PreprintPDF Available

Discrete crop circles drawn by Riemann's zeta function and its further remote properties

Authors:
Preprints and early-stage research may not have been peer reviewed yet.

Abstract

Abstract: We consider a particular way to calculate approximations to the alternating zeta function via the determinants of certain matrices, and numerically examine characteristic polynomials, eigenvalues and eigenvectors of these matrices. It turns out that the ratios of entries of such eigenvectors lay inside very thin annuluses.
ζ(s) =
X
n=1
ns.
Re(s)>1
s= 1
Re(s) = 1/2
η(s) =
X
n=1
(1)n+1ns= (1 2×2s)ζ(s).
Re(s)>0
η(s)
ηN(s) =
N
X
n=1
aN,nns.
ηN(s)η(s)
ξ(1 s)ξ(s)=0
ξ(s) = h(s)η(s),
h(s) = πs
2(s1)Γ(1 + s
2)
12×2s.
t
Im (ξ(1/2+it)) = 0.
τ ξ(1/2+it)t=τ
ξ(1/2+it) =
X
k=0
ξk(τ)(τt)k
ξk(τ) = (1)k
k!
dk
dtkξ(1/2+it)t=τ
.
Im (ξk(τ)) = 0
k
η(s)τ
ηN(τ, s) =
N
X
n=1
aN,n(τ)ns.
ξN(τ, s) = h(s)ηN(τ , s),
ξN(τ, 1/2+it) =
X
k=0
ξN,k (τ)(τt)k
ξN,k (τ) = (1)k
k!
dk
dtkξN(τ, 1/2+it)t=τ
.
aN,1(τ)=1
Im (ξN,k (τ)) = 0.
aN,n(τ)N= 40 τ= 15
N τ
±1
n aN,n
±1
η(s)
3
τ s
η(s) = lim
N→∞ ηN(τ, s).
ηN(τ, s)
ηN(τ, s)
η(s)s1/2+ iτ
1/2+iτ
ηN(τ, s)
τ
bN,n(τ) = niτaN,n(τ).
ηN(τ, s) =
N
X
n=1
bN,n(τ)n(sτ).
bN,1(τ)=1,
bN,1(τ) = bR
N,1(τ), bN,n(τ) = bR
N,n(τ)+ibI
N,n(τ), n > 1,
bR
N,1(τ), . . . , bR
N,N (τ), bI
N,2(τ), . . . , bI
N,N (τ).
ImξN(τ, s)=
N
X
n=1
Imh(s)n(siτ)bR
N,n(τ)+
N
X
n=2
Reh(s)n(siτ)bI
N,n(τ).
BN(τ) = [bI
N,N (τ), . . . , bI
N,2(τ), bR
N,1(τ), . . . , bR
N,N (τ)]T.
MN(τ)BN(τ) = VN
VN(2N1) ×(2N1) MN(τ)
MN(τ)
N+ 1 N1VN
1 2N3
N
MN(τ) = µk,l(τ)2N3
k=1
N1
l=(N1)
,
VN= [υ1, . . . , υ2N3]T
µk,l(τ)υk
1MN(τ)
µ1,l(τ) = (1, l = 0,
0, ,
υ1= 1.
MN(τ)
k= 0,...,2N3
µk,l(τ) =
(1)k
k!Re dk
dtkh(1/2+it)(1 l)(1/2+i(tτ)) t=τ!, l < 0,
(1)k
k!Im dk
dtkh(1/2+it)(1 + l)(1/2+i(tτ)) t=τ!, l 0,
υk= 0.
MN(τ)
MN,l(τ)
MN(τ)
l
(1)ldet MN,l(τ)
det MN,0(τ)=(bI
N,l, l < 0,
bR
N,l, l 0.
2N
ηN(τ, s)
MN(τ, s) = µk,l(τ , s)2N3
k=1
N1
l=(N1)
MN(τ)
µk,l(τ, s) =
i(1 l)(sτ), k =1, l < 0,
(1 + l)(sτ), k =1, l 0,
µk,l(τ), k 0
MN(τ)MN(τ, +)
ηN(τ, s) = det MN(τ, s)
det MN(τ).
τ s
η(s) = lim
N→∞
det MN(τ, s)
det MN(τ).
