Content uploaded by Jacyara N. Correa
Author content
All content in this area was uploaded by Jacyara N. Correa on Oct 25, 2021
Content may be subject to copyright.
Content uploaded by Jacyara N. Correa
Author content
All content in this area was uploaded by Jacyara N. Correa on Oct 21, 2021
Content may be subject to copyright.
Editora chefe
Profª Drª Antonella Carvalho de Oliveira
Editora executiva
Natalia Oliveira
Assistente editorial
Flávia Roberta Barão
Bibliotecária
Janaina Ramos
Projeto gráfico
Camila Alves de Cremo
Luiza Alves Batista
Maria Alice Pinheiro
Natália Sandrini de Azevedo
Imagens da capa
iStock
Edição de arte
Luiza Alves Batista
2021 by Atena Editora
Copyright © Atena Editora
Copyright do texto © 2021 Os autores
Copyright da edição © 2021 Atena Editora
Direitos para esta edição cedidos à Atena Editora
pelos autores.
Open access publication by Atena Editora
Todo o conteúdo deste livro está licenciado sob uma Licença de
Atribuição Creative Commons. Atribuição-Não-Comercial-
NãoDerivativos 4.0 Internacional (CC BY-NC-ND 4.0).
O conteúdo dos artigos e seus dados em sua forma, correção e confiabilidade são de
responsabilidade exclusiva dos autores, inclusive não representam necessariamente a posição
oficial da Atena Editora. Permitido o download da obra e o compartilhamento desde que sejam
atribuídos créditos aos autores, mas sem a possibilidade de alterá-la de nenhuma forma ou
utilizá-la para fins comerciais.
Todos os manuscritos foram previamente submetidos à avaliação cega pelos pares, membros
do Conselho Editorial desta Editora, tendo sido aprovados para a publicação com base em
critérios de neutralidade e imparcialidade acadêmica.
A Atena Editora é comprometida em garantir a integridade editorial em todas as etapas do
processo de publicação, evitando plágio, dados ou resultados fraudulentos e impedindo que
interesses financeiros comprometam os padrões éticos da publicação. Situações suspeitas de
má conduta científica serão investigadas sob o mais alto padrão de rigor acadêmico e ético.
Conselho Editorial
Ciências Biológicas e da Saúde
Prof. Dr. André Ribeiro da Silva – Universidade de Brasília
Profª Drª Anelise Levay Murari – Universidade Federal de Pelotas
Prof. Dr. Benedito Rodrigues da Silva Neto – Universidade Federal de Goiás
Profª Drª Daniela Reis Joaquim de Freitas – Universidade Federal do Piauí
Profª Drª Débora Luana Ribeiro Pessoa – Universidade Federal do Maranhão
Prof. Dr. Douglas Siqueira de Almeida Chaves – Universidade Federal Rural do Rio de Janeiro
Prof. Dr. Edson da Silva – Universidade Federal dos Vales do Jequitinhonha e Mucuri
Profª Drª Elizabeth Cordeiro Fernandes – Faculdade Integrada Medicina
Profª Drª Eleuza Rodrigues Machado – Faculdade Anhanguera de Brasília
Profª Drª Elane Schwinden Prudêncio – Universidade Federal de Santa Catarina
Profª Drª Eysler Gonçalves Maia Brasil – Universidade da Integração Internacional da Lusofonia Afro-
Brasileira
Prof. Dr. Ferlando Lima Santos – Universidade Federal do Recôncavo da Bahia
Profª Drª Fernanda Miguel de Andrade – Universidade Federal de Pernambuco
Prof. Dr. Fernando Mendes – Instituto Politécnico de Coimbra – Escola Superior de Saúde de Coimbra
Profª Drª Gabriela Vieira do Amaral – Universidade de Vassouras
Prof. Dr. Gianfábio Pimentel Franco – Universidade Federal de Santa Maria
Prof. Dr. Helio Franklin Rodrigues de Almeida – Universidade Federal de Rondônia
Profª Drª Iara Lúcia Tescarollo – Universidade São Francisco
Prof. Dr. Igor Luiz Vieira de Lima Santos – Universidade Federal de Campina Grande
Prof. Dr. Jefferson Thiago Souza – Universidade Estadual do Ceará
Prof. Dr. Jesus Rodrigues Lemos – Universidade Federal do Piauí
Prof. Dr. Jônatas de França Barros – Universidade Federal do Rio Grande do Norte
Prof. Dr. José Max Barbosa de Oliveira Junior – Universidade Federal do Oeste do Pará
Prof. Dr. Luís Paulo Souza e Souza – Universidade Federal do Amazonas
Profª Drª Magnólia de Araújo Campos – Universidade Federal de Campina Grande
Prof. Dr. Marcus Fernando da Silva Praxedes – Universidade Federal do Recôncavo da Bahia
Profª Drª Maria Tatiane Gonçalves Sá – Universidade do Estado do Pará
Profª Drª Mylena Andréa Oliveira Torres – Universidade Ceuma
Profª Drª Natiéli Piovesan – Instituto Federacl do Rio Grande do Norte
Prof. Dr. Paulo Inada – Universidade Estadual de Maringá
Prof. Dr. Rafael Henrique Silva – Hospital Universitário da Universidade Federal da Grande Dourados
Profª Drª Regiane Luz Carvalho – Centro Universitário das Faculdades Associadas de Ensino
Profª Drª Renata Mendes de Freitas – Universidade Federal de Juiz de Fora
Profª Drª Vanessa da Fontoura Custódio Monteiro – Universidade do Vale do Sapucaí
Profª Drª Vanessa Lima Gonçalves – Universidade Estadual de Ponta Grossa
Profª Drª Vanessa Bordin Viera – Universidade Federal de Campina Grande
Profª Drª Welma Emidio da Silva – Universidade Federal Rural de Pernambuco
A pesquisa em ciências biológicas: desafios atuais e perspectivas futuras 2
Diagramação:
Correção:
Indexação:
Revisão:
Organizadores:
Maria Alice Pinheiro
Mariane Aparecida Freitas
Gabriel Motomu Teshima
Os autores
Clécio Danilo Dias da Silva
Danyelle Andrade Mota
Dados Internacionais de Catalogação na Publicação (CIP)
P474
A pesquisa em ciências biológicas: desafios atuais e
perspectivas futuras 2 / Organizadores Clécio Danilo
Dias da Silva, Danyelle Andrade Mota. – Ponta Grossa -
PR: Atena, 2021.
Formato: PDF
Requisitos de sistema: Adobe Acrobat Reader
Modo de acesso: World Wide Web
Inclui bibliografia
ISBN 978-65-5983-526-3
DOI: https://doi.org/10.22533/at.ed.263210410
1 Ciências biológicas. I. Silva, Clécio Danilo Dias da
(Organizador). II. Mota, Danyelle Andrade (Organizadora). III.
Título.
CDD 570
Elaborado por Bibliotecária Janaina Ramos – CRB-8/9166
Atena Editora
Ponta Grossa – Paraná – Brasil
Telefone: +55 (42) 3323-5493
www.atenaeditora.com.br
contato@atenaeditora.com.br
DECLARAÇÃO DOS AUTORES
Os autores desta obra: 1. Atestam não possuir qualquer interesse comercial que constitua um
conflito de interesses em relação ao artigo científico publicado; 2. Declaram que participaram
ativamente da construção dos respectivos manuscritos, preferencialmente na: a) Concepção do
estudo, e/ou aquisição de dados, e/ou análise e interpretação de dados; b) Elaboração do artigo
ou revisão com vistas a tornar o material intelectualmente relevante; c) Aprovação final do
manuscrito para submissão.; 3. Certificam que os artigos científicos publicados estão
completamente isentos de dados e/ou resultados fraudulentos; 4. Confirmam a citação e a
referência correta de todos os dados e de interpretações de dados de outras pesquisas; 5.
