Content uploaded by Fabian Steger
Author content
All content in this area was uploaded by Fabian Steger on Oct 13, 2021
Content may be subject to copyright.
Teaching Energy Storage Systems
in Laboratories:
Hands-on versus Simulated Experiments
A thesis submitted in fulfilment of the requirements
for the degree of Doctor of Philosophy
Fabian Steger
B. Sc. (UAS Regensburg, Germany)
M. Eng. (UAS Regensburg, Germany)
School of Engineering
College of Science, Technology, Engineering and Maths
RMIT University
in cooperation with
Faculty of Electrical Engineering and Computer Science
Technische Hochschule Ingolstadt
March 2020
Table of contents
List of figures ................................ vii
List of tables ................................. xi
Terminology and abbreviations ....................... xv
Abstract 1
1 Background 4
1.1 Statement of problem ......................... 5
1.2 Research questions .......................... 8
1.3 Thesis structure ............................ 10
2 Review on laboratory teaching and learning 11
2.1 The role of laboratories ........................ 11
2.2 The physical nature and location of laboratories ........... 14
2.3 Kinds of interaction with the experiment ............... 16
2.4 Mediation/User interfaces ....................... 16
2.5 Students’ perception of laboratory modes .............. 20
2.6 Success of different laboratory learning modes ............ 21
2.7 Influences on laboratory learning ................... 23
2.8 Assessment of laboratories ...................... 30
3 Review on the educational pathways of the study participants 34
3.1 Primary and secondary schooling ................... 35
3.2 Education and training in Germany .................. 36
3.3 VET-graduates in tertiary education ................. 38
3.4 VET: Social background and mobility ................ 39
3.5 VET: Wages and career perspectives ................. 41
4 Research approach and methods 42
4.1 Data sources .............................. 42
4.2 Laboratory learning using different learning modes (DS-A) ..... 44
4.3 Amount of Practical Experience (DS-B) ............... 58
4.4 Personality/RIASEC (DS-C) ..................... 60
4.5 Subjective opinions after conducting the experiments (DS-D) . . . . 65
4.6 Subjective opinions on the learning modes, general (DS-E) ..... 67
v
4.7 Objective data – THI university database (DS-F) ........... 70
4.8 Study runs and participants ...................... 72
4.9 Research ethics ............................ 79
5 Evidence and findings 81
5.1 Available data sources vs. study runs ................. 81
5.2 Laboratory learning using different learning modes (DS-A) ..... 83
5.3 Amount of Practical Experience (DS-B) ............... 101
5.4 Personality/RIASEC (DS-C) ..................... 122
5.5 Subjective opinions after conducting the experiments (DS-D) . . . . 131
5.6 Subjective opinions on the learning modes, general (DS-E) . . . . . 146
5.7 Objective data – THI university database (DS-F) ........... 165
6 Analysis and discussion 171
6.1 Identified aspects ........................... 172
6.2 Limitations .............................. 185
7 Conclusions and recommendations 190
7.1 Conclusions .............................. 190
7.2 Summary of contributions ...................... 197
8 Future work 200
9 References 207
A Publications 226
A.1 List of publications .......................... 226
A.2 Contributions to research publications ................ 228
B Aspects which were held identical in the compared modes (Summary) 239
C Research ethics – letter of approval 242
D Amount of Practical Experience, individual items (DS-B) 247
D.1 Item difficulties ............................ 247
D.2 Test performances ........................... 250
D.3 Superior learning mode ........................ 250
E RIASEC test set questions (DS-C) 253
E.1 Explorix ................................ 253
E.2 AIST ................................. 256
F Used devices and simulations 258
F.1 Hands-on lithium-ion cells ...................... 258
F.2 Custom-made hands-on devices ................... 261
F.3 Simulation model ........................... 272
vi
F.4 The client GUI ............................ 274
F.5 Quality checks/Reviews of the employed tools and simulations . . . 276
G Contents of the battery laboratory 277
G.1 The study program “B. Eng. Electric Mobility” ........... 277
G.2 The energy storages study module .................. 279
G.3 The energy storages laboratory .................... 280
G.4 Introductory meeting ......................... 282
G.5 Lesson A – Kelvin method, contact and insul. res., flash-over voltage 285
G.6 Lesson B – Open-circuit voltage curve (OCV) ............ 301
G.7 Lesson C1 – Internal resistance .................... 307
G.8 Lesson C2 – Power .......................... 315
G.9 Lesson D – Capacity and energy ................... 322
G.10 Simulation Workshop E – Matlab/Simulink ............. 330
H Testing the gained knowledge 339
H.1 Questions and tasks .......................... 339
H.2 Tests .................................. 358
I Statistical methods 362
I.1 Test for normal distribution ...................... 362
I.2 Statistical hypothesis testing ..................... 363
I.3 Testing scale reliability ........................ 367
I.4 Correlation .............................. 368
I.5 Studentisation / Z-variate ....................... 370
vii
Abstract
Background
Engineering courses often complement lectures with laboratory classes to optimise
student learning outcomes and further develop valuable skills for future employment.
Computer simulated experiments for conducting laboratory exercises have become
increasingly popular in higher education and vocational training institutions to re-
place traditional hands-on laboratories. Reasons for this include for example, cost
efficiency and repeatability.
Research question
There has been a wide array of discussion on the efficacy of the two laboratory modes
in teaching, both in general and for students in engineering fields (for example, chem-
ical engineering or electrical engineering). However, many previous studies on this
question did not reach a universally valid conclusion. The used methodologies mixed
other influences with the impact of the investigated learning modes. These influ-
ences include for example accompanying lectures, experimental instructions, teach-
ers, learning objectives, tests, working teams, and many more. Thus, the differences
in results of these studies cannot be attributed to the laboratory mode only.
The study conducted for this thesis investigated differences in learning outcomes
of students in higher education when comparing two laboratory modes in the local
domain:
• In-person hands-on laboratories allow students to directly interact with the sub-
ject at hand, although this interaction might be mediated through technology
or a user interface.
• In-person simulated laboratories moderate all student interactions through a
user interface. The properties of the investigated effect are simulated by com-
puter software. The students work in a classroom equipped with computers on
which the simulations are running.
Since this study was focused solely on comparing different learning modes, all other
aspects were held as constant as possible. Improvements that were theoretically pos-
sible in only one of the teaching methods (e.g. time-lapse in simulations) were not im-
plemented in order to keep the surrounding conditions as equal as possible. Thus, the
aim of the research was not to determine which of the investigated laboratory modes
1
Abstract
would be best for teaching a specific topic, but rather to investigate whether or not
there are discernible differences in teaching success when conducting the same ex-
periment in hands-on and simulated laboratories. The ultimate goal was to establish
more reliable and generalisable insights into the influence of a particular laboratory
mode on learning.
The study did not include a remote laboratory condition; the comparison was
only made between in-person laboratory teaching with proper laboratory equipment
and simulations conducted in the local domain. An important note on demographics:
a third of students at universities of applied sciences have completed apprenticeships
in the German vocational education and training programs (VET) before enrolment.
These VET programs mainly consist of practical on-the-job learning and aim to di-
rectly prepare apprentices for entering the job market. Due to the large size of this
demographic and their previous experiences mostly with hands-on learning, it was of
additional interest to see if VET-participants’ results differed significantly from those
of their peers when confronted with the two laboratory modes. It was also of interest
to see if the perception of the learning modes influenced the outcome.
Methodology
This study was conducted in two consecutive phases on the example of a practi-
cal course teaching the basics of batteries (not related to physical manipulation of
the batteries). A counterbalanced within-subject methodology was employed with
German and international participants in nine study runs. The laboratory modes al-
ternated, while the learning objectives and the experimental approach of laboratory
exercises remained practically identical.
In the first phase, the objective was to compare students’ learning success when
working with hands-on laboratories and with overt computer simulations, respec-
tively. The second phase was conceptualised to give insight into possible subjective
influences of students’ perception of the two laboratory modes. In this phase, the sim-
ulation condition was hidden. Participants used hands-on equipment in both condi-
tions. In the first condition, real measurements were shown; in the second condition,
hands-on devices displayed simulated battery behaviour to investigate the influence
of students’ perception. The participants were not aware of the differences in data
sources.
