Content uploaded by Tixier Marie-Stephane
Author content
All content in this area was uploaded by Tixier Marie-Stephane on Oct 28, 2021
Content may be subject to copyright.
Acarologia is proudly non-prot,
with no page charges and free open access
Please help us maintain this system by
encouraging your institutes to subscribe to the print version of the journal
and by sending us your high quality research on the Acari.
Subscriptions: Year 2021 (Volume 61): 450 €
hp://www1.montpellier.inra.fr/CBGP/acarologia/subscribe.php
Previous volumes (2010-2020): 250 € / year (4 issues)
Acarologia, CBGP, CS 30016, 34988 MONTFERRIER-sur-LEZ Cedex, France
ISSN 0044-586X (print), ISSN 2107-7207 (electronic)
Acarologia
A quarterly journal of acarology, since 1959
Publishing on all aspects of the Acari
All information:
hp://www1.montpellier.inra.fr/CBGP/acarologia/
acarologia-contact@supagro.fr
Acarologia is under free license and distributed under the terms of the
Creative Commons-BY.
The digitalization of Acarologia papers prior to 2000 was supported by Agropolis Fondation under
the reference ID 1500-024 through the « Investissements d’avenir » programme
(Labex Agro: ANR-10-LABX-0001-01)
Received 19 January 2021
Accepted 24 September 2021
Published 12 October 2021
Corresponding author
Marie-Stephane Tixier :
marie-stephane.tixier@supagro.fr
Academic editor
Kreiter, Serge
https://doi.org/
10.24349/m2Rp-WodG
ISSN 0044-586X (print)
ISSN 2107-7207 (electronic)
Copyright
Tixier M. et al.
Distributed under
Creative Commons CC-BY 4.0
Integrated taxonomy supports the
identification of some species of
Phytoseiidae (Acari: Mesostigmata)
from Georgia
Marie-Stephane Tixier a, Philippe Augerb, Alain Migeon b, Martial
Douina, Amandine Fossoudc, Maria Navajas b, Tea Arabuli d,e
aCBGP, Montpellier SupAgro, INRAE, CIRAD, IRD, Univ Montpellier, Montpellier, France, Campus
International de Baillarguet, CS 30016, 34988 Montferrier-sur-Lez cedex, France.
bCBGP, INRAE, CIRAD, IRD, Montpellier SupAgro, Univ Montpellier, Montpellier, France, Campus
International de Baillarguet, CS 30016, 34988 Montferrier-sur-Lez cedex, France.
cCBGP, IRD, INRAE, CIRAD, Montpellier SupAgro, Univ Montpellier, Montpellier, France, Campus
Internation-al de Baillarguet, CS 30016, 34988 Montferrier-sur-Lez cedex, France.
dInstitute of Zoology, Ilia State University, Kakutsa Cholokashvilli Ave 3/5, Tbilisi 0162, Georgia.
eInstitute of Entomology, Agricultural University of Georgia, Kakha Bendukidze Campus, 240 David
Aghamashenebeli Alley, Tbilisi 0131, Georgia.
Original research
ABSTRACT
The present study reports results of a survey carried out mostly on Citrus sp. and
Rubus sp. in Georgia. Morphological and molecular (12S rRNA, COI and CytB mtDNA
markers) data were analysed in a framework of integrative taxonomy. Eleven species
were identified and among them seven are new for the Georgian fauna. Euseius stipulatus
and Phytoseius finitimus were the most abundant species during this survey. We assume
that Amblyseius eharai, only reported from eastern Asia, was most probably introduced.
Neoseiulus californicus, retrieved from uncultivated vegetation, was almost certainly
originating from commercial strains. DNA sequences comparisons disclosed phylogenetic
closeness between Amblyseius andersoni and Transeius wainsteini, despite these species
(i) being morphologically well differentiated and (ii) classified in different genera, thereby
questioning the reliability of the genus Transeius. General morphological characters,
including measurements, are provided for species for which diagnoses were doubtful.
Keywords Phytoseiidae; CytB mtDNA; COI mtDNA; 12S rRNA; taxonomy; distribution
Introduction
Mites of the family Phytoseiidae are predators used for biological control of mite and small
insect pests of various crops (McMurtry and Croft 1997; McMurtry et al. 2013; Knapp et
al. 2018). The family Phytoseiidae, distributed worldwide, contains 2,521 valid species, with
some biogeographic regions characterised by the highest number of species and associated
reports, namely the Neotropic and Palearctic regions (Tixier et al. 2008b, 2012a; Demite et al.
2021). However, the species diversity and distribution of phytoseiids are only partially known
and the fauna of some countries remains poorly investigated (Demite et al. 2021). Gaining in
the knowledge on the distribution of Phytoseiidae is interesting for meta-analysis approaches
aiming to characterise factors affecting diversity at local and global scales (i.e. Tixier et al.
2008b; Tixier and Kreiter 2009; Tixier 2018). Furthermore, this information is particularly
relevant in biological control studies, by providing background data on the availability of
How to cite this article Tixier M. et al. (2021), Integrated taxonomy supports the identification of some species
of Phytoseiidae (Acari: Mesostigmata) from Georgia. Acarologia 61(4): 824-844. https://doi.org/10.24349/
m2Rp-WodG
natural enemy species / populations adapted to specific environmental conditions or pest
availabilities.
The Phytoseiidae fauna in Georgia has been partially explored (Demite et al. 2021). As
an additional contribution to the knowledge of this group of mites in the country, this paper
presents results of surveys carried out in 2019. Among the 53 valid species of Phytoseiidae
reported from Georgia, we were particularly interested in detecting Amblyseius swirskii Athias-
Henriot, as this species is known for its interest in biocontrol (Knapp et al. 2018). It was
introduced from the Middle-East in the 1960s to control Panonychus citri (McGregor) on citrus
and according to Wainstein and Vartapetov (1973), it seemed to have successfully acclimated
and was recovered three years later on citrus and Rubus spp. According to these objectives,
surveys focused on regions where this species was previously reported in the country: Western
coast of Adjara (Wainstein and Vartapetov 1973) and Eastern plains along Kura connected to
Azerbaijan (Abbasova 1970). Eleven species were identified from our surveys, including seven
that are new for the Georgian Fauna. While we did not find A. swirskii, a very closely related
species, Transeius wainsteini (Gomelauri) was identified. Identifications were performed using
an integrative taxonomy approach, including morphological analyses and molecular markers.
Material and methods
Field surveys were carried out in June 2019. Leaves and sprouts were carefully examined
with a hand magnifier and when mites were detected, the plant parts were collected in paper
or plastic bags for later examination in the laboratory. Mites were directly collected on leaves
under a stereoscopic microscope, and transferred to vials: (i) filled with 70% ethanol for further
morphological studies and (ii) filled with 100% ethanol for molecular analyses. Mites were
mounted in Hoyer’s medium and identified with a phase and interferential contrast microscope
(Leica DLMB, Leica Microsystems) (400x magnification).
The generic classification proposed by Chant and McMurtry (2007) was used. The
terminologies used for chaetotaxy were those proposed by Lindquist and Evans (1965) as
adapted by Rowell et al. (1978) for dorsal idiosomal setae of Phytoseiidae and by Chant and
Yoshida-Shaul (1991) for ventral idiosomal setae. Adenotaxy and poroidotaxy terminologies
are those proposed by Athias-Henriot (1975). All measurements are given in micrometers
(µm), average value provided first followed by minimum and maximum values into brackets.
Specimens are deposited at the SupAgro-CBGP Acari collection at Montpellier, France.
For specimens preserved in 100% ethanol, DNA sequences of CytB, COI mtDNA and 12S
rRNA markers were obtained for assisting morphological diagnosis (Tixier et al. 2012b, Dos
Santos and Tixier 2017). DNA extraction and amplification follow the protocols well detailed
by Kanouh et al. (2010) and Tixier et al. (2012b), respectively. The primers used are those
proposed by Tixier et al. (2012b) for Cytb and COI mtDNA fragments and by Jeyaprakash
and Hoy (2002) for the 12S rRNA fragment. After DNA extraction, voucher specimens were
retrieved as described in Tixier et al. (2010b) to confirm molecular assignment. For the COI and
CytB fragments, a preliminary analysis was conducted to check for the absence of stop codons.
The sequences were analysed both strands (forward and reverse). The consensus sequences
obtained were compared to those included in the NCBI GenBank database to detect possible
contaminations. DNA sequences were aligned (using ClustalW) and analysed using MEGA
6.0.6® (Tamura et al. 2013). Genetic distances (using the Kimura 2 parameter) were calculated
for comparing DNA sequences to references (sequences published in Genbank). Neighbour-
Joining phylogenetic trees were built to assess relationships (i) between T. wainsteini,A.
swirskii, and Amblyseius andersoni (Chant) and (ii) between Amblyseius eharai Amitai &
Swirski, A. largoensis (Muma) and A. herbicolus (Chant). For all these phylogenetic trees,
Euseius stipulatus (Athias-Henriot) was used as out-group.
Tixier M. et al. (2021), Acarologia 61(4): 824-844. https://doi.org/10.24349/m2Rp- WodG 825
Results
The Phytoseiidae species identified during the survey are listed below. Measurements of
morphological characters are provided when they were necessary for species identification
and comparison with morphologically close species. Table 1 presents the localities where
species were retrieved and Genbank accession numbers of the DNA sequences obtained. When
available, biological information is provided, especially for traits relevant to biological control.
Data on the known distribution of the species is retrieved from the online Phytoseiidae catalogue
(Demite et al. 2021).
Amblyseius eharai Amitai & Swirski
Amblyseius eharai Amitai & Swirski 1981: 60.
Specimens examined. At Lanchkhuti, Grigoleti (42.0192° N, 41.7629° E): 10 ♀♀ and 2
♂♂ on Rubus sp. (Rosaceae), one ♀ on Citrus trifoliata (L.) Rafinesque (Rutaceae).
Previous records. China, Hong Kong, Japan, Malaysia, South Korea, Taiwan, Thailand.
Measurements of females (5 specimens)
Dorsum. Dorsal shield 362 (340–400) long and 199 (188–212) wide, smooth, with seven
pairs of solenostomes (gd1,gd2,gd4,gd5 not well visible, gd6,gd8 and gd9), 17 pairs of dorsal
setae and two pairs of sub-lateral setae: j1 35 (32–37), j3 44 (42–45), j4 4 (2–5), j5 4 (2–5),
j6 4 (2–5), J2 4 (2–5), J5 4 (2–5), z2 7, Z1 5, z4 4 (2–5), z5 4 (2–5), Z4 104 (100–110), Z5
255 (250–262), s4 98 (97–100), S2 5, S4 7, S5 5, r3 11 (10–12) and R1 7 in length. All setae
smooth.
Peritreme. Extending forwards to the bases of the setae j1.
Venter. Sternal shield with three pairs of setae and two pairs of poroids; one pair of sternal
setae (st4) on small metasternal platelets; posterior margin with a truncated median projection.
Distances between st1–st3 67 (65–70), st2–st2 70 (67–72), st5–st5 72 (70–77). Two pairs of
metapodal plates, the largest one 19 (17–22) long and 6 (5–7) wide, the smallest one 8 (7–10)
long and 2 wide. Ventrianal shield with three pairs of pre-anal setae JV1,JV2,ZV2 and pre-anal
crescent pores (gv3) present, just under the setae JV2. Integument surrounding ventri-anal
shield with four pairs of setae ZV1,ZV3,JV4 and JV5; ventri-anal shield 109 (100–130) long,
57 (55–62) wide at level of anterior corners, and 72 (67–77) wide at level of anus. JV5 64
(60–67) long.
Legs. Legs IV with three macrosetae: on the genu 126 (120–130), tibia 90 (85–95) and
basitarsus 62 (60–65). SgeI 46 (42–47), SgeII 39 (37–42), SgeIII 47 (45–50), StiIII 36 (32–37).
Genu II with seven setae (2–2/0, 2/0–1), Genu III with seven setae (2–2/0, 2/0–1).
Chelicera. Fixed digit 47, movable digit 42. Dentition not visible because the chelicerae
are closed, but the fixed digit is clearly multidentate.
Spermatheca. Spermatheca with elongate cervix 21 (20–22) long, distal two-thirds
gradually flaring, round atrium.
Remarks.Amblyseius eharai is morphologically close to A. herbicolus (Chant). Seta
lengths are clearly overlapping and do not allow differentiating between these two species
(Table 2). The only clear differences are the shape of the posterior border of the sternal shield
(straight for A. herbicolus and with a truncated median projection for A. eharai) and the length
and shape of the cervix of the spermatheca (long (23–29), distal two-thirds gradually flaring
to 2–2.5 times basal diameter in A. herbicolus and short (18–24), flaring distally to 2–3 times
narrowest diameter in A. eharai) (McMurtry and Moraes 1984). Because of these minor
differences and because of the distribution of A. eharai only reported from Asia (whereas A.
herbicolus is a cosmopolitan species), molecular markers were applied to assess further the
identity of the Georgian specimens. Six DNA sequences (three sequences for CytB mtDNA, and
three sequences for the COI mtDNA) were obtained from three specimens. The COI sequences
were blasted in the Genbank database and were clearly assigned to A. eharai. Table 4a shows
the COI genetic distances between the Georgian specimens and Amblyseius largoensis (Muma),
Tixier M. et al. (2021), Acarologia 61(4): 824-844. https://doi.org/10.24349/m2Rp- WodG 826
Table 1 Collection data of phytoseiid species studied, followed by GenBank accession numbers for 12S rRNA, COI and CytB mtDNA se-
quences, and the number of specimens studied morphologically.
