ArticlePDF Available

21. α-Amylase and α-Glucosidase Inhibitors from Plant Extracts

Authors:

Abstract

About 80% of diabetic people have come from developing countries. Indonesia is seventh of diabetics. Diabetes is a disease as a result of metabolic disorder that caused by lack of insulin secretion and/or insulin do not work properly, so that the sugar highly accumulated in blood (characterized by hyperglycemia). Normally, range of blood sugar is 70 - 110 mg / dL before meals and less than 140 mg / dL after meals. One therapeutic approach to control blood sugar level is to inhibit the activity of starch hydrolysis enzymes, namely α-amylase and α-glucosidase. The active compounds of plant extracts have a unique and diverse structure compared to synthetic ones. This characteristics are important because the inhibition of enzyme activity by active compounds from plant extracts is known to make the formation of chemical bonds (affinity) between the active compounds and enzymes. A number of active compounds from plant extracts such as tannins, flavonoids, polysaccharides, saponins, terpenoids are known to inhibit the activity of α-amylase and α-glucosidase. In this study, we discuss some active compounds that inhibit α-amylase and α-glucosidase enzyme from plant extracts.
Jurnal Medika Veterinaria
Agustus 2019, 13 (2):151-158
158P-ISSN: 0853-1943; E-ISSN: 2503-1600
doi:https://doi.org/10.21157/j.med.vet.v11i1.13819
151
α-Amylase And α-Glucosidase Inhibitors From Plant Extracts
M. Daud AK1, Juliani2, Sugito1, Mahdi Abrar1
1Pendidikan Dokter Hewan Fakultas Kedokteran Hewan Universitas Syiah Kuala, Banda Aceh
2Teknologi Pangan Fakultas Teknologi Pertanian Universitas Serambi M ekkah, Banda Aceh
Alamat Korespondensil: juliani@serambimekkah.ac.id
ABSTRACT
About 80% of diabetic people have come from developing countries. Indonesia is seventh of diabetics.
Diabetes is a disease as a result of metabolic disorder that caused by lack of insulin secretion and/or insulin do not
work properly, so that the sugar highly accumulated in blo od (characterized by hyperglycemia). Normally, range of
blood sugar is 70 - 110 mg / dL before meals and less than 140 mg / dL after meals. One therapeutic approach to
control blood sugar level is to inhibit the activity of starch hydrolysis enzymes, namely α-amylase and α-glucosidase.
The active compounds of plant extracts have a unique and diverse structure compared to synthetic ones. This
characteristics are important because the inhibition of enzyme activity by active compounds from plant extracts is
known to make the formation of chemical bonds (affinity) between the active compounds and enzymes. A number of
active compounds from plant extracts such as tannins, flavonoids, polysaccharides, saponins, terpenoids are known
to inhibit the activity of α-amylase and α-glucosidase. In this study, we discuss some active compounds that inhibit α
- amylase and α-glucosidase enzyme from plant extracts.
Key words: α-amilase inhibitor, α-glukosidase inhibitor, diabetes, active compound
PENDAHULUAN
Sebanyak 8.3% atau sekitar 382 juta
orang dewasa di dunia menderita diabetes.
Angka ini diperkirakan meningkat melebihi
592 juta dalam kurun waktu kurang dari 25
tahun. Sekitar 80% penderita diabetes
berasal dari negara-negara berpendapatan
rendah sampai menengah. Indonesia
menempati posisi ke tujuh negara dengan
penderita diabetes terbanyak di dunia. Di
Indonesia penderita diabetes diperkirakan
meningkat lebih 1.5 kali lipat dalam kurun
waktu 22 tahun yaitu dari 8.5 juta pada tahun
2013 menjadi 14.1 juta pada tahun 2035
(International Diabetes Federation 2013).
Diabetes merupakan penyakit akibat
kesalahan metabolik yang disebabkan oleh
kekurangan sekresi insulin, insulin tidak
berfungsi dengan baik maupun keduanya.
Akibatnya gula terakumulasi di dalam darah
dan menyebabkan meningkatnya kadar
glukosa di dalam darah (hiperglikemia)
(Jawla et al. 2012). Kadar gula darah normal
puasa berkisar 70 to 105 mg/dl (Warade et
al. 2014) sedangkan kadar gula darah puasa
yang mencapai 126 mg/dl dikategorikan
dalam keadaan hiperglikemia (Umpierrez et
al. 2002). Keadaan hiperglikemia dapat
menginduksi kerusakan jaringan dan
produksi radikal bebas berlebih. Jika jumlah
antioksidan dalam tubuh tidak mencukupi,
tubuh akan mengalami stres oksidatif yang
merupakan awal terjadinya komplikasi
diabetes (Rolo et al. 2006).
Diabetes melitus merupakan penyakit
kronis yang berpotensi menjadi masalah
utama kesehatan secara global. Dua tipe
diabetes yang paling umum ditemui yaitu
diabetes tipe 1 dan 2. Menurut Alghadyan
(2011) diabetes tipe 1 terjadi karena proses
autoimun, sel β pankreas rusak sehingga
tergantung pada insulin untuk bertahan.
Diabetes tipe 2 ditandai dengan resisten
terhadap insulin dan insulin yang dihasilkan
cenderung kurang. Selain itu, penyakit
diabates juga dapat menyebabkan komplikasi
seperti retinopati, nefropati, neuropati,
jantung koroner, hipertensi, periferal
vaskular (Amos et al. 1997).