Besides the comparison of knowledge test results, questionnaires were employed
to correlate prior, specifically technical, practical experience and previous appren-
ticeship training with the success of the knowledge transfer in both of the compared
modes. Well-known personality tests were also employed in order to provide further
insight into the subjects.
The study collected subjective opinions regarding the laboratory modes in two
ways:
• Participants of the main study were asked to provide feedback after conducting
a laboratory experiment. This method allowed for the indirect gathering of
2
Abstract
information about the difference in perception towards the two modes.
• Persons who had either not yet started the laboratory or weren’t participating in
the laboratory were asked to fill out a general questionnaire distributed amongst
different universities in different countries. This method asked directly for
subjective opinions regarding the learning modes.
Finally, the THI university database was analysed to extract objective information
about students with and without vocational training degree to gain broad background
information about the compared groups.
Outcomes
In the first phase, it was found that there were statistically significant differences
in learning outcomes favouring the hands-on mode. When the simulation condi-
tion was overt, students with a background in vocational training before enrolment
showed statistically significant trends towards better learning with hands-on experi-
ments. Students in the international runs and Germans without a VET background
performed similarly in both modes.
In the second phase, when students were not aware that they were using simula-
tions, both modes showed similar student learning across all student groups.
Generally, simulations were reported as less relevant and their authenticity was
called into question.
A VET background seems to determine whether or not students had different
levels of success in hands-on and simulated laboratories. As hidden differences in
the simulations could be excluded from having been the reason for inferior learning
results, psychological effects needed to be considered to comprehend the different
laboratory modes’ effectiveness.
The study outcomes lead to the conclusion that students’ personal perception of
the laboratory modes, particular simulations, can have a significant impact on labo-
ratory learning.
3
The full text of the thesis is available using the
RMIT research repository:
http://researchrepository.rmit.edu.au
direct link (2021):
https://researchrepository.rmit.edu.au/esploro/outputs/doctoral/
Teaching-energy-storage-systems-in-laboratories/9922023729701341
Chapter 9
References
[1] European Credit Transfer and Accumulation System. https://ec.europa.eu/
education/resources-and-tools/european-credit-transfer-and-accumulation-
system-ects_en.
[2] A. Hofstein and V. N. Lunetta. The laboratory in science education. Founda-
tions for the twenty-first century. Science Education, 88(1):28–54, 2004.
[3] G. Faucher. The role of laboratories in engineering education. International
Journal Mechanical Eng. Education, 13(3):195–198, 1985.
[4] B. Boesch. Representing in the student laboratory. International Journal for
the Historiography of Science, 5:34–48, Dec. 2018.
[5] C. Unseld and G. Reucher. University types: universities of applied science.
http://dw.com/p/Ovf8, 2010. Accessed: 05.05.2010.
[6] J. Roschelle, R. D. Pea, C. M. Hoadley, D. N. Gordin, and B. Means. Chang-
ing how and what children learn in school with computer-based technologies.
The Future of Children, 10(2):76–101, 2001. DOI:10.2307/1602690.
[7] S. Höntzsch, U. Katzky, K. Bredl, F. Kappe, and D. Krause. Simulationen
und simulierte Welten. Lernen in immersiven Lernumgebungen. In M. Ebner
and S. Schön, editors, Lehrbuch für Lernen und Lehren mit Technologien.
2013.
[8] J. Dahn and G. M. Ehrlich. Lithium-ion batteries. In Linden’s Handbook of
Batteries 4th Edition, pages 26.1–26.79. McGraw-Hill, 2011.
[9] R. Heradio, L. de la Torre, D. Galan, F. J. Cabrerizo, E. Herrara-Viedma, and
S. Dormido. Virtual and remote labs in education. a bibliometric analysis.
Computers & Education, 98:14–38, Aug. 2016.
[10] J. R. Brinson. Learning outcome achievement in non-traditional (virtual and
remote) versus traditional (hands-on) laboratories. A review of the empirical
research. Computers & Education, 87:218–237, 2015.
207
9: References
[11] S. M. Zvacek and M. T. Restivo. Guidelines for effective online lab assign-
ments – contributions to the discussion. In Proceedings of the IEEE Global
Engineering Education Conference 2018, 1442–1446, Santa Cruz de Tener-
ife, Spain, 2018.
[12] L. D. Feisel and A. J. Rosa. The role of the laboratory in undergraduate engi-
neering education. Journal of Engineering Education:121–130, 2005.
[13] E. D. Lindsay. The Impact of Remote and Virtual Access to Hardware upon
the Learning Outcomes of Undergraduate Engineering Laboratory Classes.
PhD thesis, Department of Mechanical & Manufacturing Engineering, The
University of Melbourne, Australia, 2005.
[14] J. Ma and J. V. Nickerson. Hands-on, simulated, and remote laboratories: a
comparative literature review. ACM Computing Surveys, 38(3), 2006.
[15] J. Corter, J. Nickerson, S. Esche, C. Chassapis, S. Im, and J. Ma. Construct-
ing reality: a study of remote, hands-on, and simulated laboratories. ACM
Transactions on Computer-Human Interaction, 14(2), 2007.
[16] N. S. Edward. Evaluation of computer based laboratory simulation. Comput-
ers & Education, 26(1-3):123–130, 1996.
[17] E. McAteer, D. Neil, N. Barr, M. Brown, S. Draper, and F. Henderson. Sim-
ulation software in a life sciences practical laboratory. Computers & Educa-
tion, 26(1-3):102–112, 1996.
[18] S. A. Engum, P. Jeffries, and L. Fisher. Intravenous catheter training system:
computer-based education versus traditional learning methods. American J.
Surgery, 186(1):67–74, 2003.
[19] V. Mathiowetz, C.-H. Yu, and C. Quake-Rapp. Comparison of a gross anatomy
laboratory to online anatomy software for teaching anatomy. Anatomical sci-
ences education, 9(1):52–59, 2016.
[20] C. J. Keller, N. D. Finkelstein, K. K. Perkins, and S. J. Pollock. Assessing
the effectiveness of a computer simulation in introductory undergraduate en-
vironments. In Proceedings of the Physics Education Research Conference,
Syracuse, NY, USA, 2006. AIP Conf. Proceedings.
[21] N. D. Finkelstein, W. K. Adams, C. J. Keller, P. B. Kohl, K. K. Perkins,
N. S. Podolefsky, and S. Reid. When learning about the real world is better
done virtually: a study of substituting computer simulations for laboratory
equipment. Physical Review Special Topics -– Physics Education Research,
1(1), 2005. DOI:10.1103/PhysRevSTPER.1.010103.
[22] C. Tsihouridis, M. Batsila, D. Vavougios, and G. S. Ioannidis. The timeless
controversy between virtual and real laboratories in science education – and
the winner is... In M. E Auer., D. Guralnick, and I. Simonics, editors, Teach-
ing and Learning in a Digital World, pages 1539–1550. Springer Interna-
tional Publishing AG, 2018. ISBN: 978-3-319-73203-9.
208
9: References
[23] D. Weisman. Incorporating a collaborative web-based virtual laboratory in an
undergraduate bioinformatics course. Biochemistry and Molecular Biology
Education, 38(1):4–9, 2015. DOI:10.1002/bmb.20368.
[24] C. Gravier, J. Fayolle, B. Bayard, M. Ates, and J. Lardon. State of the art
about remote laboratories paradigms – foundations of ongoing mutations.
International Journal of Online Engineering, 4(1):19–25, Feb. 2008.
[25] M. Ogot, G. Elliott, and N. Glumac. An assessment of in-person and remotely
operated laboratories. Journal of Engineering Education, 92(1):57–64, Jan.
2003.
[26] R. Heradio, L. de la Torre, and S. Dormido. Virtual and remote labs in control
education: a survey. Annual Reviews in Control, 42:1–10, Aug. 2016. DOI:
10.1016/j.arcontrol.2016.08.001.