Reconhecem terem informado todas as fontes de financiamento recebidas para a consecução
da pesquisa; 6. Autorizam a edição da obra, que incluem os registros de ficha catalográfica,
ISBN, DOI e demais indexadores, projeto visual e criação de capa, diagramação de miolo, assim
como lançamento e divulgação da mesma conforme critérios da Atena Editora.
DECLARAÇÃO DA EDITORA
A Atena Editora declara, para os devidos fins de direito, que: 1. A presente publicação constitui
apenas transferência temporária dos direitos autorais, direito sobre a publicação, inclusive não
constitui responsabilidade solidária na criação dos manuscritos publicados, nos termos
previstos na Lei sobre direitos autorais (Lei 9610/98), no art. 184 do Código Penal e no art. 927
do Código Civil; 2. Autoriza e incentiva os autores a assinarem contratos com repositórios
institucionais, com fins exclusivos de divulgação da obra, desde que com o devido
reconhecimento de autoria e edição e sem qualquer finalidade comercial; 3. Todos os e-book
são open access, desta forma não os comercializa em seu site, sites parceiros, plataformas de
e-commerce, ou qualquer outro meio virtual ou físico, portanto, está isenta de repasses de
direitos autorais aos autores; 4. Todos os membros do conselho editorial são doutores e
vinculados a instituições de ensino superior públicas, conforme recomendação da CAPES para
obtenção do Qualis livro; 5. Não cede, comercializa ou autoriza a utilização dos nomes e e-mails
dos autores, bem como nenhum outro dado dos mesmos, para qualquer finalidade que não o
escopo da divulgação desta obra.
APRESENTAÇÃO
As Ciências Biológicas, assim como as diversas áreas da Ciência (Naturais,
Humanas, Sociais e Exatas), passam por constantes transformações, as quais são
determinantes para o seu avanço cientíco. Nessa perspectiva, a coleção “A Pesquisa
em Ciências Biológicas: Desaos Atuais e Perspectivas Futuras”, é uma obra composta
de dois volumes com uma série de investigações e contribuições nas diversas áreas de
conhecimento que interagem nas Ciências Biológicas.
Assim, a coleção é para todos os prossionais pertencentes às Ciências Biológicas
e suas áreas ans, especialmente, aqueles com atuação no ambiente acadêmico e/ou
prossional. Cada volume foi organizado de modo a permitir que sua leitura seja conduzida
de forma simples e com destaque por área da Biologia.
O Volume I “Saúde, Meio Ambiente e Biotecnologia”, reúne 17 capítulos com estudos
desenvolvidos em diversas instituições de ensino e pesquisa. Os capítulos apresentam
resultados bem fundamentados de trabalhos experimentais laboratoriais, de campo e de
revisão de literatura realizados por diversos professores, pesquisadores, graduandos e pós-
graduandos. A produção cientíca no campo da Saúde, Meio Ambiente e da Biotecnologia
é ampla, complexa e interdisciplinar.
O Volume II “Biodiversidade, Meio Ambiente e Educação”, apresenta 16
capítulos com aplicação de conceitos interdisciplinares nas áreas de meio ambiente,
ecologia, sustentabilidade, botânica, micologia, zoologia e educação, como levantamentos
e discussões sobre a importância da biodiversidade e do conhecimento popular sobre
as espécies. Desta forma, o volume II poderá contribuir na efetivação de trabalhos nestas
áreas e no desenvolvimento de práticas que podem ser adotadas na esfera educacional e
não formal de ensino, com ênfase no meio ambiente e manutenção da biodiversidade de
forma de compreender e reetir sobre problemas ambientais.
Portanto, o resultado dessa experiência, que se traduz nos dois volumes
organizados, objetiva apresentar ao leitor a diversidade de temáticas inerentes as
áreas da Saúde, Meio Ambiente, Biodiversidade, Biotecnologia e Educação, como
pilares estruturantes das Ciências Biológicas. Por m, desejamos que esta coletânea
contribua para o enriquecimento da formação universitária e da atuação prossional,
com uma visão multidimensional com o enriquecimento de novas atitudes e práticas
multiprossionais nas Ciências Biológicas.
Agradecemos aos autores pelas contribuições que tornaram essa edição possível, e
juntos, convidamos os leitores para desfrutarem as publicações.
Clécio Danilo Dias da Silva
Danyelle Andrade Mota
SUMÁRIO
SUMÁRIO
CAPÍTULO 1 ................................................................................................................. 1
ANÁLISE DA DINÂMICA SEDIMENTAR ESPAÇO-TEMPORAL DOS ESTUÁRIOS DO
IPOJUCA E MEREPE (PE) COM BASE NOS COMPONENTES DA FRAÇÃO ARENOSA
(0,25MM E 0,50MM)
Thamiris Tárcila Veiga
Roberto Lima Barcellos
Luciana Dantas dos Santos
https://doi.org/10.22533/at.ed.2632104101
CAPÍTULO 2 ............................................................................................................... 19
PRESERVAÇÃO DA SAÚDE AMBIENTAL E CONSERVAÇÃO DA BIODIVERSIDADE EM
AMBIENTE MARINHO E FLUVIAL: ÊNFASE NOS EFEITOS DA APLICAÇÃO DE TINTAS
VENENOSAS EM EMBARCAÇÕES NÁUTICAS
Fagner Evangelista Severo
Maria Cristina Pereira Matos
Tânia Cristina dos Santos Guedes Pinto
https://doi.org/10.22533/at.ed.2632104102
CAPÍTULO 3 ............................................................................................................... 30
SALINITY ASSESSMENT IN THE GERMINATION OF LAGUNCULARIA RACEMOSA (L.)