Akarbosa, metformin, voglibose
merupakan obat-obatan yang selama ini
digunakan untuk mengontrol gula darah
melaluipenghambatan kerja enzim
Jurnal Medika Veterinaria
M. Daud AK, dkk
152
pencernaan. Beberapa penelitian
menunjukkan bahwa penggunaan obat-
obatan antidiabetes seperti akarbosa,
metformin, atau voglibose memiliki efek
samping seperti gangguan gastrointestinal
(diare dan flatulensi), gangguan hati, pusing,
mual dan muntah (van de Laar 2008; Dabhi
et al. 2013). Adanya kandidat obat yang
lebih aman tetapi efektif sangat diharapkan,
misalnya kandidat obat yang berasal dari
ekstrak tanaman.
Tanaman merupakan sumber fitokimia
yang dapat dimanfaatkan sebagai alternatif
obat maupun bahan pangan fungsional
antidiabetes. Berbagai penelitian telah
dilakukan terhadap tanaman-tanaman yang
digunakan secara tradisional untuk
mengobati diabetes. Trojan-Rodrigues et al.
(2011) melaporkan 81 spesies dalam 42
famili tanaman dan terpenting 2 famili
Asteraceae (Bauhinia forficate) dan
Myrtaceae (Syzygium cumini) digunakan
untuk mengobati diabetes di Brazil Selatan.
α-amilase merupakan kelompok enzim
endoamilase. Enzim ini bekerja pada bagian
dalam dari amilosa maupun amilopektin
dengan memutuskan ikatan α 1,4 glikosidik
(van der Maarel et al. 2002). Berbeda
dengan α-amilase, α-glukosidase merupakan
enzim eksoamilase dimana enzim ini bekerja
pada bagian luar dari residu pemecahan
amilosa/amilopektin dengan memotong tidak
hanya ikatan α 1,4 glikosidik tapi juga pada
ikatan α 1,6 glikosidik menghasilkan gula
sederhana. Selain itu, α-glukosidase bekerja
paling baik pada maltooligosakarida
membebaskan glukosa dengan konfigurasi α
(Costantino et al. 1990). Beberapa penelitian
menunjukkan bahwa komponen bioaktif
pada ekstrak tanaman mampu menghambat
kerja enzim α-amilase dan α-glukosidase
(Dong et al. 2012; Bhandari et al. 2008;
Kwon et al. 2008; Mohammed et al. 2012).
Beberapa kelompok senyawa aktif
penghambat enzim α-amilase dan α-
glukosidase dari ekstrak tanaman akan
dibahas sebagai berikut.
Senyawa Aktif Penghambat Aktifitas
Enzim α-amilase dan α Glukosidase
a. Tanin
Ekstrak kaya akan tannin
terkondensasi dari selaput biji Araucaria
angustifolia mampu menghambat enzim α-
amilase saliva manusia (IC50 56.88 μg/L)
dan α-amilase pankreas babi (IC50 20.25
μg/L). Ekstrak ini mengandung senyawa
prosianidin dan prodelfinidin dengan jumlah
prosianidin lebih banyak dibandingkan
prodelfinidin (da Silva et al. 2014).
Procianidin dari biji anggur juga memiliki
penghambatan terhadap α-amilase.
Penghambatan ini meningkat dengan
meningkatnya derajat polimerisasi
prosianidin. Penghambatan terjadi melalui
interaksi yang stabil antara prosianidin
dengan enzim yang menyebabkan
pembentukan endapan tak larut (Gonçalves
et al. 2011).
(A) (B)
Gambar 1. Interaksi α-amilase manusia dengan
katekin teh hijau ECG (A), EGC (B) (Miao et al.
2015)
Isolat tannin terhidrolisis dari herbal
Eugenia jambolana mengandung
monomerik maupun polimerik tannin
terhidrolisis yang merupakan kelompok
senyawa penghambat α-amilase (IC50 1.1
µg/mL). Penghambatan ini bersifat non
kompetitif (Tong et al. 2014). Mekanisme
yang sama juga dilaporkan oleh Miao et al.
(2015) bahwa aktivitas penghambatan non
kompetitif juga diamati pada epikatekin
gallat (ECG) dan epigallokatekin gallat
(EGCG) dari ekstrak teh. Dari studi docking
Jurnal Medika Veterinaria
M. Daud AK, dkk
153
(Gambar 1) menunjukkan bahwa ECG
memiliki afinitas yang lebih kuat dibanding
EGCG. Penghambatan senyawa aktif
tersebut terhadap α-amilase manusia terjadi
melalui ikatan hidrogen dan van Der Walls
antara residu asam amino yang merupakan
sisi aktif enzim dengan senyawa aktif.
Penghambatan oleh tannin juga
diamati pada α-glukosidase. Asam tanat
merupakan salah satu tannin spesifik
komersil penghambat α-glukosidase kuat
(IC50 = 0.44 μg/mL), lebih kuat dibanding
obat anti α-glukosidase komersil akarbosa
(IC50 > 0.60 μg/mL). Asam tanat bekerja
dengan membentuk kompleks dengan enzim.