[27] K. Siebertz, D. van Bebber, and T. Hochkirchen. Statistische Versuchspla-
nung. Dec. 2017. ISBN: 9783662557426.
[28] C. Bendtsen and F. Steger. The share of graduates of the German Voca-
tional Education and Training System in tertiary education. https://www.
researchgate.net/publication/ 333508340 _ The _ Share _ of _ Graduates_of_
the_German_ Vocational _Education_and_ Training_System_ in _Tertiary_
Education, 2019. Accessed: 19.06.2019.
[29] Royal Society. History of the Royal Society – The story of the Royal Society
is the story of modern science. https :/ / royalsociety.org / about- us / history/.
Accessed: 30.12.2021.
[30] O. A. Soysal. Computer integrated experimentation in electrical engineering
education over distance. In Proceedings of the 2000 Annual ASEE Confer-
ence, pages 5.164.1–5.164.10, St. Louis, Missouri, USA. American Society
for Engineering Education, June 2000. DOI:10.18260/1-2--8230.
[31] L. D. Feisel and G. D. Peterson. A colloquy on learning objectives for en-
gineering educational laboratories. In ASEE Annual Conference and Exposi-
tion. ASEE, Montreal, Ontario, Canada, June 2002.
[32] P. A. Kirschner and J. J. van Merriënboer. Do learners really know best?
Urban legends in education. Educational Psychologist, 48(3):169–183, 2013.
[33] G. Olympiou. Development of a framework of combination of virtual and
real environments experimentation in Physics. PhD thesis, Cyprus University,
2012.
[34] M. D. Dunnete and J. P. Campbell. Laboratory education: impact on people
and organizations. Industrial Relations A Journal of Economy and Society,
8(1):1–27, May 2008.
209
9: References
[35] K. Radin-Salim, M. Puteh, and S. M. Daud. Assessing students’ practical
skills in basic electronic laboratory based on a psychomotor domain model.
Procedia - Social and Behavioral Sciences, 56:546–555, 2012. ISS N: 18770428.
DOI:10.1016/j.sbspro.2012.09.687.
[36] A. N. Wendt. Is there a problem in the laboratory? Frontiers in psychology,
9, Dec. 2018. ISSN: 1664-1078.
[37] S. Sullivan, D. Gnesdilow, S. Puntambekar, and J.-S. Kim. Middle school
students’ learning of mechanics concepts through engagement in different
sequences of physical and virtual experiments. International Journal of Sci-
ence Education, 6(2):1–28, 2017. ISSN: 0950-0693. DOI:10.1080/09500693.
2017.1341668.
[38] M. Koretsky, C. Kelly, and E. Gummer. Student perceptions of learning in
the laboratory: comparison of industrially situated virtual laboratories to cap-
stone physical laboratories. Journal of Engineering Education, 100(3):540–
573, 2011.
[39] J. J. Chini, A. Madsen, E. Gire, N. S. Rebello, and S. Puntambekar. Explo-
ration of factors that affect the comparative effectiveness of physical and vir-
tual manipulatives in an undergraduate laboratory. Physical Review Special
Topics – Physics Education Research, 8(010113):1–12, Apr. 2012.
[40] J. P. Atanas. Is virtual-physical-virtual manipulatives in physics irrelevant
within studio physics environment? Athens Journal of Education, 5(1):29–
43, 2018. DOI:10.30958/aje.5-1-2.
[41] F. V. Evangelou and K. Kotsis. Real vs virtual physics experiments: compar-
ison of learning outcomes among fifth grade primary school students. a case
on the concept of frictional force. International Journal of Science Educa-
tion, 41(3):330–348, 2019. DOI:10.1080/09500693.2018.1549760.
[42] S. Dormido. Control learning: present and future. In Proceedings of the 15th
Triennial World Congress, volume 35, pages 71–93, Barcelona, Spain. Inter-
national Federation of Automatic Control, 2002. DOI:10.3182/20020721-6-
ES-1901.01641.
[43] S. Dormido. Control learning: present and future. Annual Reviews in Control,
28(1):115–136, 2004.
[44] N. M. Lima, M. C. Viegas, and F. J. Garcia-Penalvo. Learning from com-
plementary ways of developing experimental competences // aprendizaje a
partir de maneras complementarias de desarrollar capacidades experimen-
tales. Education in the Knowledge Society, 18(1):63, 2017. DO I:10.14201/
eks20171816374.
[45] V. J. Harward et al. The ilab shared architecture. a web services infrastruc-
ture to build communities of internet accessible laboratories. Proceedings of
IEEE, 96(6):931–950, 2008.
210
9: References
[46] J. Tuttas and B. Wagner. The relevance of haptic experience in remote ex-
periments. In EdMEDIAWorld Conf. Educational Multimedia, Hypermedia,
Telecommunications, Denver, CO, USA, June 2002.
[47] E. D. Lindsay and M. C. Good. Effects of laboratory access modes upon
learning outcomes. IEEE Transactions on Education, 48(4):619–631, Nov.
2005.
[48] F. Steger, A. Nitsche, A. Arbesmeier, K. Brade, H.-G. Schweiger, and I. Bel-
ski. Teaching battery basics in laboratories: hands-on versus simulated exper-
iments. IEEE Transactions on Education, 63(3):198–208, Aug. 2020. DOI:
10.1109/TE.2020.2970554.
[49] C. Lattemann, S. Stieglitz, and S. Korreck. Lernen in Virtuellen Welten. In
H. R. Hansen, D. Karagiannis, and H.-G. Fill, editors, Business Services:
Konzepte, Technologien, Anwendungen. 9. Internationale Tagung Wirtschaftsin-
formatik Band 2, pages 431–440. 2009.
[50] T. Kangasniemi, S. Olkinuora, P. Joensuu, O. Natri, P. Qvist, M. Ketola,
J. Brusin, H. Virtanen, M. Närhi, R. Jokela, E. Palomäki, H. Tiitu, and K.
Nordström. In Proceedings of the 5th International Conference on Computer
Supported Education, 2013, pages 661–672. CSEDU, 2013. ISBN: 978-989-
8565-53-2.
[51] P. Qvist. LabLife3D – a science-based 3D virtual learning environment – de-
signing virtual laboratories: from pedagogical design to learning analytics.
Bachelor’s thesis, Turku University of Applied Sciences, 2015.
[52] K. Lee. The future of learning and training in augmented reality. InSight: A
Journal of Scholarly Teaching, 7:31–42, 2012. ISSN: 1933-4850.
[53] J. Helmer. Second Life and Virtual Worlds. Learning Light Limited, 2007.
[54] M. Shimba, M. P. J. Mahenge, and C. A. Sanga. Virtual labs versus hands-on
labs for teaching and learning computer networking: a comparison study. In-
ternational Journal of Research Studies in Educational Technology, 6(1):43–
58, 2017.
[55] L. Stern, N. Barnea, and S. Shauli. The effect of a computerized simulation
on middle school students’ understanding of the kinetic molecular theory.
Journal of Science Education and Technology, 17:305–315, 2008. DO I:10.
1007/s10956-008-9100-z.
[56] C. Sarabando, J. P. Cravino, and A. Soares. Improving student understanding
of the concepts of weight and mass with a computer simulation. Journal of
Baltic Science Education, 15(1), 2016.
[57] S. L. Hannel and J. Cuevas. A study on science achievement and motivation
using computer-based simulations compared to traditional hands-on manipu-
lation. Georgia Educational Researcher, 15(1), 2018.
211
9: References
[58] J. C. Domínguez, R. Miranda, E. J. González, M. Oliet, and M. V. Alonso.
A virtual lab as a complement to traditional hands-on labs: characterization
of an alkaline electrolyzer for hydrogen production. Education for Chemical
Engineers, 23:7–17, 2018.
