 3195 ± 949 W, post: 3552 ± 1033 W, GP pre: 3468 ± 911 W, post: 3591 ± 936 W, P < 0.001), and SJ (OP pre: 39.79 ± 7.80 cm, post: 42.69 ± 7.83 cm, GP pre: 40.44 ± 6.23 cm, post: 41.14 ± 5.66 cm, P < 0.001). Prescribing F-V deficit training is superior for improving physical performance within highly trained RL players.
Article
Forces applied to the ground during sprinting are vital to performance. This study aimed to understand how specific aspects of ground reaction force waveforms allow some individuals to continue to accelerate beyond the velocity plateau of others. Twenty‐eight male sprint specialists and 24 male soccer players performed maximal‐effort 60‐m sprints. A 54‐force‐plate system captured ground reaction forces, which were used to calculate horizontal velocity profiles. Touchdown velocities of steps were matched (8.00, 8.25 and 8.50 m·s⁻¹) and the subsequent ground contact forces were analysed. Mean forces were compared across groups and statistical parametric mapping (t‐tests) assessed for differences between entire force waveforms. When individuals contacted the ground with matched horizontal velocity, ground contact durations were similar. Despite this, sprinters produced higher average horizontal power (15.7‐17.9 W·kg⁻¹) than the soccer players (7.9‐11.9 W·kg⁻¹). Force waveforms did not differ in the initial braking phase (0‐~20% of stance). However, sprinters attenuated eccentric force more in the late braking phase and produced a higher anteroposterior component of force across the majority of the propulsive phase, for example from 31‐82% and 92‐100% of stance at 8.5 m·s⁻¹. At this velocity, resultant forces were also higher (33‐83% and 86‐100% of stance) and the force vector was more horizontally orientated (30‐60% and 95‐98% of stance) in the sprinters. These findings illustrate the mechanisms which allowed the sprinters to continue accelerating beyond the soccer players’ velocity plateau. Moreover, these force production demands provide new insight regarding athletes’ strength and technique training requirements to improve acceleration at high velocity. This article is protected by copyright. All rights reserved.
Article
Purpose: A statistical method called "magnitude-based inference" (MBI) has gained a following in the sports science literature, despite concerns voiced by statisticians. Its proponents have claimed that MBI exhibits superior type I and type II error rates compared with standard null hypothesis testing for most cases. I have performed a reanalysis to evaluate this claim. Methods: Using simulation code provided by MBI's proponents, I estimated type I and type II error rates for clinical and nonclinical MBI for a range of effect sizes, sample sizes, and smallest important effects. I plotted these results in a way that makes transparent the empirical behavior of MBI. I also reran the simulations after correcting mistakes in the definitions of type I and type II error provided by MBI's proponents. Finally, I confirmed the findings mathematically; and I provide general equations for calculating MBI's error rates without the need for simulation. Results: Contrary to what MBI's proponents have claimed, MBI does not exhibit "superior" type I and type II error rates to standard null hypothesis testing. As expected, there is a tradeoff between type I and type II error. At precisely the small-to-moderate sample sizes that MBI's proponents deem "optimal," MBI reduces the type II error rate at the cost of greatly inflating the type I error rate-to two to six times that of standard hypothesis testing. Conclusions: Magnitude-based inference exhibits worrisome empirical behavior. In contrast to standard null hypothesis testing, which has predictable type I error rates, the type I error rates for MBI vary widely depending on the sample size and choice of smallest important effect, and are often unacceptably high. Magnitude-based inference should not be used.
Article
Purpose: This study examined how the characteristics of maximal overground sprint performance are affected by the period of peak height velocity (PHV) in boys. Methods: One hundred and eighty-nine school-aged boys completed two assessments of maximal sprint performance, separated by a 21-month period. Kinematic characteristics of sprint performance were collected during a 30 m sprint using a floor-level optical measurement system, with modelled force and stiffness characteristics also calculated. Participants were grouped according to maturation using a non-invasive predictive equation. Individuals whose maturity offset was <-0.5 yrs in both assessments were classed as 'pre-PHV' (n=67) while those whose maturity offset developed from <-0.5 to >0.5yrs in test two were classed as 'pre-to-post-PHV' (n=39). Participants with a maturity offset between >-0.5 and <0.5 yrs at test 2 were removed from analysis (n = 67) to ensure that the entire pre-to-post-PHV group had experienced the PHV spurt RESULTS: The pre-to-post-PHV group experienced significantly greater increases in speed (10.4 vs. 5.6%) and relative vertical stiffness (12.1 vs. 5.6%) compared to the pre-PHV group. Step frequency declined (-2.4%) and contact time increased (2.3%) in the pre-PHV group, whilst step frequency increased (2.7%) and contact time decreased (-3.6%) in the pre-to-post-PHV group. Changes in relative measures of vertical stiffness, maximal force and leg stiffness accounted for 79% and 83% of the changes in speed between assessments for pre- and pre-to-post-PHV groups, respectively. Conclusion: As boys experience PHV there are greater increases in maximal sprint speed compared with those who remain pre-PHV. Furthermore, measures of relative stiffness and relative maximal force appear to exert an important influence on the development of maximal sprint speed in boys, regardless of maturity.