Reaksi penghambatan terjadi dengan
melibatkan interaksi hidrofobik dan
elektrostatik antara asam tanat dengan enzim
(Xiou et al. 2015).
b. Flavonoid
Aktivitas enzim α-glukosidase
diketahui dapat dihambat oleh senyawa-
senyawa dari kelompok flavonoid seperti
3’,4’,7-trihidroksiflavon dari tanaman Rhus
verniciflua Stokes maupun rutin dan
kaempferol 3-O-rutinosida dari Gynostemma
pentaphyllum (Kim et al. 2010; Yang et al.
2013). Ekstrak total flavonoid dari biji
Cichorium glandulosum menghambat enzim
α-glukosidase yang diisolasi dari dua sumber
yaitu S. cerevisiae dan intestinal tikus, serta
α-amilase yang diisolasi dari B. subtilis pada
kisaran konsentrasi 8-64.mg/ml. Penggunaan
konsentrasi ekstrak 8 mg/ml terhadap α-
glukosidase S. cerevisiae, 64 mg/ml pada
enzim α-glukosidase intestinal tikus dan
konsentrasi ekstrak 16 mg/ml terhadap
enzim α-amilase B. subtilis memberikan
aktifitas penghambatan relatif sama dengan
kontrol positif akarbosa (10 mg/ml) (Yao et
al. 2013).
Seyawa aktif dari ekstrak tanaman
kumis kucing juga dilaporkan memiliki
aktivitas penghambatan terhadap enzim α-
glukosidase (Mohamed et al. 2012; Juliani et
al. 2016). Dengan menggunakan metode
metabolomik berbasis FTIR dan identifikasi
gugus fungsional senyawa aktif diduga
senyawa metoksi flavonoid yaitu sinensitin
and 5,6,7,3’-tetrametoksi-4’-hidroksi-8-C-
prenilflavon merupakan senyawa yang
bertanggung jawab terhadap aktivitas
penghambatan tersebut (Juliani et al. 2016).
Ekstrak tanaman Peltophorum
pterocarpum memiliki aktifitas
penghambatan yang kuat terhadap α-
glukosidase dan α-amilase. Ekstrak bagian
daun, kulit batang, bunga dan cangkang biji
memiliki aktivitas penghambatan melebihi
obat komersil akarbosa terhadap α-
glukosidase (3.5 mg/ml) sedangkan bagian
daun dan kulit batang memiliki aktivitas
penghambatan melebihi obat komersil
akarbosa terhadap α-amilase (0.012 mg/ml).
Hasil analisis fraksi aktif menunjukkan
bahwa salah satu senyawa flavonoid yaitu
quercetin-3-O-β-D-galaktopiranosida
merupakan kandungan utamanya
(Manaharan et al. 2011). Manaharan et al.
(2012) berhasil mengisolasi enam senyawa
flavonoid (4-hidroksibenzaldehida,
miricetin-3-O-ramnosida, europetin-3-O-
ramnosida, ploretin, mirigalon-G, mirigalon-
B) dari ekstrak etanol daun Syzygium
aqueum. Dua flavonoid yaitu miricetin-3-O-
ramnosida dan europetin-3-O-ramnosida
memiliki aktivitas penghambatan yang kuat
terhadap α-glukosidase (IC50 1.1 µM dan 1.9
µM) dan α-amilase (IC50 1.9 µM dan 2.3
µM). Dari strukturnya senyawa kedua
flavonoid tersebut sama-sama memiliki
gugus gula. Walaupun demikian ramnosida
sendiri tidak dapat menghambat aktifitas
enzim. Adanya gugus gula pada miricetin
pada C3 dapat meningkatkan penghambatan
sekitar 10 kali dibandingkan miricetin analog
sedangkan europetin yang terdiri dari gugus
miricetin analog, glukosa serta gugus metil
pada C7 tujuh kali lebih lebih efektif
dibandingkan miricetin analog.
Baohuosida I yang diisolasi dari
ekstrak air daun Epimedium brevicornum
menunjukkan aktivitas penghambatan yang
Jurnal Medika Veterinaria
M. Daud AK, dkk
154
kuat terhadap α-glukosidase khamir (IC50
28.9 mmol/L). Dari kinetika reaksi enzim
diketahui bahwa penghambatan oleh
senyawa ini memiliki karakteristik tipe
campuran (reaksi berada diantara kompetitif
dan kompetitif). Baohuosida I dapat
berikatan dengan α-glukosidase bebas
maupun α-glukosidase yang membentuk
kompleks dengan substrat. Dari kinetika
inhibisi juga diketahui bahwa nilai K1 (12.47
µmol/L) lebih rendah dari K2 (31.7
µmol/L) yang menunjukkan bahwa
Baohuosida I lebih mudah berikatan dengan
enzim bebas dibandingkan dengan kompleks
enzim-substrat dimana pada kondisi substrat
melimpah Baohuosida I akan cenderung
membentuk berikatan dengan kompleks
enzim-substrat. Dari strukturnya Baohuosida
I memiliki cincin C7-OH sedangkan icariin
yang merupakan senyawa flavanol dari
tanaman yang sama menunjukkan aktivitas
lemah dengan struktur C40-OH (Phan et al.
2013).
c. Polisakarida
Polisakarida bersumber dari tumbuhan
diketahui menghambat aktivitas enzim
pencernaan pati. Polisakarida Acacia tortilis
yang merupakan isolat dari gum eksudat
menghasilkan penghambatan terhadap α-
glukosidase mamalia (penghambatan 72.43%
pada konsentrasi 5 mg/ml) dan tikus (IC50
0.7 mg/ml). Aktivitas penghambatan oleh
ekstrak ini setara dengan akarbosa yang
merupakan obat komersial sebagai kontrol
positif (Bisht et al. 2013).
