ArticlePDF Available

The impact of infectious disease threat on consumers' pattern‐seeking in sequential choices


Abstract and Figures

The pandemic outbreak poses one of the most influential threats. When faced with such a threat, consumers engage in adaptive behaviors, and one way to do so may pertain to pattern-seeking in their choices. Across five studies, we show that consumers exhibit patterns in sequential choice under the threat of COVID-19. Specifically, consumers high (vs. low) in the perceived threat increase sequential patterns in repeated choice regardless of whether the levels of the perceived threat are measured or manipulated. The effect emerges even when a patterned choice option is objectively inferior to a nonpatterned option. The underlying mechanism of the effect is that consumers experience a lower sense of control, which motivates them to seek patterned choices to regain control threatened by the infectious disease. We further show that the effect on patterned choice is stronger for consumers with lower childhood socioeconomic status (SES), who are characterized by a lower sense of control, than their higher childhood SES counterparts. Noting that infectious disease threats are unavoidable, we offer theoretical contributions as well as novel insights into marketing practices under unpredictable and threatening situations.
This content is subject to copyright. Terms and conditions apply.
Received: 11 April 2021
Revised: 20 September 2021
Accepted: 21 September 2021
DOI: 10.1002/mar.21602
The impact of infectious disease threat on consumers'
patternseeking in sequential choices
Jooyoung Park
|Jungkeun Kim
|Jihoon Jhang
|Jacob C. Lee
Jaehoon Lee
Peking University HSBC Business School,
Shenzhen, China
Department of Marketing, Auckland
University of Technology, Auckland,
New Zealand
Department of Marketing and Management,
University of Central Arkansas, Conway,
Arkansas, USA
Department of Business Administration,
Dongguk University, Seoul, Korea
Department of Marketing and Logistics,
Florida International University, Miami,
Florida, USA
Jungkeun Kim, Department of Marketing,
Auckland University of Technology, 120
Mayoral Dr., Auckland 1010, New Zealand.
The pandemic outbreak poses one of the most influential threats. When faced with
such a threat, consumers engage in adaptive behaviors, and one way to do so may
pertain to patternseeking in their choices. Across five studies, we show that con-
sumers exhibit patterns in sequential choice under the threat of COVID19. Speci-
fically, consumers high (vs. low) in the perceived threat increase sequential patterns
in repeated choice regardless of whether the levels of the perceived threat are
measured or manipulated. The effect emerges even when a patterned choice option
is objectively inferior to a nonpatterned option. The underlying mechanism of the
effect is that consumers experience a lower sense of control, which motivates them
to seek patterned choices to regain control threatened by the infectious disease. We
further show that the effect on patterned choice is stronger for consumers with
lower childhood socioeconomic status (SES), who are characterized by a lower sense
of control, than their higher childhood SES counterparts. Noting that infectious
disease threats are unavoidable, we offer theoretical contributions as well as novel
insights into marketing practices under unpredictable and threatening situations.
childhood socioeconomic status, COVID19, decision pattern, disease threats, perceived threat,
repeated decisions
Life is full of choices. We often select one option among many op-
tions, but we also frequently encounter situations where we make
repeated choices with a fixed set of items. For example, if we pur-
chase a multipleitem bundle, such as six packs of different flavored
yogurt, we decide in which order we will consume them (Wang et al.,
2013). In our daily life, we frequently order the sequence of a fixed
set of options or tasks beyond food choices. When traveling, we
decide which place to go to first and later. When creating a daily
work plan, we determine what task to complete first and later.
Prior research provides some empirical evidence regarding where
consumers place their most or least favorite option in a sequence of
available options. For example, Mantonakis et al. (2009)showthat
consumers place their favorite option either in the first (i.e., primacy) or
last sequence (i.e., recency). Kc et al. (2020)findthatpeoplechooseto
complete easier tasks first to manage their load. Hwang et al. (2019)show
that people choose to engage in experiential activities early in their travel
schedule. Alternatively, Frederick and Loewenstein (2008) reveal con-
sumer preferences for improving sequences by delaying their preferred
options.O'BrienandEllsworth(2012) further show positivity bias for end
experiences, suggesting that individuals tend to have more positive atti-
tudes toward the last choices. Although prior work is informative in
predicting the sequence of certain liked or disliked options, it neglects the
overall pattern that may appear in repeated choice decisions. Surprisingly,
only scarce research has examined the emergence of patterns in con-
sumers' repeated choice decisions with a fixed set of options (J. Kim, Cui,
et al., 2020).
Psychol Mark. 2021;120. © 2021 Wiley Periodicals LLC
The present research proposes a novel idea that patternseeking
in repeated, sequential choice may be more pronounced in times of
COVID19. Disease cues such as COVID19 create health concerns
and a high degree of uncertainty (Fiorillo & Gorwood, 2020; J. Kim,
Lee, et al., 2021; Park et al., 2021). In the face of such an unsettling
and adverse state in a threatening situation, people experience
feelings of low control (Šrol et al., 2021) and engage in adaptive
behaviors to regain control (Kay et al., 2009). For example, consumers
are stockpiling essential products, called hoarding, in response to
disease threats to manage the uncertainty and possible shortage of
the future supply (Sheth, 2020). Product shortage or scarcity is per-
ceived as a loss of control (Gupta & Gentry, 2019), and thus stock-
piling helps them satiate a need for control (Kirk & Rifkin, 2020).
Furthermore, Whitson and Galinsky (2008) show that lacking control
activates an illusionary pattern perception, which refers to the
identification of a coherent and meaningful relationship among a set
of random or unrelated stimuli(p. 115). Extending the notion that
lacking control leads to cognitively adaptive strategies such as pat-
tern identification (Whitson & Galinsky, 2008), we propose that in-
fectious disease cues such as COVID19 lead to a threat to control,
which in turn motivates people to seek a pattern in their sequential,
repeated choices as an adaptive means to restore threatened control.
However, there may exist some alternative explanations for the
proposed effect. Threatening situations such as a pandemic may re-
sult in cognitive depletion and negative emotional states (Palmwood
& McBride, 2019), which motivate people to seek patterned choice as
an adaptive function in chaos. Without discounting these explana-
tions, the present research highlights the role of controllability in the
effect on patternseeking in multiple choices.
In addition to our main proposition, we identify an individual
difference factorchildhood socioeconomic status (SES)that may
pertain to a sense of control under threatening situations. Research
shows that early life experiences, which are commonly reflected in
one's childhood SES, shape the way an individual responds to
threatening environments (Griskevicius et al., 2011,2013). Compared
with those who grew up in benign, predictable environments (i.e.,
high childhood SES), individuals who grew up in unpredictable,
resourcescarce environments (i.e., low childhood SES) tend to per-
ceive low control under threatening environments (Infurna et al.,
2011; Kraus et al., 2012; J. C. Lee et al., 2018) and desire to diminish
the downside costs of uncertainty (Amir et al., 2018). Accordingly,
individuals with lower childhood SES would be more likely to feel a
lack of control and make decisions aimed at minimizing uncertainty
under threats. Along this line, we further propose that childhood SES
provides an important boundary condition for the impact of in-
fectious disease threats on patternseeking in repeated choices.
This study makes several contributions. First, although prior re-
search shows that consumers possess an inherent preference for
patterns when ordering a fixed set of options (J. Kim, Cui, et al.,
2020), the mechanism of consumers' patternseeking in choice re-
mains unclear. Focusing on disease threats, we demonstrate that a
desire for control underlies consumers' patternseeking in their
choice decisions. Second, our research extends the current
knowledge of consumer choice and decisionmaking. Previous stu-
dies on repeated choice decisions have largely focused on the factors
deriving different choice outcomes. For instance, research on variety
seeking suggests that chosen outcomes in repeated choice depend
on choice modes (e.g., simultaneous vs. sequential choice; Read et al.,
1999; Simonson, 1990). Also, outcomes are influenced by stimulation
(Menon & Kahn, 1995), consumption situation (public vs. private
consumption; Ratner & Kahn, 2002), and/or consumer affective ex-
perience (Kahn & Isen, 1993). Relatively little attention has been paid
to the overall sequence of a fixed set of options consumers consume.
Our research reveals that consumers seek patterns in repeated
choices under the salience of infectious disease threats even when a
patterned choice option is objectively inferior to a nonpatterned
option. Finally, we show our findings' generalizability beyond the
domain of food consumption to various choice tasks.
2.1 |Patterns and consumer behavior
According to the Webster dictionary, a pattern is a discernible
coherent system based on the intended interrelationship of
component parts.Any sets consisting of multiple elements or
events (e.g., serial numbers, meal choices for a week) may exhibit a
pattern. For example, patterns emerge in a sequence of letters
(Simon & Kotovsky, 1963), numbers (Jones & Zamostny, 1975),
shapes (Leeuwenberg, 1971), pitches (Deutsch & Feroe, 1981),
tempos (Povel & Essens, 1985), fingertapping (Povel & Collard,
1982), or even lights (Restle, 1972). A pattern contains an inherent
property of a set (Restle & Brown, 1970).
Although any sets may exhibit a pattern, some patterns are more
easily detected than others (Restle, 1970). Thus, we understand a
pattern better with its degree on a continuum (i.e., high pattern vs.
low pattern) rather than a binary system (i.e., pattern vs. nonpattern).
According to Restle's (1970) recursive elements intervals (EI) model,
the degree of the internal representation of a sequence of events as a
high (vs. low) pattern depends on the similarity of elements and the
regularity of their intervals (Figure 1). Thus, people are more likely to
recognize patterns when similar (vs. dissimilar) events repeat reg-
ularly (vs. irregularly). Consistent with this conceptualization, a pat-
tern in choice sequence involves a coherent repetitive subgrouping of
options (J. Kim, Cui, et al., 2020). For example, when consuming a
fixed set of products, consumers can consume liked items (denoted
L's) first and disliked items (denoted D's) later (e.g., LLDD) or in the
reverse order (e.g., DDLL).
Historically, identifying patterns in nature (e.g., predicting storms
from lunar halos, expecting a hurricane from increased ocean swells,
or interpreting celestial events) has provided humans with many
advantages for survival. By recognizing patterns, humans understand
how the world operates, set up expectations, and prepare for the
future (Hastie, 1984; Pyszczynski & Greenberg, 1981). Indeed, prior
research shows that humans have evolved to prefer certain patterns
(Enquist & Arak, 1994). Along this line, recent research demonstrates
that consumers evaluate a product more favorably when its adver-
tisement features a regular (vs. irregular) visual pattern (Farace et al.,
2020). This preference for patterns also influences our perception.
When experiencing a lack of control, people tend to identify sig-
nificantly more illusory patterns in randomness (Wang et al., 2012;
Whitson & Galinsky, 2008). Taking this idea forward, we posit that
the preference for patterns may influence how people decide their
consumption sequence. Given that the degree of patterns depends
on the interrelationship among components, people may create
patterns by actively arranging the sequence of their consumption
To the best of our knowledge, however, very few empirical
studies have investigated this topic. J. Kim, Cui, et al. (2020) explored
consumers' preferences for food consumption sequences. Across
multiple experiments, the authors find that patternseeking is the
most viable strategy among others, such as primacy, recency, or
varietyseeking. Although J. Kim, Cui, et al. (2020) offer some
FIGURE 1 Two principles in pattern recognition
interesting insights about patternseeking in repeated choices, the
effect's underlying mechanism remains unanswered. Consequently,
we understand little about why and when people attempt to create
patterns in their sequential, repeated choices. In the present re-
search, we address this issue.
2.2 |Impacts of disease threat
The COVID19 pandemic has significantly disrupted and altered con-
sumers' lives. For example, Campbell et al. (2020) suggest that disease
threat adversely affects consumers' ontological security, resulting in
psychological and affective (e.g., fear, anxiety) as well as behavioral (e.g.,
increased indulgent consumption) responses. Also, Sheth (2020)shows
that COVID19 experiences such as social distancing and lockdown have
dramatically changed consumers' consumption behavior, such as in-
creased online shopping and consumption.
Broadly, we can classify the extant literature into two streams.