[59] N. Lima, C. Viegas, M. Zannin, A. Marques, G. Alves, M. C. Felgueiras,
R. Costa, A. Fidalgo, S. Marchisio, F. Lerro, C. Merendino, J. B. da Silva,
M. I. Pozzo, E. Dobboletta, I. Gustavsson, K. Nilsson, and F. Garcia-Peñalvo.
Do students really understand the difference between simulation and remote
labs? In Proceedings of the 5th Technological Ecosystems for Enhancing
Multiculturality (TEEM17), Cádiz, Spain. Association for Computing Ma-
chinery, Oct. 2017.
[60] S. M. Aziz and T. L. J. Ferris. A psychomotor skills extension to Blooms’s
taxonomy of education objectives for engineering education. In Proceed-
ings of the iCEER Conference on Exploring Innovation in Education and
Research, 2005.
[61] J. D. W. Andrews. Discovery and expository learning compared: their ef-
fects on independent and dependent students. The Journal of Educational
Research, 78(2):80–89, 1984. DOI:10.1080/00220671.1984.10885578.
[62] S. W. Reichmann and A. F. Grasha. A rational approach to developing and
assessing the construct validity of a student learning styles scales instrument.
Journal of Psychology, 87:213–223, 1974.
[63] D. S. Domin. A review of laboratory instruction styles. Journal of Chemical
Education, 76(4):543–547, 1999. DOI:10.1021/ed076p543.
[64] L. Buck, S. Bretz, and M. Towns. Characterizing the level of inquiry in the
undergraduate laboratory. Journal of College Science Teaching, 38(1):52–58,
Sept. 2008.
[65] D. S. Domin. A content analysis of general chemistry laboratory manuals
for evidence of higher-order cognitive tasks. Journal of Chemical Education,
76(1):109–112, 1999. DOI:10.1021/ed076p109.
[66] J. M. Chamberlain, K. Lancaster, R. Parson, and K. K. Perkins. How guid-
ance affects student engagement with an interactive simulation. Chemistry
Edu. Res. & Practice, 15(4):628–638, 2014.
[67] N. M. Webb. Student interaction and learning in small groups. Review of
Educational Research, 52(3):421–445, 1982.
[68] R. E. Slavin. Research for the future: research on cooperative learning and
achievement: what we know, what we need to know. Contemporary Educa-
tional Psychology, 21(1):43–69, 1996. URL:https://pure.york.ac.uk/portal/
en/publications/research-on-cooperative-learning-and-achievement(a7191aef-
4dfc-45e3-876a-e8936490c5c6).html.
212
9: References
[69] N. M. Webb. Peer interaction and learning in small groups. International
Journal of Educational Research, 13(1):21–39, 1989.
[70] M. Phillips, L. H. Gildensoph, M. J. Myers, C. G. Norton, A. M. Olson, K. A.
Tweeten, and D. D. Wygal. Investigative labs in biology: the importance of
attending to team dynamics. Journal of College Science Teaching, 37(2):23–
27, Nov. 2007.
[71] D. Stamovlasis, A. Dimos, and G. Tsaparlis. A study of group interaction pro-
cesses in learning lower secondary physics. Journal of Research in Science
Teaching, 43(6):556–576, 2006. ISSN: 00224308. DO I:10.1002/tea.20134.
[72] J. Van der Laan Smith and R. M. Spindle. The impact of group formation
in a cooperative learning environment. Journal of Accounting Education,
25(4):153–167, 2007.
[73] H.-W. Tien, Y.-S. Lin, Y.-C. Chang, and C.-P. Chu. A genetic algorithm-
based multiple characteristics grouping strategy for collaborative learning. In
D. K. W. Chiu, M. Wang, E. Popescu, Q. Li, R. Lau, T. K. Shih, C.-S. Yang,
and D. G. Sampson, editors, Advances in Web-Based Learning – ICWL 2013
Workshops. Volume 8390, Lecture Notes in Computer Science, pages 11–
22. Springer Berlin Heidelberg, Berlin, Heidelberg, 2015. ISBN: 978-3-662-
46314-7. DOI:10.1007/978-3-662-46315-4{\textunderscore}2.
[74] A. Alaie. High-achieving postbaccalaureate-student teaching assistants. Jour-
nal of College Science Teaching, 37(4), 2008.
[75] S. Nikolic, T. Suesse, T. Mccarthy, and T. Goldfinch. Maximising resource
allocation in the teaching laboratory: understanding student evaluations of
teaching assistants in a team-based teaching format. European Journal of
Engineering Education, 42(6):1–19, Feb. 2017.
[76] G. F. Gobaw and H. I. Atagana. Assessing laboratory skills performance in
undergraduate biology students. Academic Journal of Interdisciplinary Stud-
ies, 2016. ISSN: 22813993. DOI:10.5901/ajis.2016.v5n3p113.
[77] I. Abrahams, M. J. Reiss, and R. M. Sharpe. The assessment of practical work
in school science. Studies in Science Education, 49(2):209–251, 2013. ISSN:
0305-7267. DOI:10.1080/03057267.2013.858496.
[78] E. R. Sanders, S. Toma, A. M. Hirsch, and P. Y. Lee. Transforming laboratory
education in the life sciences. Microbe, 11(2):69–74, Feb. 2016.
[79] B. Campbell, F. Lubben, S. Mathabatha, and M. Rollnick. Measuring uni-
versity entrants’ previous practical experience: how valid are students’ self-
reports? African Journal of Research in Mathematics, Science and Technol-
ogy Education, 4(1):87–95, 2000.
[80] G. P. Baxter, J. Pine, and R. J. Shavelson. Performance assessment in science.
Applied Measurement in Education, 4(4):347–362, 1991.
213
9: References
[81] Office of Assessment, University of Colorado Denver. Electrical engineer-
ing undergraduate program assessment. http://www.ucdenver.edu/about/
departments / assessmentoffice / templates / Pages / default . aspx, 2015. Ac-
cessed: 09.04.2017.
[82] A. B. Hunter, S. L. Laursen, H. Thiry, and T. J. Weston. Urssa: evaluating
student gains from undergraduate research in the sciences. council on under-
graduate research. Council on Undergraduate Research, 29:15–19, 2009.
[83] D. Anastasio, H. Chenette, G. Neumann, and T. Ribera. Assessing student
learning in chemical engineering laboratory courses: a multi-dimensional ap-
proach. Assessment Institute: IUPUI, 2018.
[84] Z. B. Razali and J. P. Trevelyan. Can practical intelligence from a laboratory
experience be measured? Proceedings of the 2008 AaeE Conference, Yep-
poon, 2008.
[85] Z. B. Razali and J. P. Trevelyan. An evaluation of students’ practical intel-
ligence and ability to diagnose equipment faults. Procedia - Social and Be-
havioral Sciences, 56:42–51, 2012. ISSN: 18770428. DOI:10.1016/j.sbspro.
2012.09.630.
[86] European Commission - EACEA National Policies Platform - Eurydice. https:
//eacea.ec.europa.eu/national-policies/eurydice/content/germany_en.
[87] Autorengruppe Bildungsberichterstattung. Bildung in Deutschland 2018. Ein
indikatorengestützter Bericht mit einer Analyse zu Wirkungen und Erträgen
von Bildung. Deutsches Institut für Internationale Pädagogische Forschung,
2018.
[88] Y. Shavit and W. Müller. Vocational secondary education: where diversion
and where safety net? European Societies, 2(1):29–50, 2000.
[89] D. DiBiase. Rethinking laboratory education for an introductory course on
geographic information. Cartographica, 33(4):61–72, Dec. 1996.
[90] Paragraph 35 to 39 bayeug, bavarian law on education and schooling.
[91] BMBF, German Federal Ministry of Education and Research. Report on Vo-
cational Education and Training 2016. German Federal Ministry of Educa-
tion and Research, 2016.
[92] BMBF, German Federal Ministry of Education and Research. Dual Training
at a Glance. German Federal Ministry of Education and Research, 2013.
[93] C. Wieland. Germany’s dual vocational-training system: possibilities for and
limitations to transferability. Local Economy, 30(5):577–583, 2015. DOI:10.
1177/0269094215589318.
[94] H. Solga, P. Protsch, C. Ebner, and C. Brzinsky-Fay. The German vocational
education and training system. Its institutional configuration, strengths and
challenges, Berlin/Germany: WZB Berlin Social Science Center, 2014.
