Article

Transcriptional acclimation and spatial differentiation characterize drought response by the ectomycorrhizal fungus Suillus pungens

Authors:
To read the full-text of this research, you can request a copy directly from the authors.

Abstract

Increasing temperature and decreasing precipitation has led to more frequent and extreme drought events in many regions throughout the world. In the western United States, multi‐year drought events have led to widespread plant mortality and extreme wildfires (Asner et al. 2016, Pickrell and Pennisi 2020). Communities of ectomycorrhizal fungi (EMF) ‐ root symbionts which play a critical role in forest health ‐ are also thought to be threatened by these climatic changes (Fernandez et al. 2017, Steidinger et al. 2019). However, altered soil moisture conditions have complex direct and indirect effects on both fungi and ecosystem processes, such as nutrient availability (Schimel 2018), making it difficult to elucidate the primary drivers of community composition based on field observations or experiments (Pena and Polle 2014). As a result, efforts to identify the genes or traits involved in response to drought events are critical for accurate prediction of future EMF composition and function (Allison and Treseder 2008, Romero‐Olivares et al. 2019). Despite this fact, we are not aware of any studies that have used gene expression analyses to measure the response of individual EMF to drought events or other climatic stressors.

No full-text available

Request Full-text Paper PDF

To read the full-text of this research,
you can request a copy directly from the authors.

... To determine how our observed synergisms in the field (Figure 2) function in the context of plant growth, we first used MG-RAST to quantify transcripts in our RNA-seq data to examine the interactions between an EcM fungus (Suillus pungens), Bishop pine seedlings, and bacteria in a greenhouse experiment where experimentally induced water stress created large variations in plant and fungal growth (Table S2; see Erlandson et al. 37 for additional details). We chose to focus this analysis on Bradyrhizobium and Burkholderia species, given their wide distribution (Figure 1), endosphere enrichment ( Figure S2), and detectable relationships with EcM fungi abundances in the field (Figure 2). ...
Article
Bacteria, ectomycorrhizal (EcM) fungi, and land plants have been coevolving for nearly 200 million years, and their interactions presumably contribute to the function of terrestrial ecosystems. The direction, stability, and strength of bacteria-EcM fungi interactions across landscapes and across a single plant host, however, remains unclear. Moreover, the genetic mechanisms that govern them have not been addressed. To these ends, we collected soil samples from Bishop pine forests across a climate-latitude gradient spanning coastal California, fractionated the soil samples based on their proximity to EcM-colonized roots, characterized the microbial communities using amplicon sequencing, and generated linear regression models showing the impact that select bacterial taxa have on EcM fungal abundance. In addition, we paired greenhouse experiments with transcriptomic analyses to determine the directionality of these relationships and identify which genes EcM-synergist bacteria express during tripartite symbioses. Our data reveal that ectomycorrhizas (i.e., EcM-colonized roots) enrich conserved bacterial taxa across climatically heterogeneous regions. We also show that phylogenetically diverse EcM synergists are positively associated with plant and fungal growth and have unique gene expression profiles compared with EcM-antagonist bacteria. In sum, we identify common mechanisms that facilitate widespread and diverse multipartite symbioses, which inform our understanding of how plants develop in complex environments.
... Across a boreal pine forest chronosequence in Sweden, the respiratory contribution of mycorrhizal mycelium ranged from 14 to 26% of total soil respiration (Hagenbo et al. 2019), and contributions from ectomycorrhizal mycelium have also been shown to be as low as 4% (Rhyti et al., 2021). Ectomycorrhizal root tips may be a better buffer to drought and resource reservoir compared to extramatrical mycelium, so studying different tissues may be central to understanding differential responses of ectomycorrhizal fungi to drought across studies (Erlandson et al. 2021). Total fungal biomass was estimated as copies of the fungal ITS2 region (quantitative PCR) and guild biomass was estimated by multiplying total fungal ITS2 copies with relative abundances of each guild derived from DNA sequencing of the ITS2 marker. ...