One stream of research suggests that the threat of COVID19 gen-
erates the decision outcomes which reflect risk reduction (J. Kim,
Giroux, et al., 2020; S. Li et al., 2021). For example, Huang and
Sengupta (2020) show that consumers prefer atypical (vs. typical)
products in the presence of contagious disease cues because atypical
products are conceptually linked to a small number of people and
thus have a lower chance of infection. Galoni et al. (2020) reveal that
fear and disgust elicited by contagious diseases increase preferences
for familiar (vs. nonfamiliar) options as they help restore a sense of
control. PenaMarin et al. (2021) further show that after COVID19,
financial investors prefer highpriced (vs. lowpriced) stocks because
they are perceived to be more stable.
The other stream of research illustrates the impact of disease
threats on consumers' freedomseeking (J. Kim, 2020) or social
connection (Kwon et al., 2021). The living environment and govern-
ment policies such as lockdown and social distancing induce a sense
of isolation and lack of freedom. J. Kim (2020) shows that COVID19
decreases personal control. Moreover, Kwon et al. (2021) show that
social isolation due to the pandemic increases preferences for not
proximally available products. The authors suggest that strong mo-
tivation for social connection induces such preferences.
Although researchers agree with the theoretical and practical
importance of investigating the influence of disease threats on con-
sumer behavior and decisionmaking, empirical evidence is still lim-
ited. More importantly, extant research has focused mainly on single
choice occasions and neglected the impact of disease threats on
consumers' sequential choices.
2.3 |Childhood SES
According to an evolutionary perspective, earlylife experiences can
internalize the manners in which people respond to environments
(Ellis et al., 2009). A growing body of research has shown that en-
vironmental conditions encountered during early childhood influence
many aspects of individuals' lives such as cognitive performance
(Nisbett, 2009), altruistic behavior (H. Li et al., 2020), eating behavior
(Hill et al., 2016), impulsivity, (Griskevicius et al., 2011), risktaking,
and mental discounting (Griskevicius et al., 2013). Earlylife experi-
ences are commonly reflected in childhood SESpeople growing up
in lower SES environments encounter more unpredictable earlylife
experiences than those who grew up in higher SES environments
(Mittal & Griskevicius, 2014).
To explain how earlylife experiences and environments de-
termine individuals' behaviors, Amir et al. (2018) propose a frame-
work, called uncertainty management strategy, suggesting that
individuals who grew up in low childhood SES tend to form their
preferences aimed at diminishing the downside costs of uncertainty.
The authors posit that people with scarce resources cannot afford
negative returns and have to develop strategies to minimize un-
certainty. Thus, under uncertainty, individuals' childhood environ-
ments can influence whether they interpret a certain risk as being
affordable or not. For example, according to the uncertainty man-
agement strategy, riskpooling through cooperation with other social
entities is a potential defensive strategy against uncertainty
(Winterhalder, 1986,1990). Therefore, those who are highly vul-
nerable to changes in their environment are likely to defend against
unexpected events by cooperating with others or engaging in pro-
social behavior (Amir et al., 2018). Of note, because childhood SES
internalizes the patterns of responses to the environment over time,
the impact of childhood SES is often more predictive of behaviors in
adulthood than that of current SES (Griskevicius et al., 2011;
Thompson et al., 2020).
COVID19 is considered one of the most serious threats in human
history (Morens et al., 2020), thus generating a high degree of un-
certainty (Fiorillo & Gorwood, 2020). Prior literature in evolutionary
psychology suggests that diseaserelated threats can systematically
shape people's behavior (Griskevicius & Kenrick, 2013; Murray &
Schaller, 2016). Murray and Schaller (2016) argue that humans have
evolutionarily developed a psychological mechanism to avoid in-
fectious diseases. Thus, when a disease cue is present, the psycho-
logical behavioral immune system triggers diseaseavoidance motives
(Miller & Maner, 2012).
More important to the present research, such a psychological
mechanism may pertain to a sense of control. Control is one of the
fundamental motives (Legare & Souza, 2014; Shiu et al., 2011) and
helps people overcome environmental uncertainty (Whitson &
Galinsky, 2008). It is well documented that people lack control during
the pandemic and thus attempt to restore it. For example, when
faced with COVID19, people feel a low sense of control, which
increases an endorsement of conspiracy theories to reclaim control
(Šrol et al., 2021) because conspiracy theories make people feel that
they have a better account (Douglas et al., 2019). Furthermore,
people engage in hoarding behavior during COVID19 to deal with
product scarcity (Sheth, 2020). Product scarcity is viewed as a loss of
control (Gupta & Gentry, 2019), and thus stockpiling helps people
regain control (Kirk & Rifkin, 2020). These findings highlight that
consumers' desire for control may play a key role in explaining sys-
tematic differences in behavior as a function of the infectious disease
As choice enables individuals' preferences and values to be ob-
servable and overt, consumers commonly express themselves
through choice (Aaker & Schmitt, 2001; H. S. Kim & Drolet, 2003;H.
S. Kim & Sherman, 2007). Applying reactance theory, which postu-
lates that individuals react when their freedom is restricted or
threatened, research shows that consumers can restore their threa-
tened freedom through their choice behavior (Clee & Wicklund,
1980; Hinsch et al., 2021). For example, when consumers are spa-
tially confined, they perceive a threat to their freedom. Levav and
Zhu (2009) show that consumers seek variety in their choice against
an incursion to their personal space. Focusing on another type of
threat to one's freedom, Yoon and Kim (2018) find that consumers
with low SES who perceive that they are economically stuck seek
more variety to compensate for their low sense of control. Extending
the reactance theory in which consumers restore threatened freedom
through choice behavior, in the present research, we propose a novel
phenomenon in the consumption choice sequence. While there is no
direct empirical support for patternseeking as a means of regaining
control, prior research indicates that lacking control leads people to
identify a coherent and meaningful relationship among random ele-
ments, namely illusionary patternseeking (Wang et al., 2012;
Whitson & Galinsky, 2008). Extending prior research, we contend
that, as a disease threat triggers the need to structure the world into
a more manageable, simplified form, consumers would respond to the
need by making a coherent sequence of repetitive choices. We hence
predict that consumers will seek a pattern that helps them regain
control when making sequential choices of a related fixed set of
options in a threatening (vs. nonthreatening) situation. We formally
H1 The higher threat of COVID19 (vs. baseline) will increase con-
sumers' patternseeking in sequential choice of a fixed set of
H2 The desire for control will mediate the influence of COVID19
threat on consumerspatternseeking in sequential choice.
If the desire for control is a key mechanism underlying con-
sumers' patternseeking, an individual difference in perceived control
over the environment should influence our prediction. As described
earlier, individuals' earlylife environments shape various aspects of
behavior in adulthood (Griskevicius et al., 2011; Hill et al., 2016;H.Li
et al., 2020; Wang et al., 2020; Whelan & Hingston, 2018). Along this
line of research, we propose that childhood SES affects individuals'
patternseeking under infectious disease threats.
Specifically, uncertainty management strategy (Amir et al., 2018)
suggests that individuals who grew up in unpredictable resource
scarce environments tend to develop preferences in a way to mini-
mize the costs of uncertainty. Low childhood SES is characterized by
scarce resources and environmental unpredictability (Mittal &
Griskevicius, 2014). Because the scarce resources and unpredictable
environments in early life could lower individuals' ability to com-
pensate for losses or change the future, those with low childhood
SES would perceive a lack of control (Infurna et al., 2011; Kraus et al.,
2012). Supporting this, Mittal et al. (2015) show that individuals who
grew up in unpredictable environments perform better at switching
between tasks because repeated exposure to unpredictable en-
vironments could enhance their ability to effectively adapt to chan-
ging environments. In contrast, individuals who grew up in resource
affluent environments tend to have a higher sense of control even
when encountering uncertain situations (Mittal & Griskevicius, 2014),
decreasing their motivation to employ an adaptive strategy.
In sum, because individuals with lower childhood SES perceive
low control over their environments but need to minimize losses,
they would develop their preferences aimed at decreasing un-
certainty. To reduce uncertainty but gain control under a disease
threat, individuals with lower childhood SES would prefer patterns in
repeated choices. In comparison, characterized by abundant re-
sources to compensate for adverse outcomes, individuals with higher
childhood SES would be less likely to develop such an adaptive
strategy. Thus, those with higher childhood SES would be less re-
sponsive to an infectious disease threat than those with lower
childhood SES. We thus propose that childhood SES will moderate
our main hypothesis such that:
H3 Patternseeking in sequential choices will be stronger for people
with lower (vs. higher) childhood SES.
Five studies test these three hypotheses (see Table 1, for a
summary of the detailed empirical studies). Study 1 provides initial
evidence of the relationship between the COVID19 threat and
patternseeking in repeated choices. Study 2 replicates the previous
study by directly manipulating the different levels of COVID19
threat and tests the proposed mechanism. Study 3 provides addi-
tional support in actual pictureevaluation tasks. Unlike Studies 1, 2,
and 3 in which we examined patternseeking in negatively and po-
sitively valenced options (e.g., how people consume favorite and
nonfavorite options in repeated choices), Study 4 employs only po-
sitively valanced options in a choice task (i.e., all favorite options) to
enhance generalizability. In addition, Study 4 demonstrates the un-
ique impact of the COVID19 threat by including a general health risk
condition as a comparison group. Finally, Study 5 tests the boundary
condition of childhood SES and shows that people with low (vs. high)
childhood are more likely to seek patterns under an infectious disease
threat. All studies were conducted from August 2020 to July 2021 in
the United States to reduce any potential countryspecific effects.
TABLE 1 Summary of empirical results
Study 1Initial evidence (N= 188 m Turkers; M
= 40.35; 54.8% Women)
IV: Covid19 threat (measured) Test statistics and pvalues
Low (1SD) High (+1 SD)
Context Eat 6 jellybeans
3 favorite flavors (F)
3 notsofavorite flavors (N)
Choice task Choose the sequence of 6 jellybeans
DV Choice of high pattern
68.9% 82.1% β= 0.247, se = 0.12,
Wald = 4.44, p= 0.035,
2LL = 204.67
Finding(s) Perceived COVID19 threat positively correlates with preference for pattern.
Study 2Causal relationship and mediation (N=198 m Turkers; M
=42.08; 49.5% Women)
IV: Covid19 threat (manipulated) Test statistics and pvalues
Low (n= 96) High (n= 102)
Context Eat 6 jellybeans
Favorite (F)
Notsofavorite (NSF)
Leastfavorite (LF)
Choice task Given LFNSFF()()(), choose the remaining
sequence between option A and B. Option B is
objectively inferior to option A.
A: NSFNSFF (low pattern)
B: LFNSFF (high pattern)
Mediator Perceived uncontrollability M= 3.27(1.60) M= 3.96(1.70) F(1, 196) = 8.61, p= 0.004
DV % of option B 42.7% (41/96) 58.8% (60/102) χ
= 5.14, p= 0.023
Finding(s) COVID19 threat increases preference for choice pattern.
Participants in the high COVID19 threat condition chose a high pattern even when the option was inferior.
Perceived uncontrollability mediates the relationship (Hayes Model #4, Indirect effect = 0.06, 95% CI [0.001, 0.152]
Study 3Actual choice (N=175 m Turkers; M
=41.54; 53.1% Women)
IV: Covid19 threat (manipulated) Test statistics and pvalues
Low (n= 91) High (n= 84)
Context Evaluate 6 pictures
3 positive pictures (P)
3 negative pictures (N)
= 6.08 (SD = 0.84),
= 2.23
(SD = 1.07),
t(167) = 33.20, p< 0.001
Choice task Given PN()()()(), choose the remaining 4 pictures
= 5.09
(SD = 1.45)
= 5.08
(SD = 1.57)
F(1, 173) = 0.01,
p= 0.984, η
< 0.001
DV1 % of PNPN 6.6% (6/91) 14.3% (12/84) χ
= 2.80, p= 0.094
DV2 % of PNPN & NPNP 11.0% (10/91) 23.8% (20/84) χ
= 5.06, p= 0.025
Finding(s) Preference for pattern is replicated in the actual sequential choices.