Phytoseiidae species Municipality Locality Geographic coordinates Plant species (family) Morphological observations
CytB mtDNA COI mtDNA 12S rRNA
Amblyseius eharai Lanchkhuti Grigoleti 42.0192°N, 41.762 9°E
Rubus sp. (Rosaceae)
MW351876
MW351877
MW346235
MW346236
8 females, 2 males
Amblyseius eharai Lanchkhuti Grigoleti 42.0192°N, 41.762 9°E
Citrus trifoliata (Rutaceae) MW351910 MW346298
Euseius finlandicus Kvareli Eniseli 41.9988°N, 45.670 2°E
Ulmus minor (Ulmaceae) MW330284
Euseius stipulatus Senaki Sakharbedio 42.2858°N, 42.0381°E
Corylus avellana (Betulaceae)
MW351894
MW351895
MW346279
MW346280
MW330290
MW330313
5 females, 1 immature
Euseius stipulatus Kobuleti 2km East Chakvi 41.7135°N, 41.755 6°E
Citrus sp. (Rutaceae)
MW351898
MW351899
MW351904
MW346286
MW346287
MW346292
MW346293
MW330294
MW330295
MW330300
10 females, 4 males
Euseius stipulatus Kobuleti Daba Chakvi 41.7180°N, 41.738 4°E
Citrus sp. (Rutaceae) MW351900
MW346288
MW346289
MW330296
MW330297
6 females, 1 male, 1 immature
Euseius stipulatus Kobuleti Daba Chakvi 2 41.7184°N, 41.7384°E
Citrus sp. (Rutaceae)
MW351902
MW351903
MW346290
MW346291
MW330298
MW330299
7 females, 1 male
Euseius stipulatus Kobuleti Khala 41.7070°N, 41.791 2°E
Citrus sp. (Rutaceae)
MW351905
MW351906
MW346294
MW330301
MW330302
6 females, 2 males
Euseius stipulatus Kobuleti 1 km East Khala 41.7032°N, 41.805 8°E
Citrus sp. (Rutaceae)
MW351911
MW351912
MW346299
MW346300
MW330306
MW330307
6 females, 3 males
Euseius stipulatus Chokhatauri Chokhatauri 42 .0247°N, 42.2512°E
Citrus lemon (Rutaceae)
MW351913
MW351914
MW346301
MW346302
MW330308
MW330309
7 females, 1 male, 2 immatures
Euseius stipulatus Kobuleti Leghva 41.8517°N, 41.900 3°E
Citrus sp. (Rutaceae)
MW351915
MW351916
MW346303
MW346304
MW330310
MW330311
6 females
Euseius stipulatus Kobuleti Mukhaestate 4 1.8413°N, 41.8629°E
Citrus sp. (Rutaceae)
MW351878
MW351879
MW346237
MW346238
MW330264
MW330265
8 females, 2 males
Euseius stipulatus Chokhatauri 1 km ENE Chokhatauri 42.0233°N, 42.259 8°E
Citrus sp. (Rutaceae)
MW351881
MW351882
MW346239
MW346240
MW330266
MW330267
3 females, 2 males
Euseius stipulatus Ozurgeti Nasakirali 41.9869°N, 42.069 7°E
Carpinus betulus (Betulaceae) MW351884 MW346241 MW330269
Euseius stipulatus Ozurgeti Nasakirali 41.9869°N, 42.069 7°E
Malus orientalis (Rosaceae) MW351885 MW346305 MW330312
Euseius stipulatus Kobuleti Khala 41.7070°N, 41.791 2°E
Rubus sp. (Rosaceae) 1 female, 2 males, 4 immatures
Euseius stipulatus Ozurgeti 2km NNE Nagomari 42.0097°N, 42.123 6°E
Rubus sp. (Rosaceae) 4 females, 1 male
Euseius stipulatus Kvareli Eniseli 41.9988°N, 45.670 2°E
Ulmus minor (Ulmaceae) 4 females, 1 male
Neoseiulus californicus Ozurgeti Nasakirali 41.9869°N, 42.069 7°E
Rubus sp. (Rosaceae)
MW351839
MW351840
MW351841
MW346306
5 females
Neoseiulus californicus Ozurgeti 2km NNE Nagomari 42.0097°N, 42.123 6°E
Rubus sp. (Rosaceae) MW351883 MW330268 3 females et 1 male
Neoseiulus umbraticus Telavi 5km West Telavi 41.9283°N, 45. 4241°E
Salvia verticillata (Lamiaceae)
MW351851
MW351852
MW346253 6 females, 4 males
Neoseiulus umbraticus Gurjaani Velistsikhe 41.8545°N, 45.803 5°E
Populus alba (Salicaceae)
MW351860
MW351861
MW346261
MW346263
MW330281
Transeius wainsteini Gurjaani Velistsikhe 41.8545°N, 45.803 5°E
Populus alba (Salicaceae)
MW351859
MW351862
MW346260
MW346262
MW346264
MW330282 5 females
Transeius wainsteini Telavi 5km West Telavi 41.9 283°N, 45.4241°E
Rubus sp. (Rosaceae) MW351864
Transeius wainsteini Telavi Rd Tetri Tsklebi to Telavi 41.8870°N, 45.363 6°E
Rubus sp. (Rosaceae)
MW351867
MW351868
MW351869
MW346270
MW346271
MW346272
MW330285
MW330286
4 females, 3 males
Transeius wainsteini Telavi Telavi 41.9141°N, 45.4579°E
Quercus sp. (Fagaceae)
MW351870
MW351871
MW346273
MW346274
MW330287
MW330288
3 females, 3 immatures
Galendromus longipilus Kobuleti Khala 41. 7070°N, 41.7912°E
Rubus sp. (Rosaceae) 2 females, 1 male
Typhlodromus (Anthoseius) halinae Terjola Chognari 42.2305°N, 42.778 1°E Rubus sp. (Rosaceae)
MW351891
MW351892
MW351893
MW346275
MW346277
MW346278
Typhlodromus (Anthoseius ) kerkirae Telavi Rd5km West Telavi 41.9283°N, 45.424 1°E S alvia verticillata (Lamiaceae) MW351850 MW346252 MW330277
Typhlodromus (Anthoseius ) kerkirae Telavi Rd5km West Telavi 41.9283°N, 45.424 1°E Rubus sp. (Rosaceae)
MW351889
MW351890
MW346266
Typhlodromus (Anthoseius ) kerkirae Tbilisi 240 David Aghmashenebeli Alley 41.8068°N, 44.766 8°E Eryng ium caeruleum (Apiaceae) MW351880
Typhlodromus (Anthoseius ) recki Telavi 5km West Telavi 41.9283°N, 45 .4241°E Salvia verticillata (Lamiaceae) MW351853 MW346254 2 females, 1 male
Phytoseius finitimus Gardabani Vaziani 41.7004°N, 45.0543°E
Rubus sp. (Rosaceae)
MW351842
MW351843
MW346242
MW346243
MW330270
MW330271
7 females, 4 males
Phytoseius finitimus Bolnisi Kveshi 41.4401°N, 4 4.4463°E
Rubus sp. (Rosaceae)
MW351844
MW351845
MW351846
MW346244
MW346245
MW346246
MW330272
MW330273
6 females, 5 males
Phytoseius finitimus Tetri Tskaro Koda 41.5953°N, 44.776 7°E
Rubus sp. (Rosaceae)
MW351847
MW351848
MW351849
MW346247
MW346248
MW346249
MW330274 9 females, 3 males
Phytoseius finitimus Bolnisi Parizi 41.4709°N, 44.7361°E
Rubus sp. (Rosaceae)
MW351886
MW351887
MW346250
MW346251
MW330275
MW330276
7 females, 5 males
Phytoseius finitimus Sagarejo Tokhliauri 41.7299°N, 45.4236°E
Rubus sp. (Rosaceae)
MW351854
MW351855
MW351856
MW346255
MW346256
MW346257
MW330278 8 females, 3 males
Phytoseius finitimus Gurjaani Chalaubani 41.6291°N, 45.794 6°E
Rubus sp. (Rosaceae)
MW351857
MW351858
MW346258
MW346259
MW330279
MW330280
9 females, 3 males
Phytoseius finitimus Kvareli Eniseli 41.9988°N, 45.670 2°E
Ulmus minor (Ulmaceae) MW351863 MW346265 MW330283
Phytoseius finitimus Telavi 5km West Telavi 41.9283 °N, 45.4241°E
Rubus sp. (Rosaceae)
MW351865
MW351866
MW346267
MW346268
MW346269
Phytoseius finitimus Terjola Chognari 42.2305°N, 42.7781 °E
Rubus sp. (Rosaceae) MW351888 MW346276 MW330289
Phytoseius finitimus Senaki Sakharbedio 42.2858°N, 42.0381°E
Rubus sp. (Rosaceae)
MW351872
MW351873
MW351874
MW351875
MW346281
MW346282
MW346283
MW330291
MW330292
5 females, 1 male, 1 immature
Phytoseius finitimus Kharagauli Rd S1 2.5km East Tsakva 42.0965°N, 43.4532°E
Rubus sp. (Rosaceae)
MW351896
MW351897
MW346284
MW346285
MW330293 11 females, 2 males, 1 immature
Phytoseius finitimus Kobuleti Daba Chakvi 41.7180°N, 41.738 4°E
Citrus sp. (Rutaceae) MW351901
Phytoseius finitimus Lanchkhuti Grigoleti 42.0192°N, 41.7 629°E
Rubus sp. (Rosaceae)
MW351907
MW351908
MW346295
MW346296
MW330303
MW330304
6 females, 3 males
Phytoseius finitimus Lanchkhuti Maltakva Univ. Research Center 42.0528°N, 41.7273°E
Rubus sp. (Rosaceae) MW351909 MW346297 MW330305 8 females, 1 male
Phytoseius finitimus Senaki Sakharbedio 42.2858°N, 42.0381°E
Corylus avellana (Betulaceae) 1 female
Genbank accession numbers
Tixier M. et al. (2021), Acarologia 61(4): 824-844. https://doi.org/10.24349/m2Rp- WodG 827
A. herbicolus and A. eharai. The COI mtDNA sequences of the three Georgian specimens
are identical (0%). They differ from A. largoensis and A. herbicolus sequences in Genbank
by high genetic distances (27.2 and 29.2%, respectively), and from the 15 DNA fragments
of A. eharai retrieved from Genbank by very low distances (2.1–3.2%), corresponding to
intraspecific variation. The phylogenetic tree also illustrates that the Georgian specimens
belong to the clade including the 15 DNA sequences retrieved from Genbank and assigned to A.
eharai (JX080331–JX080345) (figure 1). No CytB mtDNA sequence of A. eharai is available
in Genbank, whereas they are for A. herbicolus and A. largoensis (Supplementary Table S1b).
The CytB genetic distances between the specimens herein considered and (i) A. herbicolus
range between 39.1% and 40.3%, and (ii) A. largoensis range between 42.7% and 44.5%,
clearly showing that Georgian specimens do not belong to these two latter species. Thus, based
on morphological characteristics and molecular data, we conclude that the Georgian specimens
belong to the species A. eharai.
It is the first time that this species is reported from this country and outside eastern Asia.
In this survey, it was reported on Rubus sp. and Citrus trifoliata (L.) Rafinesque both at
Lanchkhuti (near the Black Sea coast). Its unexpected presence in Georgia could be due to
introduction from eastern Asia, as C. trifoliata is a species originating from Korea and north
of China. Because A. eharai was also found on Rubus sp., it is possible that this species has
adapted to new plants after its introduction into the region. Amblyseius eharai is considered to
be an efficient natural enemy of mite pests and thrips in various crops, included citrus orchards
(i.e. Ji et al. 2013, Park & Lee 2020).
Euseius stipulatus (Athias-Henriot)
Amblyseius stipulatus Athias-Henriot 1960: 294.
Amblyseius (Amblyseius)stipulates, Ueckermann & Loots 1988: 110.
Specimens examined. At Chokhatauri (42.0247° N, 42.2512° E): 9 ♀♀, 3 ♂♂ and 2
immatures on Citrus limon (L.) (Rutaceae), at Chokhatauri (1 km from Chokhatauri) (42.0233°
Table 2 Measurements of morphological features of Neoseiulus umbraticus,N. californicus,Amblyseius eharai,A. herbicolus,Transeius
wainsteini (specimens collected in Georgia and data retrieved from original description and re-descriptions) and A. swirskii and A. andersoni
(re-descriptions).
N. umbraticus
male (n=1)
Transeius wainsteini
female (n=10)
Transeius wainsteini
male (n=3)
Mean (min-max)
N. umbraticus
(in Tixier et al.
2016)
N. umbraticus
(original
description)
Mean (min-
max)
N. californicus
(in Tixier et al.
2008)
Mean (min-
max)
A. eharai
original
description
A. eharai (in
McMurtry &
Moraes 1984)
A. herbicolus
(in Kreiter et al.
2020)
Mean (min-max) Mean (min-max)
T. wainsteini
(original
description)
T. waisnteini
(in Faraji et al.