Book
The immense diversity and biomass of ericoid-, ectomycorrhizal, and saprotrophic fungal guilds in boreal forest soils make them vital components of conservation and ecosystem processes, and in particular, many ectomycorrhizal fungi are considered species of conservation concern. However, amalgamated information on the functions and relationships of soil fungi to perceived forest conservation values, and how inter and intra-guild interactions affect the accretion and decomposition of soil organic matter is lacking. In a long-term factorial shrub removal and pine root exclusion experiment, I assessed guild contributions to soil respiration and decomposition of organic substrates guided by ecological theory. Then in the northern and southern boreal forest, I evaluated whether forest conservation values are aligned with the diversity of ectomycorrhizal fungi. Overall, the ericoid guild makes a significant contribution to total soil respiration (11 ± 9%), and ericoid activities appeared to be more sensitive to periods of drought compared to ectomycorrhizal (43 ± 1%) and saprotrophic (53 ± 5%) guilds. Saprotrophic-ectomycorrhizal interactions during decomposition led to a modest, yet inconsistent Gadgil effect (10%) for early-stage litter decomposition. Ericoid and ectomycorrhizal guilds interactions were determined to be more important for late-stage organic matter balance in boreal forest soils. Ectomycorrhizal species richness was significantly higher in the southern boreal forest compared to the north. Furthermore, forest conservation values across the boreal forest were not adequately related to ectomycorrhizal diversity through DNA-metabarcoding. Instead, soil fertility, corresponding to tree species basal area, was the clearest indicator of ectomycorrhizal diversity and composition in both regions. Mycorrhizal guilds may be underappreciated and understudied in terms of conservation, but their functional roles in the accumulation and decomposition of organic matter in long-term soil carbon pools emphasizes the importance of evaluating the many dimensions of fungal conservation in boreal forests.
... 2003(Fu et al., -2017, to induce shifts in aboveground microbial assemblages (Debray et al., 2022(Debray et al., , in this issue pp. 2018(Debray et al., -2031 and to trigger transcriptional acclimation in the etomycorrhizal fungus Suillus pungens (Erlandson et al., 2022(Erlandson et al., , in this issue pp. 1910(Erlandson et al., -1913. ...
Article
Stress is ubiquitous and disrupts homeostasis, leading to damage, decreased fitness, and even death. Like other organisms, mycorrhizal fungi evolved mechanisms for stress tolerance that allow them to persist or even thrive under environmental stress. Such mechanisms can also protect their obligate plant partners, contributing to their health and survival under hostile conditions. Here we review the effects of stress and mechanisms of stress response in mycorrhizal fungi. We cover molecular and cellular aspects of stress and how stress impacts individual fitness, physiology, growth, reproduction, and interactions with plant partners, along with how some fungi evolved to tolerate hostile environmental conditions. We also address how stress and stress tolerance can lead to adaptation and have cascading effects on population‐ and community‐level diversity. We argue that mycorrhizal fungal stress tolerance can strongly shape not only fungal and plant physiology, but also their ecology and evolution. We conclude by pointing out knowledge gaps and important future research directions required for both fully understanding stress tolerance in the mycorrhizal context and addressing ongoing environmental change.
Article
Full-text available
Earth’s temperature is rising, and with this increase, fungal communities are responding and affecting soil carbon processes. At a long-term soil-warming experiment in a boreal forest in interior Alaska, warming and warming-associated drying alters the function of microbes, and thus, decomposition of carbon. But what genetic mechanisms and resource allocation strategies are behind these community shifts and soil carbon changes? Here, we evaluate fungal resource allocation efforts under long-term experimental warming (including associated drying) using soil metatranscriptomics. We profiled resource allocation efforts toward decomposition and cell metabolic maintenance, and we characterized community composition. We found that under the warming treatment, fungi allocate resources to cell metabolic maintenance at the expense of allocating resources to decomposition. In addition, we found that fungal orders that house taxa with stress-tolerant traits were more abundant under the warmed treatment compared to control conditions. Our results suggest that the warming treatment elicits an ecological tradeoff in resource allocation in the fungal communities, with potential to change ecosystem-scale carbon dynamics. Fungi preferentially invest in mechanisms that will ensure survival under warming and drying, such as cell metabolic maintenance, rather than in decomposition. Through metatranscriptomes, we provide mechanistic insight behind the response of fungi to climate change and consequences to soil carbon processes.