C. F. GAERTN. FOR SELECTING MANGROVE RESTORING SITES
Jacyara Nascimento Corrêa
James Werllen de J. Azevedo
Alexandre Oliveira
Flávia Rebelo Mochel
https://doi.org/10.22533/at.ed.2632104103
CAPÍTULO 4 ............................................................................................................... 45
BIOMONITORAMENTO DO RIO CATOLÉ GRANDE, BA, POR MEIO DA AVALIAÇÃO DE
DANOS GENÉTICOS NOS ERITRÓCITOS DE HOPLIAS MALABARICUS (BLOCH, 1794)
(CHARACIFORMES, ERYTHRINIDAE)
Hellen Karoline Brito da Rocha
Cláudia Maria Reis Raposo Maciel
Alaor Maciel Júnior
https://doi.org/10.22533/at.ed.2632104104
CAPÍTULO 5 ............................................................................................................... 55
GAMETOGÊNESE E REPRODUÇÃO DO INVASOR Auchenipterus osteomystax
(AUCHENIPTERIDAE, SILURIFORMES) NA PLANÍCIE DE INUNDAÇÃO DO ALTO RIO
PARANÁ, BRASIL
Claudenice Dei Tos
Herick Soares de Santana
Arthur Henrique de Sousa Antunes
Ana Luiza Faria Bernardes
https://doi.org/10.22533/at.ed.2632104105
SUMÁRIO
CAPÍTULO 6 ............................................................................................................... 72
INFLUÊNCIA DA ESTAÇÃO REPRODUTIVA SOBRE A QUALIDADE SEMINAL DE
TAMBAQUI E DE PIRAPITINGA
Mônica Aline Parente Melo Maciel
Carminda Sandra Brito Salmito Vanderley
Jordana Sampaio Leite
Felipe Silva Maciel
https://doi.org/10.22533/at.ed.2632104106
CAPÍTULO 7 ............................................................................................................... 84
ISOLAMENTO DE FUNGOS FILAMENTOSOS DE SOLOS DA UFAM E ESTERCO
BOVINO NO KM 12 BR 174, MANAUS-AM
Ana Eduarda de Aquino Veiga
Thalita Victoria Vieira Oliveira
João Raimundo Silva de Souza
Maria Ivone Lopes da Silva
https://doi.org/10.22533/at.ed.2632104107
CAPÍTULO 8 ............................................................................................................... 94
OCORRÊNCIA DO FUNGO SPOROTHRIX SPP. NAS GARRAS DOS MEMBROS
ANTERIORES DE ANIMAIS SELVAGENS
Flora Nogueira Matos
Sandra de Moraes Gimenes Bosco
Giselle Souza da Paz
Alana Lucena Oliveira
Arthur Carlos da Trindade
Luna Scarpari Rolim
Lorena Ortega Silvestre
Carlos Roberto Teixeira
https://doi.org/10.22533/at.ed.2632104108
CAPÍTULO 9 ............................................................................................................. 105
CRANIADOS SILVESTRES ATROPELADOS NA ERS 122 (Km 9 A Km 20), SÃO
SEBASTIÃO DO CAÍ, RS, BRASIL
Karina Seidel Gervasoni
Marcelo Pereira de Barros
https://doi.org/10.22533/at.ed.2632104109
CAPÍTULO 10 ........................................................................................................... 120
O MÉTODO RAPELD NA PADRONIZAÇÃO DE AMOSTRAGENS PARA ESTUDOS DE
ECOLOGIA DE MOLUSCOS TERRESTRES
Jaqueline Lopes de Oliveira
Mariana Castro de Vasconcelos
Sonia Barbosa dos Santos
https://doi.org/10.22533/at.ed.26321041010
SUMÁRIO
CAPÍTULO 11 ...........................................................................................................135
TENDÊNCIAS DA PRODUÇÃO CIENTÍFICA BRASILEIRA SOBRE A PLANTA ANREDERA
CORDIFOLIA
Elisa Vanessa Heisler
Fernanda Trombini
Ivana Beatrice Mânica da Cruz
Marcio Rossato Badke
Juliano Perottoni
Nathália Cardoso de Afonso Bonotto
Thamara G. Flores
Neida Luiza Kaspary Pellenz
Jacqueline da Costa Escobar Piccoli
Fernanda Barbisan
Maria Denise Schimith
https://doi.org/10.22533/at.ed.26321041011
CAPÍTULO 12 ........................................................................................................... 148
PINHEIROS INVASORES NO CERRADO: ESTRUTURA DAS POPULAÇÕES E
SUGESTÃO DE MANEJO USANDO O MODELO MATRICIAL
Emilia Pinto Braga
https://doi.org/10.22533/at.ed.26321041012
CAPÍTULO 13 ........................................................................................................... 159
IMPACTOS DO USO DE ESPÉCIES EXÓTICAS NA ARBORIZAÇÃO DE VIAS PÚBLICAS:
A PERCEPÇÃO DOS MORADORES ACERCA DO NIM–INDIANO (Azadirachta indica A.
Juss.)
Antonia Rosizelia Martins Sampaio
Dan Vitor Vieira Braga
https://doi.org/10.22533/at.ed.26321041013
CAPÍTULO 14 ........................................................................................................... 171
MATERIAIS ALTERNATIVOS PARA PRODUÇÃO DE CANUDOS
Leticia de Oliveira Maia
Victor Dédalo Di Próspero Gonçalves
Karolini Buoro Araújo
Ana Gabrielle Rodrigues Pereira
Eliana Setsuko Kamimura
https://doi.org/10.22533/at.ed.26321041014
CAPÍTULO 15 ........................................................................................................... 185
APRENDIZAGEM SIGNIFICATIVA: UMA PROPOSTA PEDAGÓGICA COM ALUNOS DA
EDUCAÇÃO DE JOVENS E ADULTOS
Heric Maicon Almeida Mota
Janice Henriques da Silva Amaral
Elisângela Martins dos Santos
Iasmin Rabelo Queiroz
Eduarda Maria Silva de Souza
https://doi.org/10.22533/at.ed.26321041015
SUMÁRIO
CAPÍTULO 16 ........................................................................................................... 200
EDUCAÇÃO AMBIENTAL: UMA PROPOSTA DE ATIVIDADE INVESTIGATIVA SOBRE
FORMIGAS COM ELABORAÇÃO DE MODELOS DIDÁTICOS
Francielle da Silva Mateus Costa
Angela Maria Muniz Gonçalves
Ilio Fealho de Carvalho
https://doi.org/10.22533/at.ed.26321041016
SOBRE OS ORGANIZADORES ............................................................................210
ÍNDICE REMISSIVO ................................................................................................. 211
A pesquisa em ciências biológicas: Desaos atuais e perspectivas futuras 2
Capítulo 3 30
Data de aceite: 21/09/2021
CAPÍTULO 3
SALINITY ASSESSMENT IN THE GERMINATION OF
LAGUNCULARIA RACEMOSA (L.) C. F. GAERTN.
FOR SELECTING MANGROVE RESTORING SITES
Data de submissão 30/08/2021
Jacyara Nascimento Corrêa
Postgraduate Program in Oceanography
(PPGOceano), Federal University of Maranhão,
Av. dos Portugueses, 1966, Maranhão, Brazil
James Werllen de J. Azevedo
Federal University of Maranhão, Estrada de
Pacas, Km 04, Maranhão, Brazil.
ORCID 0000-0002-7034-4592
Alexandre Oliveira
Federal University of Alagoas, Campus
Arapiraca, Penedo Educational Unit, Av. Beira
Rio s/n, Alagoas, Brazil.
ORCID 0000-0002-9076-3524
Flávia Rebelo Mochel
Federal University of Maranhão, Av. dos
Portugueses, 1966, Maranhão, Brazil.
ORCID 0000-0001-5911-3171
ABSTRACT: The aim of this work was to identify
and analyze the saline tolerance throughout
the white mangrove propagules of L. racemosa
germination, a halophyte and monotypic species,
to contribution to the mangrove restoration.
A total of 450 propagules were subjected to
different salinities. The propagules were divided
into three replicates (r) of 30 propagules for
each salinity treatment (t) of 0, 15, 25, 40 and
60. Germinability (G), Germination Velocity
Index (GVI), Germination Mean Time (GMT),
Germination Mean Velocity (GMV) and Root
Formation (RF) were applied to the experiment.
The results showed that G and GVI tend to be
very sensitive to the concentration of high salinity
(salinity of 60). In spite of this, the germination of
the propagules was successful up to the salinity
of 40. The mangrove is composed of halophytic
plants, capable to support and grow in saline
environments. The present experiment identied
the white mangrove species Laguncularia
racemosa as fully capable of germinating in
freshwater, presenting a variation in germination
depending on different salinity. In this way,
this species contributes to development and
improvement of the techniques, used in the
germination of propagules to produce seedlings
for the restoration of mangroves.
KEYWORDS: Salinity stress, white mangrove,
propagule germination, ecological restoration.
AVALIAÇÃO DA SALINIDADE NA
GERMINAÇÃO DE LAGUNCULARIA
RACEMOSA (L.) C. F. GAERTN.