Study 4Evaluation of a patterned sequence (N=196 mTurkers; M
=42.06; 52.0% Women)
IV: Covid19 threat (manipulated) Test statistics and pvalues
Low (n= 102) High (n= 94)
Context Eat 8 jelly beans from each of the two equally
preferred flavors (X and Y)
Evaluate either the patterned or nonpatterned
Study 1 aims to provide initial empirical evidence of the relationship
between the perceived threat of COVID19 and patternseeking in
sequential choices of fixed options.
4.1 |Method: Participants, design, and procedure
Participants were 188 U.S. adults (54.8% female; M
= 40.35,
SD = 13.82) recruited from Amazon Mechanical Turk (MTurk) on-
line panel with a nominal payment. We first presented participants
with information about COVID19 (i.e., a description of COVID19
with the World Health Organization's definition and its image) and
asked them to provide their perceived threat of COVID19. We
measured the perceived threat using two items (i.e., What are the
chances of you getting infected with the coronavirus?and What
are the chances of an average person getting infected with the
coronavirus?)ona7point scale (1 = extremely low, 7 = extremely
high, r= 0.809, p< 0.001). These items were adopted from J. Kim
and Lee (2020).
We then asked participants to imagine that they were about to
eat six jellybeans consisting of three favorite flavors and three not
sofavorite flavors (the same task as in Study 1 A from J. Kim, Cui,
et al., 2020). Following this, we asked participants to choose the
sequence of six choices,
asshowninAppendixA. Finally,
participants reported their demographic information (i.e., age and
4.2 |Results and implications
Overall, there were 20 different possible choice outcomes. Following
the procedure of J. Kim, Cui, et al. (2020), we coded four specific
choice outcomes as patterned choices (i.e., FFFNNN, NNNFFF,
and 16 others as nonpatterned choices
(e.g., FFNNFN, NFFNNF, or FNNNFF). Overall, participants showed
relatively higher choice pattern (M= 75.5% [=142/188] vs. random
share = 20% [=37.6/188], χ
= 116.18, p< 0.001), consistent with the
results of J. Kim, Cui, et al. (2020).
More importantly, we conducted a bilogistic analysis to test the
impact of the perceived threat on choice patterns. We found a po-
sitive association between the perceived threat and choice patterns
(2 LogLikelihood = 204.67, β= 0.247, SE = 0.12, Wald = 4.44,
p= 0.035). This pattern remained significant (p= 0.026) when
DV Evaluation of the patterned sequence
5.46 (1.54)
p= 0.232
5.09 (1.55)
5.71 (1.31)
p< 0.001
4.44 (1.76)
The twoway interaction
F(1, 192) = 4.11, p= 0.044,
= 0.021
nonpatterned sequence
Finding(s) The same pattern of results emerged when the sequence consists of equally preferred options.
The same pattern of results emerged when evaluative rather than choice task was given.
Neither cognitive depletion nor emotional nervousness explained the pattern of results.
Study 5Moderating role of childhood SES (N=225 mTurkers; M
=40.35; 52.9% Women)
IV: Covid19 threat (measured) Test statistics and pvalues
Low (1SD) High (+1 SD)
Context Listen to 6 songs
3 favorite songs (F)
3 notsofavorite songs (N)
Choice task Choose the sequence of 6 songs
Choice of high pattern
62.6% 78.7% β= 0.27, se = 0.14, z= 2.01,
p= 0.044, 95% CI:
[0.007, 0.539]
58.3% 50.6% β=0.11,
se = 0.14, z=0.78,
p= 0.433, 95% CI:
[0.371, 0.159]
Finding(s) Moderating role of childhood SES; Preference for pattern was replicated only for those low in childhood SES.
Current SES does not moderate the effect/Overall preference for music does not change the results.
Eighteen participants were excluded from the analysis because their choices were not three
choices from each of the favorite and notsofavorite categories. Nevertheless, when
we recorded their choices as nonpattern choices, the results remained consistent
(2 LogLikelihood = 246.80, β=0.199, SE = 0.10, Wald = 3.72, p= 0.054).
Frepresents favorite flavors, whereas Nrepresents notsofavorite flavors.
participants' current income (p= 0.354), gender (p= 0.258), and age
(p= 0.747) were added as covariates.
In sum, Study 1 provides initial support for the relationship be-
tween the perceived threat of COVID19 and patternseeking in
sequential choices. However, the study bases its results on correla-
tional data. To directly test a causal relationship, we manipulated the
COVID19 threat in Study 2.
Study 2 uses a direct manipulation of disease threat to test its impact
on patternseeking in sequential choice. Furthermore, we test the
proposed mechanism of perceived controllability that underlies the
impact of the COVID19 threat on the pattern choice decision. Fi-
nally, we test whether the effect of COVID19 on patternseeking in
sequential choice emerges even when a patterned choice option is
objectively inferior to a nonpatterned option.
5.1 |Method: Participants, design, and procedure
We recruited 198 participants (49.5% female; M
= 42.08, SD =
12.70) from MTurk for a nominal payment. We employed a two
group (COVID19 threat: high vs. control) betweensubjects design
and randomly assigned participants to one of the two experimental
conditions. We informed participants that the study involved several
unrelated tasks. We first asked participants to read a newspaper
article purportedly published in The New York Times. The articles'
length and format in the two experimental conditions were similar,
but their content was different. Participants in the highthreat con-
dition read an article titled Can COVID19 Damage the Brain?In
contrast, participants in the control condition read an article about a
food titled This OnePan Meal Shows Just How Joyful Tofu Can Be
(Appendix B).
To test whether consumers preferred patterned op-
tions as an adaptive strategy to regain control under an infectious
threat, we measured perceived uncontrollability using two items (i.e.,
How much uncontrollability/unpredictability do you feel at the mo-
ment?) on a 7point scale (1 = not at all, 7 = very much, Cronbach's
α= 0.910).
Next, participants imagined consuming six jellybeans consisting
of two favorite, two notsofavorite, and two leastfavorite flavors
(based on Study 4B in J. Kim, Cui, et al., 2020, See Appendix C). We
further asked them to imagine that they had already consumed three
in the sequence of leastfavorite[#1 choice] notsofavorite
[#2 choice] favorite[#3 choice]. We then asked participants to
choose one of two sequences for the three remaining consumption
cases. Option A was (notsofavorite[#4 choice] notso
favorite[#5 choice] favorite[#6 choice]), whereas Option B was
(leastfavorite[#4 choice] notsofavorite[#5 choice] fa-
vorite[#6 choice]). When considering which one is objectively better
(option A or option B) from the three consumption cases, the non-
patterned option (i.e., option A) is objectively better than the pat-
terned option (i.e., option B).
5.2 |Results and implications
First, we compared preferences for the pattern choice across two
conditions. Consistent with our prediction, the results showed that
the preference for the pattern option was higher even when the
option was objectively inferior to the other under the COVID19
threat (M= 58.8% [=60/102]), relative to the control condition
(M= 42.7% [=41/96], χ
= 5.14, p= 0.023). Second, the COVID threat
salience also influenced perceived uncontrollability in that partici-
pants in the high threat condition perceived greater threat than those
in the control condition (M
high threat
= 3.96, SD = 1.70 vs. M
3.27, SD = 1.60; F(1, 196) = 8.61, p= 0.004, η
= 0.042).
Finally, to test the mediation model (i.e., COVID19 threat [1:
control and 1: high threat] perceived uncontrollability choice
pattern), we used the Hayes' macros process (2017, model #4 with
5000 bootstrapping). The indirect effect was significant (Effect =
0.06, SE = 0.04, 95% CI: [0.001, 0.152]), and the residual direct effect
became marginally significant (Effect = 0.27, SE = 0.15, p= 0.065,
95% CI: [0.017, 0.561]). This result suggests that the effect of
COVID19 threat on the choice pattern is fully mediated by per-
ceived uncontrollability.
In sum, this result provides direct evidence of the causal influ-
ence of the COVID19 threat on consumers' patternseeking in se-
quential choices. Furthermore, unlike Study 1 where participants
ordered the sequence of consumption, this study simultaneously
presented two sequences of consumption choices. Regardless of the
choice mode (i.e., simultaneous vs. sequential), patternseeking is
more likely to emerge when the COVID19 threat is present. Fur-
thermore, this study empirically demonstrated that the effect ob-
served in the study was explained by perceived uncontrollability.
In Studies 1 and 2, we have examined the impact of the COVID19
threat on consumers' patternseeking using hypothetical choice
tasks. Although J. Kim, Cui, et al. (2020) suggest that hypothetical and
real choices can be similarly valid, real choices will guarantee ecolo-
gical validity. Using real pictureevaluation tasks, we examine con-
sumers' patternseeking in Study 3.
We conducted a pretest to compare three experimental conditions (one threat condition
and two control conditions) that were used in Study 2 or 3 (n= 87, 46.0% women from
MTurk) by following prior research (Galoni et al., 2020). Specifically, after reading a
newspaper article, participants reported their perceived fear (i.e., scared, anxious, and
nervous), disgust (i.e., unclean, disgusted, and dirty), and mood (i.e., secure, grateful, and
lucky) on a 7point scale (1 = not at all, 7 = very much). The results indicated that perceived
fear was higher in the high threat condition than in the two control conditions. In contrast,
perceived disgust and mood were similar across the three conditions. The detailed results are
available from the corresponding author.
6.1 |Method: Participants, design, and procedure
We recruited 175 participants (53.1% female; M
= 41.54, SD =
13.07) from MTurk for a nominal payment. As in Study 2, we ran-
domly assigned participants to one of two (COVID19 threat: high vs.
control) experimental conditions.
WeusedthesameCOVID19 threat manipulation task as
in Study 2, but we used a different newspaper article in the
control condition. Specifically, participants in the control
condition read an article about a golf tournament titled ANerve
Racking Final Round Adds Drama to Golf's FanFree Return
(Appendix B).
We then asked participants to complete a pictureevaluation
task. We first presented participants with six different pictures in-
volving three relatively positive (i.e., Positive #1, Positive #2, and
Positive #3) and three relatively negative (i.e., Negative #1, Negative
#2, and Negative #3) pictures. We told them that they had to eval-
uate all six pictures (See Appendix D).
Both experimental conditions included the first two pictures.
We asked the participants to evaluate the first positive picture (i.e.,
negative picture (i.e., Negative #1) as the second evaluation task
(task #2) on a 7point scale (1 =not at all attractive, 7 =very at-
tractive). Next, participants chose one picture for the third eva-
luation task (task #3) out of the two remaining positive pictures
and two negative pictures (i.e., Positive #2, Positive #3, Negative
#2, and Negative #3). After choosing the third picture, participants
evaluated it on the same 7point scale. Participants repeatedly
chose the pictures to evaluate the remaining ones until they fin-
ished selecting and evaluating all the pictures.
We also measured
participants' overall enjoyment (1 = not at all, 7 = very much) in the
final stage.
6.2 |Results and implications
The manipulation of the positivity (negativity) of pictures was suc-
cessful in that participants evaluated the three positive pictures
= 6.08, SD = 0.84) as more attractive than the three negative
ones (M
= 2.23, SD = 1.07, t(167) = 33.20, p< 0.001).
In the experiment, participants chose the sequence of four
evaluation tasks (i.e., task #3 task #4 task #5 task #6).
In the main analysis, we did not consider the specific picture within
the positive and negative pictures. Therefore, all six different
sequences were possible (i.e., PPNN, PNPN, PNNP, NNPP, NPNP,
We coded PNPNas a patterned Sequence I and five
remaining sequences as nonpatterned ones because participants
tasks. We also coded PNPNand NPNPas a patterned
Sequence II and four remaining others as a nonpatterned
We compared preferences for patterned sequences across two
conditions, as in Study 2. The results supported our expectations. Pat-
terned Sequence I was higher when the COVID19 threat was high
(M= 14.3% [=12/84]) than when the threat was absent (M= 6.6% [=6/
91], χ
= 2.80, p= 0.094). We found a similar pattern for patterned
sequence II in that participants were more likely to prefer the patterned
sequence when the COVID19 threat was high (M= 23.8% [=20/84])
than when it was absent (M= 11.0% [=10/91], χ
= 5.06, p= 0.025).