Polisakarida penghambat α-amilase
juga diperoleh dari kelompok tanaman beri.
Purifikasi awal menunjukkan ekstrak
polisakarida dari buah blackcurrant (BCP).
Fraksi BCP I menghambat enzim α-amilase
sebesar 26.44% pada konsentrasi 4.0
mg/mL. Dari spektra IR diketahui ekstrak
tersebut mengandung ramnosa, arabinosa,
xilosa, mannosa, glukosa, dan galaktosa
dengan berat molekul 8146 kDa (Xu et al.
2014)
Pengaruh polisakarida asam terhadap
penghambatan α-glukosidase juga diamati
pada ekstrak kulit buah Camellia oleifera
Abel (CFP) dengan menggunakan SEM dan
FTIR.
Fraksi ekstrak
dielusi
dengan
0.2 mol/L sodium klorida (CFB-3)
dan
ekstrak
hasil elusi dengan kolom sephadex
G-100
dengan 0.2
sodium
klorida
menunjukkan (CFPB) penghambatan
tertinggi dengan IC50 berturut-turut 10.95
dan 11.80 µg/mL. CFB-3 memiliki berat
molekul 186,019 Da sedangkan CFPB
sebesar 378,824 Da (Zhang et al. 2015).
Selain pada α-glukosidase, kandungan
polisakarida asam juga menentukan tingkat
penghambatan
α-amilase
seperti
yang
diamati
pada
ekstrak polisakarida
jagung
sutra
terkarboksimetilasi.
Dimana
polisakarida
turunan
ini
memiliki
karakteristik
lebih mudah
larut, distribusi
berat molekul sempit, viskositas intrinsik
rendah, memiliki aktivitas antioksidan lebih
tinggi dengan konformasi sangat bercabang
dibandingkan dengan polisakarida lainnya
(Chen et al. 2013). Perbedaan struktur atau
karakteristik polisakarida disimpulkan
menjadi penyebab perbedaan aktivitas
penghambatan (Zhang et al. 2015; Chen et
al. 2013).
Polisakarida dari teh bagian daun
(TLPS) dan bunga (TFPS) menunjukkan
aktivitas penghambatan terhadap terhadap α-
glukosidase pada konsentrasi 0.5 mg/mL
sedangkan penghambatan α-amilase
membutuhkan konsentrasi lebih tinggi (10.0
mg/mL). Pada konsentrasi 10.0 mg/mL
penghambatan TLPS dan TFPS (10%)
terhadap α-amilase sebanding dengan
akarbosa (75%) pada konsentrasi yang sama.
Dilihat dari komposisi kimianya
penghambatan terhadap α-glukosidase oleh
TLPS tidak berpengaruh oleh kandungan
polisakarida asam namun meningkat dengan
meningkatnya polisakarida netral. Pada
TLFS efektivitas penghambatan justru
menurun ketika jumlah polisakarida asam
meningkat (Wang et al. 2010).
Jurnal Medika Veterinaria
M. Daud AK, dkk
155
APPS1-2 merupakan hasil fraksinasi
dengan ultrafitrasi dan sephadex G-75 jel
kromatografi dari ekstrak polisakarida kulit
buah (pulp) apricot (Armeniaca sibirica L.
Lam.). APPS1-2 menunjukkan aktivitas
penghambatan α-glukosidase kuat dengan
IC50 sebesar 6.06 mg/mL. Hasil analisis
dengan teknik kromatografi dan spektroskopi
menunjukkan bahwa APP1-2 merupakan
gliko-konjugat. Berat molekul APP1-2
sebesar 25.93 kDa terdiri dari ramnosa,
glukosa, mannosa dan galaktosa. Dengan
struktur molekul tulang punggung terdiri dari
ramnosa dan glukosa sedangkan cabang
terdiri dari mannosa dan galaktosa yang
merupakan ciri heteropolisakarida dengan
konfigurasi α (Cui et al. 2015).
d. Terpen dan Saponin
Penghambatan enzim penghidrolisis
pati oleh bioaktif yang diisolasi dari tanaman
Momordica charantia diamati pada senyawa
momordikosida M (18.63%) dan
momordikosida A (21.71%) pada
konsentrasi 50 µM. Dari strukturnya
momordikosida A memiliki dua gula pada
C3 dan 4 grup hidroksil pada C22, C23, C24,
dan C25 sedangkan momordikosida M
memiliki dua gula pada posisi C3, C23 dan
menujukkan aktivitas lebih kuat (Nhiem et
al. 2010).
A B
Gambar 2. Interaksi ikatan hidrogen (garis biru putus-
putus) antara senyawa I (A) dan II (B) dengan α-
amilase pankreatik manusia (HPA) (Ghost et al.
2014).
Senyawa diterpen anti α-amilase (E)-
labda-8(17),12-diena-15,16-dial (IC50
24.3µM ) dan (E)-8β,17-epoksilabd-12-ena-
15,16-dial (IC50 15.167 µM) yang kemudian
dirujuk sebagai senyawa I dan II berturut-
turut diisolasi dari biji Alpinia nigra. Kedua
senyawa ini menunjukkan bersifat non
kompetitif. Studi docking menunjukkan
terjadi ikatan ikatan hidrogen antara sisi aktif
enzim dan senyawa penghambat.