µk,l(τ)k0
l < 0
µk,l(τ) = (1 l)1
2
(1)kk!
k
X
m=0 k
m(ln(1 l))kmRe ikmhhmi(1/2+iτ);
l0
µk,l(τ) = (1 + l)1
2
(1)kk!
k
X
m=0 k
m(ln(1 + l))kmIm ikmhhmi(1/2+iτ)
hhmi(1/2+iτ) = dm
dtmh(1/2+it)t=τ
.
nit
MN(τ, s)
pN,0(τ, s)qN,0(τ)
PN(τ, s, λ) = det MN(τ, s)λE2N1=
2N1
X
l=0
pN,l(τ, s)λl
QN(τ, λ) = det MN(τ)λE2N1=
2N1
X
l=0
qN,l(τ)λl
E2N1(2N1) ×(2N1)
η(s) = lim
N→∞
pN,0(τ, s)
qN,0(τ).
pN,l(τ, s)
qN,l(τ)
η(s)l s 1/2 + iτ
l τ
s
η(s) = lim
N→∞
pN,l(τ, s)
qN,l(τ).
ξ(s)s= 1/2
ξ(1 σit)ξ(σ+ it)=0
σ τ
ξN(τ, 1σit)ξN(τ , σ + it)0.
ξN(τ, s)ξ(s)
s1/2 + iτ
ξ(1 σit) = ξ(1 σ+ it).
Re(s) = 1/2
ξ(1 σ+ it)ξ(σ+ it)=0.
ξN(τ, 1σ+ it)ξN(τ , σ + it)0.
f(1 σ+ it)f(σ+ it)0,
f(1 σ+ it)f(σ+ it)
f(1 σ+ it)
f(σ+ it)
1
η(s)
h(1 σ+ it)η(1 σ+ it)
h(σ+ it)η(σ+ it)= 1.
N l
h(1 σ+ it)pN,l(τ, 1σ+ it)
h(σ+ it)pN,l(τ, σ + it)1;
λN,1(τ, s), . . . , λN,m (τ, s),...λN,2N1(τ, s)
MN(τ, s)
|λN,1(τ, s)| ≤ · · · ≤ |λN,m(τ, s)| · · · |λN,2N1(τ, s)|.
ηN(τ, s) = det MN(τ, s)
det MN(τ)=Q2N1
m=1 λN,m(τ, s)
det MN(τ).
λN,1(τ, s)
η(s)
ηN(τ, s)s0ηN(τ , s)
λN,1(τ, s0)=0
h(1 σ+ it)Q2N1
m=1 λN,m(τ, 1σ+ it)
h(σ+ it)Q2N1
m=1 λN,m(τ, σ + it)=
h(1 σ+ it)ηN(τ, 1σ+ it)
h(σ+ it)ηN(τ, σ + it)1.
λN,m(τ, σ + it)
PN,N0(τ, σ + it, λ) =
N0
X
l=0
pN,l(τ, σ + it)λl.
h(σ+ it)PN,N0(τ, σ + it, λ).
λN,m(τ, 1σ+ it)
h(1 σ+ it)PN,N0(τ, 1σ+ it, λ).
λN,m(τ, σ + it)λN,m(τ, 1σ+ it)
λN,m(τ, 1σ+ it)
λN,m(τ, σ + it)1,
σ+ it1σ+ it h(s)σ= 1/2
λN,m(τ, 1/2+it)
m τ σ t σ + it
1σ+ it h(s)
λN,m(τ, 1σ+ it)
λN,m(τ, σ + it)1
N→ ∞
WN,m(τ, s)=[ωN ,m,N+1(τ , s), . . . , ωN,m,0(τ, s), . . . , ωN,m,N1(τ , s)]T
λN,m
MN(τ, s)WN ,m(τ , s) = λN,m(τ, s)WN,m(τ, s).
WN,m(τ, s)
1
ωN,m,0(τ, s) = 1.
LN(τ, λN ,m(τ , s))
LN(τ, λ) = MN(τ)λE2N1.
LN,k (τ, λ)k
ωN,m,k (τ, s) = (1)kdet(LN,k (τ, λN,m(τ, s)))
det(LN,0(τ, λN,m (τ, s))).
λN,1(τ, s0) = 0
s0LN(τ, λN ,0(τ, s0)) MN(τ)
WN,1(τ, s0)
s
WN,1(τ, s)
MN(τ)
LN,k (τ, λN,m(τ, 1σ+ it)LN ,k(τ, λN,m(τ, σ +it)
WN,m(τ, 1σ+ it)
WN,m(τ, σ + it)
ωN,m,k (τ, 1σ+ it)ωN,m,k (τ, σ + it).
ωN,m,k (τ, 1σ+ it)
ωN,m,k (τ, σ + it)
1
ωN,m,k (τ, 1σ+ it)
ωN,m,k (τ, σ + it)
|z|= 1
ρN,m,k (τ, s0, s00) = ωN,m,k(τ, s0)
ωN,m,k (τ, s00), k =N+ 1, . . . , N 1.