214
9: References
[95] BIBB Datenreport 2019 / Vorabversion, Federal Institute for Vocational Train-
ing (BIBB), Bonn, Germany, 2019. Accessed 2019-05-16.
[96] K. Hoeckel and R. Schwartz. Learning for jobs. OECD Reviews of Vocational
Education and Training Germany, 2010.
[97] S. Dummert. Betriebliche Ausbildungsbeteiligung 2006 bis 2017 – Ergeb-
nisse aus dem IAB-Betriebspanel 2. Mai 2018, Nürnberg/Germany: Institut
für Arbeitsmarkt- und Berufsforschung, 2018.
[98] P. Protsch. Segmentierte Ausbildungsmärkte. Berufliche Chancen von Hauptschü-
lerinnen und Hauptschülern im Wandel. Opladen: Budrich UniPress, 2014.
DOI:10.3224/86388050.
[99] Ausbildung 2018. Ergebnisse einer DIHK-Online-Unternehmensbefragung –
Unternehmen berichten über ihre Ausbildungssituation, Deutscher Industrie-
und Handelskammertag, 2018.
[100] A. Hall and E. Krekel. Erfolgreich im Beruf? Duale und schulische Ausbil-
dungen im Vergleich, Bonn, Germany, 2014.
[101] M. Baethge. Das deutsche Bildungs-Schisma. SOFI-Mitteilungen, 34:13–27,
2006.
[102] Hochschulkompass: Hochschulen in Deutschland, Offered by German Rec-
tors’ Conference. https : / / www . hochschulkompass . de / hochschulen . html.
Accessed: 09.03.2019.
[103] B. Schmidt, A. von Hippel, and R. Tippelt. Higher education evaluation in
Germany. Research in Comparative and International Education, 5(1):98–
111, 2010.
[104] Qualifizierungsangebote im Bereich akademische Bildung. http://www.nque.
de/de/datenbank_akademisch.php, NQuE Netzwerk Qualifizierung Elektro-
mobilität. Accessed: 10.01.2018.
[105] M. Baethge, C. Kerst, M. Leszczensky, and M. Wieck. Zur neuen Konstella-
tion zwischen Hochschulbildung und Berufsausbildung. Forum Hochschule,
3, 2014.
[106] VET in Europe. German Country Report 2016, 2016.
[107] J. Powell and H. Solga. Why are participation rates in higher education in
Germany so low? Institutional barriers to higher education expansion. Jour-
nal of Education and Work, 24(1):49–68, 2011.
[108] N. Kracke, E. Middendorff, and D. Buck. Beteiligung an Hochschulbildung,
Chancen(un)gleichheit in Deutschland (DZHW Brief 3/2018), Updated Ver-
sion. Deutsches Zentrum für Hochschul- und Wissenschaftsforschung (DZHW),
Hannover, 2018.
215
9: References
[109] Bundesagentur für Arbeit. Statistik der Bundesagentur für Arbeit: Berichte:
Blickpunkt Arbeitsmarkt – Akademikerinnen und Akademiker, Nürnberg,
2019.
[110] Statistisches Bundesamt. Verdienste auf einen Blick, 2017.
[111] B. Christoph, L. U., and H. Stübner. Höhere Abschlüsse zahlen sich mit dem
Alter zunehmend aus. Aktuelle Analysen aus dem Institut für Arbeitsmarkt-
und Berufsforschung. IAB Kurzbericht, 13, 2017.
[112] Gehalt.de/Gehaltsvergleich.com. Gehaltsbiografie 2019. https://cdn.gehalt.
de/cms/Gehaltsbiografie-2019.pdf, 2019. Accessed: 19.09.2019.
[113] B. Jones and M. G. Kenward. Design and Analysis of Cross-Over Trials.
Chapman and Hall, London, 2014.
[114] T. J. Cleophas. Carryover effects in clinical research. In T. J. Cleophas, edi-
tor, Human Experimentation, pages 25–36. Springer, Dordrecht, 1999. ISBN:
978-0-7923-5827-5. DOI:10.1007/978-94-011-4663-0_4.
[115] L. Cohen, L. Manion, and K. Morrison. Research Methods in Education (6th
edition). Routledge Falmer, London and New York, 2007.
[116] M. Pickering. Laboratory education as a problem in organization. Journal of
college science teaching, 16(3):187–189, Jan. 1987.
[117] M. J. Larson, J. D. Le Cheminant, K. Hill, K. Carbine, T. Masterson, and E.
Christenson. Cognitive and typing outcomes measured simultaneously with
slow treadmill walking or sitting: implications for treadmill desks. PLoS
ONE, 10(4), 2015.
[118] M. Kendall and A. Stuart. The Advanced Theory of Statistics. Volume 2: In-
ference and Relationship, Section 20.31. Griffin, 1973. ISB N: ISBN 0-85264-
215-6.
[119] S. Hidi. Interest and its contribution as a mental resource for learning. Review
of Educational Research, 60(4):549–571, 1990.
[120] J. L. Holland. Making Vocational Choices: A Theory of Vocational Person-
alities and Work Environments. 3rd Edition. Psychological Assessment Re-
search Inc., U.S, 1997. ISBN: 9780911907278.
[121] A. Krapp and M. Prenzel. Research on interest in science: theories, methods,
and findings. International Journal of Science Education, 33(1):27–50, 2011.
[122] C. Bergmann and F. Eder. AIST-R: Allgemeiner Interessen-Struktur-Test mit
Umwelt-Struktur-Test (UST-R), Manual. Beltz Test Gesellschaft / Hogrefe
Verlagsgruppe, Göttingen, Germany, 2005.
[123] S. J. Fux, F. Stoll, C. Bergmann, F. Eder, and B. Hell. explorix.de – Test-
Set Ausgabe Deutschland, 4th ed. Huber, Hogrefe AG, Bern, 2012. ISBN:
9783456837437.
216
9: References
[124] Qualtrics subscription software platform. https: / / www.qualtrics.com. Ac-
cessed: 07.02.2018.
[125] J. L. Holland. A theory of vocational choice. Journal of Counseling Psychol-
ogy, 6:35–45, 1959. DO I:10.1037/h0040767.
[126] S. J. Fux, F. Stoll, C. Bergmann, and F. Eder. explorix – das Werkzeug zur
Berufswahl und Laufbahnplanung – Manual, 4th ed. Huber, Hogrefe AG,
Bern, 2018.
[127] Moodle is a free and open-source learning management system (LMS) writ-
ten in PHP. https://moodle.org. Accessed: 07.03.2016.
[128] A. L. Comrey. Factor-analytic methods of scale development in personal-
ity and clinical psychology. Journal of Consulting and Clinical Psychology,
56(5):754–761, 1988. DOI:10.1037/0022-006X.56.5.754.
[129] A. P. Field. Discovering statistics using SPSS, 3rd edition. SAGE Publica-
tions, Los Angeles, London, 2009. ISBN: 9781847879073.
[130] B. G. Tabachnick and L. S. Fidell. Using multivariate statistics (6th ed.) Pear-
son Education, Boston, 2013.
[131] L. Guttman. Some necessary conditions for common-factor analysis. Psy-
chometrika, 19(2):149–161, 1954.
[132] H. F. Kaiser. The application of electronic computers to factor analysis. Ed-
ucational and Psychological Measurement, 20(1):141–151, 1960. DOI:10.
1177/001316446002000116.
[133] R. Schnell, P. B. Hill, and E. Esser. Methoden der empirischen Sozialforschung,
7. Auflage. Oldenbourg Wissenschaftsverlag, Vienna, 2005.
[134] F. Steger, A. Nitsche, H.-G. Schweiger, and I. Belski. Teaching battery ba-
sics in laboratories: comparing learning outcomes of hands-on experiments
and computer-based simulations. In Proceedings of the 27th Annual Con-
ference of the Australasian Association for Engineering Education (AAEE
2017), Coffs Harbour, Australia, 2016.