Penghambatan terjadi melalui ikatan
hidrogen antara senyawa I dengan asam
amino lys200 dan Ile235 sedangkan senyawa
II berikatan dengan asam amino Arg195 dan
Asn298 (Gambar 2). Selain ikatan hydrogen,
ikatan hidrofobik dan interaksi elektrostatik
diduga berperan dalam reaksi ini (Ghost et
al. 2014).
Asam pistagremik (PA) dari tanaman
Pistacia integerrima Stewart memiliki
aktivitas kuat terhadap α-glukosidase dari
khamir (IC50 89.12 μM), intestinal tikus
(IC50 62.47 μM). Studi docking
menunjukkan penghambatan kemungkinan
terjadi melalui ikatan hidrogen antara PA
dengan residu sisi aktif katalitik enzim
(Asp60, Arg69 dan Asp70) (Uddin et al.
2012).
Tujuh dari 12 senyawa triterpenoid
saponin merupakan senyawa triterpenoid
saponin yang pertama kali berhasil diisolasi
dan dieludasi dari akar Gypsophila
oldhamiana. Dari 3 kelompok triterpenoid
saponin (3-O-monoglukosida, 28-O-
monoglukosida dan 3, 28-O-bidesmosida)
golongan 28-O-monoglukosida merupakan
kelompok inhibitor kuat terhadap α-
glukosidase dengan IC50 berkisar 15.2 -78.5
µM. Salah satu senyawa dari kelompok 28-O-
monoglukosida yaitu gipsogenin 28-O-α-D-
galaktopiranosil-(1→6)-β-D glukopiranosil-
(1→6)--D-glukopiranosil-(1→3)]-β-D-
glukopiranosil ester memiliki aktivitas
penghambatan terkuat (IC50 15.2 µM) lebih
kuat dari akarbosa (IC50 388 µM). Senyawa
tersebut merupakan monosakarida α anomerik
α-galaktosa sehingga strukturnya mirip dengan
akarbosa yang memiliki monosakarida α
anomerik α glukosa. Dari
M.
Jurnal Medika Veterinaria
M. Daud AK, dkk
156
hubungan struktur senyawa dengan aktivitas
diketahui posisi ikatan gula dengan aglikon
menentukan tingkat penghambatan (Luo et
al. 2008).
Senyawa anti glukosidase
kariofillakosida A (IC50 112.94 μmol/L) dan
B (IC50 133.74 μmol/L) merupakan
triterpenoid saponin dari ekstrak etanol
Gypsophila paniculata. Saponin ini memiliki
aglikon yang sama yaitu grup asam quillaik
dengan duam rantai gula digantikan oleh p-
metoksicinnamoil dan grup asetil.
Keberadaan metoksicinnamoil menunjukkan
peningkatan penghambatan enzim (Yao et al.
2011).
Steroidal saponin (25S)--furastan-
3β,22,26-triol dan
gitogenin
dari
ekstrak
metanol
Tribulus
longipetalus
memiliki
aktivitas
penghambatan
terhadap
α-
glukosidase dengan IC50 berturut-turut 33.5
µM dan 37.2 µM. Dengan mempelajari
struktur senyawa dan aktivitas
penghambatan diketahui bahwa keberadaan
gula diduga menurunkan aktivitas
penghambatan terhadap α-glukosidase
(Naveed et al. 2014).
KESIMPULAN
Sejumlah senyawa aktif dari
ekstrak tanaman seperti tannin, flavonoid,
polisakarida, saponin dan terpen diketahui
memiliki aktivitas penghambatan terhadap
enzim α-amilase dan α-glukosidase sehingga
berpotensi untuk digunakan sebagai kandidat
obat-obatan maupun pangan fungsional yang
dapat mencegah maupun mengobati
diabetes. Beberapa senyawa aktif seperti
asam tanat, flavonoid dari ektrak daun dan
batang tanaman Peltophorum pterocarpum,
Polisakarida dari teh bagian daun dan
gipsogenin 28-O-α-D-galaktopiranosil-
(1→6)-β-D-glukopiranosil-(1→6)--D-
glukopiranosil-(1→3)]-β-D-glukopiranosil
ester bahkan dilaporkan memiliki aktivitas
penghambatan baik terhadap enzim α-
amilase, α-glukosidase maupun keduanya
lebih kuat dibandingkan obat komersil. Akan
tetapi mekanisme penghambatan terhadap
tersebut berbeda-beda untuk masing-masing
senyawa. Hal ini diduga terjadi karena
perbedaan konfigurasi senyawa yang dapat
menyebabkan peerbedaan karakteristik
senyawa aktif dalam menghambat kinerja
dari enzim α-amilase dan α-glukosidase.
DAFTAR PUSTAKA
Alghadyan AA. 2011. Diabetic retinopathy An update.
Saudi Journal of Ophthalmology 25, 99111.
Amos AF, M cCarty DJ, Zimmet P. 1997. The Rising
Global Burden of Diabetes and its Complications:
Estimates and Projections to the Year 2010. Diabet.
M ed. 14: S7S85.
Bhandari M R, Jong-Anurakkun N, Hong G, Kawabata K.