Finally, the overall enjoyment across two conditions was not different
from each other (M
high threat
=5.08, SD =1.57 vs. M
=5.09, SD =
1.45, F(1, 173) = 0.01, p= 0.984, η
< 0.001).
In our previous studies, stimuli were different in valence in that some
options were positive (e.g., favorite flavor) and others were negative
(e.g., not favorite flavor). In this study, we test patternseeking in equally
valanced options (i.e., all favored options). In addition, we compare the
effects of the COVID19 threat and the threat of a general health risk.
We expect that patternseeking will be higher for the COVID19 (vs.
general health risk) threat condition. Finally, we test some alternative
explanations to provide further support for our proposed mechanism.
7.1 |Method: Participants, design, and procedure
We recruited 196 participants (52.0% female; M
= 42.06, SD =
13.06) from MTurk for a nominal payment. We manipulated the le-
vels of COVID19 threat as in Study 2. However, we provided one of
two choices that differ in the degree of pattern and measured sa-
tisfaction with the given choice. Thus, we used a 2 (COVID19 threat:
high vs. control) × 2 (consumption sequence: high pattern vs. low
pattern) betweensubjects design.
We informed participants that this study involved several un-
related tasks. We first asked participants to read a newspaper article
as in Study 2. Participants in the highthreat condition read the same
article regarding COVID19 used in Study 2, whereas participants in
the control condition read an article about health risk titled Heart
Attacks versus Cardiac Arrest(Appendix B). Previous research in-
dicates that a threat may cause cognitive depletion and emotional
exhaustion (Palmwood & McBride, 2019). To rule out these alter-
native explanations, we measured cognitive depletion and emotional
nervousness. Following prior work (Brengman et al., 2012), we asked
Additional 26 participants were excluded from further analysis as they did not finish
evaluating all four remaining pictures.
Prepresents a positive image, whereas Nrepresents a negative image.
In this coding, we relax the assumption of a pattern in that the first two choices used two
different images. By doing so, NPNP could be coded as a patterned sequence.
The overall patternseeking rate was relatively low for this study. We suspect that the
unique characteristic of the decision task (i.e., mixed with the choice tasks and actual
evaluation tasks) of this study generated lower patternseeking since participants could not
choose all options simultaneously.
participants to report the extent of cognitive depletion (i.e., At this
moment, I feel tired/depleted,Cronbach's α= 0.867) and their
emotional nervousness (i.e., At this moment, I am feeling nervous/
irritated,Cronbach's α= 0.814) on a 7point scale (1 = not at all,
7 = very much).
Finally, participants were asked to imagine that they were eating
eight jellybeans from two different but equally preferred flavors. Partici-
pants were presented with one of two different sequences (i.e., high
pattern [i.e., XXYYXXYY] or low pattern [XXYXXYYY]),
as shown in
Appendix E, and evaluated the given sequence on 7point scales (1 = not
at all satisfied/pleased, 7 = very satisfied/pleased, Cronbach's α= 0.972).
7.2 |Results and implications
We expected that the evaluation of sequence would be higher for the
high pattern than the low pattern choice when the COVID19 threat
was high. We also expected that there would be no difference in the
evaluation of the sequences when the COVID19 threat was absent.
Atwoway ANOVA yielded a significant main effect of consumption
sequence, F(1, 192) = 13.61, p< 0.001, η
= 0.066. Participants evaluated
the high pattern sequence more favorably than the low pattern sequence
high pattern
=5.59, SD =1.42 vs. M_
low pattern
= 4.81, SD =1.67). The
main effect of COVID19 threat was not significant, F(1, 192) = 0.81,
p=0.369, η
= 0.004. More importantly, as we predicted, the twoway
interaction effect was significant, F(1, 192) = 4.11, p=0.044, η
= 0.021.
Planned contrast showed that participants in the high COVID19 threat
condition more favorably evaluated the high pattern than low pattern
sequence (M_
high pattern
=5.71, SD =1.31 vs. M_
low pattern
=4.44, SD =
1.76; F(1, 192) = 15.72, p<0.001, η
= 0.076). For the control condition,
there was no difference in participants' evaluations of the high and low
pattern sequences (M_
high pattern
=5.46, SD =1.54 vs. M_
low pattern
SD =1.55; F(1, 192) = 1.44, p=0.232, η
= 0.007).
Additionally, we repeated the same analysis for cognitive depletion
and emotional nervousness, but we did not find any significant results
includingthemaineffectofCOVID19 threat (for cognitive depletion, F
(1, 192) = 0.21, p=0.651, η
= 0.001 and for others ps > 0.333; for emo-
tional nervousness, F(1, 192) = 0.24, p= 0.622, η
=0.001 andfor others
ps > 0.454). Therefore, these factors could not explain our results.
The primary purpose of Study 5 is to provide further evidence for the
underlying mechanism, reducing uncertainty through patterned
choices. Individuals differently perceive and seek control over
threatening environments depending on resource abundance or
scarcity in the environment where they grew up (Infurna et al., 2011;
Kraus et al., 2012). Therefore, we test the moderating role of child-
hood SES in the relationship between the perceived threat of
COVID19 and patternseeking in a nonfood consumption domain in
the study.
8.1 |Method: Participants, design, and procedure
We recruited 255 participants (52.9% female; M
= 40.35, SD =
14.10) from MTurk. We first measured the perceived threat of
COVID19 using two items adapted from J. Kim (2020) (e.g., In your
opinion, is coronavirus (COVID19) a serious threat?)ona7point
scale (1 = not at all serious, 7 = very serious, r= 0.781, p< 0.001).
Next, we asked participants to imagine that they were about to
listen to six different songs, including three favorite and three notso
favorite songs as in Study 1. Participants then selected the sequence
of six choices,
as shown in Appendix A. Following this task, Parti-
cipants reported their childhood SES (Cronbach's α= 0.878) using
three items (e.g., I grew up in a relatively wealthy neighborhood,
based on Griskevicius et al., 2011)ona7point scale (1 = strongly
disagree, 7 = very agree). Participants also provided their current SES
(e.g., I don't think I'll have to worry about money too much in the
future,Cronbach's α= 0.906) using three items. Childhood and
current SES scores were positively correlated (r= 0.272, p< 0.001).
The detailed scale information is provided in Appendix C. Finally, all
participants reported their general attitude toward listening to music
on a 7point scale (1 = not much, 7 = very much).
8.2 |Results and implications
As in Study 1, we coded fourchoice outcomes as patterned se-
quential choices (i.e., FFFNNN, NNNFFF, FNFNFN, and NFNFNF)
and 16 others as nonpatterned ones. We used Hayes (2017) macros
process (2017, model #1 with 5000 bootstrapping) to test the
moderating role of childhood SES. The independent variable was the
perceived threat measured. The moderator was the childhood SES
measured, and the dependent variable was whether the choice out-
come was a patterned or nonpatterned sequence.
The interaction effect between the independent variable and the
moderator was significant (β=0.12, SE = 0.06, t=2.00, p= 0.045,
95% CI: [0.237, 0.003]).
Specifically, when participants' child-
hood SES was relatively low (i.e., one SD below the average; 1SD),
To verify thepattern manipulation,we conducted a pretest(n= 80, 52.5% women).Participants
were assigned to one of highand lowpattern experimental conditions and rated their
perception regarding a given sequence on 7point scales (1= not patterned/not atall regular/not
at all predictable, 7 = highly patterned/very regular/very predictable, Cronbach's α= 0.918). The
results showed a significant difference across two conditions (M
_high pattern
= 6.32, SD =1.01 vs.
_low pattern
=3.45, SD =1.54,F(1, 78) = 96.65, p<0.001,η
= 0.55).
Additional 13 participants were excluded from our analysis since their choice outcome was
not three choices for each favorite and notsofavorite category. When we recorded them as
nonpattern choices, the results are similar (2 LogLikelihood = 246.80, β= 0.199, SE = 0.10,
Wald = 3.72, p= 0.054).
We conducted bilogistic analysis to test the impact of the perceived threat on choice
patterns. We found a nonsignificant result (2 Log Likelihood = 296.54, β= 0.084, SE = 0.09,
Wald = 0.79, p= 0.376), which is not parallel with that of Study 1. These inconsistent results
from the two studies may be driven by the different types of choice tasks (i.e., jellybeans vs.
patternseeking was higher as the perceived threat was also high
(β= 0.27, SE = 0.14, z = 2.01, p= 0.044, 95% CI: [0.007, 0.539]). In
detail, the choice pattern was estimated high when their perceived
threat was relatively high (estimated M
= 78.7%) compared to
when the perceived threat was relatively low (M
= 62.6%). In
contrast, we found different results for participants with high child-
hood SES (i.e., one SD above the average; +1 SD). Specifically,
patternseeking was similar regardless of their perceived threat levels
(estimated M
= 50.6% vs. M
= 58.3%, β=0.11, SE = 0.14,
z=0.78, p= 0.433, 95% CI: [0.371, 0.159]), as shown in Figure 2.
An additional JohnsonNeyman test indicated that the significant
point for childhood SES was 1.40 SD (around 19.11% of all partici-
pants) at the 95% threshold.
To control for individual differences in preexisting attitudes
toward listening to music, we included participants' attitudes toward
listening to music as a covariate. The interaction effect remained
significant (β=0.12, SE = 0.06, t=1.99, p= 0.047, 95% CI: [0.237,
0.002]), whereas the covariate was not (β= 0.02, SE = 0.13, t= 0.18,
p= 0.856, 95% CI: [0.222, 0.267]). Finally, when we repeated our
analysis with current SES, the interaction effect between the per-
ceived threat and the current SES was not significant (β= 0.04, SE =
0.06, z = 0.72, p= 0.473, 95% CI: [0.075, 0.162]). This finding sug-
gests that the wealth effect could not simply explain the above in-
teraction effect.
The pandemic outbreak represents one of the most significant
threats. To mitigate such a threat associated with infectious disease,
people engage in various adaptive behaviors. These behaviors include
stockpiling and hoarding (Prentice et al., 2021), online searches for
health information (Du et al., 2020), and riskaverse choices (Rettie &
Daniels, 2021). Along this line of research, we show novel evidence
that people engage in patternseeking in their choices as an adaptive
response when faced with the COVID19 threat. People frequently
make repeated choices with a fixed set of items (Wang et al., 2013).
Our research presents the possibility that consumers seek patterns in
sequential, repeated choices amid COVID19. Since patterns are
characterized as predictable, certain, and orderly, we contend that
patternseeking is one of the adaptive responses to make sense out
of the crisis.
Across five studies, consumers exhibit sequential patterns in
choice under the perceived threat of COVID19. Specifically,
consumershigh(vs.low)inperceived threat displayed specific
sequential patterns in the repeated choices of jellybeans (Study 1).
Similarly, consumers who were experimentally primed with the
threat of COVID19 (vs. those in the control group) preferred a
sequentially patterned option in the jellybean choice over a non-
patterned option even when the nonpatterned option was objec-
tively better the patterned option (Study 2). As an underlying
process, the perceived controllability accounts for the obtained
effect (Study 2). Such a tendency to seek a pattern in choice
emerged when consumers evaluated a set of positive and negative
pictures (Study 3), when they evaluated equally valenced options
(Study 4), and when they made a sequential choice for favorite and
nonfavorite songs (Study 5). Notably, the effect of the perceived
threat of COVID19 on sequential choices with a set of fixed
options was stronger for consumers with lower (vs. higher) SES
childhoods (Study 5). However, this effect was independent of the
current SES.