Re(s0) + Re(s00) = 1,Im(s0) = Im(s00 ).
s0s00
1/2+iτ
1
N= 50 m= 1 τ= 14
s0= 1/3 + 15i s00 = 6/7 + 14i
C1= 0.3708842799394989375085843404586974710326419033382 +
1.0618744177199283671338046020549367658223350300371i.
ρN,m,k (τ, s0, s00)
R1<|ρN,m,k (τ, s0, s00)C1|< R1+ 1047
R1=1.2342462753580744181860242203074444592191737722398.
2N1
˜ρN,m,k (τ, s0, s00) = ωN,m,k (τ, s0)
ωN,m,k (τ, s00), k =N+ 1, . . . , N 1.
R2<|˜ρN,m,k (τ, s0, s00)C2|< R2+ 1047
C2= 1 C1
R2=1.1247810578571624993362791499949324350181486428418.
Re(C1) + Re(C2) = 1,Im(C1) = Im(C2)
C2
a
1
ϕ
¨ρN,m,k (τ, s0, s00) = ρN,m,k (τ, s0, s00)1
˜ρN,m,k (τ, s0, s00)1, k =N+1,...,1,1, . . . , N 1
aeiϕ
k= 0 ρN,m,0(τ, s0, s00) =
˜ρN,m,0(τ, s0, s00)=1
¨ρN,m(τ, s0, s00 ) = ¨ρN,m,2(τ, s0, s00).
¨ρN,m(τ, s0, s00 ) = 1.075702732456057626198949106... +
0.216743602505064201542441468...i
k6= 0
|¨ρN,m,k (τ, s0, s00)¨ρN,m(τ, s0, s00)|<1049.
m= 2,3,
4
Re(¨ρN,m,k (τ, s0, s00)) + i Im(¨ρN,m,k (τ, s0, s00))
=ρN,m,k (τ, s0, s00)1
˜ρN,m,k (τ, s0, s00)1
=
ωN,m,k (τ,s0)
ωN,m,k (τ,s00 )1
ωN,m,k (τ,s0)
ωN,m,k (τ,s00 )1
=ωN,m,k (τ, s0)ωN,m,k (τ, s00)
ωN,m,k (τ, s0)ωN,m,k (τ, s00)
=Re(ωN,m,k (τ, s0)) + i Im(ωN,m,k(τ, s0)) Re(ωN,m,k (τ, s00)) i Im(ωN,m,k(τ, s00))
Re(ωN,m,k (τ, s0)) i Im(ωN,m,k (τ, s0)) Re(ωN,m,k (τ, s00)) i Im(ωN,m,k(τ, s00 )).
Re(ωN,m,k (τ, s0)),Im(ωN,m,k (τ, s0)),Re(ωN,m,k (τ, s00)),Im(ωN,m,k(τ, s00 )),
|¨ρN,m,k (τ, s0, s00)|= 1
Re(ωN,m,k (τ, s0)) = Re(ωN,m,k (τ, s00)) +
2Im(¨ρN,m,k (τ, s0, s00))
1− | ¨ρN,m,k(τ, s0, s00 )|2Im(ωN,m,k (τ, s00)),
Im(ωN,m,k (τ, s0)) = |1¨ρN,m,k (τ, s0, s00)|2
1− | ¨ρN,m,k(τ, s0, s00 )|2Im(ωN,m,k (τ, s00)).
¨ρN,m,k (τ, s0, s00) ¨ρN,m(τ, s0, s00)
αN,m(τ, s0, s00 )) = 2Im(¨ρN,m (τ, s0, s00))
1− | ¨ρN,m,k(τ, s0, s00 )|2,
βN,m(τ, s0, s00 )) = |1¨ρN,m (τ, s0, s00)|2
1− | ¨ρN,m,k(τ, s0, s00 )|2.
Re Im
Re(WN,m(τ, s0)) Re(WN ,m(τ , s00)) + αN,m(τ , s0, s00)Im(WN,m(τ, s00 )),
Im(WN,m(τ, s0)) βN ,m(τ , s0, s00)Im(WN,m(τ , s00)).
s
1/2+iτ
αN,m(τ, s)βN ,m(τ)
WN,m(τ, s)WR
N,m(τ)+(αN ,m(τ , s)+iβN,m(τ, s))WI
N,m(τ)
WR
N,m(τ)WI
N,m(τ)
WR
N,m(τ)=[ωR
N,m,N+1(τ, s),...,ωR
N,m,0(τ, s),...,ωR
N,m,N 1(τ, s)]T,
WI
N,m(τ)=[ωI
N,m,N+1(τ, s),...,ωR
N,m,0(τ, s),...,ωI
N,m,N 1(τ, s)]T.