2011)
A. swirskii
(in Kreiter
et al. 2016)
A. andersoni (in
Chant & Yoshida
Shaul 1990)
DSL 316 (295-325) 330 305-348 270 331 (310-340) 370 (330-405) 362 (340-400) 215-390 - 359 (343-390) 362 (340-382) 262 (255-270) 515 338-350 280‐300 -
DSW 140 (132-152) 200 168-188 175 150 (135-175) 145 (130-189) 199 (188-212) - 240 (225-265) 170 (155-177) 122 ( 120-125) 271 205-215 167‐187 -
j1 19 (15-22) 18 - 15 19 (17-20) 22 (17-26) 35 (32-37) 35-45 - 35 ( 33-38) 26 (22-30) 22 (20-25) 28 30 25-31 28-29
j3 37 (35-40) 32-35 37 37 26 (22-30) 21 (22-39) 44 (42-45) 40-53 - 40 (38-45) 51 (50-55) 41 (35-45) 54 50-55 46-58 48-56
j4 25 17-20 26 27 19 (15-22) 22 (16-27) 4 5-7 - 7 (5-8) 8 (7-10) 5 9 10-11 8-10 8
j5 19 (17-20) 15 20 17 19 (17-22) 22 (16-28) 4 5-7 - 5 7 5 6 8-10 8 6-7
j6 22 (17-25) 17 23 17 25 (22-27) 17 (19-32) 4 7-8 - 7 (5-8) 8 (7-10) 9 (7-12) 9 10-12 8-11 8-10
J2 21 (20-22) 22 23 17 32 (27-37) 32 (25-40) 4 7-10 - 8 (8-10) 9 (7-10) 7 11 11 7-10 9-10
J5 7 5-7 - 5 8 (7-10) 13 (8-16) 4 - 8 (8-10) 6 (5-7) 5 6 9-10 6-8 10
z2 32 (30-32) 23 30 27 25 (22-27) 29 (20-29) 7 12-15 - 13 (8-18) 22 (17-27) 19 (17-22) 24 25-30 13-20 15
z4 41 (37-45) 32-35 33 32 26 (25-27) 29 (20-37) 4 (2-5) 8-15 - 10 (8-13) 32 (22-35) 26 (22-30) 34 35 15-26 20-21
z5 17 (15-20) 15 20 15 19 (17-22) 22 (17-27) 5 5-7 - 5 (5-8) 7 (5-7) 6 (5-7) 6 8-10 6-8 6
Z1 26 (22-27) 25 26 22 28 (27-30) 32 (20-41) 5 - 12 (10-13) 11 (7-12) 10 11 18 8-11 9-10
Z4 54 (52-60) 53 50 42 50 51 (42-49) 104 (100-110) 91-125 - 99 (93-108) 63 (60-67) 47 (45-50) 65 65-70 67-76 70-79
Z5 62 (60-65) 63 64 42 59 (57-62) 70 (59-96) 255 (250-262) 277-320 227-320 255 (248-273) 119 (110-127) 82 (80-85) 125 118-135 102-116 145-158
s4 56 (52-60) 50 50 45 34 (32-35) 35 (27-43) 98 (97-100) 88-116 86-116 98 (95-108) 68 (65-72) 56 (52-57) 75 68-73 70-81 72-78
S2 45 (42-50) 45-47 47 35 38 (37-40) 40 (30-48) 5 9-12 - 12 (10-13) 27 (25-32) 17 34 29-36 17-25 20-23
S4 27 (25-30) 25-30 30 22 34 (32-35) 37 (27-45) 7 10-15 - 11 (8-13) 13 (12-15) 12 (10-12) 13 15-18 10-14 11
S5 24 (22-27) 25-27 26 17 29 (25-32) 32 (22-42) 5 9-12 - 9 (8-10) 9 (7-10) 10 (7-12) 11 10-13 6-12 9-10
r3 35 (32-40) 27-30 - 25 24 (20-25) 25 (18-32) 11 (10-12) 12-13 - 12 ( 10-13) 25 (22-27) 19 (17-20) - 28-30 19-27 21-27
R1 23 (22-25) 23 - 17 21 (20-22) 23 (17-29) 7 9-12 - 10 (10-13) 17 ( 15-20) 15 - 20-23 10-17 15
JV5 35 (32-37) 43-47 - 22 41 (40-42) 53 (40-70) 64 (60-67) 56-88 - 61 (53-78) 64 (60-70) - 68 65 65-72 70-75
ST1-ST1 56 (55-57) 63 - 60 49 (47-50) 50 (45-58) 63 (60-67) - - 66 (63-68) 60 (55-62) 50 (47-52) - - 50-53 -
ST2-ST2 63 (60-65) 62-65 - 55 57 (55-60) 60 (55-69) 70 (67-72) - - 73 (65-78) 69 (65-72) 55 - - 62 -
ST3-ST3 72 (70-72) - - 52 69 (67-70) 71 (63-82) 75 (72-80) - - 77 (73-83) 80 (70-85) 59 (55-62) - - 57‐63 -
ST4-ST4 73 (67-77) - - 40 68 (60-72) 86 (58-142) 71 (67-75) - - 76 (73-80) 81 (77-87) 46 (42-50) - - 48‐5 -
ST5-ST5 65 (62-67) 65 - 32 62 (60-65) 69 (41-78) 72 (70-77) - - 65 (63-70) 67 (65-70) 38 (37-40) - - 35‐40 -
ST1-ST3 62 (60-65) - - 110 62 (60-62) 66 (59-75) 67 (65-70) - - 69 (68-73) 65 (62-70) 109 (107-112) - - 110‐113 -
VAS length 106 (100-115) 100 101-104 105 102 (100-105) 117 (99-134) 109 (100-130) - - 111 (110-123) 116 (112-125) 112 (110-115) - - 108‐110 -
VAS width 1 78 (75-80) 92-97 80-87 145 107 (100-110) 104 (88-120) 57 (55-62) - - 48 ( 43-58) 84 (80-90) 148 (140-155) - - 150‐160 -
VAS width 2 68 (62-72) 65 - 80 80 (75-85) 73 ( 60-87) 72 (67-77) - - 69 (63-78) 82 (77-90) 96 (92-100) - - 75‐80 -
SGEIV 33 (30-37) 30 34-37 15 - 126 (120-130) 111-163 111-163 118 (110-123) 55 (52-57) 32 - 50-53 61-66 65-72
STiIV 20 (20-22) - 26-30 15 - 90 (85-95) 91-121 - 88 (83-93) 41 ( 35-40) 25 (22-27) - 38-40 42-47 56-58
STIV 45 (42-47) 40-42 40-47 35 47 49 (30-62) 62 (60-65) 71-88 - 72 (65-78) 63 (60-70) 47 (45-50) - 75-78 53-68 73-78
MP1 length 20 (15-25) 25 - 22 (20-25) 30 (20-36) 19 (17-22) - - - 24 (22-25) - - - - -
MP1 width 4 (2-5) 5 - 4 (3-5) 5 (4-8) 6 (5-7) - - - 5 (4-5) - - - - -
MP2 length 13 (10-15) 15-17 - 8 (7-10) 12 ( 6-15) 8 (7-10) - - - 10 (7-12) - - - - -
FD 29 (27-30) - 34 27 - 47 - - 36 (30-40) 37 - - - - -
MD 26 (23-30) - 26 22 - 42 - - 33 (28-35) 32 - - - - -
Spermatheca length 11 - 7 - 21 (20-22) - - 31 (28-35) 10 - - - - -
Neoseiulus umbraticus female (n=6)
Neoseiulus californicus (n=4)
Amblyseius eharai (n=5)
Tixier M. et al. (2021), Acarologia 61(4): 824-844. https://doi.org/10.24349/m2Rp- WodG 828
JX080343 Amblyseius eharai
JX080331 Amblyseius eharai
JX080336 Amblyseius eharai
JX080337 Amblyseius eharai
JX080345 Amblyseius eharai
JX080335 Amblyseius eharai
JX080341 Amblyseius eharai
JX080334 Amblyseius eharai
JX080340 Amblyseius eharai
JX080339 Amblyseius eharai
JX080338 Amblyseius eharai
JX080333 Amblyseius eharai
JX080342 Amblyseius eharai
Amblyseius eharai Georgia
Amblyseius eharai Georgia
Amblyseius eharai Georgia
JX080332 Amblyseius eharai
JX080344 Amblyseius eharai
Amblyseius largoensis
Amblyseius largoensis
Amblyseius herbicolus
Amblyseius herbicolus
Euseius stipulatus
100
100
74
99
100
100
48
83
0.02
Figure 1 Neighbour joining phylogenetic tree including Amblyseius eharai from Georgia, specimens
of Amblyseius eharai,Amblyseius largoensis and A. herbicolus from Genbank and Euseius stipulatus
(as an outgroup) obtained with COI mtDNA fragment.
N, 42.2598° E): 5 ♀♀ and 2 ♂♂ on Citrus sp. (Rutaceae), at Kobuleti (1 km East Khala)
(41.7032° N, 41.8058° E): 8 ♀♀ and 3 ♂♂ on Citrus sp. (Rutaceae), at Kobuleti (2 kms
from Esat Chakvi) (41.7135° N, 41.7556° E): 14 ♀♀ and 4 ♂♂ on Citrus sp. (Rutaceae),
at Kobuleti (Daba Chakvi) (41.7180° N, 41.7384° E): 8 ♀♀ and 1 ♂ and 1 immature on
Citrus sp. (Rutaceae), at Kobuleti (Daba Chakvi) (41.7184° N, 41.7384° E): 9 ♀♀ and 1 ♂
on Citrus sp. (Rutaceae), at Kobuleti (Khala) (41.7070° N, 41.7912° E): 8 ♀♀ and 2 ♂♂ on
Citrus sp. (Rutaceae) and 1 ♀, 2 ♂♂ and 4 immatures on Rubus sp. (Rosaceae), Kobuleti
(Leghva) (41.8517° N, 41.9003° E): 8 ♀♀ on Citrus sp. (Rutaceae), at Kobuleti (Mukhaestate)
(41.8413° N, 41.8629° E): 10 ♀♀ and 2 ♂♂ on Citrus sp. (Rutaceae), at Kvareli (Eniseli)
(41.9988° N, 45.6702° E): 4 ♀♀ and 1 ♂ on Ulmus minor Miller (Ulmaceae), at Ozurgeti
(Nasakirali) (41.9869° N, 42.0697° E): 1 ♀ on Carpinus betulus L. (Betulaceae) and 1 ♀ on
Malus orientalis Uglitzkich ex Iouzptchouk (Rosaceae), at Ozurgeti (2 kms from Nagomari)
(42.0097° N, 42.1236° E): 4 ♀♀ and 1 ♂ on Rubus sp. (Rosaceae), at Senaki (Sakharbedio)
(42.2858° N, 42.0381° E): 7 ♀♀ and 1 immature on Corylus avellana L. (Betulaceae)
Previous records. Algeria, Azores Island, Canary Island, France, Greece, Hungary, Italy,
Iran, Madeira Islands, Montenegro, Morocco, Peru, Portugal, Slovenia, Spain, Syria, Tunisia,
Turkey, USA.
Remarks.Euseius stipulatus was the second most frequent species found (36%), with
most of the specimens retrieved from citrus (78% of E. stipulatus specimens). This species
occurs in the south of the West Palearctic region especially around the Mediterranean basin
Tixier M. et al. (2021), Acarologia 61(4): 824-844. https://doi.org/10.24349/m2Rp- WodG 829
especially on citrus orchards (Ferragut and Escudero 1997, Demite et al. 2021). Prior to this
study only one species of Euseius,E. finlandicus (Oudemans) was known from Georgia. This is
the first report of E. stipulatus for the Georgian mite fauna. Molecular sequences obtained (23
sequences for 12S rRNA, COI mtDNA markers and 22 sequences for CytB mtDNA fragment)
were compared to those of the Euseius species reported from the West Palearctic region (E.
stipulatus, E. scutalis (Athias-Henriot), E. finlandicus and E. gallicus Kreiter & Tixier).For
all markers studied here, the sequences of the Georgian specimens are similar to the reference
sequence of E. stipulatus (Supplementary Tables S2a, b, c). However, two specimens collected
on Citrus limon at Chokhatauri are differentiated from the others and from the E. stipulatus
references, by a distance of 11.1% – 12.3% for the CytB mtDNA, 2.8% for the 12S rRNA and
8.4% for the COI mtDNA (Supplementary Table S2a, b, c). Such high genetic distances in
mitochondrial DNA have been already observed at the intraspecific level (up to 21.7% within
Typhlodromus (Anthoseius)rhenanoides Athias-Henriot for the CytB mtDNA and up to 10.5%
within Neoseiulus californicus (McGregor), for the COI mtDNA) (Okassa et al. 2011; Tixier et
al. 2019). Furthermore, the genetic distances between these two specimens and E. gallicus,E.
finlandicus and E. scutalis are high for all the DNA fragments considered, showing that these
two specimens clearly do not belong to these three species (Supplementary Table S2a, b, c). We
thus provisionally conclude that these two specimens belong to E. stipulatus and suggest that
molecular difference might reflect some adaptations and different biological traits (i.e. Tixier
et al. 2010a), but biological trials would be required to test this hypothesis.
Euseius finlandicus (Oudemans)
Seiulus finlandicus Oudemans 1915: 183.
Typhlodromus finlandicus, Oudemans 1930: 50.
Typhlodromus (Typhlodromus)finlandicus, Cunlife & Baker 1953: 19.