9.1 |Theoretical and practical contributions
Our research makes several contributions. First, the current re-
search contributes to the growing literature across multiple research
disciplines on how COVID19 influences consumer behavior (see
Table 2). Recent research on cues of infectious diseases demon-
strates that consumers increase preferences for atypical products
relative to typical products (Huang & Sengupta, 2020). Consumers
under infectious disease threats also experience fear and disgust
(Galoni et al., 2020) and express negative responses to unfair price
practices (K. Zhang et al., 2020). While these findings offer im-
portant insights into how consumers respond to infectious disease
cues in general, the novelty of the phenomenon limits the empirical
research on COVID19 and decisionmaking in marketing. Our re-
search is the first to demonstrate consumers' patternseeking ten-
dencies in choice in a pandemic situation. People may have inherent
preferences for patterns. For example, people express positive at-
titudes toward ordered (vs. chaotic) compositions of flowers
(Todorova et al., 2004). People provide positive evaluations toward
a product advertised in a regular (vs. irregular) visual pattern (Farace
et al., 2020). We contend that the perceived threat or the salience
of the COVID19 threat may amplify such a tendency to seek pat-
terns in sequential choices, suggesting a straightforward impact to
several stakeholders such as consumers or marketers under the
pandemic (Viglia, 2021).
FIGURE 2 Results of Study 5
We further identify the boundary condition of childhood SES for
the effect on patternseeking. Patternseeking was more pronounced
for people with lowerclass childhoods than their higherclass coun-
terparts. Social class is considered an essential dimension for market
segmentation (Aljukhadar et al., 2021; Kamakura & Mazzon, 2013)
and determines differences in information processing (J. Lee, 2018).
These cognitive differences are manifested strongly under stressful
circumstances as a function of childhood SES (Griskevicius et al.,
2013; Oi & Haas, 2019). People with lower SES childhoods, char-
acterized by a higher level of unpredictability and a lower sense of
control, feel more vulnerable to threatening situations than those
with higher SES childhoods (Mittal & Griskevicius, 2014). Our re-
search suggests that childhood SES may serve as a proxy for why
certain individuals (e.g., those with a lower sense of control) increase
their tendency to seek sequential patterns in choice in times of a
pandemic crisis.
From a managerial perspective, marketers may benefit from our
findings in the context of product bundling. A product bundle com-
prises multiple units of the product in a single package (Simonson,
1999; Wang et al., 2013). For example, a product bundle with variety
(e.g., a package of yogurt with six different flavors) provides con-
sumers with an opportunity to satiate their need for varietyseeking
and thus would be more attractive, relative to a bundle with non-
variety (e.g., a package of yogurt with one flavor) in times of
COVID19. Additionally, marketing practitioners may utilize
consumers' purchase data to identify favorite and nonfavorite
products/services/attributes and incorporate the information when
designing how to bundle them (Rao et al., 2018).
Finally, prior research on repeated choice has focused on the
factors deriving different choice outcomes. However, researchers
paid relatively little attention to the overall sequence of a fixed set of
options consumers use. This study reveals that consumers seek
patterns in their sequential consumption or experience even when a
patterned option is objectively inferior to a nonpatterned option
mainly when disease threat is salient.
9.2 |Future directions
Our research provides avenues for future research. For instance, a recent
study applies implicit theory beliefs (Muncy & Iyer, 2020)anddemon-
strates that consumers who hold an entity theory feel more vulnerable to
COVID19 than those who endorse an incremental theory (Y. Zhang
et al., 2021). People with entity beliefs view situations as fixed and in-
evitable, whereas those with incremental beliefs view them as malleable
and dynamic. Further, people with entity (vs. incremental) orientations
exhibit high levels of consistency in behavior (Dweck & Leggett, 1988). If
so, consumers high in entity (vs. incremental) beliefs likely engage in
patternseeking behavior. Thus, additional research may investigate this
possibility in the repeated choice context.
Second, we showed that the effect on patternseeking is mag-
nified for some people (i.e., those with lower childhood SES)
TABLE 2 Summary of COVID19 relevant research on consumer behavior and related research disciplines
Articles Research question
Huang & Sengupta (2020) This article examines how exposure to diseaserelated cues influences consumers' preference for typical (vs. atypical)
product options.
S. Li, Zhang, et al. (2021) The research finds that a closer (vs. farther) distance to the epicenter associates with lower (vs. higher) perceived risk
of the pandemic, leading to less (vs. more) irrational consumption behaviors.
Park et al. (2021) This study investigates how the COVID19 threat increased consumer evaluation of a product with authenticity
appeals in advertisements.
SarialAbi et al. (2021) The research showed that individuals who experience temporary (permanent) restrictions adopt more concrete
(abstract) levels of construal, which results in their preference for products that communicate brand (category)
attributes and shelves that contain only restrictionrelated (mixture of restrictionand no restrictionrelated)
Xia et al. (2021) This study investigates the motivational effect of nostalgia induced by aversive and threatening situations (e.g.,
COVID19) on new product purchase intentions.
Azer et al. (2021) This study uses netnography and indepth interviews to explore social media usersbehavioral manifestations toward
the COVID19 crisis.
Islam et al. (2021) The research investigates how in the panic situation created by the pandemic, external scarcity stimuli affect the
emotional arousal among people, which in turn influences consumers' impulsive and obsessive buying behaviors.
J. Kim, Giroux, et al. (2020) The current research offers a novel and timely view by examining how communication messages in public service
advertisements can alter the perception of threat under uncertain situations such as the SARSCoV2 coronavirus
Sembada & Kalantari (2020) The research identifies that low perceived control explains why some tourists still chose to travel despite a pandemic.
J. Kim, Park, et al. (2021) The research examined how and why the perceived threat of COVID19 affects consumers to select compromise
presumably because of their lower sense of control. Although this
finding provides support for our theorizing, future research may re-
plicate the moderating effect of childhood SES by directly measuring
individual differences in personal control across social classes. Re-
latedly, people have often reported their experiences of social iso-
lation during COVID19 (Jargon, 2020). In such a situation, people
may differ in their sensitivity to social isolation (e.g., rejection sensi-
tivity; Downey & Feldman, 1996). That is, relatively high (vs. low)
levels of sensitivity to social isolation or threats are likely to lead
people to feel more isolated and threatened and thus increase their
tendency to seek patterns in repeated choices. In addition, future
research may assess SES both objectively and subjectively, thereby
providing managers the opportunities to predict and guide consumer
behavior at a shopping site (Aljukhadar et al., 2021).
Third, future research may consider extending our findings to the
presentation strategy of price information. Research suggests that
certain digits' presentation as price endings affects consumer deci-
sions (J. Kim, Giroux, et al., 2021; Suri et al., 2004). For example,
retailers often use nineending pricing (e.g., $35.39) strategies
(GastonBreton & Duque, 2015; Schindler & Kibarian, 2001). How-
ever, there is the possibility that consumers may prefer ordered or
patterned pricing (e.g., $35.35) when faced with cues of infectious
diseases. Thus, it will be interesting to examine an application of
pricing strategy to consumers' preferences for patternseeking.
Fourth, it may be worthwhile to investigate how cultural or-
ientations influence the effect observed in our studies. We re-
outset of the pandemic outbreak than other countries. Thus, there
may be cultural differences in how people perceive infectious
diseases. Recent research shows that cultures with high (vs. low)
levels of uncertainty avoidance (Hofstede, 2003)tendtohave
lower levels of social gatherings in public (Huynh, 2020). Put dif-
ferently, consumers high (vs. low) in uncertainty avoidance may
perceive the pandemic threat to be higher, thus displaying stronger
patternseeking behavior.
Fifth, some results of the empirical studies have some limitations.
For example, the results of Study 2 could be driven by the preference
for the simple repetition rather than the preference for the pattern or
by the preference for the first option under the higher COVID19
threat. Future research needs to test these alternative mechanisms.
Furthermore, the percentage of participants who showed pattern
seeking was low in Study 3. This result implies that the pattern
seeking tendency is generally influenced by the situational influence
of the pandemic as well as by the way choice options are presented.
(e.g., whether choice options are presented simultaneously or one at
a time). Future research may need to investigate this further. Ad-
ditionally, participants in Study 4 read an article about either a heart
attack (in the control condition) or brain damage by COVID19 (in the
experimental condition). One may argue that a heart attack may not
be perceived as threatening as brain damage by Covid19 because a
heart attack is more relevant to the older populations than the
younger ones. While we described a heart attack as the largest cause
of natural death in the the control condition, future research
may employ a different manipulation to discern the unique aspects of
COVID19 threats from general health threats.
Last, infectious diseases such as COVID19 pose economic, so-
cial, and health threats (Campbell et al., 2020). Such threats may
affect various fundamental motives such as personal control, self
esteem, belongingness, and meaningful existence (Vignoles et al.,
2006). Our research implies that a loss of control accounts for
patternseeking in multiple choices. However, there may be some
other situations in which people feel a threat to personal control.
Examples include some types of social exclusion (J. Lee et al., 2017),
disorganized environments (Chae & Zhu, 2014), duration of restric-
tions (SarialAbi et al., 2021), and stressful situations (Folkman, 1984).
Additionally, given that COVID19 is unique in scale (e.g., transmis-
sion speed, duration, and infection numbers), it is likely that it triggers
various psychological threats including loneliness (Dahlberg, 2021),
resource scarcity (Hamilton, 2021), uncertainty (Stewart, 2021),
construal levels (SarialAbi et al., 2021), and mortality salience (Y. Liu
et al., 2021). Thus, how other relevant situations and psychological
threats affect control and patternseeking would be an interesting
empirical question.
The data that support the findings of this study are available from the
corresponding author upon reasonable request.
The authors declare that there are no conflict of interests.
Jooyoung Park
Jungkeun Kim
Jihoon Jhang
Jacob C. Lee
Jaehoon Lee
Aaker, J., & Schmitt, B. (2001). Culturedependent assimilation and
differentiation of the self: Preferences for consumption symbols in
the United States and China. Journal of CrossCultural Psychology,
32(5), 561576.
Aljukhadar, M., Boeuf, B., & Senecal, S. (2021). Does consumer
ethnocentrism impact international shopping? A theory of social
class divide. Psychology & Marketing,38(5), 735744.
Amir, D., Jordan, M. R., & Rand, D. G. (2018). An uncertainty management
perspective on longrun impacts of adversity: The influence of
childhood socioeconomic status on risk, time, and social preferences.
Journal of Experimental Social Psychology,79, 217226.
Azer, J., BlascoArcas, L., & Harrigan, P. (2021). COVID19: Forms and
drivers of social media users' engagement behavior toward a global
crisis. Journal of Business Research,135,99111.
Brengman, M., Willems, K., & Joye, Y. (2012). The impact of instore
greenery on customers. Psychology & Marketing,29(11),
Campbell, M. C., Inman, J. J., Kirmani, A., & Price, L. L. (2020). In times of
trouble: A framework for understanding consumers' responses to
threats. Journal of Consumer Research,47(3), 311326.
Chae, B., & Zhu, R. (2014). Environmental disorder leads to selfregulatory
failure. Journal of Consumer Research,40(6), 12031218.
Clee, M. A., & Wicklund, R. A. (1980). Consumer behavior and psychological
reactance. Journal of Consumer Research,6(4), 389405.
Dahlberg, L. (2021). Loneliness during the COVID19 pandemic. Aging &
Mental Health,25(7), 11611164.
Deutsch, D., & Feroe, J. (1981). The internal representation of pitch
sequences in tonal music. Psychological Review,88(6), 503522.
Douglas, K. M., Uscinski, J. E., Sutton, R. M., Cichocka, A., Nefes, T.,
Ang, C. S., & Deravi, F. (2019). Understanding conspiracy theories.
Political Psychology,40,335.
Downey, G., & Feldman, S. I. (1996). Implications of rejection sensitivity
for intimate relationships. Journal of Personality and Social
Psychology,70(6), 13271343.
Du, H., Yang, J., King, R. B., Yang, L., & Chi, P. (2020). COVID19 increases
online searches for emotional and healthrelated terms. Applied
Psychology: Health and WellBeing,12(4), 10391053.
Dweck, C. S., & Leggett, E. L. (1988). A socialcognitive approach to
motivation and personality. Psychological Review,95(2), 256273.
Ellis, B. J., Figueredo, A. J., Brumbach, B. H., & Schlomer, G. L. (2009).
Fundamental dimensions of environmental risk. Human Nature,
20(2), 204268.