[135] C. Nebl, F. Steger, and H.-G. Schweiger. Discharge capacity of energy stor-
ages as a function of the discharge current – expanding Peukert’s equation. In-
ternational journal of electrochemical science, 12(5):4940–4957, 2017. DOI:
10.20964/2017.06.51.
[136] W. Peukert. Über die Abhängigkeit der Kapacität von der Entladestromstärke
bei Bleiakkumulatoren. Elektrotechnische Zeitschrift, 20:287–288, 1897.
[137] F. Steger, A. Nitsche, K. Brade, I. Belski, and H.-G. Schweiger. Teaching
energy storages by means of a student battery cell test system. In Proceedings
of the 45th SEFI Annual Conference, pages 169–176, Angra do Heroísmo,
Portugal. SEFI – European Society for Engineering Education, 2017.
217
9: References
[138] F. Steger, A. Nitsche, K. Brade, and H.-G. Schweiger. Batterietestsystem für
die Lehre in der Elektromobilität. emobilitytec, 2:58–61, 2017.
[139] F. Steger, A. Nitsche, C. Miley, H.-G. Schweiger, and I. Belski. Laboratory
learning: hands-on versus simulated experiments. In Proceedings of the 28th
Annual Conference of the Australasian Association for Engineering Educa-
tion (AAEE 2017), Manly, Australia, 2017.
[140] F. Steger, A. Nitsche, H.-G. Schweiger, and I. Belski. Hands-on experiments
vs. computer-based simulations in energy storage laboratories. In Proceed-
ings of the 45th SEFI Annual Conference, Angra do Heroísmo, Portugal.
SEFI – European Society for Engineering Education, 2017.
[141] F. Steger, A. Peniche dos Santos, I. Belski, and H.-G. Schweiger. Impedance
spectroscopy upgrade to a student battery cell test system. In International
Workshop on Impedance Spectroscopy, 2017.
[142] F. Steger, A. Nitsche, K. Brade, I. Belski, and H.-G. Schweiger. Energiespeicher-
Praktikum an der TH Ingolstadt: Reale versus simulierte Experimente. In Di-
daktik Nachrichten, Sonderausgabe Forum der Lehre, pages 90–97, Ingol-
stadt, Germany, 2018.
[143] E. Machuca*, F. Steger*, J. Vogt, K. Brade, and H.-G. Schweiger. Avail-
ability of lithium ion batteries from hybrid and electric cars for second use:
how to forecast for germany until 2030. Journal of Electrical Engineering,
6(3):129–143, June 2018. DOI:10.17265/2328-2223/2018.03.001.
[144] W. K. Kim, F. Steger, B. S. Kotak, P. V. R. Knudsen, U. Girgsdies, and
H.-G. Schweiger. Water condensation in traction battery systems. Energies,
12(6):1171–1181, Mar. 2019. DOI:10.3390/en12061171.
[145] F. Steger, A. Arbesmeier, A. Nitsche, K. Brade, H.-G. Schweiger, and I.
Belski. Laboratory learning: influence of the perceived laboratory mode on
learning outcomes. In Proceedings of the 47th SEFI Annual Conference,
pages 1897–1907, Budapest, Hungary. SEFI – European Society for Engi-
neering Education, Sept. 2019. ISBN: 978-2-87352-018-2. URL:https://www.
sefi.be/wp-content/uploads/2019/10/SEFI2019_Proceedings.pdf.
[146] D. Pourtoulidou, F. Steger, U. Burger, H. Göllinger, L. König, E. Obermeier,
H.-G. Schweiger, and A. Frey. Mission-framed project-based learning: inte-
grating an electric powertrain into a motor glider. In Proceedings of the 47th
SEFI Annual Conference, pages 879–888, Budapest, Hungary. SEFI – Euro-
pean Society for Engineering Education, Sept. 2019.
[147] F. Steger, K. Brade, A. Nitsche, and H.-G. Schweiger. Battery education
at Technische Hochschule Ingolstadt. In Advanced Battery Power Confer-
ence/Kraftwerk Batterie, Aachen, Germany, Apr. 2019.
218
9: References
[148] H.-G. Schweiger, C. Nebl, F. Steger, K. Brade, and K. Böhm. Forschung
zur Sicheren Elektromobilität an der Technischen Hochschule Ingolstadt. In
University publication of the Institute of Forensic Engineering and Research,
University of Žilina, Žilina, Slovak Republic, Mar. 2019.
[149] F. Steger, J. T. Krogh, K. Brade, L. Meegahapola, and H.-G. Schweiger. Pre-
dicting available charge and energy of lithium-ion cells. (in preparation),
2021.
[150] G. Goertzel. An algorithm for the evaluation of finite trigonometric series.
American Mathematical Monthly, 65(1):34–35, 1958. DOI:10.2307/2310304.
[151] D. Aurbach. The Role of Surface Films on Electrodes in Li-Ion Batteries.
Springer, Boston, MA, USA, 2002.
[152] J. Y. Son, P. Narguizian, D. Beltz, and R. A. Desharnais. Comparing phys-
ical, virtual, and hybrid flipped labs for general education biology. Online
Learning, 20(3):228–243, 2016.
[153] BMUB. Wie klimafreundlich sind Elektroautos? http : / / www.bmub. bund.
de/fileadmin/Daten_ BMU / Download_PDF/Verkehr / emob_klimabilanz_
2015_bf.pdf, BMUB German Federal Ministry for the Environment, Nature
Conservation, Building and Nuclear Safety. Accessed: 15.01.2016.
[154] Nationale Plattform Elektromobilität: Fortschrittsbericht 2014 - Bilanz der
Marktvorbereitung. Berlin, Germany, 2014. Gemeinsame Geschäftsstelle Elek-
tromobilität der Bundesregierung.
[155] H. K. Norian. A battery experiment. International Journal of Electrical En-
gineering Education, 52(1):14–21, 2015.
[156] C. Thanomsilp. STEM teaching in a chemistry laboratory “how to build a
simple battery in the laboratory”. Engineering and Applied Science Research,
45(2):154–157, Apr. 2018.
[157] R. Hermann. Elektrotechnik und Elektromobilität (B. Eng.) https://www.
thi .de / elektrotechnik- und- informatik/ studiengaenge /elektrotechnik- und-
elektromobilitaet-beng/, THI, Aug. 2018. Accessed: 20.12.2018.
[158] R. Hermann. Modulhandbuch Elektrotechnik und Elektromobilität (B. Eng.)
TH Ingolstadt, Germany, Jan. 2018.
[159] N. Holmes. Why traditional labs fail... and what we can do about it. In J.
Mintzes and E. Walter, editors, Active Learning in College Science. Springer,
Cham, Feb. 2020. ISBN: 978-3-030-33599-1. D OI:10 . 1007 / 978 - 3 - 030 -
33600-4_18.
[160] B. Biswas, S. Das, C. Koley, and P. Purkait. Electrical and electronics mea-
surements and instrumentation. McGraw Hill Education (India), New Delhi
and Singapore, 2013. ISBN: 125902959X.
[161] S. Tumanski. Principles of electrical measurement. Series in sensors. Taylor
& Francis, New York, 2006. ISBN: 9780750310383.
219
9: References
[162] P. Purkait, B. Biswas, S. Das, and C. Koley. Electrical and Electronics Mea-
surements and Instrumentation. McGraw Hill, New Delhi, 2013. ISBN: 978-
1-25-902959-2.
[163] X. C. Tong. Advanced Materials for Thermal Management of Electronic
Packaging, volume 30 of Springer Series in Advanced Microelectronics. Springer
New York, New York, NY, 1st edition, 2011. ISBN: 1441977597.
[164] Mersen. Behaviour and operation of the fuse. Mersen Whitepaper, 2012.
[165] A. Etschmaier, G. Mori, W. Wegscheider, and H. Wieser. Wirkungsweise von
Lotwerkstoffen beim M-Effekt. Materialwissenschaft und Werkstofftechnik,
33(2):90–98, 2002. ISSN: 09335137.