Article
Full-text available
A spatially explicit global map of tree symbioses with nitrogen-fixing bacteria and mycorrhizal fungi reveals that climate variables are the primary drivers of the distribution of different types of symbiosis.
Article
Full-text available
Peroxisomes are ubiquitous organelles in eukaryotic cells that fulfill a variety of biochemical functions. The biogenesis of peroxisomes requires a variety of proteins named peroxins, which are encoded by PEX genes. Pex14/17 is a putative peroxin recently identified, specifically present in filamentous fungal species. Its function in peroxisomal biogenesis is still obscure and its roles in fungal pathogenicity are yet undocumented. Here, we demonstrated the contributions of Pex14/17 in the rice blast fungus Magnaporthe oryzae (Mopex14/17) to peroxisomal biogenesis and fungal pathogenicity by targeting gene replacement strategies. Mopex14/17 has properties of both Pex14 and Pex17 in protein sequence. Mopex14/17 is distributed at the peroxisomal membrane and is essential for efficient peroxisomal targeting of proteins containing peroxisomal targeting signal 1. The MoPEX19 deletion led to the cytoplasmic distribution of Mopex14/17, indicating the peroxisomal import of Pex14/17 depends on Pex19. The knockout mutants of MoPEX14/17 were reduced in fatty acids utilization, reactive oxygen species (ROS) degradation and cell wall integrity. Moreover, the Δmopex14/17 mutants were delayed in conidial generation and appressorial formation, and reduced in appressorial turgor accumulation and penetration ability into host plants. These defects resulted in a significant reduction of the virulence of the mutant. These data indicated that MoPEX14/17 plays crucial roles in peroxisome biogenesis and contributes to fungal development and pathogenicity. This article is protected by copyright. All rights reserved.
Article
Full-text available
In comparative high-throughput sequencing assays, a fundamental task is the analysis of count data, such as read counts per gene in RNA-seq, for evidence of systematic changes across experimental conditions. Small replicate numbers, discreteness, large dynamic range and the presence of outliers require a suitable statistical approach. We present DESeq2, a method for differential analysis of count data, using shrinkage estimation for dispersions and fold changes to improve stability and interpretability of estimates. This enables a more quantitative analysis focused on the strength rather than the mere presence of differential expression. The DESeq2 package is available at http://www.bioconductor.org/packages/release/bioc/html/DESeq2.html. Electronic supplementary material The online version of this article (doi:10.1186/s13059-014-0550-8) contains supplementary material, which is available to authorized users.
Article
Full-text available
Fungi contribute extensively to a wide range of ecosystem processes, including decomposition of organic carbon, deposition of recalcitrant carbon, and transformations of nitrogen and phosphorus. In this review, we discuss the current knowledge about physiological and morphological traits of fungi that directly influence these processes, and we describe the functional genes that encode these traits. In addition, we synthesize information from 157 whole fungal genomes in order to determine relationships among selected functional genes within fungal taxa. Ecosystem-related traits varied most at relatively coarse taxonomic levels. For example, we found that the maximum amount of variance for traits associated with carbon mineralization, nitrogen and phosphorus cycling, and stress tolerance could be explained at the levels of order to phylum. Moreover, suites of traits tended to co-occur within taxa. Specifically, the genetic capacities for traits that improve stress tolerance-β-glucan synthesis, trehalose production, and cold-induced RNA helicases-were positively related to one another, and they were more evident in yeasts. Traits that regulate the decomposition of complex organic matter-lignin peroxidases, cellobiohydrolases, and crystalline cellulases-were also positively related, but they were more strongly associated with free-living filamentous fungi. Altogether, these relationships provide evidence for two functional groups: stress tolerators, which may contribute to soil carbon accumulation via the production of recalcitrant compounds; and decomposers, which may reduce soil carbon stocks. It is possible that ecosystem functions, such as soil carbon storage, may be mediated by shifts in the fungal community between stress tolerators and decomposers in response to environmental changes, such as drought and warming. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Article
Full-text available