2008. α-Glucosidase and α-amylase inhibitory
activities of Nepalese medicinal herb Pakhanbhed
(Bergenia ciliata, Haw.). Food Chemistry 106:
247252.
Bisht S, Kant R, Kumar V. 2013. α-D-Glucosidase
inhibitory activity of polysaccharide isolated from
Acacia tortilis gum exudate. International Journal of
Biological M acromolecules 59; 214220.
Chen S, Chen H, Tian J, Wang Y, Xing L, Wang J. 2013.
Chemical modification, antioxidant and α amylase
inhibitory activities of corn silk polysaccharides.
Carbohydrate Polymers 98; 428 437.
Costantino HR, Brown SH, Kelly RM . 1990. Purification
and characterization of an alpha-glucosidase from
a hyperthermophilic archaebacterium, Pyrococcus
furiosus, exhibiting a temperature optimum of
105 to 115 degrees C. J Bacteriol.;172(7):3654-
60.
Cui J, Xi M M , Li YW, Duan JL, Wang L, Weng Y, Jia N,
Cao SS, Li RL, Wang C, Zhao C, Wu Y, Wen
AD. 2015. Insulinotropic effect of Chikusetsu
saponin IVa in diabetic rats and pancreatic β-
cells. Journal of Ethnopharmacology 164; 334
339.
Cui J, Gu X, Wang F, Ouyang J, Wang J. 2015. Purification
and structural characterization of an α glucosidase
inhibitory polysaccharide from apricot
(Armeniaca sibirica L. Lam.) pulp . Carbohydrate
Polymers 121 (2015) 309314.
da Silva SM , Koehnlein EA, Bracht A, Castoldi R, de M
orais GR, Baesso M L, Peralta RA, de Souza
CGM , de -Nakanishi AB, Peralta RM . 2014.
Inhibition of salivary and pancreatic α-amylases
by a pinhão coat (Araucaria angustifolia) extract
rich in condensed tannin. Food Research
International 56 ;18
Dabhi AS, Bhatt NR, Shah M J. 2013. Voglibose: An
Alpha Glucosidase Inhibitor. Journal of Clinical
and Diagnostic Research; 7(12): 3023-3027.
Jurnal Medika Veterinaria
M. Daud AK, dkk
157
Dong HQ, Li M , Zhu F, Liu FL, Huang JB. 2012.
Inhibitory potential of trilobatin from Lithocarpus
polystachyus Rehd against a-glucosidase and a-
amylase linked to type 2 diabetes. Food
Chemistry 130: 261266.
Gonçalves R, M ateus N, de Freitas V. 2011. Inhibition of
a-amylase activity by condensed tannins. Food
Chemistry 125; 665672.
Ghosh S, Rangan L. 2014.
M olecular
docking and
inhibition studies of a-amylase activity by
labdane diterpenes
from Alpinia
nigra
seeds.
M edicinal Chemistry Research 23 (11) : 4836.
[IDF] International Diabetes
Federation.
2013.
IDF
Diabetes
Atlas.
http://www.idf.org/diabetesatlas[28
Februari
2014].
Jawla S, Kumar Y, Khan M SY. Hypoglycemic activity of
Bougainvillea spectabilis stem bark in normal and
alloxan-induced diabetic rats. Asian Pacific
Journal of Tropical Biomedicine: S919-S923.
Juliani, Yuliana ND, Budijanto S, Wijaya CH, Khatib A. 2016.
Senyawa inhibitor α-Glukosidase dari kumis kucing
dengan pendekatan metabolomik berbasis FTIR.
Jurnal Teknologi dan Industri Pangan 27: 7-30. DOI:
10.6066/jtip .2016.27.1.17.
Kim JS, Kwon YS, Chun WJ, Kim TY, Sun J,Yu CY, Kim
M J. 2010. Rhus verniciflua Stokes flavonoid
extracts have anti-oxidant, anti-microbial and α
glucosidase inhibitory effect. Food Chemistry
120; 539543.
Kwon YI, Apostolidis E, Shetty K. In vitro studies of
eggplant (Solanum melongena) phenolics as
inhibitors of key enzymes relevant for type 2
diabetes and hypertension. Bioresource
Technology 99 (2008) 29812988.
Luo JG, M a L, Kong LY. 2008. New triterpenoid saponins
with strong a-glucosidase inhibitory activity from
the roots of Gypsophila oldhamiana. Bioorganic
& M edicinal Chemistry 16; 29122920.
M anaharan T, Teng LL, Appleton D, M ing CH, M asilamani
T, Palanisamy UD. 2011. Antioxidant and
antiglycemic potential of Peltophorum
pterocarpum plant parts. Food Chemistry 129;
13551361
M anaharan T, Appleton D, Cheng HM , Palanisamy UD.
2012. Flavonoids isolated from Syzygium aqueum
leaf extract as potential antihyperglycaemic
agents. Food Chemistry 132; 18021807.
M iao M , Jiang B, Jiang H, Zhang T, Li X. 2015.
Interaction mechanism between green tea extract
and human a-amylase for reducing starch
digestion. Food Chemistry xxx; xxxxxx.
M ohamed EAH, Siddiqui M JA, Ang LF, Sadikun A, Chan
SH, Tan SC, Asmawi M Z and Yam M F. 2012.