Enquist, M., & Arak, A. (1994). Symmetry, beauty and evolution. Nature,
372(6502), 169172.
Farace, S., Roggeveen, A., Villarroel Ordenes, F., De Ruyter, K.,
Wetzels, M., & Grewal, D. (2020). Patterns in motion: How visual
patterns in ads affect product evaluations. Journal of Advertising,
49(1), 317.
Fiorillo, A., & Gorwood, P. (2020). The consequences of the COVID19
pandemic on mental health and implications for clinical practice.
European Psychiatry,63(1), e32.
Folkman, S. (1984). Personal control and stress and coping processes: A
theoretical analysis. Journal of Personality and Social Psychology,
46(4), 839852.
Frederick, S., & Loewenstein, G. (2008). Conflicting motives in evaluations
of sequences. Journal of Risk and Uncertainty,37(2), 221235.
Galoni, C., Carpenter, G. S., & Rao, H. (2020). Disgusted and afraid:
Consumer choices under the threat of contagious disease. Journal of
Consumer Research,47(3), 373392.
GastonBreton, C., & Duque, L. C. (2015). Utilitarian and hedonic
promotional appeals of 99ending prices. European Journal of
Marketing,49(1/2), 212237.
Griskevicius, V., Ackerman, J. M., Cantú, S. M., Delton, A. W.,
Robertson, T. E., Simpson, J. A., Thompson, M. E., & Tybur, J. M.
(2013). When the economy falters, do people spend or save?
Responses to resource scarcity depend on childhood environments.
Psychological Science,24(2), 197205.
Griskevicius, V., & Kenrick, D. T. (2013). Fundamental motives: How
evolutionary needs influence consumer behavior. Journal of
Consumer Psychology,23(3), 372386.
Griskevicius, V., Tybur, J. M., Delton, A. W., & Robertson, T. E. (2011). The
influence of mortality and socioeconomic status on risk and delayed
rewards: A life history theory approach. Journal of Personality and
Social Psychology,100(6), 10151026.
Gupta, S., & Gentry, J. W. (2019). Should I Buy, Hoard, or
Hide?’‐Consumers' responses to perceived scarcity.
International Review of Retail, Distribution and Consumer
Research,29(2), 178197.
Hamilton, R. (2021). Scarcity and coronavirus. Journal of Public Policy &
Marketing,40(1), 99100.
Hastie, R. (1984). Causes and effects of causal attribution. Journal of
Personality and Social Psychology,46(1), 4456.
Hayes, A. F. (2017). Introduction to mediation, moderation, and conditional
process analysis: A regressionbased approach. Guilford Press
Hill, S. E., Prokosch, M. L., DelPriore, D. J., Griskevicius, V., & Kramer, A.
(2016). Low childhood socioeconomic status promotes eating in the
absence of energy need. Psychological Science,27(3), 354364.
Hinsch, C., Tang, Y., & Lund, D. J. (2021). Compulsion and reactance: Why
do some green consumers fail to follow through with planned
environmental behaviors? Psychology & Marketing (forthcoming).
Hofstede, G. (2003). Culture's consequences: Comparing values, behaviors,
institutions and organizations across nations. Sage Publications
Huang, Y., & Sengupta, J. (2020). The influence of disease cues on
preference for typical versus atypical products. Journal of Consumer
Research,47(3), 393411.
Huynh, T. L. D. (2020). Does culture matter social distancing under the
COVID19 pandemic? Safety Science,130, 104872.
Hwang, E., Kim, J., Lee, J. C., & Kim, S. (2019). To do or to have, now or
later, in travel: Consumption order preference of material and
experiential travel activities. Journal of Travel Research,58(6),
Infurna, F. J., Gerstorf, D., Ram, N., Schupp, J., & Wagner, G. G. (2011).
Longterm antecedents and outcomes of perceived control.
Psychology and Aging,26(3), 559575.
Islam, T., Pitafi, A. H., Arya, V., Wang, Y., Akhtar, N., Mubarik, S., &
Xiaobei, L. (2021). Panic buying in the COVID19 pandemic: A multi
country examination. Journal of Retailing and Consumer Services,59,
Jargon, J. (2020). Lonely girls: How the pandemic has deepened the
isolation of adolescents. Wall Street Journal.
Jones, M. R., & Zamostny, K. P. (1975). Memory and rule structure in the
prediction of serial patterns. Journal of Experimental Psychology:
Human Learning and Memory,1(3), 295306.
Kahn, B. E., & Isen, A. M. (1993). The influence of positive affect on
variety seeking among safe, enjoyable products. Journal of Consumer
Research,20(2), 257270.
Kamakura, W. A., & Mazzon, J. A. (2013). Socioeconomic status and
consumption in an emerging economy. International Journal of
Research in Marketing,30(1), 418.
Kay, A. C., Whitson, J. A., Gaucher, D., & Galinsky, A. D. (2009).
Compensatory control: Achieving order through the mind, our
institutions, and the heavens. Current Directions in Psychological
Science,18(5), 264268.
Kc, D. S., Staats, B. R., Kouchaki, M., & Gino, F. (2020). Task selection and
workload: A focus on completing easy tasks hurts performance.
Management Science,66(10), 43974416.
Kim, H. S., & Drolet, A. (2003). Choice and selfexpression: A cultural
analysis of varietyseeking. Journal of Personality and Social
Psychology,85(2), 373382.
Kim, H. S., & Sherman, D. K. (2007). Express yourself: Culture and the
effect of selfexpression on choice. Journal of Personality and Social
Psychology,92(1), 111.
Kim, J. (2020). Impact of the perceived threat of COVID19 on variety
seeking. Australasian Marketing Journal,28(3), 108116.
Kim, J., Cui, Y. G., Hwang, E., Franklin, D., & Seo, Y. (2020). 012012 or
111000: Preference for consumption patternseeking. European
Journal of Marketing,54(9), 21712194.
Kim, J., Giroux, M., GonzalezJimenez, H., Jang, S., Kim, S., Park, J.,
Kim, J. E., Lee, J. C., & Choi, Y. K. (2020). Nudging to reduce the
perceived threat of coronavirus and stockpiling intention. Journal of
Advertising,49(5), 633647.
number presentation detail on consumer trust and acceptance of AI
recommendations. Psychology & Marketing, forthcoming,38,11401155.
Kim, J., Lee, J., Jhang, J., Park, J., & Lee, J. C. (2021). The impact of the
COVID19 threat on the preference for high versus low quality/
price options. Journal of Hospitality Marketing & Management
Kim, J., & Lee, J. C. (2020). Effects of COVID19 on preferences for
private dining facilities in restaurants. Journal of Hospitality and
Tourism Management,45,6770.
Kim, J., Park, J., Lee, J., Kim, S., GonzalezJimenez, H., Lee, J., &
Marshall, R. (2021). COVID19 and Extremeness Aversion: The Role
of Safety Seeking in Travel Decision Making. Journal of Travel
Research (forthcoming).
Kirk, C. P., & Rifkin, L. S. (2020). I'll trade you diamonds for toilet
paper: Consumer reacting, coping and adapting behaviors
in the COVID19 pandemic. Journal of Business Research,117,
Kraus, M. W., Piff, P. K., MendozaDenton, R., Rheinschmidt, M. L., &
Keltner, D. (2012). Social class, solipsism, and contextualism: How
the rich are different from the poor. Psychological Review,119(3),
Kwon, M., Manikas, A. S., & Barone, M. J. (2021). (Not) Near and dear:
COVID19 concerns increase consumer preference for products that
are not near me. Journal of Association of Consumer Research
Lee, J. (2018). Can a rude waiter make your food less tasty? Social class
differences in thinking style and carryover in consumer judgments.
Journal of Consumer Psychology,28(3), 450465.
Lee, J., Shrum, L. J., & Yi, Y. (2017). The role of cultural communication
norms in social exclusion effects. Journal of Consumer Psychology,
27(1), 108116.
Lee, J. C., Hall, D. L., & Wood, W. (2018). Experiential or material
purchases? Social class determines purchase happiness.
Psychological Science,29(7), 10311039.
Leeuwenberg, E. L. J. (1971). A perceptual coding language for visual
and auditory patterns. American Journal of Psychology,84(3),
Legare, C. H., & Souza, A. L. (2014). Searching for control: Priming
randomness increases the evaluation of ritual efficacy. Cognitive
science,38(1), 152161.
Levav, J., & Zhu, R. (2009). Seeking freedom through variety. Journal of
Consumer Research,36(4), 600610.
Li, H., Song, Y., & Xie, X. (2020). Altruistic or selfish? responses when
safety is threatened depend on childhood socioeconomic status.
European Journal of Social Psychology,50(5), 10011016.
Li, S., Zhang, Z., Liu, Y., & Ng, S. (2021). The closer I am, the safer I feel:
The distance proximity effectof COVID19 pandemic on
individuals' risk assessment and irrational consumption. Psychology
& Marketing (forthcoming).
Liu, Y., Lv, X., & Tang, Z. (2021). The impact of mortality salience on
quantified self behavior during the COVID19 pandemic. Personality
and Individual Differences,180(October), 110972.
Mantonakis, A., Rodero, P., Lesschaeve, I., & Hastie, R. (2009). Order in
choice: Effects of serial position on preferences. Psychological
Science,20(11), 13091312.
Menon, S., & Kahn, B. E. (1995). The Impact of context on variety
seeking in product choices. Journal of Consumer Research,22(3),
Miller, S. L., & Maner, J. K. (2012). Overperceiving disease cues: The basic
cognition of the behavioral immune system. Journal of Personality
and Social Psychology,102(6), 11981213.
Mittal, C., & Griskevicius, V. (2014). Sense of control under uncertainty
depends on people's childhood environment: A life history theory
approach. Journal of Personality and Social Psychology,107(4),
Mittal, C., Griskevicius, V., Simpson, J. A., Sung, S., & Young, E. S. (2015).
Cognitive adaptations to stressful environments: When childhood
adversity enhances adult executive function. Journal of Personality
and Social Psychology,109(4), 604621.
Morens, D. M., Daszak, P., & Taubenberger, J. K. (2020). Escaping
Pandora's boxAnother novel coronavirus. New England Journal of
Medicine,382(14), 12931295.
Muncy, J. A., & Iyer, R. (2020). The impact of the implicit theories of social
optimism and social pessimism on macro attitudes towards
consumption. Psychology & Marketing,37(2), 216231.
Murray, D. R., & Schaller, M. (2016). The behavioral immune system:
Implications for social cognition, social interaction, and social
influence., Advances in Experimental Social Psychology (Vol. 53,
pp. 75129). Academic Press.
Nisbett, R. E. (2009). Intelligence and how to get it: Why schools and cultures
count. W.W. Norton & Company.
O'Brien, E., & Ellsworth, P. C. (2012). Saving the last for best: A positivity
bias for end experiences. Psychological Science,23(2), 163165.
Oi, K., & Haas, S. (2019). Cardiometabolic risk and cognitive decline: The
role of socioeconomic status in childhood and adulthood. Journal of
Health and Social Behavior,60(3), 326343.
Palmwood, E. N., & McBride, C. A. (2019). Challenge vs. threat: The effect
of appraisal type on resource depletion. Current Psychology,38(6),
Park, J., Kim, J., Lee, D. C., Kim, S. S., Voyer, B. G., Kim, C., Sung, B.,
GonzalezJimenez, H., Fastoso, F., Choi, Y. K. & Yoon, S. (2021). The
impact of COVID19 on consumer evaluation of authentic
advertising messages. Psychology & Marketing (forthcoming).
PenaMarin, J., Adaval, R., & Shen, L. (2021). Fear in the stock market:
How COVID19 affects preference for highand lowpriced stocks.
Journal of Association of Consumer Research (forthcoming).
Povel, D.J., & Collard, R. (1982). Structural factors in patterned finger
tapping. Acta Psychologica,52(12), 107123.
Povel, D.J., & Essens, P. (1985). Perception of temporal patterns. Music
Perception,2(4), 411440.