VISANDO A SELEÇÃO DE SÍTIOS DE
RECUPERAÇÃO DE MANGUEZAIS
RESUMO: Identicou-se e analisou-se a
tolerância salina na germinação em propágulos
de mangue branco L. racemosa, uma espécie
halóta e monotípica, para contribuir para a
restauração do manguezal. Um total de 450
propágulos foram submetidos a diferentes
salinidades. Os propágulos foram divididos
em três réplicas (r) de 30 propágulos para
cada tratamento de salinidade (t) de 0, 15, 25,
40 e 60. Os índices de Germinabilidade (G),
Velocidade de Germinação (GVI), Tempo Médio
A pesquisa em ciências biológicas: Desaos atuais e perspectivas futuras 2
Capítulo 3 31
de Germinação (GMT), Velocidade Média de Germinação (GMV) e Formação de Raizn (RF)
foram aplicados ao experimento. Os resultados mostraram que G e GVI tendem a ser muito
sensíveis à concentração de alta salinidade (salinidade de 60). Apesar disso, a germinação
dos propágulos foi bem sucedida até a salinidade de 40. O manguezal é composto por plantas
halótas, capazes de suportar e crescer em ambientes salinos. O presente experimento
identicou a espécie de manguezal branco Laguncularia racemosa como totalmente
capaz de germinar em água doce, apresentando uma variação na germinação dependendo
de diferentes salinidades. Dessa forma, essa espécie contribui para o desenvolvimento e
aperfeiçoamento das técnicas, utilizadas na germinação de propágulos para produzir mudas
para a restauração de manguezais em áreas sob inuência de diferentes salinidades.
PALAVRAS - CHAVE: Estresse de salinidade, mangue branco, germinação de propágulos,
restauração ecológica.
INTRODUCTION
Mangroves are part of the most threatened coastal ecosystems in the tropical
and subtropical regions of the world. At least 35-50% of these coastal forests have been
destroyed, with an annual loss of 0.4% of the total remaining mangroves in the world (Along
2002; FAO 2007; Ferreira and Lacerda 2016; Hamilton and Casey 2016). López-Portillo et
al. (2017) report that the main causes of mangrove degradation may be of natural origin,
such as erosion and indirect effects caused by tsunamis, or of anthropogenic origin caused
by pollution, aquaculture, etc.
According to Paula et al. (2012) and Mochel (2016), there are several reasons for
the importance of mangroves, besides being nurseries for many species of ecological and
economic value: they inuence the local and global climate, assist in the control of oods,
act in the production of oxygen and in the sequestration of carbon in the coastal zone. The
mangrove ecosystem works like a biological lter retaining pollutants, produces organic
matter and protects the coastline from erosion, reducing the energy of tides, waves and
winds (Tang et al. 2020).
Ecological recovery of mangroves therefore is of fundamental importance, it repaires
losses and restoring functions in areas subject to human intervention, as well as it renovates
the socio-environmental benets mangroves provide to the coastal zone. Ecological
restoration, according to the Society for Ecological Restoration (SER 2004) and McDonald
et al. (2016), assists in the recovery of an ecosystem that has been degraded. Viana (1990)
has described recovery as divided into two categories: restoration and rehabilitation. The
restoration seeks to recover the original form of the ecosystem, in the phytosociological
sense. The term rehabilitation deals with the reestablishment of ecosystem functions,
independent of species and their structure after environmental impact.
The ecological restoration of mangroves can be performed involving basically two
procedures: natural recovery and articial recovery (Clough et al. 1997). For the natural
A pesquisa em ciências biológicas: Desaos atuais e perspectivas futuras 2
Capítulo 3 32
restoration, Mochel (2016) considers the establishment of propagules and seedlings,
starting with their distribution by natural processes, as the circulation of the tides in the
ecosystem. Articial recovery requires procedures induced by human actions, such as
assessment of propagules and their distribution, or planting of nursery seedlings and
seedling transplantation.
In degraded mangroves, the ecosystem can suffer various imbalances, such as
saline, hydric, climatic, biological and sedimentary. To reverse the damage caused by
mangrove degradation, a number of ecological recovery processes and techniques are
developed. One of these processes is the production of nursery seedlings and, for this, the
germination of propagules is necessary (Mochel and Fonseca, 2019).
In Brazil, mangroves are distributed from the northern tip of Amapá (N 4º 20’) to the
county of Laguna-SC (S 28º 30’) (Schaeffer-Novelli 1989). The coastal Amazon has the
largest continuous area of mangroves in the world (8,900 km²), 50% of this total belong
to the Maranhão coastline (Kjerfve et al. 2002). On the island of Sao Luis, in the state of
Maranhão, the mangroves are distributed in an area of 18,895 hectares on the coast as
fringes, behind beaches, coastal strands and sandy dunes, or bordering rivers and streams
(Silva and Mochel 1994). Although the mangrove areas of Maranhão state are preserved,
Mochel et al. (2002) emphasize that there was a loss in mangroves of about 10,000 ha
between 1972 and 2002.
On the Brazilian Amazon coast are found the species Avicennia schaueriana Stapf &
Leechm. ex Moldenke and Avicennia germinans (L.) L. (black mangrove or siriba), the red
mangrove species Rhizophora mangle L., Rhizophora harisonii Leechm. and Rhizophora
racemosa G. Mey, the buttonwood mangrove Conocarpus erectus L. and the white mangrove
Laguncularia racemosa (L.) C. F. Gaertn (Mochel 2011).
The white mangrove Laguncularia racemosa (Combretaceae) is a monotypic
species occurring in mangroves of West Africa and the Americas, in fringes close to the
land (Tomlinson 1986). The tree can reach a height up to 20 m, although it is common to
be found in a bush form (Schaeffer-Noveli and Cintron 1986). This species, like the other
mangrove species, is subject to diverse natural and anthropogenic environmental stresses.
Clewell and Aronson (2012) dened stress as a normally occurring condition or a periodic
event, that may be more detrimental to some species than others. The author also points out
that there are factors such as saline water shock and anoxia that cause stress conditions
in mangroves.
Although the vegetal species of mangroves are facultative halophytes, which means
plants capable of completing their reproductive cycle and presenting optimal growth in low
salinity environments, their seedlings are sensitive to the presence of sodium chloride, and
a saline substrate can affect many aspects of the its growth and physiology (Tomlinson
1986; Parida and Jha 2010).
The germination plant analysis is the one of the most used processes for the
A pesquisa em ciências biológicas: Desaos atuais e perspectivas futuras 2
Capítulo 3 33
determination of tolerance to water and saline stress (Larcher 2000). Plants that live
in a brackish environment, such as those living in mangroves, have morphological and
physiological adaptations to tolerate constant hydric and saline stress. These adaptations
vary with species, and those with high salinity tolerance tend to grow more slowly than
less tolerant species (Sobrado 2004). Therefore, salinity plays important roles in regulating
mangrove growth and distribution (Wang et al. 2011).
This research aimed to analyze the effect of different concentrations of salinity on the
germination of L. racemosa propagules, and the identication of its salt tolerance, in order to
contribute to the selection of the most suitable areas of mangrove to be recovered.
METHODS
Study area
The Maranhão Island is formed by the municipalities of São Luis, São José de
Ribamar, Paço do Lumiar and Raposa, located in the Coastal Region of the State of
Maranhão (IMESC 2011). The propagules were collected between the mangroves of Raposa
and São José de Ribamar, in the Mangue Seco beach northeast of the municipality of São
Luis, Maranhão (S 2º 27’ 06.86”, W 44° 09’ 20.33” and S 2º 27’ 21.81”, W 44° 09’ 45.76” (Fig.
1). The site features a variety of coastal ecosystems such as mangroves, sandbank, dunes
and salt marshes. Mangrove forests are relatively homogeneous and are concentrated in
the mouths of rivers and streams. The salinity of the Igarapé Mangue Seco is high, with an
average of 40.
According to Koppen and Geiger (1928) classication, the region between the
municipalities of São José de Ribamar and Raposa presents a Aw climate which ts in
between equatorial and tropical patterns, with two well marked seasonal periods, a rainy
(January to June) and drought (July to December).