Article
Weighted sled towing is used by athletes to improve sprint acceleration ability. The typical coaching recommendation is to use relatively light loads, as excessively heavy loads are hypothesized to disrupt running mechanics and be detrimental to sprint performance. However, this coaching recommendation has not been empirically tested. This study compared the effects of weighted sled towing with two different external loads on sprint acceleration ability. Twenty-one physically active men were randomly allocated to heavy- (n = 10) or light-load weighted sled towing (n = 11) groups. All subjects participated in two training sessions per week for 8 weeks. The subjects in the heavy and light groups performed weighted sled towing using external loads that reduced sprint velocity by ∼30% and ∼10%, respectively. Before and after the training, the subjects performed a 10-m sprint test, in which split time was measured at 5 and 10 m from the start. The heavy group significantly improved both the 5- and 10-m sprint time by 5.7 ± 5.7% and 5.0 ± 3.5%, respectively (P < 0.05), whereas only 10-m sprint time was improved significantly by 3.0 ± 3.5% (P < 0.05) in the light group. No significant differences were found between the groups in the changes in 5-m and 10-m sprint time from pre- to post-training. These results question the notion that training loads that induce greater than 10% reduction in sprint velocity would negatively affect sprint performance, and point out the potential benefit of using a heavier load for weighted sled towing.
Article
An excessive load in resisted sprint training can produce changes in running patterns. Therefore, load control is essential to ensure the specificity of these training methods. The most common way to control it is through the percentage of velocity lost in relation to maximum velocity. The present paper describes a study that aimed to establish the load for sprint training with sled towing. The study developed a regression equation for calculating the load in the maximum velocity phase. The calculation was done with 26 athletes from the Spanish and French national levels on a synthetic track surface and with spikes. The regression equation obtained was % body mass = (-0.8674 x % velocity) + 87.99. The equation, although specific for type of surface used and sled towing characteristics, is useful in establishing the optimal load for acceleration and maximum velocity training with sled towing.
Article
Statistical guidelines and expert statements are now available to assist in the analysis and reporting of studies in some biomedical disciplines. We present here a more progressive resource for sample-based studies, meta-analyses, and case studies in sports medicine and exercise science. We offer forthright advice on the following controversial or novel issues: using precision of estimation for inferences about population effects in preference to null-hypothesis testing, which is inadequate for assessing clinical or practical importance; justifying sample size via acceptable precision or confidence for clinical decisions rather than via adequate power for statistical significance; showing SD rather than SEM, to better communicate the magnitude of differences in means and nonuniformity of error; avoiding purely nonparametric analyses, which cannot provide inferences about magnitude and are unnecessary; using regression statistics in validity studies, in preference to the impractical and biased limits of agreement; making greater use of qualitative methods to enrich sample-based quantitative projects; and seeking ethics approval for public access to the depersonalized raw data of a study, to address the need for more scrutiny of research and better meta-analyses. Advice on less contentious issues includes the following: using covariates in linear models to adjust for confounders, to account for individual differences, and to identify potential mechanisms of an effect; using log transformation to deal with nonuniformity of effects and error; identifying and deleting outliers; presenting descriptive, effect, and inferential statistics in appropriate formats; and contending with bias arising from problems with sampling, assignment, blinding, measurement error, and researchers' prejudices. This article should advance the field by stimulating debate, promoting innovative approaches, and serving as a useful checklist for authors, reviewers, and editors.
Physiology of soccer: an update
  • T Stolen
  • K Chamari
  • C Castagna
  • U Wisloff
Stolen T, Chamari K, Castagna C, Wisloff U. Physiology of soccer: an update. Sports Med. 2005;35(6):501-536. PubMed ID: 15974635 doi:10.2165/00007256-200535060-00004
A simple method for measuring power, force, velocity properties, and mechanical effectiveness in sprint running
  • P Samozino
  • G Rabita
  • S Dorel
  • Samozino P