Amblyseius finlandicus, Athias-Henriot 1958: 34.
Typhlodromus (Amblyseius)finlandicus, Chant 1959: 67.
Typhlodromus (Typhlodromopsis)finlandicus, De Leon 1959: 113.
Amblyseius (Typhlodromalus)finlandicus, Muma (1961): 288.
Amblyseius (Amblyseius)finlandicus, Wainstein 1962: 15.
Amblyseius (Euseius)finlandicus, Arutunjan 1970: 11.
Typhlodromus pruni Oudemans 1929: 32 (synonymy according to Yoshida-Shaul & Chant
1995).
Specimens examined. At Kvareli (Eniseli) (41.9988° N, 45.6702° E): 1 ♀ on Ulmus minor
Miller (Ulmaceae).
Previous records. Albania, Algeria, Angola, Argentina, Armenia, Austria, Azerbaijan,
Belarus, Belgium, Bosnia and Herzegovina, Bulgaria, Canada, Caucasus Region, China,
Croatia, Cyprus, Czech Republic, Denmark, England, Finland, France, Georgia, Germany,
Greece, Hungary, India, Indonesia, Iran, Italy, Japan, Kazakhstan, Latvia, Lithuania, Macedonia,
Mexico, Moldova, Montenegro, Netherlands, Nicaragua, Norway, Poland, Portugal, Russia,
Scandinavia, Serbia, Slovakia, Slovenia, South Korea, Spain, Sweden, Switzerland, Tunisia,
Turkey, Ukraine, USA.
Remarks. This species was reported from Georgia by Samsoniya (1972, 1977) and
Wainstein and Vartapetov (1973) on tea, citrus trees and Prunus spp., especially in mountainous
regions. It is reported to feed on eriophyid mites by Wainstein & Vartapetov (1973). One 12S
rRNA sequence (from a specimen collected on Ulmus minor Miller) was obtained; it differs to
the two DNA reference sequences of this species by 2.2 – 3.3% (Supplementary Table S2b).
Neoseiulus californicus (McGregor)
Typhlodromus californicus McGregor 1954: 89.
Amblyseius californicus, Schuster & Pritchard 1963: 271.
Tixier M. et al. (2021), Acarologia 61(4): 824-844. https://doi.org/10.24349/m2Rp- WodG 830
Cydnodromus californicus, Athias-Henriot 1977: 62.
Amblyseius (Amblyseius)californicus, Ueckermann & Loots 1988: 150; Ehara et al. 1994:
126.
Amblyseius (Neoseiulus)californicus, Ehara & Amano 1998: 33.
Specimens examined. at Ozurgeti (Nasakirali) (41.9869° N, 42.0697° E): 8 ♀♀ on Rubus
sp. (Rosaceae), at Ozurgeti (2 kms from Nagomari) (42.0097° N, 42.1236° E): 4 ♀♀ and 1 ♂
on Rubus sp. (Rosaceae).
Previous records. Argentina, Azores, Brazil, Canada, Canary Islands, Chile, Colombia,
Cuba, Cyprus, France, Greece, Guadeloupe, Guatemala, Italy, Japan, Madeira Islands (Kreiter
et al. 2021), Mexico, Peru, Portugal, Reunion Island, Senegal, Serbia, Slovenia, South Africa,
South Korea, Spain, Syria, Taiwan, Tunisia, Turkey, USA, Venezuela, Vietnam.
Measurements of females (4 specimens)
Dorsum. Dorsal shield 331 (310–340) long and 150 (135–175) wide, reticulated throughout,
with three solenostomes (gd1,gd6 and gd9), 17 pairs of dorsal setae and two pairs of sub-lateral
setae: j1 19 (17–20), j3 26 (22–30), j4 19 (15–22), j5 19 (17–22), j6 25 (22–27), J2 32 (27–37),
J5 8 (7–10), z2 25 (22–27), Z1 28 (27–30), z4 26 (25–27), z5 19 (17–22), Z4 50, Z5 59 (57–62),
s4 34 (32–35), S2 38 (37–40), S4 34 (32–35), S5 29 (25–32), r3 24 (20–25) and R1 21 (20–22)
in length. All setae smooth except Z5 slightly barbed.
Peritreme. Extending forwards to the bases of the setae j1.
Venter. Sternal shield with three pairs of setae and two pairs of poroids; one pair of sternal
setae (st4) on small metasternal platelets; posterior margin straight. Distances between st1–st3
62 (60–62), st2–st2 57 (55–60), st5–st5 62 (60–65). Two pairs of metapodal plates, the largest
one 22 (20–25) long and 4 (3–5) wide, the smallest one 8 (7–10) long and 2 wide. Ventrianal
shield with three pairs of pre-anal setae JV1,JV2,ZV2 and pre-anal crescent pores (gv3) present,
posterior-paraxial to setae JV2. Integument surrounding ventrianal shield with four pairs of
setae ZV1,ZV3,JV4 and JV5; ventrianal shield 102 (100–105) long, 107 (100–110) wide at
level of anterior corners, and 80 (75–85) wide at level of anus. JV5 41 (40–42) long.
Legs. Legs IV with three macrosetae: on the genu 15, tibia 15 and basitarsus 47. Genu II
with seven setae (2–2/0, 2/0–1) and Genu III with seven setae (1–2/1, 2/0–1).
Chelicera. Fixed digit 27, movable digit 22 (dentition not visible as the chelicerae are
closed).
Spermatheca. Calyx cup-shaped 7–9 long and 7 in width, with a small atrium in base of
the calyx.
Remarks.Neoseiulus californicus is commonly used in biological control. It is mass-
released in crops, especially in vegetables for controlling Tetranychus urticae Koch, all over
the World. This species can also naturally occur in vineyards and orchards (McMurtry and
Croft 1997; Tixier et al. 2008a). The measurements of the Georgian specimens globally
match with those reported in the re-description of Tixier et al. (2008a) (Table 2). Although
the setae Z5 and JV5 are shorter on average in the Georgian specimens than in Tixier et al.
(2008a, compiling 300 specimens from 10 populations), these differences are consistent with
intraspecific variation range. Morphological identification was confirmed by DNA sequences
obtained: one 12S rRNA, four cytB and one COI mtDNA. The CytB and the 12S rRNA
sequences were compared to those reported in Okassa et al. (2011). The CytB and the 12S
rRNA mean genetic distances between the Georgian and the commercial specimens (from
different companies and those retrieved world-wide after commercial releases) are 0.04% and
0.1 %, respectively (Okassa et al. 2011). For COI sequences, the Georgian specimens are
separated by distances ranging from 0.6 to 0.11% from specimens of N. californicus collected
in apple orchards in France (Tixier et al. 2008a).
This is the first report of N. californicus collected in the wild in Georgia. Because of
molecular similarity with the commercial specimens, we assume that the presence of N.
californicus results from commercial releases and specimens herein collected on Rubus sp.
might have dispersed from where they were released.
Tixier M. et al. (2021), Acarologia 61(4): 824-844. https://doi.org/10.24349/m2Rp- WodG 831
Neoseiulus umbraticus (Chant, 1956)
Typhlodromus umbraticus Chant 1956: 26.
Typhlodromus (Typhlodromus)umbraticus, Beglyarov 1958: 107.
Amblyseius umbraticus, Athias-Henriot 1959: 138.
Typhlodromus (Amblyseius)umbraticus, Chant 1959: 75.
Amblyseius (Typhlodromopsis)umbraticus, Muma 1961: 287.
Amblyseius (Amblyseius)umbraticus, Wainstein & Vartapetov 1973: 103.
Amblyseius (Neoseiulus)umbraticus, Karg 1991: 23.
Specimens examined. At Telavi (5 kms West from Telavi) (41.9283° N, 45.4241° E): 8
♀♀ and 4 ♂♂ on Salvia verticillata L. (Lamiaceae), at Gurjaani (Velistsikhe) (41.8545° N,
45.8035° E): 3 ♀♀ on Populus alba L. (Salicaceae).
Previous records. Armenia, Azerbaijan, Azores Island, Belarus, Caucasus Region,
Denmark, England, France, Georgia, Germany, Hungary, Iran, Italy, Jamaica, Latvia, Madeira
Islands (Kreiter et al. 2021), Morocco, Mexico, Moldova, Montenegro, Norway, Poland,
Russia, Slovakia, Slovenia, Spain, Switzerland, Turkey, Ukraine, USA.
Measurements of females (6 specimens)
Dorsum. Dorsal shield 316 (295–325) long and 140 (132–152) wide, slightly reticulated
posteriorly, with five solenostomes (gd1,gd2,gd6,gd8 and gd9), 17 pairs of dorsal setae and
two pairs of sub-lateral setae: j1 19 (15–22), j3 37 (35–40), j4 25, J5 19 (17–20), j6 22 (17–25),
J2 21 (20–22), J5 7, z2 32 (30–32), Z1 26 (22–27), z4 41 (37–45), z5 17 (15–20), Z4 54 (52–60),
Z5 62 (60–65), s4 56 (52–60), S2 45 (42–50), S4 27 (25–30), S5 24 (22–27), r3 35 (32–40) and
R1 23 (22–25) in length. All setae smooth except Z5 slightly barbed.
Peritreme. Extending forwards to the bases of the setae j3.
Venter. Sternal shield with three pairs of setae and two pairs of poroids; one pair of
sternal setae (st4) on small metasternal platelet; posterior margin straight. Distances between
st1–st3 62 (60–65), st2–st2 63 (60–65), st5–st5 65 (62–67). Two pairs of metapodal plates, the
largest one 20 (15–25) long and 4 (2–5) wide, the smallest one 13 (10–15) long and 2 wide.
Ventrianal shield with three pairs of pre-anal setae JV1,JV2,ZV2 and pre-anal pores (gv3)
present, posterior-paraxial to setae JV2. Integument surrounding ventrianal shield with four
pairs of setae ZV1,ZV3,JV4 and JV5; ventrianal shield 106 (100–115) long, 78 (75–80) wide
at level of anterior corners, and 68 (62–72) wide at level of anus. JV5 35 (32–37) long.
Legs. Legs IV with three macrosetae: on the genu 33 (30–37), tibia 20 (20–22) and
basitarsus 45 (42–47). Genu II with eight setae (2–2/0, 2/1–1), Genu III with eight setae (2–2/0,
2/1–1).
Chelicera. Fixed digit 29 (27–30), movable digit 26 (23–30). Dentition not visible because
the chelicerae are closed.
Spermatheca. Calyx cup-shaped 11 long and 11 in width, with an atrium well differentiated
at the basis of the calyx.
Measurements on a male specimen are provided in the Table 2.
Remarks. This species was first described in England on Rubus fructicosus L. (Rosaceae)
and then recorded mainly in the West Palearctic zone. It was reported from Georgia by Wainstein
and Vartapetov (1973) on Rubus sp., Alnus sp. (Betulaceae), Ficus carica L. (Moraceae) and
herbs. The measurements of specimens from Georgia fit with those provided by Tixier et al.
(2016) for specimens collected from Morocco and with those of the original description (Table
2). The molecular distances range from 0 to 0.3 % between the four CytB mtDNA sequences
and are null between the three COI mtDNA sequences. Only one 12S rRNA sequence was
obtained. The eight DNA sequences for the three molecular fragments are now included in
the Genbank database and will serve as references for further molecular identification of this
species. Very few studies refer to the biology of N. umbraticus. This species seems able to feed
on T. urticae and Thrips tabaci (Lindeman) (Sengonca and Dresher 2001, Kazak et al. 2002).
Wainstein and Vartapetov (1973) reported that this species feeds on P. citri and T. urticae, and
that it tends to prefer humid areas.
Tixier M. et al. (2021), Acarologia 61(4): 824-844. https://doi.org/10.24349/m2Rp- WodG 832
Transeius wainsteini (Gomelauri)
Amblyseius wainsteini Gomelauri 1968: 518.
Amblyseius (Amblyseius)wainsteini, Wainstein & Vartapetov 1973: 103.
Typhlodromips wainsteini, Rahmani et al. 2010: 498.
Transeius wainsteini, Chant & McMurtry 2004: 185,
Specimens examined. At Gurjaani (Velistsikhe) (41.8545° N, 45.8035° E): 8 ♀♀ on
Populus alba L. (Salicaceae), at Telavi (5kms West from Telavi) (41.9283° N, 45.4241° E): 1
♀ on Rubus sp. (Rosaceae), at Telavi (Rd Tetri Tsklebi to Telavi) (41.8870° N, 45.3636° E):
7 ♀♀ and 2 ♂♂ on Rubus sp. (Rosaceae), at Telavi (41.9141° N, 45.4579° E): 5 ♀♀ and 3
immatures on Quercus sp. (Fagaceae).
Previous records. Denmark, Georgia, Germany, Iran, Slovakia, Turkey.
Measurements of females (10 specimens)
Dorsum. Dorsal shield 362 (340–382) long and 170 (155–177) wide, smooth with small
striation in the lateral posterial part, with seven solenostomes (gd1,gd2,gd4,gd5,gd6,gd8 and
gd9), 17 pairs of dorsal setae and two pairs of sub-lateral setae: j1 26 (22–30), j3 51 (50–55),
j4 8 (7–10), j5 7, j6 8 (7–10), J2 9 (7–10), J5 6 (5–7), z2 22 (17–27), z4 32 (22–35), z5 7 (5–7),
Z1 11 (7–12), Z4 63 (60–67), Z5 119 (110–127), s4 68 (65–72), S2 27 (25–32), S4 13 (12–15),
S5 9 (7–10), r3 25 (22–27) and R1 17 (15–20) in length. All setae smooth.