Population response to environmental variation involves adaptation, acclimation, or both. For long-lived organisms, acclimation likely generates a faster response, but is only effective if the rates and limits of acclimation match the dynamics of local environmental variation. In coral reef habitats, heat stress from extreme ocean warming can occur over several weeks, resulting in symbiont expulsion and widespread coral death. However, transcriptome regulation during short-term acclimation is not well understood. We examined acclimation during an 11-day experiment in the coral Acropora nana. We acclimated colonies to three regimes: ambient temperature (29°C), increased stable temperature (31°C), and variable temperature (29-33°C), mimicking local heat stress conditions. Within 7-11 days individuals acclimated to increased temperatures had higher tolerance to acute heat stress. Despite physiological changes, no gene expression changes occurred during acclimation before acute heat stress. However, we found strikingly different transcriptional responses to heat stress between acclimation treatments across 893 contigs. Across these contigs, corals acclimated to higher temperatures (31°C or 29-33°C) exhibited a muted stress response - the magnitude of expression change before and after heat stress was less than in 29°C acclimated corals. Our results show that corals have a rapid phase of acclimation that substantially increases their heat resilience within seven days and that alters their transcriptional response to heat stress. This is in addition to a previously observed longer-term response, distinguishable by its shift in baseline expression, under non-stressful conditions. Such rapid acclimation may provide some protection for this species of coral against slow onset of warming ocean temperatures. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Article
Full-text available
Reef corals are highly sensitive to heat, yet populations resistant to climate change have recently been identified. To determine the mechanisms of temperature tolerance, we reciprocally transplanted corals between reef sites experiencing distinct temperature regimes and tested subsequent physiological and gene expression profiles. Local acclimatization and fixed effects, such as adaptation, contributed about equally to heat tolerance and are reflected in patterns of gene expression. In less than 2 years, acclimatization achieves the same heat tolerance that we would expect from strong natural selection over many generations for these long-lived organisms. Our results show both short-term acclimatory and longer-term adaptive acquisition of climate resistance. Adding these adaptive abilities to ecosystem models is likely to slow predictions of demise for coral reef ecosystems.
Article
Full-text available
Mycorrhizal fungi have a key role in nitrogen (N) cycling, particularly in boreal and temperate ecosystems. However, the significance of ectomycorrhizal fungal (EMF) diversity for this important ecosystem function is unknown. Here, EMF taxon-specific N uptake was analyzed via (15)N isotope enrichment in complex root-associated assemblages and non-mycorrhizal root tips in controlled experiments. Specific (15)N enrichment in ectomycorrhizas, which represents the N influx and export, as well as the exchange of (15)N with the N pool of the root tip, was dependent on the fungal identity. Light or water deprivation revealed interspecific response diversity for N uptake. Partial taxon-specific N fluxes for ectomycorrhizas were assessed, and the benefits of EMF assemblages for plant N nutrition were estimated. We demonstrated that ectomycorrhizal assemblages provide advantages for inorganic N uptake compared with non-mycorrhizal roots under environmental constraints but not for unstressed plants. These benefits were realized via stress activation of distinct EMF taxa, which suggests significant functional diversity within EMF assemblages. We developed and validated a model that predicts net N flux into the plant based on taxon-specific (15)N enrichment in ectomycorrhizal root tips. These results open a new avenue to characterize the functional traits of EMF taxa in complex communities.
Article
Full-text available
Climate changes have important consequences for plant communities and their root symbionts. The distribution of tree species within temperate, boreal and tropical biomes will be altered, as palaeoecological studies have demonstrated for previous climate change events. Predicted effects on ectomycorrhizal (ECM) associations include migration of host and symbiont, modification of interactions between plant and fungal species, and changes in the contribution of both partners to the global carbon cycle. Anthropogenic factors introduce new variables, affecting the ability of tree species and their fungal associates to disperse in response to climate change. Here we focus on how ECM fungi and their hosts respond to atmospheric CO2 enrichment, increasing temperatures, nutrient addition, species invasions, loss of biodiversity and anthropogenic land-use changes, particularly silviculture. All of these factors are key to understanding the impacts of climate change on the ECM symbiosis, and relevant future topics of research are presented.