˜s
WR
N,m(τ) = Re(WN,m(τ, ˜s)),
WI
N,m(τ) = Im(WN,m(τ, ˜s)).
αN,m(τ, s) = αN ,m(τ , s, ˜s),
βN,m(τ, s) = βN ,m(τ , s, ˜s).
m= 1
WR
N,1(τ)WI
N,1(τ)
WR
N,1(τ)WN,1(τ, s0)s0ηN(τ, s)
s0
λN,1(τ, s0)=0 WN,1(τ, s0)
LN(τ, 0) WR
N,1(τ) =
WN,1(τ, s0)
WI
N,1(τ)WN,1(τ, +)
N= 40 τ= 14
WI
N,1(τ)
ωI
N,1,k (τ) = ωN,1,k (τ, +)
PN1
n=N+1 ωN,1,n(τ, +)21/2.
αN,1(τ, s)βN,1(τ, s)
α β
N+1
X
k=N+1 Re(ωN,1,k (τ, s)) ωR
N,1,k (τ)αωI
N,1,k (τ)2
N+1
X
k=N+1 Im(ωN,1,k (τ, s)) βωI
N,1,k (τ)2
.
s0ηN(τ, s)αN ,1(τ, s0) = βN,1(τ, s0)=0
s= 1/3 + 15i
α=4.439188393651894483835125620... ·1023,
β=6.256317129726259611895862483... ·1022,
ωN,1,k (τ, s)
ωR
N,1,k (τ)+(α+ iβ)ωI
N,1,k (τ)1
<1.288 ·1025
k=N+ 1, . . . , N 1
WN,1(τ, s)
s
WN,1(τ, s0)
λN,1(τ, s0) = 0
WN,1(τ, s)
WR
N,1(τ)WN,1(τ, s0)
WR
N,1(τ)WN,1(τ, s)s
WR
N,1(τ)Re(WN,1(τ, s)) + γIm(WN,1(τ, s))
γ
1 = Re(ωN,1,1(τ, s)) + γIm(ωN,1,1(τ , s)).
12×2s
1n×ns
ξN(τ, 1/2+it) =
X
k=0
ξN,k (τ)(tτ)k,
(1)k
ηN(s) =
N
X
n=1
(1)n+1aN,nns.
b
a b
bI
N,1(τ)MN(τ)
bI
N,1(τ) = 0
a
b k k!
a b
b
BN(τ) = [bR
N,1(τ), bI
N,2(τ), . . . , bI
N,k (τ), bR
N,k (τ), . . . , bI
N,N (τ)bR
N,N (τ)]T.
MN(τ)
ξ(s) = f(s)ζ(s)
f(s) = πs
2(s1)Γ(1 + s
2),
N= 50 m= 1 τ= 14 s0= 1/3 + 15i
s00 = 6/7 + 15i
0.737520 <|z0.265863 + 0.070807i|<0.737544
0.275111 <|z0.734137 + 0.070807i|<0.275150.
ζ
ζ
z
-0.5 0.5 1.0 1.5
0.5
1.0
1.5
2.0
N= 50 m= 1 τ= 14 s0= 1/3 + 15i
s00 = 6/7 + 14i
z
-0.5 0.5 1.0 1.5
0.5
1.0
1.5
2.0
N= 50 m= 1 τ= 14
s0= 1/3 + 15i s00 = 6/7 + 14i
z
-0.5 0.5 1.0 1.5
0.5
1.0
1.5
2.0
N= 50 m= 2 τ= 14
s0= 1/3 + 15i s00 = 6/7 + 14i
z
-0.5 0.5 1.0 1.5
0.5
1.0
1.5
2.0
N= 50 m= 3 τ= 14
s0= 1/3 + 15i s00 = 6/7 + 14i
z
-0.5 0.5 1.0 1.5
0.5
1.0
1.5
2.0
N= 50 m= 4 τ= 14
s0= 1/3 + 15i s00 = 6/7 + 14i
n aN,n
1 1
21+2.2181 . . . ·1018 + 2.1692 . . . ·1018i
3 1 7.4732 . . . ·1017 + 3.4719 . . . ·1017i
412.3549 . . . ·1015 8.5455 . . . ·1016i
5 1 6.2490 . . . ·1014 2.2430 . . . ·1014i
611.4053 . . . ·1012 + 2.7476 . . . ·1013i
7 1 1.0939 . . . ·1011 + 2.2234 . . . ·1011i
81+2.3595 . . . ·1010 + 2.5368 . . . ·1010i
9 1 + 3.2566 . . . ·1092.2589 . . . ·109i
10 12.2472 . . . ·1083.0146 . . . ·108i
11 1 2.0449 . . . ·107+ 2.1883 . . . ·107i
12 1+1.8217 . . . ·106+ 8.8525 . . . ·107i
13 1 + 5.9806 . . . ·1071.1725 . . . ·105i
14 15.3270 . . . ·105+ 2.4969 . . . ·105i
15 1 + 2.1656 . . . ·104+ 1.3776 . . . ·104i
16 16.5702 . . . ·1059.7882 . . . ·104i
17 1 2.3916 . . . ·103+ 2.2778 . . . ·103i
18 1+9.8214 . . . ·103+ 6.0047 . . . ·104i
19 1 1.7518 . . . ·1021.9273 . . . ·102i
20 1+7.5775 . . . ·104+ 6.1461 . . . ·102i
21 1 + 8.0453 . . . ·1021.0175 . . . ·101i
22 12.3703 . . . ·101+ 6.3810 . . . ·102i
23 1 + 3.9449 . . . ·101+ 1.3681 . . . ·101i