Potent α-glucosidase and α-amylase inhibitory
activities of standardized 50% ethanolic extracts
and sinensetin from Orthosiphon stamineus Benth
as anti-diabetic mechanism. BM C
Complementary and Alternative M edicine,
12:176.
Naveed M A, Riaz N, Saleem M , Jabeen B, Ashraf M
,Ismail T, Jabbar A. 2014. Longipetalosides AC, new
steroidal saponins from Tribulus longipetalus.
Steroids 83; 4551.
Nhiem NX, Kiem PV, M inh CV, Ban NK, Cuong NX,
Tung NH, Ha LM , Ha DT, Tai BH, Quang TH,
Ngoc TM , Kwon YI, Jang HD, Kim YH. 2010. α
Glucosidase Inhibition Properties of Cucurbitane-
Type Triterpene Glycosides from the Fruits of
Momordica charantia. Chem. Pharm. Bull. 58(5)
720724.
Phan M AT, Wang J, Tang J, Lee YZ, Ng K. 2013.
Evaluation of a-glucosidase inhibition potential of
some flavonoids from Epimedium brevicornum.
LWT - Food Science and Technology 53; 492-
498
Rolo AP, Palmeira CM . 2006. Diabetes and mitochondrial
function: Role of hyperglycemia and oxidative
stress. Toxicology and Applied Pharmacology
212; 167178.
Tong WY, Wang H, Waisundara VY, Huang D. 2014.
Inhibiting enzymatic starch digestion by
hydrolyzable tannins isolated from Eugenia
jambolana. LWT - Food Science and Technology
59 ;389-395.
Trojan-Rodrigues M . Alves TLS, Soares GLG, Ritter M R.
2012. Plants used as antidiabetics in popular
medicine in Rio Grande do Sul, southern Brazil.
Journal of Ethnopharmacology 139; 155 163.
Uddin G, Rauf A, Al-Othman AM , Collina S, Arfan M ,
Ali G, Khan I. 2012. Pistagremic acid, a
glucosidase inhibitor from Pistacia integerrima.
Fitoterapia 83; 16481652.
Umpierrez GE, Isaacs SD, Bazargan N, You X, Thaler LM ,
Kitabchi AE. 2002. Hyperglycemia: An
Independent M arker of In-Hospital M ortality in
Patients with Undiagnosed Diabetes. The Journal
of Clinical Endocrinology & M etabolism 87;
978982.
van de Laar FA. 2008. Alpha-glucosidase inhibitors in the
early treatment of type 2 diabetes. Vascular
Health and Risk M anagement :4; 11891195.
van der M aarel M JEC, van der Veen B, Uitdehaag JCM ,
Leemhuis H, Dijkhuizen L. 2002. Properties and
applications of starch-converting enzymes of the
α-amylase family . Journal of Biotechnology 94;
137155.
Wang Y, Yang Z, Wei X. 2010. Sugar compositions, _-
glucosidase inhibitory and amylase inhibitory
activities of polysaccharides from leaves and
flowers of Camellia sinensis obtained by different
extraction methods. International Journal of
Biological M acromolecules 47; 534539.
Warade JP, Pandey A. 2014. Fasting Blood Glucose Level
Higher Than Post-M eal in Healthy Subjects: A
Study of 738 Subjects. World Journal of
Pharmaceutical Research 3; 1121-1128.
Xiao H, Liu B, M o H, Liang G. 2015. Comparative
evaluation of tannic acid inhibiting α-glucosidase
and trypsin. Food Research International xxx;
xxxxxx.
Xu Y, Zhang L, Yang Yu, Song X, Yu Z. Optimization of
ultrasound-assisted compound enzymatic
extractionand characterization of polysaccharides
Jurnal Medika Veterinaria
M. Daud AK, dkk
158
from blackcurrant. Carbohydrate Polymers xxx;
xxxxxx.
Yang F, Shi H, Zhang X, Yang H, Zhou Q, Yu L. 2013.
Two new saponins from tetraploid jiaogulan
(Gynostemma pentaphyllum), and their anti-
inflammatory and a-glucosidase inhibitory
activities. Food Chemistry 141; 36063613.
Yao S, Luo JG, M a L, Kong LY. 2011. Two New
Triterpenoid Saponins from the Roots of
Gypsophila paniculata with Potent α-Gucosidase
Inhibition Activity . Chinese Journal of Natural
M edicines ;9 (6): 0401−0405.
Yao X, Zhu L, Chen Y, Tian J, Wang Y. 2013. In vivo and
in vitro antioxidant activity and a-glucosidase, a-
amylase inhibitory effects of flavonoids from
Cichorium glandulosum seeds. Food Chemistry
139; 5966.
Zhang S, Li XZ. 2015. Inhibition of α glucosidase by
polysaccharides from the fruit hull of Camellia
oleifera Abel. Carbohydrate Polymers 115; 38
43.
... The common medicines that have been used to control blood sugar through the inhibition of digestive enzymes are reported to possess side effects e.g. gastrointestinal unrest, liver disorder, and other complications [5]. Candidates for medicinal raw materials derived from natural plant extracts are expected to be safer and more effective to use. ...