A pesquisa em ciências biológicas: Desaos atuais e perspectivas futuras 2
Capítulo 3 34
Fig. 1 Area of São José de Ribamar and Raposa municipalities where propagules were carried out
(Images Landsat 8 Sensor OLI sensor - United States Geological Survey).
Field sampling
A total of 450 ripe propagules of Laguncularia racemosa were collected manually
directly from the branch of the tree and placed into a straw basket to avoid dehydration
during the fruiting season between April and May 2016. The healthy propagules were
selected according to the recommendations of Goforth and Thomas (1979), to achieve the
greatest possibility of success in their development. The propagules were then transported
to the Mangrove Laboratory/CERMANGUE - Mangrove Recovery Center in Department of
Oceanography and Limnology, Federal University of Maranhao.
Experimental design
The total of 450 propagules were divided into three replicates (r) of 30 propagules for
each treatment (t) of salinity. For each salinity treatment the propagules were placed to soak
until the primary root emission, in sterile plastic trays, previously labeled with the identied
different salinities.
The estuarine water, used in the experiment, was collected in the Mangue Seco
Channel, in the same region where the propagules were collected, and the salinity was
veried with a Q767-3 Quimis refractometer. The water was transported in plastic bottles to
the laboratory CERMANGUE-UFMA, where dilutions and concentrations were carried out
from the salinity control of the collection site, for the execution of the experiment. To obtain
the salinity 60, sea water was subjected to controlled evaporation until the desired salt
concentration was reached. In all treatments the salinity was obtained with a refractometer.
A pesquisa em ciências biológicas: Desaos atuais e perspectivas futuras 2
Capítulo 3 35
The experiment was divided into ve trays containing treatments with concentrations
of salinities 0, 15, 25, 40 and 60. In each tray were placed 30 propagules. Three replicates
of salinity concentrations were performed for each treatment.
The inuence of salinity on germination of the propagules was monitored daily at
the same time for 10 days. The salinity was checked and corrected daily to avoid salinity
increase due to evaporation. The propagules were considered germinated when the primary
root emission reached 2 mm.
Germination tests
To analyze the inuence of salinity on the germination of Laguncularia racemosa
propagules, the following variables were evaluated: Germinability (G%) to inform the amount
of propagules that germinated in the experiment; Germination Mean Velocity (GMVdays -1)
to measure velocity of germination (Maguire 1962; Santana and Ranal 2000); Germination
Mean Time (GMT days) to measure time of germination (Ranal and Santana 2006, 2009);
and the beginning of root formation (RF days) refers to the date the rst root appeared.
The G, GMT and GMV variables were processed using the GerminaQuant 1.0
software used for germination calculations (Marques et al. 2015), whose formulas are:
Germinability: G = x100
with: N = number of seedlings germinated at the end of the experiment
Germination Mean Time: GMT = /
with: ni = number of germinated propagules per day; ti = incubation time;
Germination Mean Velocity: GMV =
The Germination Velocity Index (GVI) was calculated using the formula:
GVI = + + +
with: G1 to Gi = number of seedlings germinated each day; T1 to Ti = time (days)
Statistical analyses
The comparison of the germination tests between the different saline concentrations
was carried out using the Analysis of Variance (ANOVA One-Way) and Tukey test, considering
the homogeneity presuppositions of variances. Kruskall-Wallis non-parametric analysis (p
<0.05), followed by Mann-Whitney test, was used in case of absence of these assumptions.
The homogeneity of the variances was analyzed by the Levene test (Levene 1960).
Statistical data were processed in Statistica 6.0 and PAST 3.14 software (Hammer
2001). The statistical analyzes were evaluated for a critical level of signicance of α = 0.05
(Zar 1998).
A Cluster analysis, using the Euclidean distance by the mean binding method,
was applied to evaluate the similarity between the salinity treatments in relation to the
physiological measures of germination. The similarity prole (SIMPROF) was used to test the
statistical signicance of the formed groups (Clarke and Warwick 2001). For this evaluation,
A pesquisa em ciências biológicas: Desaos atuais e perspectivas futuras 2
Capítulo 3 36
PRIMER 6.0 software was used. The Multidimensional Scaling (MDS) was applied to verify
the level of similarity or dissimilarity between the different concentrations of salinity and the
physiological measures of germination.
A Principal Component Analysis (PCA), based on a variance-covariance matrix,
was used to verify the association of different physiological measurements with salinity
concentrations. The signicance of the axes was tested by randomization in the randomized
Broken Stick model with 9,999 replicates per bootstrap (Jackson 1993). The sorting analyzes
(MDS and PCA) were performed using the PAST software 3.14 (Hammer 2001).
RESULTS
The results of the difference between the treatments and the comparison of means
of the physiological measurements regarding the germination of the Laguncularia racemosa
propagules under the effect of different salinities, are presented in Table 1.
Salinity
Concentration Variables
G (%) GVI GMT (days) GMV (days-1)RF
(days)
095.50 a5.41 a 6.23 a0.161 a* 2.67 a
15 96.60 a5.01 a6.47 a0.155 a* 2.67 a
25 87.80 a4.36 a6.69 a0.151 a* 3.67 a
40 80.00 a3.95 a6.59 a0.152 a* 3.33 a
60 17.78 b0.99 b6.00 a0.167 a* 3.66 a
Table 1. Germination values for Laguncularia racemosa propagules submitted to different salinity
treatments (G-germinability; GVI-germination velocity index; GMT-germination mean time; GMV-
germination mean velocity; RF-root formation; Same letter does not differ from each other at the 0.05%
probability level).
* Applied nonparametric Kruskal-Wallis test, with later Mann-Whitney test.
The treatment with the highest germination rate (G) was the treatment with salinity
of 15, followed by salinity 0 with 96.6% and 95.5%, respectively. The lowest germinability
occurred at salinity of 60. There was a signicant difference between germinability (p =
0.0002) and salinities.
The germination velocity index (GVI) was similar to germinability. The results showed
signicant differences between the lowest and highest salinities (p = 0.0007). The highest
value of GVI occurred in the salinity of 0 with 5.41 and the lowest salinity of 60 with 0.99,
showing that lower salinities result in higher germination speed and germination capacity.
Regarding the variable germination mean time (GMT), the results did not present
signicant differences between the treatments (p = 0.6), in this way, a 6-day pattern was
found for all treatments.
For the mean germination mean velocity (GMV) no signicant difference was
A pesquisa em ciências biológicas: Desaos atuais e perspectivas futuras 2
Capítulo 3 37
observed (p = 0.134) in the interaction between germination and the salinities 0, 15, 25, 40
and 60.
Root formation (RF) was faster throughout the treatments with concentrations of
salinity 0 and 15, appearing within two days. With salinities from 25 on the root appeared
on the third day. However, there were no signicant differences between all treatments and
root formation (p = 0.54).
Based on salinity and physiological measurements represented in cluster analysis, a
large group could be identied, consisting of saline concentrations of 0, 15, 25 and 40, being
dissimilar to the salinity of 60. The SIMPROF test conrmed the established group and their
difference in relation to the highest salinity used in the experiment (Fig. 2). Thus, the results
indicate that salinity of 60 tends to be less similar between physiological measurements than
other salinities, with less expressive concentrations.
Fig. 2 Cluster analysis of the salinity treatments in relation to the physiological measures of
Laguncularia racemosa propagules germination.
Similar to clustering, Multidimensional Scaling (MDS) grouped the most similar
salinity treatments among physiological measures (Fig. 3). The graph shows a tendency to
form two groups. The most similar group consists of salinities of 0, 15, 25 and 40 and the
other group with only 60. Lower salinities tend to have different rates when compared to
higher salinities.