24 14.0384 . . . ·1014.9640 . . . ·101i
25 1 + 1.5331 . . . ·101+ 8.7256 . . . ·101i
26 1+3.1348 . . . ·1011.0663 . . . ·100i
27 1.9177 . . . ·101+ 9.7936 . . . ·101i
28 1.4072 . . . ·1016.8703 . . . ·101i
29 2.4974 . . . ·101+ 3.5976 . . . ·101i
30 2.0534 . . . ·1011.2730 . . . ·101i
31 1.1565 . . . ·101+ 1.6925 . . . ·102i
32 4.7456 . . . ·102+ 1.2747 . . . ·102i
33 1.3946 . . . ·1021.0968 . . . ·102i
34 2.6239 . . . ·103+ 4.7430 . . . ·103i
35 1.5360 . . . ·1041.3648 . . . ·103i
36 7.6192 . . . ·105+ 2.7027 . . . ·104i
37 2.7103 . . . ·1053.5293 . . . ·105i
38 4.3908 . . . ·106+ 2.6483 . . . ·106i
39 3.7618 . . . ·1076.7133 . . . ·108i
40 1.3591 . . . ·1082.5085 . . . ·109i
aN,n(τ)N= 40 τ= 15
ηN(τ,s)
η(s)1
s τ = 15 τ= 20 τ= 25
1 + 50i 8.481 . . . ·1046 6.379 . . . ·1049 4.947 . . . ·1050
1 + 30i 1.821 . . . ·1056 6.835 . . . ·1056 1.460 . . . ·1054
1 + 20i 5.988 . . . ·1059 1.657 . . . ·1057 1.641 . . . ·1055
110i 2.083 . . . ·1056 1.023 . . . ·1050 1.169 . . . ·1043
130i 1.105 . . . ·1035 2.325 . . . ·1031 1.878 . . . ·1027
50i 3.395 . . . ·1045 2.880 . . . ·1048 2.194 . . . ·1049
30i 5.563 . . . ·1056 2.070 . . . ·1055 4.372 . . . ·1054
20i 1.086 . . . ·1058 2.987 . . . ·1057 2.950 . . . ·1055
10i 2.271 . . . ·1056 1.046 . . . ·1050 5.504 . . . ·1044
30i 6.743 . . . ·1036 1.202 . . . ·1031 8.521 . . . ·1028
1/2 + 50i 7.979 . . . ·1045 7.488 . . . ·1048 5.694 . . . ·1049
1/2 + 30i 8.882 . . . ·1056 3.302 . . . ·1055 6.963 . . . ·1054
1/2 + 20i 1.229 . . . ·1058 3.378 . . . ·1057 3.334 . . . ·1055
1/210i 2.292 . . . ·1056 1.068 . . . ·1050 3.783 . . . ·1044
1/230i 4.745 . . . ·1036 7.755 . . . ·1032 5.133 . . . ·1028
1 + 50i 2.707 . . . ·1045 2.880 . . . ·1048 2.194 . . . ·1049
1 + 30i 5.563 . . . ·1056 2.070 . . . ·1055 4.372 . . . ·1054
1 + 20i 1.086 . . . ·1058 2.987 . . . ·1057 2.950 . . . ·1055
110i 2.271 . . . ·1056 9.879 . . . ·1051 2.251 . . . ·1044
130i 1.284 . . . ·1036 1.918 . . . ·1032 1.183 . . . ·1028
η(s)ηN(τ, s)N= 50 τ
s
pN,m (τ,s)
qN,m (τ)η(s)1
m s = 1/7 + 14i s= 1/2 + 14i s= 2/3 + 14i
0 8.682 . . . ·1024 2.473 . . . ·1023 9.612 . . . ·1024
1 4.874 . . . ·1023 1.388 . . . ·1022 5.401 . . . ·1023
2 1.146 . . . ·1023 2.998 . . . ·1023 1.469 . . . ·1023
3 6.415 . . . ·1022 1.826 . . . ·1021 7.041 . . . ·1022
4 8.350 . . . ·1022 2.378 . . . ·1021 9.383 . . . ·1022
5 8.720 . . . ·1020 2.483 . . . ·1019 9.729 . . . ·1020
6 6.652 . . . ·1018 1.894 . . . ·1017 7.455 . . . ·1018
7 2.868 . . . ·1017 8.169 . . . ·1017 3.216 . . . ·1017
8 1.172 . . . ·1016 3.339 . . . ·1016 1.314 . . . ·1016
9 2.703 . . . ·1016 7.697 . . . ·1016 3.001 . . . ·1016