Article
Full-text available
The outcome of species interactions often depends on the environmental conditions under which they occur. In this study, we tested how different soil moisture conditions affected the outcome of the ectomycorrhizal symbiosis between three Rhizopogon species and Pinus muricata in a factorial growth chamber experiment. We found that when grown in 7% soil moisture conditions, ectomycorrhizal plants had similar biomass, photosynthesis, conductance, and total leaf nitrogen as non-mycorrhizal plants. However, when grown at 13% soil moisture, ectomycorrhizal plants had significantly greater shoot biomass, higher photosynthetic and conductance rates, and higher total leaf nitrogen than non-mycorrhizal plants. The differences in plant response by mycorrhizal status in the two soil moisture treatments corresponded with evidence of water limitation experienced by the fungi, which had much lower colonization at 7% compared to 13% soil moisture. Our results suggest that the outcome of the ectomycorrhizal symbiosis can be context-dependent and that fluctuating environmental conditions may strongly affect the way plants and fungi interact.
Article
Full-text available
Microorganisms are often covered by a proteinaceous surface layer that serves as a sieve for external molecular influx, as a shield to protect microbes from external aggression, or as an aid to help microbial dispersion. In bacteria, the latter is called the S-layer, in Actinomycetes, the rod-like fibrillar layer, and in fungi, the rodlet layer [1]. The self-assembly properties and remarkable structural and physicochemical characteristics of hydrophobin proteins underlie the multiple roles played by these unique proteins in fungal biology.
Article
Scientists say fires likely wiped out some rare Australian organisms, and worry U.S. blazes now threaten more.
Article
Through Earth’s history, drought has been a common crisis in terrestrial ecosystems; in human societies, it has caused famines and become one of the Four Horsemen of the apocalypse. As the global hydrological cycle intensifies with global warming, deeper droughts and rewetting will alter, and possibly transform, ecosystems. Soil communities, however, seem more tolerant than plants or animals are to water stress—the main effects, in fact, on soil processes appear to be limited diffusion and the limited supply of resources to soil organisms. Thus, the rains that end a drought not only release soil microbes from stress but also create a resource pulse that fuels soil microbial activity. It remains unclear whether the effects of drought on soil processes result from drying or rewetting. It is also unclear whether the flush of activity on rewetting is driven by microbial growth or by the physical/ chemical processes that mobilize organic matter. In this review, I discuss how soil water, and the lack of it, regulates microbial life and biogeochemical processes. I first focus on organismal-level responses and then consider how these influence whole-soil organic matter dynamics. A final focus is on how to incorporate these effects into Earth System models that can effectively capture dry–wet cycling. Expected final online publication date for the Annual Review of Ecology, Evolution, and Systematics Volume 49 is November 2, 2018. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Article
Rising temperatures associated with climate change have been shown to negatively affect the photosynthetic rates of boreal forest tree saplings at their southern range limits. To quantify the responses of ectomycorrhizal (EM) fungal communities associated with poorly performing hosts, we sampled the roots of Betula papyrifera and Abies balsamea saplings growing in the B4Warmed (Boreal Forest Warming at an Ecotone in Danger) experiment. EM fungi on the root systems of both hosts were compared from ambient and +3.4 °C air and soil warmed plots at two sites in northern Minnesota. EM fungal communities were assessed with high-throughput sequencing along with measures of plant photosynthesis, soil temperature, moisture, and nitrogen. Warming selectively altered EM fungal community composition at both the phylum and genus levels, but had no significant effect on EM fungal operational taxonomic unit (OTU) diversity. Notably, warming strongly favored EM Ascomycetes and EM fungi with short-contact hyphal exploration types. Declining host photosynthetic rates were also significantly inversely correlated with EM Ascomycete and EM short-contact exploration type abundance, which may reflect a shift to less carbon demanding fungi due to lower photosynthetic capacity. Given the variation in EM host responses to warming, both within and between ecosystems, better understanding the link between host performance and EM fungal community structure will to clarify how climate change effects cascade belowground.