A pesquisa em ciências biológicas: Desaos atuais e perspectivas futuras 2
Capítulo 3 38
Fig. 3 Multidimensional Scaling (MDS) of different salinities levels and physiological measures of
Laguncularia racemosa propagules germination.
The rst two axes of the Principal Component Analysis (PCA) explained 98.1%
of the total data variability, with axis 1 (68.8%) and axis 2 (29.3%), thus being sufcient
to represent the factorial variance. The PCA veried the association of the physiological
measurements with the salinity treatments (Fig. 4).
Fig. 4 Principal Component Analysis (PCA) between physiological measures (G-germinability, GVI-
germination velocity index, GMT- germination mean time, GMV-germination mean velocity and RF-root
formation) in different salinities.
Analyzing the association of physiological measurements in relation to salinity levels
from the point of view of component 1, salinities 25, 40 and 60 show a tendency to associate
with RF and GMT.
Considering component 2, GMV, GVI and % G showed a tendency to be associated
with lower salinities 0 and 15, however, GMV showed a tendency to associate with salinity
A pesquisa em ciências biológicas: Desaos atuais e perspectivas futuras 2
Capítulo 3 39
60 . The GVI and % G tend to be lower in concentrations of 25, 40 and 60.
DISCUSSION
For some plant species the ability to enter estuarine environments depends on
their tolerance to the salinity level throughout the germination (Krauss et al. 1998). The
increase of salinity leads to a reduction and/or delay in the germination of both halophytic
and glycophytic species (less salt tolerant) (Khan and Ungar 1984; Katembe et al. 1998).
Although mangrove species have adapted to tolerance salinity, they are sensitive to higher
salinities in the germination process (Ungar 1996; Khan and Abdullah 2003; Debez et al.
2004).
Studies have shown that young seedlings grow best under low salinity, while adults
are affected in their growth both by high salinity and total absence of dissolved salts (Baskin
and Baskin 2014). Possibly due to the salinity affecting the propagules variability, most
mangrove species release their fruits in the rainy season, to increase the chances of
survival under conditions of low salinity in the ecosystem (Bunt et al. 1982). River estuaries
with high and medium salinity soils have been shown to be good habitats for mangrove
forest growth. (Kantharajan et al. 2018). According to this Fernandes et al. (2005) observed,
that the owering and fruiting of L. racemosa occurs from January to March with greater
intensity, and from June to August with lower intensity.
Considering the results, the germinability and the rate of germination were very
sensitive to the concentration of high salinity (60), when they were signicantly affected by
the different salt concentrations. This effect can be justied, since with the passage of time
the propagule loses the potential of germination due to the high saline content.
The growth of many halophyte species is optimal under relatively low salinities
(Flowers et al. 2008). Laguncularia racemosa is rarely dominant, except when salinity is
low (Jiménez 1985). In general, L. racemosa propagules, collected in the São José de
Ribamar/Raposa region, are strongly subjected to stress conditions, mainly high salinities,
as observed in the estuarine salinity used as control (40). In spite of this, the germination of
the propagules was successful until the salinity of 40, possibly indicating that the propagules
of the region are adapted to the adverse local conditions. The germination performance of
the propagules was reduced considerably in the highest salinity (60), the germination rate
and germination speed index decreased. There is research indicating the importance of salt
to some mangroves, as well as evidencing that distinct species show different tolerances to
salinity (Pezeshki et al. 1989).
Santana and Ranal (2004) described that a higher the germination speed index leads
to greater germination capacity of the seeds, which means, if the germination occurs at the
beginning of the experiment, this value will be higher than if it occurs late. In the experiment
with propagules of L. racemosa from São José de Ribamar/Raposa, GVI values showed a
A pesquisa em ciências biológicas: Desaos atuais e perspectivas futuras 2
Capítulo 3 40
signicant variation throughout the treatments with a salinity of 60.
As for the germination mean time and the mean velocity, the data showed that the
lower the mean time, the higher grows the germination speed of the seeds, thus conrming
that the mean germination time and mean germination velocity are two inversely proportional
quantities (Ranal 2000).
In relation to the beginning of the root formation, Ye et al. (2005), studying the effects
of salinity on the germination of mangrove plants of the genus Acanthus, Aegiceras and
Avicennia, showed, that the beginning of the root formation varied from 3 to 7 days in low
and high salinities, respectively. In this experiment, the root formation start ranged from 2
days for low salinity to 3 days for salinity from 25.
Some experiments have shown, that the optimum salinity concentration for mangrove
species is much lower than that of seawater (Clough 1993). Moreover, the increase in salinity
causes the plant to reach a tolerance limit, in which the adaptations to stress are limited and
can cause its death (Larcher 2000, Oliveira 2005). Salt is generally not a requirement for
growth, since most mangroves can grow in freshwater (Tomlinson 1986; Ball 1988).
Mangroves do not develop in exclusively sweet regions due to competition with
freshwater species. Salinity is a limiting factor for species that are not adapted to the
saline environment. In addition to be a limiting factor, Lichtenthaler (1996) has shown, that
salinity in the mangrove can be considered a factor of stress (stimulating stress) in low
concentrations and stress (negative stress) until it exceeds the limit of tolerance of the
species. However, some mangrove forests are located far from estuaries in areas of low
salinity soil (Jayatissa et al. 2008).
Although the mangrove grows and supports saline environments, the present
experiment identied that the Laguncularia racemosa mangrove species is fully capable of
germinating in fresh water and presents a variation in germination as a function of salinity.
CONCLUSIONS
In conclusion, our results indicate that the most efcient germination occurred with
propagules submitted to concentrations ranging from fresh water to salinity of 15. In order
to stimulate a more efcient germination, Laguncularia racemosa seedlings should be kept
soaked in concentrations ranging from freshwater to salinity of 15 during the production
process of seedlings for the recovery of degraded mangroves.
The present study generated relevant information, regarding the impact of saline
stress on the germination of L. racemosa propagules. In this way, it contributes to the
development and improvement of the techniques used in the germination of propagules for
the production of seedlings, aiming the ecological recovery of mangroves.
A pesquisa em ciências biológicas: Desaos atuais e perspectivas futuras 2
Capítulo 3 41
FUNDING
This research was funded by the Maranhão Foundation for Scientic and Technological
Research and Development - FAPEMA.
REFERENCES
Alongi DM (2002) Present state and future of the world’s mangrove forests. Environ Conserv 29:331-
349
Ball MC (1988) Ecophysiology of mangroves. Trees 2:129-142
Baskin CC, Baskin JM (2014) Germination ecology of plants with specialized life cycles and/or habitats.
In: Baskin CC, Baskin JM (eds) Seeds, ecology, biogeography, and evolution of dormancy and
germination, 2nd edn. Academic Press, San Diego
Bunt JS, Williams WT, Clay HJM (1982) River water salinity and the distribution of mangrove species
along several rivers in North Queensland. Australian Journal of Botany. https://doi.org/10.1071/
BT9820401
Clarke KR, Warwick RM (2001) Change in marine communities: An approach to statistical analysis and
interpretation. Natural Environment Research Council, Plymouth
Clewell AF, Aronson J (2012) Ecological restoration: principles, values, and structure of an emerging
profession. Island Press, Washington
Clough BF (1993) Constraints on the growth, propagation and utilization of mangroves in arid regions.