10 3.458 . . . ·1015 9.848 . . . ·1015 3.861 . . . ·1015
11 8.516 . . . ·1014 2.425 . . . ·1013 9.510 . . . ·1014
12 2.063 . . . ·1012 5.876 . . . ·1012 2.305 . . . ·1012
13 1.078 . . . ·1011 3.071 . . . ·1011 1.205 . . . ·1011
14 3.983 . . . ·1011 1.134 . . . ·1010 4.452 . . . ·1011
15 2.261 . . . ·1011 6.439 . . . ·1011 2.519 . . . ·1011
16 2.566 . . . ·1010 7.315 . . . ·1010 2.949 . . . ·1010
17 1.940 . . . ·1085.526 . . . ·1082.165 . . . ·108
18 1.129 . . . ·1073.217 . . . ·1071.259 . . . ·107
19 2.996 . . . ·1078.532 . . . ·1073.333 . . . ·107
20 3.712 . . . ·1071.056 . . . ·1064.094 . . . ·107
21 2.637 . . . ·1067.472 . . . ·1062.802 . . . ·106
22 1.474 . . . ·1054.187 . . . ·1051.595 . . . ·105
23 2.554 . . . ·1057.250 . . . ·1052.752 . . . ·105
24 5.362 . . . ·1051.528 . . . ·1046.012 . . . ·105
25 1.083 . . . ·1013.088 . . . ·1011.243 . . . ·101
η(s)N= 50 τ= 18
s m
λN,m (τ,1σ+it)
λN,m (τ,σ+it)1
m τ = 14 τ= 16 τ= 18
1 1.04 . . . ·10139 2.73 . . . ·10108 2.66 . . . ·1079
2 9.96 . . . ·10137 1.13 . . . ·10107 3.07 . . . ·1077
3 1.14 . . . ·10131 1.13 . . . ·10104 5.78 . . . ·1077
4 7.31 . . . ·10128 2.47 . . . ·10103 1.03 . . . ·1075
5 5.74 . . . ·10124 6.58 . . . ·10102 3.52 . . . ·1073
6 9.30 . . . ·10122 3.53 . . . ·1098 6.51 . . . ·1071
7 1.39 . . . ·10117 1.29 . . . ·1097 9.06 . . . ·1071
8 1.93 . . . ·10113 1.30 . . . ·1096 1.67 . . . ·1068
9 1.14 . . . ·10110 1.43 . . . ·1095 5.67 . . . ·1067
10 8.40 . . . ·10106 2.49 . . . ·1093 8.30 . . . ·1066
11 5.23 . . . ·10104 4.58 . . . ·1091 2.82 . . . ·1064
12 7.31 . . . ·10101 6.53 . . . ·1090 1.40 . . . ·1061
13 2.81 . . . ·1097 6.71 . . . ·1087 9.62 . . . ·1061
14 1.20 . . . ·1092 3.13 . . . ·1086 3.45 . . . ·1058
15 3.99 . . . ·1089 1.08 . . . ·1081 1.55 . . . ·1057
16 1.47 . . . ·1088 2.28 . . . ·1081 4.64 . . . ·1055
17 4.31 . . . ·1086 1.03 . . . ·1078 4.83 . . . ·1053
18 1.19 . . . ·1080 1.82 . . . ·1077 1.94 . . . ·1052
19 9.88 . . . ·1076 1.03 . . . ·1075 4.37 . . . ·1050
20 9.87 . . . ·1076 4.11 . . . ·1074 7.30 . . . ·1049
21 2.60 . . . ·1074 4.80 . . . ·1072 7.83 . . . ·1046
22 4.70 . . . ·1070 1.45 . . . ·1069 8.06 . . . ·1046
23 1.08 . . . ·1066 1.03 . . . ·1066 8.45 . . . ·1044
24 3.19 . . . ·1063 4.50 . . . ·1063 2.03 . . . ·1042
25 1.39 . . . ·1060 1.57 . . . ·1061 1.48 . . . ·1038
26 1.85 . . . ·1058 9.40 . . . ·1058 1.18 . . . ·1038
27 1.28 . . . ·1054 5.85 . . . ·1056 1.19 . . . ·1037
28 6.68 . . . ·1052 4.57 . . . ·1053 1.66 . . . ·1035
29 1.69 . . . ·1048 6.80 . . . ·1052 5.49 . . . ·1035
30 4.71 . . . ·1046 2.19 . . . ·1047 1.53 . . . ·1031
N= 50 σ= 1/3t= 14
m τ
λN,m(τ, s)
m τ = 14 τ= 18