Peritreme. Extending forwards to the bases of the setae j1.
Venter. Sternal shield with three pairs of setae and two pairs of poroids; one pair of sternal
setae (st4) on small metasternal platelets; posterior margin straight. Distances between st1–st3
65 (62–70), st2–st2 69 (65–72), st5–st5 67 (65–70). Two pairs of metapodal plates, the largest
one 24 (22–25) long and 5 (4–5) wide, the smallest one 10 (7–12) long and 2 wide. Ventrianal
shield with three pairs of pre-anal setae JV1,JV2,ZV2 and a pair of crescent pre-anal pores (gv3)
present, slightly posterior-paraxial to setae JV2. Integument surrounding ventrianal shield with
four pairs of setae ZV1,ZV3,JV4 and JV5; ventrianal shield 116 (112–125) long, 84 (80–90)
wide at level of anterior corners, and 82 (77–90) wide at level of anus. JV5 64 (60–70) long.
Legs. Legs IV with three macrosetae: on the genu 55 (52–57), tibia 41 (35–40) and
basitarsus 63 (60–70). SgeII 31 (30–35), SgeIII 32 (30–35), StiIII 26 (25–27). Genu II with
seven setae (2–2/0, 2/0–1), Genu III with seven setae (1–2/1, 2/0–1).
Chelicera. Fixed digit 37 long, movable digit 32 long. Dentition not visible because the
chelicerae are closed.
Spermatheca. Spermatheca with a cup-shaped calyx 8–10 long and 5 wide, with a well
differentiated round and small atrium at the base of calyx.
The table 2 provides measurements of three males.
Remarks. This species was described from Georgia (Manglisi) on Corylus sp. (Betulaceae)
and according to Wainstein and Vartapetov (1973), it is quite common across the country. These
authors also noted that T. wainsteini feeds on P. citri and T. urticae. The measurements of
the Georgian specimens are close to those reported in the original description and in the
re-description of Faraji et al. (2011) (from Turkey), except for the setae STIV that were shorter
in our specimens (60–70) than in those measured by Faraji et al. (2011) (75–78) (Table 2).
However, the difference is minor and it is the only difference with T. wainsteini studied by
Faraji et al. (2011); we therefore conclude that the specimens from Georgia belong to Transeius
wainsteini (Table 2).
Differences between Amblyseius swirskii,Amblyseius andersoni (Chant) and T. wainsteini
are minor. Amblyseius andersoni differs from A. swirskii and T. wainsteini by longer setae Z5
(Table 2). The main differences between A. swirskii and T. wainsteini are the measurements of
the setae z2,z4, the ratio s4/S2 and the dentition of the chelicerae.
CytB (8), 12S (5) and COI (8) DNA sequences of Georgian specimens of T. wainsteini
were obtained, respectively. Phylogenetic trees are presented in the figure 2. The mean genetic
distances between these specimens are 1.6% (0–3.1%) for the CytB mtDNA marker, 0% for
the 12S rRNA fragment, and 1.2% (0–3%) for the COI mtDNA marker. The mean genetic
Tixier M. et al. (2021), Acarologia 61(4): 824-844. https://doi.org/10.24349/m2Rp- WodG 833
distances between T. wainsteini and A. swirskii, observed for the three molecular markers,
support that these species are distinct taxa (CytB mtDNA marker: 44.2% (43.7% – 45.1%),
12S rRNA: 19.7%, COI mtDNA: 24.9% (23.8% – 25.9%)). Transeius wainsteini differs from
A. andersoni by 26.3 % (25.5% – 27.2%) for the CytB mtDNA, 9.1% (8.8% – 9.4%) for the
12S rRNA marker and 19.9% (18.6% – 21.1%) for the COI mtDNA fragment (Supplementary
Table S3a,b,c). These distances are clearly smaller than those observed between T. wainsteini
and A. swirskii, suggesting that T. wainsteini is phylogenetically closer to A. andersoni than to
A. swirskii. Interestingly, these genetic relationships do not reflect morphological similarities
as (i) A. swirskii and A. andersoni are more similar to each other than to T. wainsteini
and (ii) T. wainsteini is morphologically more similar to A. swirskii than to A. andersoni.
The morphological similarities between T. wainsteini and A. swirskii suggest evolutionary
convergence especially for the length of setae Z5. Further analyses would be interesting to
carry out based, in particular, on the observation of spermatheca structures (atrium, calyx).
A very close relationship between A. andersoni and T. wainsteini is clearly supported by
the 12S sequences (9.1%) (Supplementary Table S3b). In the absence of additional parameters
(morphology and other molecular markers), this small distance could have wrongly lead to
conclusion that they belong to the same species. The maximal intraspecific distance using the
12S rRNA marker for Phytoseiidae, was observed for the species Amblyseius largoensis (7.8%
in Barbosa-Lima et al. 2018) and the minimal interspecific distances observed range between
9.5% and 12.5% (between Neoseiulus californicus and N. fallacis and N. californicus and N.
idaeus, respectively) (Jeyaprakash and Hoy 2002; Okassa et al. 2011).
The phylogenetic closeness of A. andersoni and T. wainsteini questions the monophyly of
the genus Amblyseius and the validity of the genus Transeius, as already stated by Tsolakis
et al. (2012) who showed the proximity between A. andersoni,A. swirskii and Transeius
montdorensis (Schicha). Further phylogenetic analyses would be required including additional
Amblyseius and Transeius species, to conclude that Transeius is not a valid genus and that
Amblyseius is paraphyletic.
Galendromus (Galendromus)longipilus (Nesbitt)
Typhlodromus longipilus Nesbitt 1951: 26.
Typhlodromus (Typhlodromus)longipilus, Cunliffe & Baker 1953: 17.
Typhlodromus (Typhlodromus)longipilis [sic], Chant 1959: 59.
Galendromus longipilis [sic], Muma 1961: 26.
Metaseiulus longipilus, Schuster 1966: 323.
Metaseiulus (Galendromus)longipilus, Wainstein 1973: 176.
Typhlodromus longipilis [sic], Ozman & Çobanoğlu 2001: 482.
Typhlodromus longipilis [sic], Çobanoğlu & Özman 2002: 92.
Galendromus longipilus, Kolodochka 2006: 171.
Metaseiulus longipilis [sic], Kulikova 2011: 59.
Specimens examined. At Kobuleti (Khala) (41.7070° N, 41.7912° E): 2 ♀♀ and 1 ♂ on
Rubus sp. (Rosaceae).
Previous records. Austria, Bulgaria, Canada, Costa Rica, Cuba, Czech Republic, France,
Galapagos, Germany, Hungary, Italy, Mexico, Moldova, Poland, Slovakia, Spain, Switzerland,
Turkey, Ukraine, USA.
Measurements of females (2 specimens)
Dorsum. Dorsal shield 340 long and 155 wide, reticulated throughout, with two visible
solenostomes (gd6 and gd9), 16 pairs of dorsal setae and one pair of sub-lateral setae inserted
in the dorsal shield: j1 25, j3 65–67, j4 52–55, j5 60–62, j6 65–70, J2 75, J5 8, z2 67, z4 67–70,
z5 62, Z4 70–75, Z5 60–65, s4 65–70, s6 80–82, S2 75–77, S5 62–70 and r3 55–57 in length.
All setae smooth.
Peritreme. Extending slightly anteriorly to the bases of the setae z4.
Tixier M. et al. (2021), Acarologia 61(4): 824-844. https://doi.org/10.24349/m2Rp- WodG 834
Figure 2 Neighbour joining phylogenetic trees including Transeius wainsteini from Georgia, Amblyseius swirskii,Amblyseius andersoni and
Euseius stipulatus (as an outgroup) obtained with a – COI mtDNA, b – CytB mtDNA and c – 12S rRNA markers.
Tixier M. et al. (2021), Acarologia 61(4): 824-844. https://doi.org/10.24349/m2Rp- WodG 835
Venter. Sternal shield with three pairs of setae and two pairs of poroid; one pair of sternal
setae (st4) on small metasternal platelets; posterior margin straight. Distances between st1–st3
65–72, st2–st2 47–52, st5–st5 47. Two pairs of metapodal plates, the largest one 25 long and
4 wide, the smallest one 10 long and 2 wide. Ventrianal shield with four pairs of pre-anal
setae JV1,JV2,JV3,ZV2 and a pair of small circular pre-anal pores (gv3) present, immediately
posterior-mediad to JV3. Integument surrounding ventrianal shield with 3 pairs of setae ZV1,
ZV3 and JV5; ventrianal shield 107 long, 50–55 wide at level of anterior corners, and 65 wide
at level of anus. JV5 55–57 long.
Legs. Legs IV with one long setae on the basitarsus 35. Genu II with nine setae (2–2/1,
2/1–2), Genu III with seven setae (1–2/1, 2/0–1).
Chelicera. Fixed digit 22 long; and movable digit 20 long. Dentition not visible because
chelicerae closed.
Spermatheca. Spermatheca with elongated and tubular cervix 37 long and 3 wide, with a
small atrium inserted at the base of the cervix.
Remarks. The measurements of the Georgian specimens are close to those reported in
the re-description of G. longipilus provided by Chant and Yoshida-Shaul (1984) (Table 3).
Some differences are however observed in some seta lengths, which are slightly shorter in the
specimens examined in this study.
Galendromus longipilus is morphologically very close to Galendromus occidentalis
(Nesbitt). However, because of the peritreme length and because j6 is longer than the distance
between j6 and J2, we conclude that the specimens herein examined belong to G. longipilus.
No material preserved in 100% ethanol was available for DNA analysis; therefore, we could
not strengthen the identification with molecular markers at this time.
This is the first report of G. longipilus from Georgia. This occurrence is however consistent
with the reported distribution of this species from Turkey and Europe.
Typhlodromus (Anthoseius)recki (Wainstein)
Typhlodromus recki Wainstein 1958: 203.
Typhlodromus (Typhlodromus)recki, Chant 1959: 62.
Typhlodromella recki, Muma 1961: 299.
Amblydromella recki, Moraes et al. 1986: 171.
Amblydromella (Aphanoseia)recki, Denmark & Welbourn 2002: 308.
Specimens examined. At Telavi (5 kms West from Telavi) (41.9283° N, 45.4241° E): 3
♀♀ and 1 ♂ on Salvia verticillata L. (Lamiaceae).
Previous records. Algeria, Armenia, Austria, Azerbaijan, Caucasus Region, Cyprus,
France, Georgia, Greece, Hungary, Iran, Israel, Italy, Kazakhstan, Lebanon, Moldova, Morocco,
Portugal, Russia, Slovenia, Spain (Ferragut 2018), Syria, Tunisia, Turkey, Ukraine.
Remarks. This species was known from Georgia, reported by Wainstein (1958) on Salvia
nemorosa L. (Lamiaceae), and is commonly found in the West Palearctic region, especially on
plants of the family Lamiaceae (Tixier et al. 2020a).
Two DNA sequences (one of the CytB and of the COI fragment) were obtained. CytB
genetic distance between the Georgian specimen and the 54 specimens collected in South of
France and Italy was 5.7% (4.7% – 14%) (Tixier et al. 2020b). Genetic distances among
the COI sequences, ranged from 2 to 2.2% between the Georgian specimen and the four
reported in Genbank (MT828361–364, from France and Italy). This differentiation can be due
to population isolation or result from adaptation to climatic conditions (Tixier et al. 2020b;
Queiroz et al. 2021).
Typhlodromus (Anthoseius)halinae (Wainstein & Kolodochka)
Anthoseius (Amblydromellus)halinae Wainstein & Kolodochka (1974): 629.
Anthoseius halinae, Rivnay & Swirski (1980): 177.
Tixier M. et al. (2021), Acarologia 61(4): 824-844. https://doi.org/10.24349/m2Rp- WodG 836
Amblydromella halinae, Moraes et al. (1986): 163.
Amblydromella (Amblydromella)halinae, Kolodochka (1998): 52.
Amblydromella (Aphanoseia)halinae, Denmark & Welbourn (2002): 308.
Specimens examined. At Terjola (Chognari) (42.2305° N, 42.7781° E): 3 ♀♀ on Rubus
sp. (Rosaceae).
Previous records. Iran, Italy, Moldova, Norway, Russia, Slovakia, Ukraine.
Measurements of female. One specimen: voucher molecular specimen in the “best” state,
the two other specimens are also voucher specimens and not all the characters can be measured.
Dorsum. Dorsal shield 310 long and 140 wide, reticulated throughout, five solenostomes
not well visible (gd2,gd4,gd6, gd8 and gd9), 18 pairs of dorsal setae and two pairs of sub-
lateral setae: j1 23, j3 20, j4 15, j5 13, j6 18, J2 20, J5 5, z2 20, z3 25, z4 20, z5 13, Z4 25, Z5
43, s4 25, s6 25, S2 30, S4 25, S5 20, r3 23 and R1 23 in length. All setae smooth.
Peritreme. Extending forwards between the bases of the setae j3 and j1.