In: Lietg H, Masson AA (eds) Towards the rational use of high salinity tolerant plants. Kluwer Academic
Publishers, Netherlands, pp 341-352
Clough BF, Ong JE, Gong WK (1997). Estimating leaf area index and photosynthetic production in
canopies of the mangrove Rhizophora apiculata. Marine Ecology Progress Series 159:285-292
Debez A, Ben HK, Grignon C, Abdelly C (2004) Salinity effects on germination, growth, and seed
production of the halophyte Cacile maritima. Plant Soil 262:179–189
FAO (2007) The World’s Mangroves: 1980–2005. Food and Agricultural Organization of the United
Nations. http://www.fao.org/docrep/010 /a1427e/a1427e00.htm.
Fernandes MEB, Virgulino ARC, Nascimento, AAM; Rodrigues LP (2005) Padrões de fruticação em
Laguncularia racemosa (L.) C. F Gaertn. Uma avaliação metodológica. Boletim do Laboratório de
Hidrobiologia 18:33-38
Ferreira AC, Lacerda LD (2016). Degradation and conservation of Brazilian mangroves, status and
perspectives. Ocean Coas t. Manag. https://doi.org/10.1016/j.ocecoaman.2016.03.011
Flowers TJ, Colmer TD (2008) Salinity tolerance in halophytes. New Phytologist, 179:945-963
A pesquisa em ciências biológicas: Desaos atuais e perspectivas futuras 2
Capítulo 3 42
Goforth JR, HW, JR Thomas (1979) Plantings of Red Mangroves (Rhizophora mangle L.) for
stabilization of Marl shorelines in Community College the Florida Keys. In: Cole, DP (ed) Proceedings of
conference on wetlands restoration and creation. Hillsborough, Florida, pp 207-230
Hamilton S, Casey D (2016) Creation of a high spatio-temporal resolution global database of continuous
mangrove forest cover for the 21st century. Glob Ecol Biogeogr 25:729–738
Hammer Ø, Harper DAT, Ryan PD (2001) PAST: Paleontological statistics software package for
education and data analysis. Palaeontologia Electronica 4:1- 9
IMESC, Instituto Maranhense de Estudos Socioeconômicos e Cartográcos (2011). Situação Ambiental-
Municípios-da Ilha do Maranhão. IMESC, São Luís.
Jackson DA (1993) Stopping rules in principal components analysis: a comparison of heuristical and
statistical approaches. Ecology 74:2204-2214
Jayatissa LP, Wickramasinghe WAADL, Dahdouh-Guebas F, Huxham M (2008) Interspecic variations
in responses of mangrove seedlings to two contrasting salinities. Int Rev Hydrobiol 93:700–710
Jiménez JA (1985) Laguncularia racemosa (L.) C. F Gaertn White mangrove. Institute of Tropical
Forestry, Rio Piedras, pp 1-4
Kantharajan G, Pandey PK, Krishnan P, Ragavan P, Jeevamani JJJ, Purvaja R, Ramesh R (2018)
Vegetative structure and species composition of mangroves along the Mumbai Coast, Maharashtra,
India. Reg Stud Mar Sci 19:1–8
Katembe WJ, Ungar IA, Mitchell JP (1998) Effect of salinity on germination and seedling growth of two
Atriplex sepecies (Chemopodiaceae). Ann. Bot. 82:167–175
Khan MA, Abdullah Z (2003) Salinity-sodicity induced changes in reproductive physiology of rice (Oryza
sativa) under dense soil conditions. Environmental and Experimental Botany http//doi.org/10.1016/
S0098-8472 (02)00066-7
Khan MA, Ungar IA (1984) The effect of salinity and temperature on germination of polymorphic seeds
and growth of Atriplex triangularis. Am. J. Bot. 71:481–489
Kjerfve B, Perillo GME, Gardner LR, Rine JM, Dias GTM, Mochel FR (2002) Morphodynamics of muddy
environments along the Atlantic coasts of North and South America. In: Healy TR, Wang Y, Healy J-A
(eds) Muddy Coasts of the World: Processes, Deposits and Functions. Amsterdam, Elsevier, pp 207-
230
Koppen W, Geiger R (1928) Die klimate der Erde. Wall-map 150cmx200cm, Gotha: Verlag Justus
Perthes.
Krauss KW, Chambers JL, Allen JA (1998) Salinity effects and differential germination of several half-sib
families of baldcypress from different seed sources. New Forest. 15:53–68
Larcher W (2000) Ecosiologia vegetal. São Carlos: RIMA.
A pesquisa em ciências biológicas: Desaos atuais e perspectivas futuras 2
Capítulo 3 43
Levene H (1960) Robust test for equality of variances. In: Olkin I, Ghurye SG, Hoeffding W, Madow WG,
Mann HB (eds) Contributions to Probability and Statistics: essays in honor of harold hotelling. Stanford
University Press, California, pp 278-292
Lichtenthaler HK (1996) Vegetation stress: An introduction to the stress concept in plants. Journal of
Plant Physiology 148 4-14
López-Portillo J, Lewis III RR, Saenger P, Rovai A, Koedam N, Dahdouh-Guebas F, Agraz-Hernández
C, and Rivera-Monroy VH (2017) Mangrove Forest Restoration and Rehabilitation. In: Rivera-
Monroy VH, Lee SY, Kristensen E, Twilley RR (eds.) Mangrove Ecosystems: A Global Biogeographic
Perspective. Springer International Publishing, Amsterdan, pp 301-345
Maguire JD (1962). Speed of germination-aid in selection and evaluation for seedling emergence and
vigor. Crop science 2:176-177
Marques FRF, Meiado MV, Castro NMCRD, Campos MLDO, Mendes KR, Santos ODOD, Pompelli MF
(2015) Germina Quant: a new tool for germination measurements. Journal of Seed Science 37:248-255
McDonald T, Gann GD, Jonson J, Dixon KW (2016) International standards for the practice of ecological
restoration – including principles and key concepts. Society for Ecological Restoration, Washington, DC
Mochel FR (2011) Manguezais amazônicos: status para a conservação e a sustentabilidade na
zona costeira maranhense. In: Martins MB, Oliveira, TG (eds) Amazônia Maranhense. Diversidade e
Conservação. Editora do Museu Paraense Emílio Goeldi, Belém, pp 93-118
Mochel FR (2016) Manguezais da Amazônia Maranhense. Conservação e Recuperação Ecológica. In:
Seabra G (ed) Terra, paisagens, solos, biodiversidade e os desaos para um bom viver. Barlavento.
Ituiutaba, pp 404-419
Mochel FR, Correia MMF, Cutrim MVJ, Ibañez MSR, Azevedo ACG, Oliveira VM, Pessoa CRD,
Maia DC, Silveira PC, Ibañez Rojas MOA, Pacheco CM, Costa CFM, Silva LM, Puiseck AMB (2002)
Degradação dos Manguezais na Ilha de São Luís (MA): processos naturais e impactos antrópicos. In:
Prost MT, Mendes AC (Org.). Ecossistemas Costeiros: Impactos e Gestão Ambiental. MPEG, Belém, pp
114-131
Mochel FR, Fonseca ILA (2019) Abordagem integrada para a recuperação de manguezais degradados
em áreas portuárias com estudo de caso em São luís, Maranhão. In: Mochel FR (Org.) Gerenciamento
Costeiro e Gerenciamento Portuário. Atena, Paraná, pp 59-71
Oliveira VF (2005) Inuência do estresse hídrico e salino na germinação de propágulos de Avicennia
schaueriana Stapf e Leechman ex Moldenke Laguncularia racemosa (L.) C. F Gaertn. Dissertation,
Instituto de Pesquisas Jardim Botânico do Rio de Janeiro
Parida AK, Jha B (2010) Salt tolerance mechanisms in mangroves: a review. Trees 24:199-217
Paula ALS, Lima BKS, Carmo EL, Maia RC (2012) Experiência com a produção de mudas de
Laguncularia racemosa e Avicennia sp para recuperação de um manguezal degradado no estuário do
rio Acaraú-CE. VII CONNEPI. http://propi.ifto.edu.br/ocs/index.php/connepi/vii/paper/viewFile/4620/1716
A pesquisa em ciências biológicas: Desaos atuais e perspectivas futuras 2
Capítulo 3 44
Pezeshki SR, DeLaune RD, Patrick Jr WH (1990). Differential response of selected mangroves to soil
ooding and salinity: gas exchange and biomass partitioning. Canadian Journal of Forest Research
20:869-874
Ranal MA, Santana DG (2006) How and why to measure the germination process? Revista Brasileira
de Botânica 29:1-11
Ranal, MA, Santana DGD, Ferreira WR, Mendes-Rodrigues C (2009) Calculating germination
measurements and organizing spreadsheets. Brazilian Journal of Botany 32:849-855
Santana DG, Ranal MA (2000) Análise estatística na germinação. Revista Brasileira de Fisiologia
Vegetal 12:205-237
Santana DG, Ranal MA (2004) Análise da germinação: um enfoque estatístico. Editora UnB, Brasília.