[166] M. Creydt. Diffusion in galvanisch aufgebrachten Schichten und Weichloten
bei Temperaturen zwischen 23 und 212°C. PhD thesis, Eidgenössische Tech-
nische Hochschule Zürich, Zürich, 1971.
[167] A. Wright and P. G. Newbery. Elecric Fuses, 3rd Edition. Inst. of Electrical
Engineers, 2004.
[168] J. L. Carbonero, G. Morin, and B. Cabon. Comparison between beryllium-
copper and tungsten high frequency air coplanar probes. IEEE Transactions
on Microwave Theory and Techniques, 43(12):2786–2793, 1995.
[169] R. S. Timsit. Electrical contact resistance: Properties of stationary interfaces.
IEEE Transactions on Components and Packaging, 22(85), 1999.
[170] R. Holm. Electric Contact, 4th ed. Springer, Berlin, 4th edition, 1967.
[171] Y. Y. Lau and W. Tang. A higher dimensional theory of electrical contact
resistance. Journal of Applied Physics, 105(12):124902, 2009. ISSN: 0021-
8979. DOI:10.1063/1.3148289.
[172] H.-M. Fischer. Voltage Classes for Electric Mobility. German Electrical and
Electronic Manufacturers’ Association, 2013.
[173] L. Yang, Y. Luo, R. S. K. Moorthy, D. Rahman, W. Yu, and I. Husain. Design
and test of a planarized high power density 100 kW SiC traction inverter with
1kV DC-link. In 2018 IEEE Energy Conversion Congress and Exposition
(ECCE), Sept. 2018.
[174] W. Chou, A. Kempitiya, and O. Vodyakho. Reduction of power losses of SiC
MOSFET based power modules in automotive traction inverter applications.
In 2018 IEEE Transportation Electrification Conference and Expo (ITEC),
June 2018. DOI:10.1109/ITEC.2018.8450130.
[175] V. Reber. New possibilities with 800-volt charging. Porsche Engineering Mag-
azine, 1:10–15, 2016.
220
9: References
[176] BMW Group. Technical specifications – BMW i3 (120 Ah). http: / / www.
press.bmwgroup.com%2Fglobal%2Farticle%2Fattachment%2FT0284828EN%
2F415571& usg = AOvVaw3 _ LQToi09oUKWeeRexF6sU, 2018. Accessed:
07.02.2019.
[177] BMW Group. Specifications – BMW i8 Coupe. https://www.press.bmwgroup.
com/global/article/attachment/T0286588EN/419603, 2018. Accessed: 07.02.2019.
[178] smart. Smart fortwo electric drive brochure. https://www.smart.com/content/
dam/smart/EN/PDF/smart _electric_drive_Broschuere_en_ INT.indd.pdf,
2018. Accessed: 07.02.2019.
[179] Tesla. Model X Owner’s Manual. https : / / www. tesla . com / sites / default /
files/model_x_owners_manual_north_ america _ en . pdf, 2019. Accessed:
08.12.2019.
[180] Tesla. Model S Owner’s Manual. https://www.tesla.com/sites/default/files/
model _ s _ owners _ manual _ north _ america _ en _ us . pdf, 2019. Accessed:
08.12.2019.
[181] Tesla. Model 3 Owner’s Manual. https : / / www. tesla . com / sites / default /
files/model_3_owners_manual_north_ america _ en . pdf, 2019. Accessed:
08.12.2019.
[182] VW. Der neue e-up! https : / / cdn . volkswagen . at / media / Kwc _ Basic _
DownloadTag_Component/86_brochures-1120-child-download-downloadTag/
default/7e10e0bc/1524477712/e-up-preisliste-04-2018-web.pdf, 2018. Ac-
cessed: 07.02.2019.
[183] T. Blackburn. NextEV: Der Nio EP 9 — Technische Daten. https: / / www.
bmb - consult.com /upload/ files/ EP _9 _Technisches _ Datenblatt_ analog _
media_pack_NextEV_Layout.pdf, 2017. Accessed: 07.02.2019.
[184] M. S. Naidu and V. Kamaraju. High voltage engineering. Tata McGraw-Hill,
New Delhi, 3rd edition, 2004. ISBN: 9780070494640.
[185] P. Changhao and T. Cong. Study on isolation monitoring of high-voltage bat-
tery system. Applied Mechanics and Materials, 44-47:571–575, 2011.
[186] E. Kuffel, W. S. Zaengl, and J. Kuffel. High voltage engineering: fundamen-
tals, 1984.
[187] P. Lamp. Requirements for batteries used in electric mobility applications. In
R. Korthauer, editor, Lithium-Ion Batteries: Basics and Application. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2018. ISBN: 978-3-662-53069-6. DOI:
10.1007/978-3-662-53071-9.
[188] A. Wiebelt and M. G. Zeyen. Battery thermal management. In R. Korthauer,
editor, Lithium-Ion Batteries: Basics and Application. Springer Berlin Hei-
delberg, Berlin, Heidelberg, 2018. ISBN: 978-3-662-53069-6. DOI:10.1007/
978-3-662-53071-9.
221
9: References
[189] D. Anseán, V. García, M. González, J. Viera, C. Blanco, and A. J.L. DC
internal resistance during charge: analysis and study on LiFePO4 batteries.
In EVS 27, Barcelona, Spain, Nov. 2013.
[190] B. Ratnakumar, M. Smart, L. Whitcanack, and R. Ewell. The impedance
characteristics of Mars exploration rover li-ion batteries. Journal of Power
Sources, 159(2):1428–1439, 2006. ISSN: 0378-7753.
[191] J. P. Schmidt, S. Arnold, A. Loges, D. Werner, T. Wetzel, and E. Ivers-Tiffée.
Measurement of the internal cell temperature via impedance: evaluation and
application of a new method. Journal of Power Sources, 243:110–117, 2013.
ISSN: 03787753. DOI:10.1016/j.jpowsour.2013.06.013.
[192] S. H. Ahmed, X. Kang, and B. Shrestha. Effects of temperature on internal
resistances of lithium-ion batteries. Journal of Energy Resources Technology,
137:98–111, 2015. DOI:910.1115/1.4028698.
[193] H.-G. Schweiger, O. Obeidi, O. Komesker, A. Raschke, M. Schiemann, C.
Zehner, M. Gehnen Markusand Keller, and P. Birke. Comparison of several
methods for determining the internal resistance of lithium ion cells. Sensors,
10(6):5604–5625, 2010. DOI:0.3390/s100605604.
[194] ISO12405-1:2011(E) Electrically propelled road vehicles – Test specification
for lithium-ion traction battery packs and systems – Part 1: High-power ap-
plications, Geneva: ISO copyright office, 2011.
[195] R. Dorn, R. Schwartz, and B. Steurich. Battery management system. In R.
Korthauer, editor, Lithium-Ion Batteries: Basics and Application. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2018. ISBN: 978-3-662-53069-6. DOI:
10.1007/978-3-662-53071-9.
[196] U. S. Kim, C. B. Shin, and C.-S. Kim. Modeling for the scale-up of a lithium-
ion polymer battery. Journal of Power Sources, 189(1):841–846, 2009. IS SN:
03787753. DOI:10.1016/j.jpowsour.2008.10.019.
[197] K. Onda, T. Ohshima, M. Nakayama, K. Fukuda, and T. Araki. Thermal be-
havior of small lithium-ion battery during rapid charge and discharge cy-
cles. Journal of Power Sources, 158(1):535–542, 2006. IS SN: 03787753. DOI:
10.1016/j.jpowsour.2005.08.049.
[198] M. S. Rad, D. L. Danilov, M. Baghalha, M. Kazemeini, and P. H. L. Notten.
Thermal modeling of cylindrical lifepo batteries. Journal of Modern Physics,
04(07):1–7, 2013. ISSN: 2153-1196. DOI:10.4236/jmp.2013.47A2001.
[199] N. Damay, C. Forgez, M.-P. Bichat, and G. Friedrich. Thermal modeling of
large prismatic LiFePO4/graphite battery – coupled thermal and heat gener-
ation models for characterization and simulation. Journal of Power Sources,
283:37–45, 2015.