Venter. Sternal shield with three pairs of setae and two pairs of poroids; one pair of sternal
setae (st4) on small metasternal platelets; posterior margin straight. Distances between st1–st3
50, st2–st2 55, st5–st5 53. Two pairs of metapodal plates, the largest one 25 long and 3 wide,
the smallest one 13 long and 2 wide. Ventrianal shield with four pairs of pre-anal setae JV1,
JV2,JV3,ZV2 and a pair of small circular pre-anal pores (gv3) present (horizontally aligned
with JV3 and vertically aligned with JV2). Integument surrounding ventrianal shield with three
Table 3 Measurements of morphological features of Galendromus longipilus,Typhlodromus (Anthoseius)kerkirae,T. (A.)halinae (specimens
collected in Georgia and data retrieved from original description and re-descriptions) and T. (A.)salviae and T. (A.)rhenanus (original description
and re-descriptions).
Galendromus
longipilus (n=2)
G. longipilus (in Chant
& Yoshida-Shaul 1984)
Typhlodromus (A .)
kerkirae (n=1)
T. (A.) kerkirae (in
Tixier et al. 2019)
Typhlodromus (A.)
halinae (n=1)
T. (A.) halinae
original description
T. (A.) salviae
(original
description)
T. (A.) rhenanus (in
Kolodochka 1978)
DSL 340 - 315 347 310 344 325
DSW 155 - 135 171 140 180 170
j1 25 29 20 20 23 20 22 19
j3 65-67 74 22 22 20 22 22 25
j4 52-55 63 15 13 15 14 14 15
j5 60-62 72 15 15 13 17 15 20
j6 65-70 78 18 15 18 20 18 20
J2 75 82 23 20 20 20 20 25
J5 8 8 8 11 5 8 11 8
z2 67 78 20 17 20 17 18 19
z3 62.5 71 25 25 25 25 23 not mentioned
z4 67-70 80 20 20 20 20 22 22
z5 62 68 18 16 13 17 16 20
Z4 70-75 79 32 30 25 28 31 36
Z5 60-65 75 52 53 43 47 50 50
s4 65-70 78 25 27 25 28 27 34
s6 80-82 86 30 28 25 28 28 33
S2 75-77 86 30 30 30 28 31 35
S4 absent absent 30 30 25 28 31 32
S5 62-70 77 27 25 20 22 not mentioned 23
r3 55-57 62 18 25 23 25 25 27
R1 absent - 18 23 23 22 23 25
JV5 55-57 59 33 - 33 - 41 48
ST1-ST1 35-37 - not visible - 48 - - -
ST2-ST2 47-52 - not visible - 55 - - -
ST3-ST3 65-70 - not visible - 65 - - -
ST4-ST4 70-75 - not visible - 80 - - -
ST5-ST5 47 56 63 - 53 - - -
ST1-ST3 65-72 - not visible - 50 - - -
VAS length 107 109 98 110 88 - - -
VAS width1 50-55 45 75 89 88 - - -
VAS width2 65 68 63 81 75 - - -
SGEIV absent absent absent absent 18 - - -
STiIV absent absent absent absent 20 - - -
STIV 35 - 27 28 23 28 27 29
MP1 length 25 28 not visible - 25 - - -
MP1 width 4 4 not visible - 3 - - -
MP2 length 10 - not visible - 13 - - -
FD 22 21 28 27 25 - - -
MD 20 - 23 26 23 - - -
Spermatheca length 37 - 13 - 18 - - -
Tixier M. et al. (2021), Acarologia 61(4): 824-844. https://doi.org/10.24349/m2Rp- WodG 837
pairs of setae ZV1,ZV3 and JV5; ventrianal shield 88 long, 88 wide at level of anterior corners,
and 75 wide at level of anus. JV5 33 long.
Legs. Legs IV with one macroseta on the basitarsus (23), and setae (not macrosetae) on
the genu (18), tarsus (20). Genu II with seven setae (2–2/0, 2/0–1), Genu III with seven setae
(1–2/0, 2/1–1).
Chelicera. Fixed digit 25 long; and movable digit 23 long. Dentition not visible because
chelicerae closed.
Spermatheca. Spermatheca with cervix 15–18 long (on the two sides) and 10 wide, with
an atrium inserted in the cervix.
Remarks. The specimen studied is morphologically close to Typhlodromus (Anthoseius)
rhenanus (Oudemans), even if some differences are observed in spermatheca shape (Table
3). Molecular comparisons with specimens from our own database show high CytB distances
between the sequences herein obtained and those referring to T. (A.) rhenanus (19.6% – 20.3%).
Similar high distances have been previously observed at the intraspecific level (i.e. Tixier et
al. 2017, 2019). However, for the COI fragment, 22% divergence was observed between T.
(A.) rhenanus and our specimens. Such large divergences indicate that these specimens do not
belong to T. (A.)rhenanus, but to a morphologically similar species.
They are also close to T. (A.) georgicus Wainstein, but difference in spermatheca shape and
S5 length (30 for T. (A.) georgicus and 20 for the presently examined specimen) (Hajizadeh
and Mortazavi 2015) seem to show that the specimen observed do not belong to this latter
species. It is difficult to assign a single specimen to a species. Tixier (2013) tried to provide
some decision rules and proposed based on statistical analysis, that a difference of 11 microns
between two specimens would be sufficient to conclude that these specimens might belong to
different species. We see that in the present case the difference between the specimen examined
and T. (A.) georgicus (10 microns) would be just included in this interspecific variation.
However, because of this slight difference, we can have still some doubts. Considering other
species, especially Typhlodromus (Anthoseius)halinae, it seems that the specimen observed
is much closer to this latter species than to T. (A.)georgicus. However, the specimens were
also morphologically very close to Typhlodromus (Anthoseius)salviae (Kolodochka) but
unfortunately we did not find in the description of this latter species, information on the
differentiation with T. (A.) halinae (Table 3).
Even if some doubts exist between an identification assigned to T. (A.) halinae or to T. (A.)
georgicus, because of closer morphological traits with the former species, we considered that
the specimen herein collected belong to T. (A.) halinae. Molecular sequences would help in
assisting the diagnosis of these morphological close species in the future, as well as in clarifying
the fact that some authors stated that differentiation between some Typhlodromus (Anthoseius)
species is only possible based on male observation (Kolodochka 1978). This would be the first
report of T. (A.) halinae from Georgia. Because of its current distribution in Eastern Europe
and Middle East, the report of the species in Georgia is not surprising.
Typhlodromus (Anthoseius)kerkirae Swirski & Ragusa
Typhlodromus kerkirae Swirski & Ragusa 1976: 101.
Anthoseius kerkirae, Rivnay & Swirski 1980: 177.
Typhlodromus kerkyrae [sic], Papaioannou-Souliotis 1981: 41.
Amblydromella kerkirae, Moraes et al. 1986: 165.
Amblydromella (Aphanoseia)kerkirae, Denmark & Welbourn 2002: 308.
Specimens examined. At Telavi (5 kms from West Telavi) (41.9283° N, 45.4241° E): 1 ♀
on Salvia verticillata L. (Lamiaceae) and 2 ♀♀ on Rubus sp. (Rosaceae), at Tbilisi (240 David
Aghmashenebeli Alley) (41.8068° N, 44.7668° E): 1 ♀ on Eryngium caeruleum L. (Apiaceae).
Previous records. Croatia, France, Greece, Iran, Italy, Spain, Turkey.
Measurements of female (1 specimen: voucher molecular specimen in “best” state)
Tixier M. et al. (2021), Acarologia 61(4): 824-844. https://doi.org/10.24349/m2Rp- WodG 838
Dorsum. Dorsal shield 315 long and 135 wide, reticulated throughout, with six solenos-
tomes (gd2,gd4,gd6,gd8 and gd9), 18 pairs of dorsal setae and two pairs of sub-lateral setae:
j1 20, j3 22, j4 15, j5 15, j6 18, J2 23, J5 8, z2 20, z3 25, z4 20, z5 18, Z4 32, Z5 52, s4 25, s6
30, S2 30, S4 30, S5 27, r3 18 and R1 18 in length. All setae smooth except Z5 lightly barbed.
Peritreme. Eextending nearly reaching the bases of the setae j1.
Venter. Sternal shield with three pairs of setae and two pairs of poroids; one pair of sternal
setae (st 4) on small metasternal platelets; posterior margin straight. Distances between st1–st3
not visible, st2–st2 not visible, st5–st5 63. Metapodal shields not visible due to mountings
(DNA voucher specimen). Ventrianal shield with four pairs of pre-anal setae JV1,JV2,JV3,
ZV2 and a pair of small circular pre-anal pores (gv3) present, at level of setae JV3, posterior or
slightly postero-paraxial to setae JV2. Integument surrounding ventrianal shield with four pairs
of setae ZV1,ZV3,JV4 and JV5; ventrianal shield 98 long, 75 wide at level of anterior corners,
and 63 wide at level of anus. JV5 33 long.
Legs. Legs IV with one macrosetae on the basitarsus 27. Genu II with seven setae (2–2/0,
2/0–1), chaetotaxy of the Genu III not clearly visible (leg folded).
Chelicera. Fixed digit 28 long; and movable digit 23 long. Dentition not visible because
chelicerae closed.
Spermatheca. Spermatheca with campanulate calyx 13 long and 8 wide, with an atrium
incorporated at the basis of the cervix.
Remarks. The morphological features reported above are in line with those reported
by Tixier et al. (2019) for T. (A.) kerkirae (Table 3). Four DNA sequences were obtained
for CytB, one for 12S and two for the COI fragments. The Genbank database only includes
CytB sequences for T. (A.) kerkirae (accession number: MK014094), which have 15.4% –
16.1% divergence with sequences from our specimens from Georgia. In contrast, the mean
distance between the four Georgian specimens is 0.25%. Although the genetic distance
between the French and Georgian specimens is high, it is lower than the intraspecific variation
already observed for species of the sub-family Typhlodrominae and the genus Typhlodromus
(Anthoseius) (i.e. 21.7% for T. (A.) rhenanoides in Tixier et al. 2019). The COI and 12S
rRNA sequences newly included in the Genbank database will serve as references for further
molecular identification of this species.
Phytoseius finitimus Ribaga
Phytoseius finitimus Ribaga 1904: 178.
Phytoseius (Dubininellus)finitimus, Wainstein 1959: 1365.
Phytoseius (Pennaseius)finitimus, Pritchard & Baker 1962: 223.
Pennaseius finitimus, Schuster & Pritchard 1963: 279.
Phytoseius (Phytoseius)finitimus, Denmark 1966: 16.
Phytoseius dubinini Beglyarov 1958: 116 (synonymy according to Pritchard & Baker 1962).
Specimens examined. At Bolnisi (Kveshi) (41.4401° N, 44.4463° E): 9 ♀♀ and 5 ♂♂ on
Rubus sp. (Rosaceae), at Bolnisi (Parizi) (41.4709° N, 44.7361° E): 9 ♀♀ and 5 ♂♂ on Rubus
sp. (Rosaceae), at Gardabani (Vaziani) (41.7004° N, 45.0543° E): 9 ♀♀ and 4 ♂♂ on Rubus sp.
(Rosaceae), at Gurjaani (Chalaubani) (41.6291° N, 45.7946° E): 11 ♀♀ and 3 ♂♂ on Rubus
sp. (Rosaceae), at Kharagauli (Rd S1 2.5km East of Tsakva) (42.0965° N, 43.4532° E): 13
♀♀, 2 ♂♂ and 1 immature on Rubus sp. (Rosaceae), at Kobuleti (Daba Chakvi) (41.7180° N,
41.7384° E): 1 ♀ on Citrus sp. (Rutaceae), at Kvareli (Eniseli) (41.9988° N, 45.6702° E): 2 ♀♀
on Ulmus minor (Ulmaceae), at Lanchkhuti (Grigoleti) (42.0192° N, 41.7629° E): 8 ♀♀ and
3 ♂♂ on Rubus sp. (Rosaceae), at Lanchkhuti (Maltakva Univ. Research Center) (42.0528°
N, 41.7273° E): 9 ♀♀ and 1 ♂ on Rubus sp. (Rosaceae), at Sagarejo (Tokhliauri) (41.7299° N,
45.4236° E): 11 ♀♀ and 3 ♂♂ on Rubus sp. (Rosaceae), at Senaki (Sakharbedio) (42.2858° N,
42.0381° E): 9 ♀♀, 1 ♂ and 1 immature on Rubus sp. (Rosaceae) and 1 ♀ on Corylus avellana
(Betulaceae), at Telavi (5 kms West from Telavi) (41.9283° N, 45.4241° E): 3 ♀♀ on Rubus sp.
Tixier M. et al. (2021), Acarologia 61(4): 824-844. https://doi.org/10.24349/m2Rp- WodG 839
(Rosaceae), at Terjola (Chognari) (42.2305° N, 42.7781° E): 1 ♀ on Rubus sp. (Rosaceae), at
Tetri Tskaro (Koda) (41.5953° N, 44.7767° E): 12 ♀♀, and 3 ♂♂ on Rubus sp. (Rosaceae).
Previous records. Algeria, Azores, Egypt, France, Greece, Iran, Israel, Italy, Montenegro,
Morocco, Portugal, Slovenia, Spain, Syria, Tunisia, Turkey, USA.
Remarks. According to the world database of Demite et al. (2021), P. finitimus is not
reported from Georgia. However, Phytoseius plumifer (Canestrini and Fanzago) has been
reported several times from this country. Because of its long history of misidentification with
P. finitimus (Duso and Fontana 2002), we can wonder about the specimens reported under the
name of P. plumifer from Georgia.