Prentice, C., Quach, S., & Thaichon, P. (2021). Antecedents and
consequences of panic buying: The case of COVID19.
International Journal of Consumer Studies (forthcoming).
Pyszczynski, T. A., & Greenberg, J. (1981). Role of disconfirmed
expectancies in the instigation of attributional processing. Journal
of Personality and Social Psychology,40(1), 3138.
Rao, V. R., Russell, G. J., Bhargava, H., Cooke, A., Derdenger, T., Kim, H.,
Kumar, N., Levin, I., Ma, Y., & Mehta, N. (2018). Emerging trends in
product bundling: Investigating consumer choice and firm behavior.
Customer Needs and Solutions,5(1), 107120.
Ratner, R. K., & Kahn, B. E. (2002). The impact of private versus public
consumption on varietyseeking behavior. Journal of Consumer
Research,29(2), 246257.
Read, D., Loewenstein, G., & Kalyanaraman, S. (1999). Mixing virtue and
vice: Combining the immediacy effect and the diversification
heuristic. Journal of Behavioral Decision Making,12(4), 257273.
Restle, F. (1970). Theory of serial pattern learning: Structural trees.
Psychological Review,77(6), 481495.
Restle, F. (1972). Serial patterns: The role of phrasing. Journal of
Experimental Psychology,92(3), 385390.
Restle, F., & Brown, E. R. (1970). Serial pattern learning. Journal of
Experimental Psychology,83(1, Pt.1), 120125.
Rettie, H., & Daniels, J. (2021). Coping and tolerance of uncertainty:
Predictors and mediators of mental health during the COVID19
pandemic. American Psychologist,76(3), 427437.
SarialAbi, G., Ulqinaku, A., & MokarramDorri, S. (2021). Living with
restrictions: The duration of restrictions influences construal levels.
Psychology & Marketing (forthcoming).
Schindler, R. M., & Kibarian, T. M. (2001). Image communicated by the use
of 99 endings in advertised prices. Journal of Advertising,30(4),
Sembada, A. Y., & Kalantari, H. D. (2021). Biting the travel bullet: A
motivated reasoning perspective on traveling during a pandemic.
Annals of Tourism Research,88, 103040.
Sheth, J. (2020). Impact of Covid19 on consumer behavior: Will the old
habits return or die? Journal of Business Research (117, pp. 280283).
Shiu, E. M. K., Walsh, G., Hassan, L. M., & Shaw, D. (2011). Consumer
uncertainty, revisited. Psychology & Marketing,28(6), 584607.
Simon, H. A., & Kotovsky, K. (1963). Human acquisition of concepts for
sequential patterns. Psychological Review,70(6), 534546.
Simonson, I. (1990). The effect of purchase quantity and timing on variety
seeking behavior. Journal of Marketing Research,27(2), 150162.
Simonson, I. (1999). The effect of product assortment on buyer
preferences. Journal of Retailing,75(3), 347370.
Stewart, D. W. (2021). Uncertainty and risk are multidimensional: Lessons
from the COVID19 pandemic. Journal of Public Policy & Marketing,
40(1), 9798.
Suri, R., Anderson, R. E., & Kotlov, V. (2004). The use of 9ending prices:
Contrasting the USA with Poland. European Journal of Marketing,
38(1/2), 5672.
Thompson, D. V., Banerji, I., & Hamilton, R. W. (2020). Scarcity of choice:
The effects of childhood socioeconomic status on consumers'
responses to substitution. Journal of the Association for Consumer
Research,5(4), 415426.
Todorova, A., Asakawa, S., & Aikoh, T. (2004). Preferences for and
attitudes towards street flowers and trees in Sapporo, Japan.
Landscape and Urban Planning,69(4), 403416.
Viglia, G. (2021). What's next? Psychology & Marketing,38(1), 56.
Vignoles, V. L., Regalia, C., Manzi, C., Golledge, J., & Scabini, E. (2006). Beyond
selfesteem: Influence of multiple motives on identity construction.
Journal of Personality and Social Psychology,90(2), 308333.
Wang, C. S., Whitson, J. A., & Menon, T. (2012). Culture, control, and
illusory pattern perception. Social Psychological and Personality
Science,3(5), 630638.
Wang, L., You, Y., & Yang, C.M. (2020). Restrained by resources: The
effect of scarcity cues and childhood socioeconomic status (SES) on
consumer preference for feasibility. International Journal of Research
in Marketing,37(3), 557571.
Wang, X., Sun, L., & Keh, H. T. (2013). Consumer responses to variety in
product bundles: The moderating role of evaluation mode.
International Journal of Research in Marketing,30(4), 335342.
Whelan, J., & Hingston, S. T. (2018). Can everyday brands be threatening?
Responses to brand primes depend on childhood socioeconomic
status. Journal of Consumer Psychology,28(3), 477486.
Whitson, J. A., & Galinsky, A. D. (2008). Lacking control increases illusory
pattern perception. Science,322(5898), 115117.
Winterhalder, B. (1986). Diet choice, risk, and food sharing in a stochastic
environment. Journal of Anthropological Archaeology,5(4), 369392.
Winterhalder, B. (1990). Open field, common pot: Harvest variability and
risk avoidance in agricultural and foraging societies. In E Cashdan
(Ed.), Risk and uncertainty in tribal and peasant economies (pp. 6787).
Taylor & Francis.
Xia, L., Wang, J. F., & Santana, S. (2021). Nostalgia: Triggers and its role on new
product purchase intentions. Journal of Business Research,135,183194.
Yoon, S., & Kim, H. C. (2018). Feeling economically stuck: The effect of
perceived economic mobility and socioeconomic status on variety
seeking. Journal of Consumer Research,44(5), 11411156.
Zhang, K., Hou, Y., & Li, G. (2020). Threat of infectious disease during an
outbreak: Influence on tourists' emotional responses to disadvantaged
price inequality. Annals of Tourism Research,84, 102993.
Zhang, Y., Mathur, P., & Block, L. (2021). Personality matters during a
pandemic: Implicit theory beliefs influence preparedness and
prevention behaviors. Journal of the Association for Consumer
Research,6(1), 168177.
Šrol, J., Ballová Mikušková, E., & Čavojová, V. (2021). When we are
worried, what are we thinking? Anxiety, lack of control, and
conspiracy beliefs amidst the COVID19 pandemic. Applied
Cognitive Psychology,35(3), 720729.
How to cite this article: Park, J., Kim, J., Jhang, J., Lee, J. C., &
Lee, J. (2021). The impact of infectious disease threat on
consumers' patternseeking in sequential choices. Psychology
& Marketing,120.
Choice Tasks of Studies 1 and 4
Study 1Jellybeans Choice
Study 4Music Choice
Stimuli of Studies 2, 3, and 4Threat Manipulation
High Covid19 threat (Studies 2, 3, and 4) and control conditions
(Study 2)
Control condition for Study 3 and general health risk condition for
Study 4
Stimuli of Study 2Choice Task
Stimuli of Study 3Choice Task
Initial Information
First Evaluation Task
Stimuli of Study 3Choice Task
Second Evaluation Task
Third Choice Task Instruction
Stimuli of Study 4Highversus LowPattern Choice
Highpattern condition
Lowpattern condition
... Consumers may revert to old habits to assert control and feel comfortable or change their choices to act differently from how they have typically acted. For example, Park et al. (2021) demonstrated that threat of COVID-19 increases consumers' pattern-seeking in sequential choices because patterned choices help to restore control threatened by the infectious disease. Relatedly, Kim et al. (2021) found that experiences of COVID-19 threat activate safety-seeking motivations and thus lead to extremeness aversion in choice. ...
... When people experience threat under such an abnormal situation, they might resort to ordinary experiences to cope with the threat. Indeed, research shows that consumers opt for more familiar products or prefer repetition of similar events to restore a sense of control over outcomes when experiences of contagious diseases activate both the feelings of disgust and fear (Galoni et al., 2020;Park et al., 2021). It is possible that the perceived threat of COVID-19 on personal health, together with the disruption that the never-beforeexperienced lockdown posed on daily routines, makes one's negative feelings of fear and disgust salient and strengthens one's desire to regain a sense of control, thereby flattening the positive effect of extraordinariness on happiness. ...
... We first manipulated perceived threat of COVID-19 by having participants read a newspaper article with a topic related to either COVID-19 (the high-threat condition) or sports (the control condition; adapted from Park et al., 2021;Appendix B;Figures B1 and B2). Specifically, participants in the high-threat condition read an article titled "The Highly Contagious Omicron Variant is a New COVID-19 Threat," suggesting that the new variant, together with the prevalence of the Delta variant and the sluggish vaccination, may further threaten public health. ...
The authors examined how the joint effect of brand experience type (ordinary vs. extraordinary) and COVID‐19 threat on consumer happiness changed at different stages of the COVID‐19 pandemic. The findings from five studies, with the COVID‐19 threat and lockdown status measured as well as manipulated, suggest that COVID‐19 threat exerts converse moderating influences on the extraordinariness–happiness relationship under no lockdown and lockdown. Under lockdown, threat attenuates the effect of brand extraordinariness on happiness; extraordinary brand experiences bring more happiness than ordinary brand experiences when the perceived threat of COVID‐19 is low, but consumers derive comparable happiness from extraordinary and ordinary experiences when perceived threat is high. Under no lockdown, threat amplifies the positive effect of extraordinariness on happiness. Consumers rarely experience a large‐scale lockdown due to a pandemic, and this research advances understanding of how consumer happiness from a brand experience changes with the trajectory of a pandemic.
... Table 1 gives an overview of the most pertinent examples of these advances and locates our research in Table 1 Overview of literature on pandemic-induced anxiety and behavioural responses. Moldes et al., 2021;Pappas, 2021;Park et al., 2022;Zheng et al., 2021Avoidance Cahyanto et al., 2016Fennell, 2017;Reisinger & Mavondo, 2005;Widmar et al., 2017;Zheng et al., 2021 this field. Sylvers et al. (2011) andFennell (2017) conceptualizes fear as a basic state emotion, characterised by a short-lived feeling (horror, shock, or panic) that prepares the body for a defensive response (flight or escape) to a specific, present threat. ...
... Recent consumer psychology studies might provide deeper theoretical explanations for this effect. Park et al. (2022), for instance, researched how the COVID-19 threat increases consumers need for pattern-seekinggiving an additional argumentation for preference of familiar domestic travel during a pandemic. Moldes et al. (2022) demonstrated that pandemic induced anxiety leads to materialism and hedonic consumption (which could also manifest itself in exclusive, international travel). ...
This study introduces the evolutionary concept of assortative sociality and explores how it moderates pandemic anxiety effects on attitudes towards tourism and travel decisions. Based on a large-scale online survey (N = 4630) conducted in three European countries, we demonstrate that COVID-19 anxiety triggered assortative sociality, which reflects both xenophobic and ethnocentric traits. This changes perceptions of domestic and international travel attractiveness, and further leads to travel choices prioritizing domestic destinations. At the same time, xenophobic and ethnocentric traits also affected citizen attitudes towards supporting the domestic tourism industry ‒ an industry that accommodates foreigners. In conclusion, the paper discusses the seemingly paradoxical effects of a pandemic threat on domestic versus international tourism.
... As such, these findings also extend our understanding of the effect of COVID-19 on sustainable consumption. Despite other significant impacts reported for the COVID-19 pandemic (e.g., Li et al., 2021;Ozuem et al., 2021;Park, et al., 2022aPark, et al., , 2022b, empirical studies on its effect on consumption behavior are limited. Our results demonstrate that a high perceived threat of disease eliminates the impact of childhood socioeconomic status on sustainable consumption. ...
... Second, we measured the threat of COVID-19 using a scale. Further research is needed to investigate the boundary conditions of the COVID-19 threat by manipulating it to test the causal relationship (Park et al., 2022a). Third, as we mainly used online panels for this study, future studies need to find similar results from field experiments or analysis of secondary data to enhance the generalizability of our findings. ...