13.96 . . . ·10134 1.53 . . . ·10272i 3.20 . . . ·10137 6.27 . . . ·10216i
2 4.06 . . . ·10132 1.50 . . . ·10267i2.36 . . . ·10133 + 5.32 . . . ·10210i
31.87 . . . ·10128 + 7.53 . . . ·10259i 1.21 . . . ·10131 + 5.13 . . . ·10208i
43.17 . . . ·10126 + 8.32 . . . ·10253i 6.50 . . . ·10128 4.94 . . . ·10203i
5 6.75 . . . ·10123 + 1.34 . . . ·10245i 4.45 . . . ·10126 1.15 . . . ·10198i
6 5.49 . . . ·10122 + 1.74 . . . ·10242i 1.37 . . . ·10122 6.56 . . . ·10193i
7 1.73 . . . ·10118 + 8.37 . . . ·10235i1.49 . . . ·10121 9.90 . . . ·10192i
8 2.97 . . . ·10116 + 1.93 . . . ·10228i1.17 . . . ·10118 1.43 . . . ·10186i
97.63 . . . ·10114 2.92 . . . ·10223i6.12 . . . ·10116 + 2.54 . . . ·10182i
10 3.03 . . . ·10111 8.29 . . . ·10216i 3.82 . . . ·10114 + 2.33 . . . ·10179i
11 5.30 . . . ·10110 + 9.38 . . . ·10213i 3.69 . . . ·10112 7.63 . . . ·10176i
12 5.23 . . . ·10108 + 1.24 . . . ·10207i2.84 . . . ·10109 + 2.94 . . . ·10170i
13 1.94 . . . ·10105 + 1.75 . . . ·10201i2.72 . . . ·10108 + 1.91 . . . ·10168i
14 6.72 . . . ·10103 2.44 . . . ·10194i4.55 . . . ·10105 + 1.15 . . . ·10162i
15 6.92 . . . ·10101 + 8.41 . . . ·10189i4.86 . . . ·10103 + 5.56 . . . ·10160i
16 1.05 . . . ·1099 4.76 . . . ·10187i 2.27 . . . ·10101 7.76 . . . ·10156i
17 1.20 . . . ·1097 + 1.38 . . . ·10182i6.44 . . . ·1099 + 2.29 . . . ·10151i
18 5.93 . . . ·1095 + 2.04 . . . ·10174i1.58 . . . ·1097 + 2.25 . . . ·10149i
19 8.03 . . . ·1093 + 2.64 . . . ·1092i 4.95 . . . ·1095 + 1.59 . . . ·10144i
20 8.03 . . . ·1093 2.64 . . . ·1092i 3.10 . . . ·1093 1.66 . . . ·10141i
21 3.74 . . . ·1090 + 3.23 . . . ·10163i2.17 . . . ·1090 + 4.25 . . . ·1090i
22 4.91 . . . ·1087 + 6.50 . . . ·10156i2.17 . . . ·1090 4.25 . . . ·1090i
23 9.86 . . . ·1086 2.92 . . . ·10151i5.44 . . . ·1087 3.39 . . . ·10130i
24 1.57 . . . ·1083 1.37 . . . ·10145i 3.51 . . . ·1085 5.27 . . . ·10127i
25 6.54 . . . ·1082 + 2.42 . . . ·10141i 8.04 . . . ·1082 + 8.25 . . . ·10120i
26 4.02 . . . ·1080 + 1.99 . . . ·10137i9.38 . . . ·1082 7.65 . . . ·10120i
27 9.45 . . . ·1078 3.13 . . . ·10131i6.29 . . . ·1080 6.13 . . . ·10117i
28 2.34 . . . ·1076 3.95 . . . ·10127i 1.27 . . . ·1077 + 1.81 . . . ·10112i
29 6.46 . . . ·1074 2.63 . . . ·10121i 1.24 . . . ·1075 4.77 . . . ·10110i
30 3.48 . . . ·1072 7.33 . . . ·10117i7.35 . . . ·1074 5.04 . . . ·1073i
λN,l(τ, s)N= 50 s= 1/2+14i
m τ
N τ t σ max
ωN,m,k (τ,1σ+it)
ωN,m,k (τ,σ+it)1
40 14 14 0 5.46246 . . . ·1087
40 14 14 1/7 3.20371 . . . ·1087
40 14 14 1/3 3.30046 . . . ·1087
40 14 15 0 3.18719 . . . ·1077
40 14 15 1/7 1.85486 . . . ·1078
40 14 15 1/3 1.88463 . . . ·1079
50 14 14 0 3.02829 . . . ·10115
50 14 14 1/7 8.93416 . . . ·10116