Article
We present kallisto, an RNA-seq quantification program that is two orders of magnitude faster than previous approaches and achieves similar accuracy. Kallisto pseudoaligns reads to a reference, producing a list of transcripts that are compatible with each read while avoiding alignment of individual bases. We use kallisto to analyze 30 million unaligned paired-end RNA-seq reads in <10 min on a standard laptop computer. This removes a major computational bottleneck in RNA-seq analysis.
Article
Significance The state of California has a globally important economy and a population exceeding 38 million. The state relies on its forested watersheds to support numerous services, such as water provisioning, carbon storage, timber products, ecotourism, and recreation. However, secular changes in air temperature, combined with periodic and prolonged drought, pose a compounding challenge to forest health. Here we use new remote-sensing and modeling techniques to assess changes in the canopy water content of California’s forests from 2011 to 2015. Our resulting maps of progressive canopy water stress identify at-risk forest landscapes and watersheds at fine resolution, and offer geographically explicit information to support innovative forest management and policies in preparation for climate change.
Article
Ectomycorrhizal (EM) fungi form symbiotic associations with plant roots that regulate nutrient exchange between forest plants and soil. Environmental metagenomics approaches that employ next-generation sequencing show great promise for studying EM symbioses, however, metatranscriptomic studies have been constrained by the inherent difficulties associated with isolation and sequencing of RNA from mycorrhizae. Here we apply an optimized method for combined DNA/RNA extraction using field-collected EM fungal-pine root clusters, together with protocols for taxonomic identification of expressed ribosomal RNA, and inference of EM function based on plant and fungal metatranscriptomics. We used transcribed portions of ribosomal RNA genes to identify several transcriptionally dominant fungal taxa associated with loblolly pine including Amphinema, Russula, and Piloderma spp. One taxon, Piloderma croceum, has a publically available genome that allowed us to identify patterns of gene content and transcript abundance. Over 1500 abundantly expressed Piloderma genes were detected from mycorrhizal roots, including genes for protein metabolism, cell signaling, electron transport, terpene synthesis, and other extracellular activities. In contrast, Piloderma gene encoding an ammonia transporter showed highest transcript abundance in soil samples. Our methodology highlights the potential of metatranscriptomics to identify genes associated with symbiosis and ecosystem function using field-collected samples.
Article
Climate warming is expected to have particularly strong effects on tundra and boreal ecosystems, yet relatively few studies have examined soil responses to temperature change in these systems. We used closed-top greenhouses to examine the response of soil respiration, nutrient availability, microbial abundance, and active fungal communities to soil warming in an Alaskan boreal forest dominated by mature black spruce. This treatment raised soil temperature by 0.5 °C and also resulted in a 22% decline in soil water content. We hypothesized that microbial abundance and activity would increase with the greenhouse treatment. Instead, we found that bacterial and fungal abundance declined by over 50%, and there was a trend toward lower activity of the chitin-degrading enzyme N-acetyl-glucosaminidase. Soil respiration also declined by up to 50%, but only late in the growing season. These changes were accompanied by significant shifts in the community structure of active fungi, with decreased relative abundance of a dominant Thelephoroid fungus and increased relative abundance of Ascomycetes and Zygomycetes in response to warming. In line with our hypothesis, we found that warming marginally increased soil ammonium and nitrate availability as well as the overall diversity of active fungi. Our results indicate that rising temperatures in northern-latitude ecosystems may not always cause a positive feedback to the soil carbon cycle, particularly in boreal forests with drier soils. Models of carbon cycle-climate feedbacks could increase their predictive power by incorporating heterogeneity in soil properties and microbial communities across the boreal zone.