222
9: References
[200] A. A. Pesaran. Thermal Characteristics of Selected EV and HEV Batteries.
http://www.nrel.gov/transportation/energystorage/pdfs/long_beach_btm.pdf.
Accessed: 07.02.2016.
[201] THT. THT: determining the specific heat capacity of a battery pack. http :
/ / www . inforlab - chimie . fr / doc / document _ fichier _ 279 . pdf. Accessed:
07.02.2016.
[202] C. Forgez, D. Vinh Do, G. Friedrich, M. Morcrette, and C. Delacourt. Ther-
mal modeling of a cylindrical LiFePO4/graphite lithium-ion battery. Journal
of Power Sources, 195(9):2961–2968, 2010.
[203] R. Benger, H. Wenzl, and H.-P. Beck. Electrochemical and thermal modeling
of lithium ion cells for use in HEV or EV application. World Electric Vehicle
Journal, 3(2):342–351, 2009. DOI:10.3390/wevj3020342.
[204] A. A. Pesaran. Battery thermal management in EVs and HEVs issues and
solutions, 2013.
[205] T. Woehrle. Lithium-ion cell. In R. Korthauer, editor, Lithium-Ion Batter-
ies: Basics and Application. Springer Berlin Heidelberg, Berlin, Heidelberg,
2018. ISBN: 978-3-662-53069-6. DOI:10.1007/978-3-662-53071-9.
[206] S. Leuthner. Lithium-ion battery overview. In R. Korthauer, editor, Lithium-
Ion Batteries: Basics and Application. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2018. ISBN: 978-3-662-53069-6. DOI:10 . 1007 / 978 - 3 - 662 -
53071-9.
[207] J. Janek and P. Adelhelm. Next generation technologies. In R. Korthauer,
editor, Lithium-Ion Batteries: Basics and Application. Springer Berlin Hei-
delberg, Berlin, Heidelberg, 2018. ISBN: 978-3-662-53069-6. DOI:10.1007/
978-3-662-53071-9.
[208] C. Graf. Cathode materials for lithium-ion batteries. In R. Korthauer, editor,
Lithium-Ion Batteries: Basics and Application. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2018. ISBN: 978-3-662-53069-6. DOI:10.1007/978- 3-
662-53071-9.
[209] M. Kulkarni, A. Vaidya, and P. Karwa. I2t derivation for electrical safety. In
IEEE Int. Transp. Electr. Conf. (ITEC), 2015.
[210] S. F. Schuster, M. J. Brand, P. Berg, M. Gleissenberger, and A. Jossen. Lithium-
ion cell-to-cell variation during battery electric vehicle operation. Journal of
Power Sources, 297:241–251, Nov. 2015.
[211] F. M. González-Longatt. Circuit-based battery models: a review. In 2 do
congreso iberoamericano de estudiantes de ingeneria electrica, 2006. URL:
https://pdfs.semanticscholar.org/5a79/ca86eaea1de96f7c3ea1248ea4b28f55c2f1.
pdf.
[212] W. S. Bergveld H. J. and. Kruijt and P. H. L. Notten. Battery Management
Systems — Design by Modelling. Springer, Netherlands, 2002.
223
9: References
[213] S. S. Zhang, K. Xu, and T. R. Jow. Electrochemical impedance study on
the low temperature of li-ion batteries. Electrochimica Acta, 49:1057–1061,
2004.
[214] L. Guzzella and A. Sciarretta. Vehicle Propulsion Systems – Introduction to
Modeling and Optimization. Springer Science & Business Media, Berlin Hei-
delberg, 2012.
[215] O. Tremblay and A.-I. Dessaint L.-A.and Dekkiche. A battery model for the
dynamic simulation of hybrid electric vehicles. In IEEE Vehicle Power and
Propulsion Conference 2007, Arlington, USA, 2007.
[216] C. Meuser. Physikalische und chemische Charakterisierung von Lithiumio-
nenzellen. PhD thesis, Fakultät Mathematik und Naturwissenschaften, Dres-
den, Germany, 2011, page 93.
[217] V. S. Arpaci. Conduction Heat Transfer. Addison-Wesley Publishing Com-
pany, Massachusetts, University of Michigan, 1966.
[218] A123. AMP20M1HD-A Datasheet, 2011.
[219] Matlab: estimate parameters from measured data. https://www.mathworks.
com /help / sldo/gs/estimate - parameters - from- measured- data- using- the-
gui.html.
[220] J. B. Carlin and L. W. Doyle. Mann-whitney test is not just a test of medi-
ans: differences in spread can be important. Journal of Paediatrics and Child
Health, 39(4):309–311, 2003.
[221] G. V. Glass, P. D. Peckham, and J. R. Sanders. Consequences of failure to
meet assumptions underlying the fixed effects analyses of variance and co-
variance. Review of Educational Researchs, 42(3):237–288, 1972. DOI:10.
3102/00346543042003237.
[222] N. J. Salkind. Encyclopedia of Research Design (Vol. 2). Sage, Los Angeles,
USA, 2010.
[223] B. Rasch, M. Friese, W. Hofmann, and E. Naumann. Quantitative Methoden
1, Einführung in die Statistik für Psychologen und Sozialwissenschaftler, 4.
überarbeitete Auflage. Springer, Berlin/Heidelberg, 2014. ISBN: 978-3-662-
43523-6.
[224] T. Lumley, P. Diehr, S. Emerson, and L. Che. The importance of the normal-
ity assumption in large public health data sets. Annual Rev. Public Health,
23:151–169, 2002. DOI:10.1146/annurev.publheath.23.100901.140546.
[225] A. Rubin. Statistics for Evidence-Based Practice and Evaluation. Belmont:
Brooks/Cole, 3rd edition, 2013, pages 144–145.
[226] J. Cohen. Statistical power analysis for the behavioural sciences (2nd edi-
tion). Erlbaum, Hillsdale, NJ, 1988.
224
9: References
[227] A. Hart. Mann-whitney test is not just a test of medians: differences in spread
can be important. British Medical Journal, 323:391––393, 2001.
[228] L. J. Cronbach. Coefficient alpha and the internal structure of tests. Psy-
chometrika, 16(3):297–334, 1951.
[229] J. P. Peter. Reliability: a review of psychometric basics and recent marketing
practices. Journal of Marketing Research, 16:6–24, 1979.
[230] J. C. Nunnally. Psychometric Theory (2nd ed.) – Assessment of Reliability.
McGraw-Hill, New York, 1978.
[231] K. S. Taber. The use of Cronbach’s alpha – when developing and reporting
research instruments in science education. Research in Science Education,
48(6):1273–1296, 2018.
[232] R. A. Fisher. Statistical methods for research workers. Oliver & Boyd, Edin-
burgh, 1925.
[233] R. A. Fisher. Frequency distribution of the values of the correlation coeffi-
cient in samples from an indefinitely large population. Biometrika, 10(4):507–
521, 1915. DOI:10.2307/2331838.
[234] S. C. Choi. Tests of equality of dependent correlation coefficients. Biometrika,
64(3):645–647, 1977. DOI:10.1093/biomet/64.3.645.
[235] E. C. Fieller, H. O. Hartley, and E. S. Pearson. Tests for rank correlation
coefficients. Biometrika, 44(3-4):470–481, 1957. DOI:10.1093/biomet/44.3-
4.470.
[236] J. M. Andrade and M. G. Estévez-Pérez. Statistical comparison of the slopes
of two regression lines: a tutorial. Analytica Chimica Acta, 838(4):1–12,
2014. DOI:10.1016/j.aca.2014.04.057.
[237] R. B. Darlington and A. F. Hayes. Regression Analysis and Linear Models:
Concepts, Applications, and Implementation. The Guilford Press, New York,
2017. ISBN: 9781462521135.
[238] R. Korthauer, editor. Lithium-Ion Batteries: Basics and Applications. Springer,
Berlin, Heidelberg, 2018. ISBN: 978-3-662-53069-6. DOI:10.1007/978- 3-
662-53071-9.
225