50 14 14 1/3 4.20312 . . . ·10116
50 14 15 0 3.86955 . . . ·10103
50 14 15 1/7 1.16495 . . . ·10104
50 14 15 1/3 5.25409 . . . ·10106
50 16 14 1/7 8.56135 . . . ·1085
50 16 14 1/3 2.69217 . . . ·1085
50 16 15 1/7 2.65126 . . . ·10112
50 16 15 1/3 2.99890 . . . ·10114
50 18 14 1/7 5.06519 . . . ·1057
50 18 14 1/3 3.86475 . . . ·1057
50 18 15 1/7 4.30181 . . . ·1069
50 18 15 1/3 2.54209 . . . ·1069
WN,m(τ, σ + it)
WN,m(τ, 1σ+ it)m= 1 N τ σ t
n ωN,m,n(τ, +)
39 4.2. . . ·10100
38 1.1. . . ·10102
37 1.4. . . ·10103
36 1.1. . . ·10104
35 6.8. . . ·10104
34 3.1. . . ·10105
33 1.1. . . ·10106
32 3.4. . . ·10106
31 8.8. . . ·10106
30 1.9. . . ·10107
29 3.5. . . ·10107
28 5.7. . . ·10107
27 8.1. . . ·10107
26 1.0. . . ·10108
25 1.1. . . ·10108
24 1.0. . . ·10108
23 9.3. . . ·10107
22 7.1. . . ·10107
21 4.8. . . ·10107
20 2.9. . . ·10107
19 1.5. . . ·10107
18 7.5. . . ·10106
17 3.2. . . ·10106
16 1.1. . . ·10106
15 3.9. . . ·10105
14 1.1. . . ·10105
13 2.8. . . ·10104
n ωN,m,n(τ, +)
12 6.1. . . ·10103
11 1.1. . . ·10103
10 1.8. . . ·10102
9 2.4. . . ·10101
82.7. . . ·10100
7 2.5. . . ·1099
61.9. . . ·1098
5 1.1. . . ·1097
45.3. . . ·1095
3 1.8. . . ·1094
24.1. . . ·1092
11.3. . . ·1091
0 1
13.6. . . ·1091
2 9.4. . . ·1092
32.3. . . ·1094
4 5.4. . . ·1095
51.0. . . ·1097
6 1.6. . . ·1098
72.0. . . ·1099
8 2.2. . . ·10100
91.9. . . ·10101
10 1.4. . . ·10102
11 8.8. . . ·10102
12 4.7. . . ·10103
13 2.1. . . ·10104
14 8.8. . . ·10104
n ωN,m,n(τ, +)
15 3.0. . . ·10105
16 9.4. . . ·10105
17 2.5. . . ·10106
18 6.1. . . ·10106
19 1.2. . . ·10107
20 2.4. . . ·10107
21 4.0. . . ·10107
22 6.0. . . ·10107
23 7.9. . . ·10107
24 9.2. . . ·10107
25 9.6. . . ·10107
26 8.8. . . ·10107
27 7.1. . . ·10107
28 5.0. . . ·10107
29 3.1. . . ·10107
30 1.7. . . ·10107
31 7.9. . . ·10106
32 3.1. . . ·10106
33 1.0. . . ·10106
34 2.9. . . ·10105
35 6.4. . . ·10104
36 1.0. . . ·10104
37 1.3. . . ·10103
38 1.0. . . ·10102
39 4.1. . . ·10100
WN,m(τ, +)N= 40 m= 1 τ= 14
Preprint
Full-text available
In the first part (\doi{10.13140/RG.2.2.29328.43528}) and in the second part (\doi{10.13140/RG.2.2.20434.22720}) the author presented numerical examples of calculation of approximate values of the zeros of the zeta-function, the alternating zeta function, and Davenport--Heilbronn function by by tools of linear algebra. This paper presents numerical examples of some non-evident ways of calculation of the values of the individual summands, ns n^{-s} , from the Dirichlet series for the zeta-function when s is its trivial or non-trivial zero.
ResearchGate has not been able to resolve any references for this publication.