Article
The osmoadaptation of most micro-organisms involves the accumulation of K+ ions and one or more of a restricted range of low molecular mass organic solutes, collectively termed ‘compatible solutes’. These solutes are accumulated to high intracellular concentrations, in order to balance the osmotic pressure of the growth medium and maintain cell turgor pressure, which provides the driving force for cell extension growth. In this review, I discuss the alternative roles which compatible solutes may also play as intracellular reserves of carbon, energy and nitrogen, and as more general stress metabolites involved in protection of cells against other environmental stresses including heat, desiccation and freezing. Thus, the evolutionary selection for the accumulation of a specific compatible solute may not depend solely upon its function during osmoadaptation, but also upon the secondary benefits its accumulation provides, such as increased tolerance of other environmental stresses prevalent in the organism's niche or even anti-herbivory or dispersal functions in the case of dimethylsulfoniopropionate (DMSP). In the second part of the review, I discuss the ecological consequences of the release of compatible solutes to the environment, where they can provide sources of compatible solutes, carbon, nitrogen and energy for other members of the micro-flora. Finally, at the global scale the metabolism of specific compatible solutes (betaines and DMSP) in brackish water, marine and hypersaline environments may influence global climate, due to the production of the trace gases, methane and dimethylsulfide (DMS) and in the case of DMS, also couple the marine and terrestrial sulfur cycles.
Article
Physiological studies can help predict effects of climate change through determining which species currently live closest to their upper thermal tolerance limits, which physiological systems set these limits, and how species differ in acclimatization capacities for modifying their thermal tolerances. Reductionist studies at the molecular level can contribute to this analysis by revealing how much change in sequence is needed to adapt proteins to warmer temperatures--thus providing insights into potential rates of adaptive evolution--and determining how the contents of genomes--protein-coding genes and gene regulatory mechanisms--influence capacities for adapting to acute and long-term increases in temperature. Studies of congeneric invertebrates from thermally stressful rocky intertidal habitats have shown that warm-adapted congeners are most susceptible to local extinctions because their acute upper thermal limits (LT(50) values) lie near current thermal maxima and their abilities to increase thermal tolerance through acclimation are limited. Collapse of cardiac function may underlie acute and longer-term thermal limits. Local extinctions from heat death may be offset by in-migration of genetically warm-adapted conspecifics from mid-latitude 'hot spots', where midday low tides in summer select for heat tolerance. A single amino acid replacement is sufficient to adapt a protein to a new thermal range. More challenging to adaptive evolution are lesions in genomes of stenotherms like Antarctic marine ectotherms, which have lost protein-coding genes and gene regulatory mechanisms needed for coping with rising temperature. These extreme stenotherms, along with warm-adapted eurytherms living near their thermal limits, may be the major 'losers' from climate change.
Article
Increasing evidence suggests a major role for phosphatidylcholine (PC) in plant stress adaptation. The present work investigated the regulation of choline, PC and interconnected phosphatidylethanolamine biosynthesis in Arabidopsis thaliana L. as a function of cold- and salt- or mannitol-mediated hyperosmotic stresses. While PC synthesis is accelerated in both salt- and cold-treated plants, the choline kinase (CK) and phosphocholine cytidylyltransferase genes are oppositely regulated with respect to these abiotic treatments. Salt stress also stimulates CK activity in vitro. A possible regulatory role of CK in stimulating PC biosynthesis rate in salt-stressed plants is discussed.
Article
Functional compartmentation of the extramatrical mycelium of ectomycorrhizal (ECM) fungi is considered important for the operation of ECM associations, although the molecular basis is poorly characterized. Global gene expression profiles of mycelium colonizing an ammonium sulphate ((NH4)2SO4) nutrient patch, rhizomorphs and ECM root tips of the Betula pendula-Paxillus involutus association were compared by cDNA microarray analysis. The expression profiles of rhizomorphs and nutrient patch mycelium were similar to each other but distinctly different from that of mycorrhizal tips. Statistical analyses revealed 337 of 1075 fungal genes differentially regulated among these three tissues. Clusters of genes exhibiting distinct expression patterns within specific tissues were identified. Genes implicated in the glutamine synthetase/glutamate synthase (GS/GOGAT) and urea cycles, and the provision of carbon skeletons for ammonium assimilation via beta-oxidation and the glyoxylate cycle, were highly expressed in rhizomorph and nutrient patch mycelium. Genes implicated in vesicular transport, cytoskeleton organization and morphogenesis and protein degradation were also differentially expressed. Differential expression of genes among the extramatrical mycelium and mycorrhizal tips indicates functional specialization of tissues forming ECM associations.
Conservation and discreteness of the atromentin gene cluster in fungi
  • Tauber JP