Schaeffer-Novelli Y, Citrón G (1986) Guia Para Estudo de Áreas de Manguezal: Estrutura, Função e
Flora. Caribbean Ecological Research. São Paulo
Schaeffer-Novelli, Y (1989) Perl dos ecossistemas Litorâneos Brasileiros, com especial ênfase sobre o
ecossistema manguezal. Publicação Especial do Instituto Oceanográco 7:1-16
Silva LNM, Mochel FR (1994) Aspectos ecológicos da macrofauna bêntica dos manguezais do estado
do Maranhão. Ilha de São Luís. Relatório parcial do programa integrado de estudos ecológicos dos
manguezais do estado do Maranhão, UFMA, v. 01.
Sobrado MA (2004) Inuence of external salinity on the osmolality of xylem sap, leaf tissue and leaf
gland secretion of the mangrove Laguncularia racemosa (L.) C. F Gaertn. Trees 18:422–427
Society for Ecological Restoration SER. Grupo de Trabalho sobre Ciência e Política (2004) Princípios
da SER International sobre a restauração ecológica. Sociedade Internacional para a Restauração
Ecológica, SER, Tucson
Tang TV, Rene ER, Binh TN, Behera SK, Phong NT (2020) Mangroves diversity and erosion mitigation
performance in a low salinity soil area: case study of Vinh City, Vietnam. Wetlands Ecol Manage https://
doi.org/10.1007/s11273-019-09704-0(0123456789
Tomlinson PB (1986) The Botany of Mangroves. Cambridge University Press, Cambridge
Ungar IA (1996) Effect of salinity on seed germination, growth, and ion accumulation of Atriplex patula
(Chenopodiaceae). American Journal of Botany 83:604–607
Viana, VM (1990) Biologia e manejo de fragmentos de orestas naturais. In: Anais Congresso Florestal
Brasileiro, Campos do Jordão, pp 219-221
Wang W, Yan Z, You S, Zhang Y, Chen L, Lin G (2011) Mangroves: obligate or facultative halophytes? A
review. Trees Struct Funct 25:953–963
Ye Y, Tam NFY, Lu CY, Wong YS (2005) Effects of salinity on germination, seedling growth and
physiology of three salt-secreting mangrove species. Aquat Bot 83:193–205
Zar JH (1998) Biostatistical Analysis (4th Edition). Prentice Hall, Englewood Clifs, New Jersey.
A pesquisa em ciências biológicas: Desaos atuais e perspectivas futuras 2
211
Índice Remissivo
ÍNDICE REMISSIVO
A
Ambiente Marinho 10, 3, 19, 24
Aprendizagem Signicativa 12, 185, 188, 189, 190, 191, 192, 193, 195, 197, 198, 209
Arborização 12, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170
B
Biodegradáveis 171, 174, 176, 177, 178, 179, 180, 181, 182, 183, 184
Biodiversidade 9, 10, 19, 20, 21, 24, 28, 43, 46, 48, 56, 85, 106, 112, 117, 120, 122, 123,
133, 134, 137, 138, 158, 165, 169, 176, 208, 210
Biologia Reprodutiva 74
Biomassa 17, 86, 181
Biomonitoramento 10, 45, 47, 52
C
Canudos 12, 171, 175, 176, 177, 183
D
Degradação ambiental 159
Diversidade 9, 5, 43, 84, 85, 86, 88, 89, 90, 116, 123, 132, 134, 145, 146, 161, 167, 169,
170, 200, 202, 205, 206
E
Ecologia de moluscos 11, 105, 120, 132
Ecossistemas Aquáticos 46, 47, 56
Educação Ambiental 13, 116, 161, 167, 169, 200, 201, 208, 210
Embarcações de madeira 19, 21, 27, 28
Ensino por investigação 196, 201, 207
Espécies Exóticas 12, 121, 159, 161, 163, 167, 168
Estação reprodutiva 11, 72, 74, 75, 76, 77, 78, 79
Estresse de salinidade 31
Estuário 1, 2, 4, 5, 6, 8, 9, 12, 13, 14, 16, 17, 18, 43
F
Fases reprodutivas 55, 57, 59, 62, 65, 66, 67, 68
Fauna silvestre 102, 105, 106, 116, 119
Fração arenosa 10, 1, 3, 5, 6, 7, 9, 14, 16
A pesquisa em ciências biológicas: Desaos atuais e perspectivas futuras 2
212
Índice Remissivo
Fungos Filamentosos 11, 84, 85, 86
G
Gametogênese 10, 55, 57, 70
Germinação de propágulos 31, 43
I
Impactos ambientais 5, 16, 47, 160, 161, 168, 175
Insetos 55, 57, 111, 166, 202, 203, 205, 206
Interações Ecológicas 159, 161, 166, 168
Inventários 120, 121, 123, 132
M
Mangue Branco 30, 31
Mapas Conceituais 185, 194, 196, 199
Mata Atlântica 107, 111, 120, 121, 123, 126, 132, 134
Medicina Popular 135, 138
Meio Ambiente 9, 23, 160, 161, 162, 165, 170, 171, 173, 177, 181, 202, 203, 205, 207, 208
Microrganismos 84, 85, 91
Mitospóricos 84, 85, 86, 89, 90, 91
Modelos Didáticos 13, 200, 202, 204, 206
Mortalidade de estradas 105
P
Peixes de água doce 47, 55
Peixes invasores 55
Plano de arborização 159
Plantas 31, 106, 123, 136, 137, 141, 143, 145, 146, 148, 149, 150, 155, 158, 161, 166,
167, 177
Plástico 19, 28, 98, 129, 171, 172, 173, 174, 175, 176, 177, 181
Propriedades 136, 142, 143, 144, 145, 161, 164, 178, 179, 180, 181, 182
R
RAPELD 11, 120, 121, 122, 123, 124, 125, 126, 132, 133, 134
Reprodução de peixes 55, 71
Restauração ecológica 31, 44
A pesquisa em ciências biológicas: Desaos atuais e perspectivas futuras 2
213
Índice Remissivo
S
Saúde Ambiental 10, 19
Sazonalidade 1, 67, 72, 78, 109
Sedimentos 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 54
Sequência Didática 185, 192, 195, 200, 202, 205, 207
Solo 5, 53, 84, 85, 86, 87, 89, 90, 91, 92, 96, 97, 99, 120, 122, 126, 128, 130, 131, 142,
152, 162, 179, 207
Sustentabilidade 9, 20, 28, 43, 169, 181, 210
T
Teleósteos 64, 67, 71, 73, 78
Z
Zigomicetes 84, 85, 90, 91