Phytoseius finitimus was the most frequent species retrieved herein (41% of the specimens
collected).
CytB (29), COI (28) and 12S (18) sequences were obtained and compared to those of
Tixier et al. (2017) for specimens collected on Viburnum tinus (Adoxaceae), Vitis vinifera
(Vitaceae) from Italy and Actinidia deliciosa (Actinidiacae) from France. The supplementary
table S4 shows the genetic distances obtained. Low intraspecific variation was observed for
the Georgian specimens. The Georgian specimens are molecularly closer to those from A.
deliciosa and V. vinifera than to those from V. tinus, whatever the samples considered (locations
and plants). It is worth to note that for the three molecular fragments, a high genetic distance
is observed between a specimen collected from Rubus sp. at Bolnisi-Kveshi and all the others
(Supplementary Table S4).
Conclusion
Eleven species of Phytoseiidae were identified during this survey, and among them seven
are new for the Georgia Fauna. Results show that despite the reduced number of host plant
species sampled, new occurrences were revealed, emphasizing knowledge gaps on Phytoseiidae
distribution. Main features resulting from the survey include (i) the occurrence of common
East European species, already retrieved from this country and neighbouring countries, and (ii)
the unexpected occurrence of some species, which could be explained by exotic introductions
(accidental or for biological control purposes). The fact that E. stipulatus and P. finitimus were
observed for the first time in Georgia, while they were the two most abundant species retrieved,
is quite unexpected. Fauna modification due for instance to climate change (especially for
E. stipulatus as this species is mainly reported from the Mediterranean coast climate) and/or
misidentifications (especially for P. finitimus because of repeated misidentification with P.
plumifer) are hypotheses that can be put forward to explain these results. The study also
illustrates the utility of integrative taxonomy for diagnosis purposes. The observation of the
lowest intraspecific distance never detected for the 12S rRNA marker and the validity of the
genus Transeius are the main taxonomic issues pinpointed.
Acknowledgements
This work was supported by the European Union’s Horizon 2020 research and innovation
program [grant 773 902-SuperPests]. We are very grateful to the three reviewers for their
important comments on an early version of this manuscript.
References
Abbasova E. D. 1972. Phytoseiid mites (Parasitiformes: Phytoseiidae) of Azerbaijan. Avtoreferat
Dissertatsii na Soiskanie Uchenoy Stepeni Kandidata Biologicheskikh Nauk. Akadrmiya Nauk
Azerbaydzhanskoy SSR, Institut Zoologii, Baku, Azerbaijan, 34 pp.
Amitai S., Swirski E. 1981. A new species of Amblyseius (Acarina: Phytoseiidae) from the Far East. Isr.
J. Entomol., 15: 59-66.
Tixier M. et al. (2021), Acarologia 61(4): 824-844. https://doi.org/10.24349/m2Rp- WodG 840
Arutunjan E.S. 1970. Phytoseiid mites (Phytoseiidae) on agricultural crops in the Armenian SSR.
Akademii Nauk Armyanskoi SSR, Otdelenie Biologicheskikh Nauk, Dissertatsii na Soiskanie
Uchenoi Stepeni Candidata Biologrcheskikh Nauk, Zooliya, 97, 31 pp.
Athias-Henriot C. 1958. Phytoseiidae et Aceosejidae (Acarina: Gamasina) d’Algérie. II. Phytoseiidae.
Clé des genres Amblyseius Berlese (Suite) et Seiulus Berlese. Bull. Soc. Hist. Nat. Afrique du Nord,
49: 23-43.
Athias-Henriot C. 1959. Acariens planticoles d’Algérie. I. 5e contribution au genre Amblyseius Berlese
(Phytoseiidae). II. Première liste d’Actinochitinosi (Cheyletidae, Caligonellidae, Hemisarcoptidae).
Bull. Acad. Roy. Belgique, Sciences (Ser. 5), 45: 130-153.
Athias-Henriot C. 1960. Nouveaux Amblyseius d’Algérie (Parasitiformes, Phytoseiidae). Acarologia, 2:
288-299.
Athias-Henriot C. 1975. Nouvelles notes sur les Amblyseiini. II. Le relevé organotaxique de la face
dorsale adulte (Gamasides protoadéniques, Phytoseiidae). Acarologia, 17(1): 20-29.
Athias-Henriot C. 1977. Nouvelles notes sur les Amblyseiini. III. Sur le genre Cydnodromus: Redéfi-
nition, composition (Parasitiformes, Phytoseiidae). Entomophaga, 22: 61-73. https://doi.org/10.1007/
BF02372991
Barbosa Lima D., Rezende-Puker D., Santos de Mendonça R., Tixier M.-S., Guedes Correia Gondim Junior
M., Wagner da Silva Melo J., Chiaradia Oliveira D., Navia D. 2018. Molecular and morphological
characterization of the predatory mite Amblyseius largoensis (Acari: Phytoseiidae). Surprising
similarity between an Asian and American populations. Exp. Appl. Acarol., 76: 287-310.
https://doi.org/10.1007/s10493-018- 0308-1
Beglyarov G.A. 1958. Species of Phytoseiidae (Parasititormes: Gamasoidea) predatory upon tetranychid
mites in orchards of the Krasnodar region. Trudy Vsesoiuznogo Institut Zashchity Rastenii, Leningrad,
Russia, 10: 98-124.
Chant D.A. 1956. Some mites of the subfamily Phytoseiinae (Acarina: Laelaptidae) from southeastern
England, with descriptions of new species. Can. Entomol., 88: 26-37. https://doi.org/10.4039/Ent8826-1
Chant D.A. 1959. Phytoseiid mites (Acarina: Phytoseiidae). Part I. Bionomics of seven species in
southeastern England. Part II. A taxonomic review of the family Phytoseiidae, with descriptions of
thirty-eight new species. Can. Entomol., 61(12): 1-166. https://doi.org/10.4039/entm9112fv
Chant D.A., Yoshida-Shaul E. 1984. A world review of the occidentalis species group in the genus
Typhlodromus Scheuten (Acarina: Phytoseiidae). Can. J. Zool., 62: 1860-1871. https://doi.org/10.1139/
z84-272
Chant D.A., Yoshida Shaul E. 1990. The identities of Amblyseius andersoni (Chant) and A. potentillae
(Garman) in the family Phytoseiidae (Acari: Gamasina). Int. J. Acarol., 16(1): 5-12. https:
//doi.org/10.1080/01647959008683857
Chant D.A., Yoshida-Shaul E. 1991. Adult ventral setal patterns in the family Phytoseiidae (Acari:
Gamasina). Int. J. Acarol., 17: 187-199. https://doi.org/10.1080/01647959108683906
Chant D.A., McMurtry J.A. 2004. A review of the subfamily Amblyseiinae Muma (Acari: Phytoseiidae):
Part III. The tribe Amblyseiini Wainstein, subtribe Amblyseina n. subtribe. Int. J. Acarol., 30(3):
171-228. https://doi.org/10.1080/01647950408684388
Chant D.A., McMurtry J.A. 2007. Illustrated keys and diagnoses for the genera and sub-genera of the
Phytoseiidae of the World. Indira Publishing House, 220 pp.
Cunliffe F., Baker E.W. 1953. A guide to the predatory phytoseiid mites of the United States. Pinellas
Biology Laboratory, Inc., 1, 28 pp.
De Leon D. 1959. Two new genera of Phytoseiid mites with notes on Proprioseius meridionalis Chant
(Acarina: Phytoseiidae). Entomol. News, 70: 257-262.
Demite P.R., Moraes G.J. de, McMurtry J.A., Denmark H.A., Castilho R.C. 2021. Phytoseiidae Database.
Available from: www.lea.esalq.usp.br/phytoseiidae (accessed 20/XII/2020)
Denmark H.A. 1966. Revision of the genus Phytoseius Ribaga, 1904 (Acarina: Phytoseiidae). Fla. Dep.
Agric. Bul., 6: 1-105.
Denmark H.A., Welbourn W.C. 2002. Revision of the genera Amblydromella Muma and Anthoseius De
Leon (Acari: Phytoseiidae). Int. J. Acarol., 28(4): 291-316. https://doi.org/10.1080/01647950208684308
Dos Santos V., Tixier M.-S. 2017. Molecular markers for analysing phylogenetic relationships within
the mite family Phytoseiidae (Acari: Mesostigmata). Cladistics 28(5): 1-16. https://doi.org/10.1111/cla.
12166
Duso C., Fontana P. 2002. On the identity of Phytoseius plumifer (Canestrini & Fanzago, 1876) (Acari:
Phytoseiidae). Acarologia, 42 (2) : 127-136.
Ehara S., Amano H. 1998. A revision of the mite family Phytoseiidae in Japan (Acari: Gamasina), with
remarks on its biology. Species Divers., 3(1): 25-73. https://doi.org/10.12782/specdiv.3.25
Ehara S., Okada Y., Kato H. 1994. Contribution to the knowledge of the mite family Phytoseiidae in
Japan (Acari: Gamasina). J. Fac. Educ. Tottori University Nat. Sc., 42(2): 119-160.
Faraji F., Cobanoglu S., Cakmak I. 2011. A checklist and a key for the Phytoseiidae species of turkey
with two new species records (Acari: Mesostigmata). Int. J. Acarol., 37 (suppl. 1): 221-243.
https://doi.org/10.1080/01647954.2011.558851
Ferragut, F., Escudero, A. 1997. Taxonomy and distribution of predatory mites belonging to the genus
Euseius Wainstein 1962, in Spain (Acari, Phytoseiidae). Bol. San. Veg. Plagas, 23(2): 227-235.
Ferragut F. 2018. New records of phytoseiid mites of the subfamilies Typhlodrominae and Phytoseiinae
(Acari: Phytoseiidae) from Spain, with description of a new species and re-description of four species
of Typhlodromus Scheuten. Syst. Appl. Acarol., 23(5): 883-910. https://doi.org/10.11158/saa.23.5.8
Gomelauri L.A. 1968. Three new species of mites of the family Phytoseiidae in southern Georgia [in
Russian]. Bulletin of the Academy of Sciences of the Georgian SSR, Zoology and Parasitology, 52(2):
515-520.
Tixier M. et al. (2021), Acarologia 61(4): 824-844. https://doi.org/10.24349/m2Rp- WodG 841
Hajizadeh J., Mortazavi S. 2015. The genus Euseius Wainstein (Acari: Phytoseiidae) in Iran, with a
revised key to Iranian phytoseiid mites. Int. J. Acarol., 41 (1) : 53-66. https://doi.org/10.1080/01647954.
2014.985712
Jeyaprakash A., Hoy M.A. 2002. Mitochondrial 12S rRNA sequences used to design a molecular ladder
assay to identify six commercially available phytoseiids (Acari: Phytoseiidae). Biol. Control, 25:
136-142. https://doi.org/10.1016/S1049-9644(02)00056- 7
Ji J., Lin T., Zhang Y., Lin J., Li L., Chen X. 2013. A comparison between Amblyseius (Typhlodromips)
swirskii and Amblyseius eharai with Panonychus citri (Acari: Tetranychidae) as prey: developmental
duration, life table and predation. Syst. Appl. Acarol., 18(2): 123-129. https://doi.org/10.11158/saa.18.2.
4
Kanouh, M., Tixier, M.-S., Guichou, S., Cheval, B. & Kreiter, S. 2010. Two synonymy cases within the
genus Neoseiulella (Acari: Phytoseiidae): is the molecular evidence so evident? Biol. J. Linn. Soc.,
101: 323-344. https://doi.org/10.1111/j.1095-8312.2010.01516.x
Karg W. 1971. Acari (Acarina), Milben, Unterordnung Anactinochaeta (Parasitiformes): Die freilebenden
Gamasina (Gamasides), Raubmilben. Die Tierwelt Deutschlands und der angrenzenden Meeresteile,
59. Teil, VEB Gustav Fischer Verlag, Jena, 475 pp.
Karg W. 1991. Die Raubmilbenarten der Phytoseiidae Berlese (Acarina) Mitteleuropas sowie angrenzen-
der Gebiete. Zool. Jahrb. Syst., 118(1): 1-64.
Knapp M., Van Houten, Y., Van Baala E., Groot T. 2018. Use of predatory mites in commercial biocontrol:
current status and future prospects. Acarologia 58(Suppl): 72-82. https://doi.org/10.24349/acarologia/
20184275
Kazak C., Yildiz S., Sekeroglu E. 2002. Biological characteristics and life tables of Neoseiulus
umbraticus Chant (Acari, Phytoseiidae) at three constant temperatures. J. Pest Sci., 75: 118-121.
https://doi.org/10.1046/j.1472-8206.2002.02034.x
Kolodochka L.A. 1978. Manual for the identification of plant-inhabiting phytoseiid mites. Akademii
Nauk Ukrainian SSR, Instituta Zoologii, Naukova Dumka , Kiev, 79 pp.
Kolodochka L.A. 2006. Phytoseiid mites of the Palaearctic Region (Parasitiformes, Phytoseiidae):
faunistic, taxonomy, ecomorphology, evolution. Vest. Zool., suppl. 21, 250pp.