Full-text available
As consumers become more aware of and concerned about the environmental impact of their consumption choices, an increasing number of luxury brands are now engaging in sustainability practices. This study examines factors influencing the effectiveness of embedding sustainability in luxury brands. Specifically, the research focus is the effect of childhood socioeconomic status on moderating consumer preferences for sustainable (vs. regular, nonsustainable) luxury brands. Four experimental studies using different product categories and luxury brands show that preferences for sustainable (vs. regular, nonsustainable) luxury brands are stronger among consumers with relatively low (vs. high) childhood socioeconomic status (Studies 1–4). Notably, these preference patterns are driven by differences in the perceived importance of cooperation in the community among consumers with low versus high childhood socioeconomic status (Study 3). However, these divergent patterns are attenuated when consumption involves the nonluxury brand category (Study 2), and when consumers experience a high‐threat environment (e.g., the COVID‐19 pandemic; Study 4). As such, the findings of this study contribute to the literature by shedding light on the conditions under which consumers show preferences for sustainable (vs. regular, nonsustainable) luxury brands, establishing a theoretically grounded mediator (importance of cooperation in the community) and moderator (perceived environmental threat).
... In the face of a serious threat like the threat of COVID-19, previous research has shown that consumers are psychologically torn between adaptive (Park et al., 2021) and maladaptive behaviors (Ulqinaku et al., 2020). When it comes to vaccines, some people are torn between not getting vaccinated, thus leaving their fate to chance, versus actively doing something (getting vaccinated), which leads to a fear of making the wrong choice. ...
Full-text available
Anti-vaccination sentiment and vaccine hesitancy are on the rise. This is unfortunate given the world's coronavirus disease 2019 (COVID-19) pandemic response plan relies on a global vaccination program the likes of which has never been attempted. Using an anti-consumption lens, this study utilizes a qualitative approach and 53 interviews revolving around people's attitudes towards the COVID-19 vaccination plan. The findings reveal that COVID-19 vaccination hesitancy comes from two major factors: stable factors and contextual factors. Stable factors refer to factors that are consistently found in anti-vaccination movements and include political and philosophical opposition. Contextual factors refer to factors that are highly dependent on the COVID-19 situation and relates to a negative benefit to risk ratio informed by information overload and the influence of marketing phenomena such as branding and country of origin effects. Finally, theoretical and managerial contributions are offered for public policymakers and social marketers.
Full-text available
Purpose This research aims to examine the role of perceived threat (i.e. COVID-19) on people’s preferences for destination logo designs. In addition, it investigates the influence of childhood socioeconomic status (SES) and sensation seeking on the aforementioned effect. Design/methodology/approach Five experiments are used. Studies 1 A and 1B examine the impact of the threat of COVID-19 on visiting intentions as influenced by different destination logos. Study 2 replicates the previous studies and tests for evidence of mediation by the perceived risk. Studies 3 and 4 investigate the moderating role of childhood SES and sensation seeking. Findings The results show that a salient threat of COVID-19 leads people to display higher visiting intentions when presented with simpler (vs complex) destination logo designs. The perceived risk mediates this effect as well. This preference is evident only for people with low (vs high) childhood SES and only for relatively low sensation seekers. Research limitations/implications This study contributes to the branding literature by investigating how situational factors can influence affective reactions to brand logos and to the tourism literature by further investigating the impact of logos on visiting intentions. Practical implications This study provides actionable insights for tourism marketers and logo designers, allowing them to select or create positively perceived destination logos during a potential global crisis. Originality/value This research offers the first evidence that pandemic-related threat perceptions influence people’s visiting intentions when presented with different destination logos, and that these effects are influenced by individual characteristics such as childhood SES or sensation seeking. In doing so, the current study offers a more sophisticated understanding of the potential boundary conditions driving people’s brand logo evaluation.
Full-text available
Some green consumers fail to follow through with planned environmental behaviors (EB), despite claiming intent to do so. The current research draws on reactance theory to shed light on this paradox at the intersection of environmentalism, sustainability, and green marketing. Historically, individuals have been conceptualized dichotomously as either pro or antienvironmental. Mann questions this simplistic perspective and introduces the “Wizard” and “Prophet” as environmentalist archetypes. Wizards and Prophets both engage in EB, but Wizards perceive science and technology as potential solutions, whereas Prophets believe consumption reduction is the only answer. Building upon self‐discrepancy theory and using both qualitative and quantitative data, we find support for Mann's thesis that both environmentalist archetypes exist, and both have inclinations toward EB. Furthermore, these archetypes differ in how they respond to marketing messages or other external stimuli. Whereas Prophets are stimulated and increase EB when compelled to, Wizards react negatively resulting in decreased environmental behavior. Psychological reactance moderates the mediated effect of compulsion by magnifying the effect of this path. We propose that higher levels of reactance increase the positive impact of compulsion on Prophets while amplifying the negative effect of compulsion for Wizards. Exposing Wizards to marketing communications compelling environmentalism suppresses their EB.
Full-text available
This study investigates the relationship between the COVID-19 threat and consumer evaluation of a product with authenticity appeals in advertisements. We propose that threatening situations like COVID-19 motivate consumers to lower their uncertainty and increase their preference for products with authentic advertising messages. Because individuals react differently to threatening environments according to their early-life experiences, commonly reflected in childhood socioeconomic status, we examined whether childhood socioeconomic status moderates the relationship between threat and consumer evaluation of authenticity in advertisements. First, secondary data from Google Trends provided empirical support for our predictions. In additional experimental studies, participants evaluated different target products in four studies that either manipulated (Studies 2 and 3) or measured (Studies 4 and 5) COVID-19 threat. Our results provide converging evidence that consumers positively evaluate products with authentic advertising messages under the COVID-19 threat. Consumers' motivation to lower their uncertainty underlies the effect of COVID-19 threat on their evaluation of authentic messages (Study 3). This attempt to reduce uncertainty is more likely to occur for consumers with relatively higher childhood socioeconomic status (Studies 4 and 5). These findings suggest that using authenticity appeals during a pandemic could effectively reduce consumers' perceived uncertainty and generate positive consumer evaluations.
Full-text available
The unprecedented crisis of COVID-19 posed severe negative consequences for consumers, marketers, and society at large. By investigating the effect of individuals' distance from the COVID-19 epicenter (i.e., the geographical area in which COVID-19 pandemic is currently most severe) on consumers' risk perception and subsequent behaviors, this research provides novel empirical findings that can offer practical insights for marketers. While intuitively, people expect individuals closer to the COVID-19 epicenter to generate a greater risk perception of the pandemic, empirical evidence from four studies provides consistent results for the opposite effect. We find that a closer (vs. farther) distance to the epicenter associates with lower (vs. higher) perceived risk of the pandemic, leading to less (vs. more) irrational consumption behaviors. We refer to this phenomenon as the “distance proximity effect,” which holds for both physical and psychological distances. We further demonstrated that this effect is mediated by consumers' perception of uncertainty and moderated by individuals' risk aversion tendency. The current research contributes to the literature of consumers' risk perception and irrational consumption by highlighting a novel factor of distance proximity. It also offers some timely insights into managing and intervening COVID-19 related issues inside and outside an epicenter.
Full-text available
Many people live with restrictions in their daily lives. Overlooked in past research is how individuals who experience restrictions construe information. We propose that individuals with temporary (permanent) restrictions adopt a more concrete (abstract) level of construal. Theoretically, perceptions of loss of control explain the construal level of consumers with temporary (vs. permanent) restrictions. We tested our hypotheses in a series of four quasi‐experiment studies both in the field and online, including samples of individuals with diabetes and celiac disease. The results show that individuals who experience temporary (permanent) restrictions adopt more concrete (abstract) levels of construal, which results in their preference for products that communicate brand (category) attributes and shelves that contain only restriction‐related (mixture of restriction‐ and no restriction‐related) products. These findings extend developments in the literature on restrictions and construal level theory by showing the effects of duration of restrictions on individuals’ mindset and generate actionable implications for marketers and policymakers.
Full-text available
Social media constitutes a pervasive communication media that has had a prominent role during global crises. While crisis communication research suggests that individuals use social media differently during a crisis, little is known about what forms of engagement behavior may emerge and what drivers may lead to different forms of social media users’ engagement behavior toward a global crisis. This study uses netnography and in-depth interviews to explore social media users’ behavioral manifestations toward the COVID-19 crisis; thereby, we identify nine forms and six drivers and develop a framework of relationships between these forms and drivers. Those findings provide a better understanding of social media engagement toward the crisis from individual users’ perspectives, which helps commercial and non-commercial marketers to determine the users’ sentiments and reactions reflected in their engagement behaviors, hence, communicate more effectively and in a more engaging way during and beyond a global crisis.
Full-text available
When do consumers trust artificial intelligence (AI)? With the rapid adoption of AI technology in the field of marketing, it is crucial to understand how consumer adoption of the information generated by AI can be improved. This study explores a novel relationship between number presentation details associated with AI and consumers' behavioral and evaluative responses toward AI. We theorized that consumer trust would mediate the preciseness effect on consumer judgment and evaluation of the information provided by AI. The results of five studies demonstrated that the use of a precise (vs. imprecise) information format leads to higher evaluations and behavioral intentions. We also show mediational evidence indicating that the effect of number preciseness is mediated by consumer trust (Studies 2, 4, and 5). We further show that the preciseness effect is moderated by the accuracy of AI‐generated information (Study 3) and the objective product quality of the recommended products (Study 4). This study provides theoretical implications to the AI acceptance literature, the information processing literature, the consumer trust literature, and the decision‐making literature. Moreover, this study makes practical implications for marketers of AI businesses including those who strategically use AI‐generated information.
Full-text available
Combining conceptual perspectives from emerging research on COVID-19, safety-seeking motivations, and extremeness aversion in choice (i.e., compromise effects), we examine how and why the perceived threat of COVID-19 affects consumers’ choice and decision making in the hotel and restaurant domains. Across seven studies (two studies from secondary data sets and five experimental studies), we provide novel evidence that the perceived threat or threat salience of COVID-19 amplifies the general tendency to select compromise options, avoiding extreme ones, within a choice set. We highlight the role of safety-seeking motivations as the underlying mechanism in the relationship between perceived threat and extremeness aversion in choice. We further document a boundary condition that the extremeness aversion effect is stronger for leisure travelers than for business travelers.
Full-text available
The present research investigates how the threat of COVID-19 affects consumers’ choices among hospitality/travel options of varying levels of quality and price. Drawing on compensatory consumption theory, we predicted that the virus’s prominence would increase consumers’ preference for more expensive options in a choice set. Five empirical studies and one secondary data analysis investigated consumers’ choice among various business and budget hotels. The results consistently showed that consumers increase their safety-seeking under a high threat of COVID-19 and prefer a more expensive hotel option. To enhance the study’s internal validity, we provide converging evidence by either measuring (studies 1, 2, 3, and 5) or manipulating the threat of COVID-19 (study 4). We also provide the secondary data analysis with words searched in Google Trends (study 6). Finally, we discuss the theoretical and managerial implications of our findings.
This research investigates the motivational effect of nostalgia induced by aversive and threatening situations (e.g., COVID-19) on new product purchase intentions. Study 1 shows that perceived COVID severity induces feelings of nostalgia and that heightened nostalgia boosts purchase intentions for new products. We replicate the effect with nostalgia triggered by a different threat (i.e., social unrest) in Study 2. Further, by inducing nostalgia through a threatening personal situation (i.e., mortality salience, Study 3) and manipulating nostalgia directly (Study 4), we further generalize the link between nostalgia and new product purchase intentions beyond COVID-19. Our research offers both theoretical and practical implications.
Quantified self refers to the process consumers collect, analyze to reflect, control, and optimize their behaviors, thus obtaining self-knowledge. Since the COVID-19 pandemic has changed our lives dramatically, this research aims to explore how mortality salience caused by COVID-19 affects people's quantified self behavior. The current study used an online survey and the experimental method to test multiple research hypotheses. The results indicated that mortality salience has a positive impact on quantified self; perceived control mediates the relationship between mortality salience and the quantified self, and social distance plays a moderating role between mortality salience and perceived control. The conclusions provide a new way to help people deal with anxiety and fear brought by the COVID-19, and enhance public health and well-being.