Kreiter S., Douin M., Tixier M.-S. 2021. New records of phytoseiid mites (Acari: Mesostigmata) from
Madeira Island. Acarologia 61 (2): 217-240. https://doi.org/10.24349/acarologia/20214428
Kreiter S., Payet R.-M., Douin M., Fontaine O., Fillatre J., Lebellec F. 2020. Phytoseiidae of La Réunion
Island (Acari: Mesostigmata): three new species and two males described, new synonymies, and new
records. Acarologia, 60(1) : 111-195. https://doi.org/10.24349/acarologia/20204361
Kreiter S., Dos Santos Vicente V., Tixier M.-S., Fontaine O. 2016. An unexpected occurrence of
Amblyseius swirskii Athias-Henriot in La Réunion Island (Acari: Phytoseiidae). Acarologia,56(2):
175-181. https://doi.org/10.1051/acarologia/20162254
Kulikova L. 2011. Mites of fruit plantations of the Republic of Moldova. Muzeul Olteniei Craiova.
Oltenia. Studii şi comunicări. Ştiinţele Naturii, 27(1): 55-62.
Kumar S., Stecher G., Li M., Knyaz C., Tamura K. 2018. MEGA X: Molecular Evolutionary Genetics
Analysis across computing platforms. Mol. Biol. Evol., 35: 1547-1549. https://doi.org/10.1093/molbev/
msy096
Lindquist E., Evans G.W. 1965. Taxonomic concepts in the Ascidae, with a modified setal nomenclature
for the idiosoma of the Gamasina Acarina: Mesostigmata. Mem. Entomol. Soc. Canada, 47, 1-64.
https://doi.org/10.4039/entm9747fv
McGregor E.A. 1954. Two new mites in the genus Typhlodromus (Acarina: Phytoseiidae). South. Calif.
Acad. Sc. Bul., 53: 89-92.
McMurtry JA, Croft BA 1997. Life-styles of phytoseiid mites and their roles in biological control. Ann.
Rev. Entomol., 42: 291-321. https://doi.org/10.1146/annurev.ento.42.1.291
McMurtry J.A., Moraes G.J.de 1984. Some phytoseiid mites from the South Pacific, with descriptions of
new species and a definition of the Amblyseius largoensis species group. Int. J. Acarol., 10: 27-37.
https://doi.org/10.1080/01647958408683347
McMurtry J.A., Moraes G.J. de, Sourasso N.F. 2013. Revision of the life styles of phytoseiid mites (Acari:
Phytoseiidae) and implications for biological control strategies. Syst. Appl. Acarol., 18: 297-320.
https://doi.org/10.11158/saa.18.4.1
Moraes G.J. de, McMurtry J.A., Denmark H.A. 1986. A catalog of the mite family Phytoseiidae.
References to taxonomy, synonymy, distribution and habitat. EMBRAPA - DDT, Brasilia, Brazil, 353
pp.
Muma M.H. 1961. Subfamiles, genera, and species of Phytoseiidae (Acarina: Mesostigmata). Fla. St.
Mus. Bull., 5(7): 267-302.
Okassa M., Kreiter S., Guichou S., Tixier M.-S. 2011. Molecular and morphological boundaries of the
predator Neoseiulus californicus McGregor (Acari: Phytoseiidae). Biol. J. Linn. Soc., 104: 393-406.
https://doi.org/10.1111/j.1095-8312.2011.01717.x
Oudemans A.C. 1915. Acarologische Aanteekeningen. LVI. Entomol. Berichten, 4: 180-188.
https://doi.org/10.5962/bhl.part.1128
Oudemans A.C. 1929. Acarologische Aanteekeningen. C. Entomol. Berichten, 8: 28-36.
Oudemans A.C. 1930. Acarologische Aanteekeningen. CI. Entomol. Berichten, 8: 48-53.
Papaioannou-Souliotis P. 1981. Predacious mites (Phytoseiidae) observed on various plants in Greece.
Annales de l’Institut Phytopathologique Benaki, 13: 36-58.
Park Y., Joon-Ho Lee J.H. 2020. Temperature-dependent development and oviposition models and
life history characteristics of Amblyseius eharai (Amitai et Swirski) (Acari: Phytoseiidae) preying
on Tetranychus urticae (Koch) (Acari: Tetranychidae). J. Asia-Pac. Entomol., 23 (4): 869-878.
https://doi.org/10.1016/j.aspen.2020.07.021
Tixier M. et al. (2021), Acarologia 61(4): 824-844. https://doi.org/10.24349/m2Rp- WodG 842
Pritchard A.E., Baker E.W. 1962. Mites of the family Phytoseiidae from Central Africa, with remarks on
the genera of the world. Hilgardia, 33(7): 205-309. https://doi.org/10.3733/hilg.v33n07p205
Queiroz M.C., Douin M., Marques de Souza S., Sato E., Tixier M.-S. 2021. Molecular variations of the
Cytochrome b DNA and protein sequences in Phytoseiulus macropilis Banks (Acari: Phytoseiidae)
and P. persimilis (Athias-Henriot) (Acari: Phytoseiidae) reflect population structuration. Exp. Appl.
Acarol., 84(4):687-701. https://doi.org/10.1007/s10493-021- 00648- w
Rahmani H., Kamali K., Faraji F. 2010. Predatory mite fauna of Phytoseiidae of northwest Iran (Acari:
Mesostigmata). Turk. J. Zool., 34: 497-508. https://doi:10.3906/zoo-0902-23
Ribaga, C. 1904 (1902) Gamasidi planticoli. Riv. Patol. Veg., 10, 175-178.
Rivnay T., Swirski E. 1980. Four new species of phytoseiid mites (Acarina: Mesostigmata) from Israel.
Phytoparasitica, 8: 173-187. https://doi.org/10.1007/BF03158314
Rowell H.J., Chant D.A., Hansell R.I.C. 1978. The determination of setal homologies and setal
patterns on the dorsal shield in the family Phytoseiidae. Can. Entomol., 110: 859-876. https:
//doi.org/10.4039/Ent110859-8
Samsoniya T.I. 1972. Species composition of predatory mites (Parasitiformes: Phytoseiidae) on stonefruit
plants in eastern Georgia. Bull. Acad. Sci. of Georgian SSR, 65(1): 193-196.
Samsoniya T.I. 1977. Zonal-vertical distribution of Phytoseiidae in eastern Georgia on pip fruit culture.
Bull. Acad. Sci. of Georgian SSR, 87(1): 181-183.
Schuster R.O., Pritchard A.E. 1963. Phytoseiid mites of California. Hilgardia, 34: 191-285. https:
//doi.org/10.3733/hilg.v34n07p191
Sengonca C., Drescher K. 2001. Laboratory studies on the suitability of Thrips tabaci Lindeman
(Thysanoptera, Thripidae) as prey for the development, longevity, reproduction and predation of four
predatory mite species of the genus Amblyseius (Acari, Phytoseiidae). Z. PflKrankh. PflSchutz., 108:
66-76.
Swirski E., Ragusa S. 1976. Notes on predacious mites of Greece, with a description of five new species
(Mesostigmata: Phytoseiidae). Phytoparasitica, 4: 101-122. https://doi.org/10.1007/BF02980341
Tamura K., Stecher G., Peterson D., Filipski A., Kumar S. 2013. MEGA6: Molecular Evolutionary
Genetics Analysis using Maximum Likelihood, Evolutionary Distance, and Maximum Parsimony
Methods. Mol. Biol. Evol., 30: 2725-2729. https://doi.org/10.1093/molbev/mst197
Tixier M.-S. 2018. Predatory mites (Acari: Phytoseiidae) in agro-ecosystems and conservation biological
control: a review and explorative approach for forecasting plant-predatory mite interactions and mite
dispersal. Frontiers in Ecology & Evolution, 6: 192. https://doi.org/10.3389/fevo.2018.00192
Tixier M.-S., Allam L., Douin M., Kreiter S. 2016. Phytoseiidae (Acari: Mesostigmata) of Morocco: new
records, descriptions of five new species, re-descriptions of two species, and key for identification.
Zootaxa, 4067(5): 501-551. https://doi.org/10.11646/zootaxa.4067.5.1
Tixier M.-S., Guichou S., Kreiter S. 2008a. Morphological variation in the biological control agent
Neoseiulus californicus (McGregor) (Acari: Phytoseiidae): consequences for diagnostic reliability
and synonymies. Invert. Syst., 22: 453-469. https://doi.org/10.1071/IS07052
Tixier M.-S., Kreiter S. 2009. Arthropods in biodiversity hotspots: the case of the Phytoseiidae (Acari:
Mesos-tigmata) Biodivers. Conserv., 18: 507-527. https://doi.org/10.1007/s10531- 008- 9517-y
Tixier M.-S., Principato D., Douin M., Kreiter S. 2019. Mites of the genus Typhlodromus (Acari:
Phytoseiidae) from Southern France: combined morphological and molecular approaches for species
identification. Zootaxa, 4604(2): 242-280. https://doi.org/10.11646/zootaxa.4604.2.2
Tixier M.-S., Ferrero M., Okassa M., Guichou S., Kreiter S. 2010a. On the specific identity of
specimens of Phytoseiulus longipes Evans (Mesostigmata: Phytoseiidae) showing different feeding
behaviours: morphological and molecular analyses. Bull. Entomol. Res., 100: 569-579. https:
//doi.org/10.1017/S0007485309990617
Tixier M.-S., Okassa M., Liguori M.L., Poinso A., Salerno B., Kreiter S. 2010b. Voucher specimens
for DNA sequences of Phytoseiid mites (Acari: Mesostigmata). Acarologia, 50: 487-494.
https://doi.org/10.1051/acarologia/20101984
Tixier M.-S., Dos Santos V., Douin M., Duso C., Kreiter S. 2017. Great molecular variation questions the
status of the species Phytoseius finitimus (Acari: Phytoseiidae) and the barcoding decision diagnosis.
Acarologia, 57(3): 493-515. https://doi.org/10.24349/acarologia/20174168
Tixier M.-S., Kreiter S., Moraes G.J. 2008b. Biogeographic distribution of the mites of the family
Phytoseiidae (Acari: Mesostigmata). Biol. J. Linn. Soc., 93: 845-856. https://doi.org/10.1111/j.
1095-8312.2007.00937.x
Tixier M.-S., Kreiter S., Douin M., Moraes G.J. 2012a. Rates of description of Phytoseiidae (Acari:
Mesostigmata): space, time and body size variations. Biodiv. Conserv.,*21: 993-1013. https:
//doi.org/10.1007/s10531-012- 0235-0
Tixier M.-S., Okassa M., Kreiter S. 2012b. An integrative morphological and molecular diagnostics for
Typhlodromus pyri (Acari: Phytoseiidae). Zool. Scr., 41: 68-78. https://doi.org/10.1111/j.1463- 6409.2011.
00504.x
Tixier M.-S., Perez Martinez S., Douin M. 2020a. Markers for life traits: the example of variations
in morphology, molecular and amino acid sequences within the species Typhlodromus (Anthoseius)
recki Wainstein (Acari: Mesostigmata: Phytoseiidae). Biol. J. Linn. Soc. 103, online first.
https://doi.org/10.1093/biolinnean/blaa103
Tixier M.-S., Douin M., Oliva R., Gonzalez L., Pount B., Kreiter S. 2020. Distribution and biological
features of the species Typhlodromus (Anthoseius)recki (Acari: Phytoseiidae) on Tetranychus urticae,
T. evansi (Acari: Tetranychidae) and Aculops lycopersici (Acari: Eriophyidae). Acarologia, 60(4):
684-697. https://doi.org/10.24349/acarologia/20204396
Tsolakis H., Tixier M.-S., Kreiter S., Ragusa S. 2012. The genus concept within the family Phytoseiidae
(Acari: Parasitiformes). Historical review and phylogenetic analyses of the genus Neoseiulus Hughes.
Zool. J. Linn. Soc., 165: 253-273. https://doi.org/10.1111/j.1096- 3642.2011.00809.x
Tixier M. et al. (2021), Acarologia 61(4): 824-844. https://doi.org/10.24349/m2Rp- WodG 843
Ueckermann E.A., Loots G.C. 1988. The African species of the subgenera Anthoseius De Leon and
Amblyseius Berlese (Acari: Phytoseiidae). Entomol. Mem., Dep. Agric. Water Supply, Rep. South
Africa 73, 168 pp.
Wainstein B.A. 1959. New subgenus and species of the genus Phytoseius Ribaga, 1902 (Phytoseiidae:
Parasitiformes). Zool. Zhur., 38: 1361-1365.
Wainstein B.A. 1962. Révision du genre Typhlodromus Scheuten, 1857 et systématique de la famille des
Phytoseiidae (Berlese 1916) (Acarina: Parasitiformes). Acarologia, 4: 5-30.
Wainstein B.A., Vartapetov S.G. 1973. Predatory mites of the family Phytoseiidae (Parasitiformes) of
Adzharskaya ASSR. Akademiya Nauk Armyanskoy SSR, Biologicheskiy Zhurnal Armenii, 26(2):
102-105.
Wainstein B.A. 1958. New species of mites of the genus Typhlodromus (Parasitiformes: Phytoseiidae)
from Georgia. Soobshcheniya Akademii Nauk Gruzinskoy SSR, 21(2): 201-207.
Yoshida-Shaul E., Chant D.A. 1995. A review of the species of Phytoseiidae (Acari: Gamasina) described
by A. C. Oudemans. Acarologia, 36(1): 3-19.
Tixier M. et al. (2021), Acarologia 61(4): 824-844. https://doi.org/10.24349/m2Rp- WodG 844