... Flavonoid compounds are known to inhibit the activity of the αglucosidase enzyme, e. g flavonoids from groups 3',4',7-trihydroxiflavone; 5,6,7,3'-tetramethoxy-4'hydroxy-8-C-prenilflavone and quercetin-3-O-β-Dgalactopyranoside, as well as strong inhibitor of αamylase enzyme activity, namely from the miricetin-3-group O-ramnocide and europetin-3-O-ramnocide. Apart from flavonoids, tannins which are found in stem bark and jambolan leaves, are also reported to inhibit enzyme activity of α-amylase and αglucosidase. Inhibition of enzyme activity by tannins was achieved through the interaction of complex formation or insoluble sediment [5]. ...
... However, the ability of jambolan fruit and seed extracts to inhibit α-amylase and or a αglucosidase (IC50) was still higher than other extracts of natural ingredients such as Dayak onion ethanol extract (Eleutherine palmifolia) [16]; acetone and ethanol extract of Picralima nitida [10]; extracts of methanol, ethyl acetate and n-hexane of buni leaves (Antidesma bunius L.) [17]; and ethyl acetate extract of binahong leaves (Anredera cordifolia) [2]. In general, this inhibitory ability is supported by the phytochemicals of the materials which contain phenols, flavonoids, saponins, triterpenoids, and tannins [5]. ...
... Alkaloids tend to be polar, but several types of alkaloids can form a resonance in the benzene ring, which causes a reduced level of polarity of the compound so that it can be extracted by semipolar solvents [16]. Alkaloid compounds can be identified in the ethyl acetate fraction of the earrings plant with, suspected types of alkaloid compounds including sanguinarin, berberine, bazinaprin, caffeine, hydrastin, palmantin, pentylpridin compounds, and evosantin [16], [17]. Saponins consist of glycone components, or sugar groups, and aglycones. ...
... These components can bind to the active site of the enzyme through hydrogen bonds. The polarity of the sapogenin aglycone compounds varies from the polarity range of semipolar to very nonpolar [17]. ...
Article
Full-text available
Cherry mistletoe (Dendrophthoe pentandra (L). Miq) have an inhibitory effect on the α-glucosidase enzyme, but research related to solvent optimization to find active compound is unclear. Secondary metabolites that can be identified depend on the level of solvent polarity. This study aims to determine the effect of solvent polarity on the secondary metabolite content and the α-glucosidase enzyme by using the polar and nonpolar fractions of the ethyl acetate extract of cherry mistletoe leaves. Cherry mistletoe leaves were extracted using ethyl acetate and were followed by a liquid-liquid fractionation. The polar fraction used ethanol and ethyl acetate as solvents, whereas the nonpolar fraction used n-hexane and ethyl acetate as solvents. Secondary metabolites present in polar fractions were alkaloids, flavonoids, steroids, tannins, and terpenoids, whereas those present in nonpolar fractions were flavonoids and steroids. The IC50 value of the polar fraction (54.8 ppm) was lower than that of the nonpolar fraction (192.0 ppm). The polar fraction of the ethyl acetate extract of cherry mistletoe leaves could inhibit the α-glucosidase enzyme and, therefore, is classified as active. On the other hand, the nonpolar fraction of the ethyl acetate extract of cherry mistletoe leaves could not inhibit the α-glucosidase enzyme and, therefore, is classified as inactive in general.
... Karakteristik ini sangatlah diperlukan sebagai penghambat aktivitas enzim yang dipengaruhi oleh senyawa aktif dari ekstrak tumbuhan. Senyawa aktif seperti tanin, flavonoid, polisakarida, saponin, terpenoid dapat menghambat aktivitas enzim amilase dan glukosidase sehingga berpengaruh dalam pengendalian kadar gula darah (Daud AK et al., 2019;Oboh et al., 2012;Yusoff et al., 2015;Martin et al., 2017). ...
Article
Full-text available
Background: The nutritional content of nipah fruit such as zinc and fiber plays an important role in regulating blood sugar levels in diabetes patients (DM). One way to increase the concentration of nutritional value and bioactive substances in palm fruit is to extract it. Active compounds such as tannins, flavonoids, polysaccharides, saponins, and terpenoids in palm fruit extract can inhibit the activity of amylase and glucosidase enzymes, which are mediated by Glucose Transporter-2 (GLUT-2) so that they affect controlling blood sugar levels. GLUT-2 is a protein that plays a role in transporting glucose from outside to inside cells, so it plays an essential role in maintaining balanced blood sugar levels.Objective: This research aims to examine the nutrients in palm fruit extract and its effect on Glucose transporter-2 (GLUT-2) in STZ-induced in rats.Method: This study is experimental research using experimental laboratory methods carried out in the FKH USK laboratory in June 2022. Making nipah fruit extract is carried out by maceration using 95% ethanol. Carbohydrate, protein, fat, zinc, and Fe levels were analyzed using the Luff Schoorl, Kjeldahl, Soxhletasi, and AAS test method. Testing for water content and crude fibre uses a gravimetric test. Twenty-five rat samples were divided into four groups and induced with STZ 40 mg/kg BW. Checking blood sugar levels is needed to see hyperglycemic conditions in rats. GLUT-2 measurement after administering nipah extract for one month using the ELISA technique. The data obtained were analyzed by an ANOVA test.Results: Based on the results, it was found that fruit extract contained 15,79% carbohydrates, 7,04% protein, 6,02% fat, 0,0327% zinc, water content 24,05% and crude fibre 0,36%. The average GLUT-2 level in the control group was 7,24 ± 1,35 ng/ml, the DM group was 6,75 ± 0,81 ng/ml, the DM+extract group was 6,84 ± 0,56 ng/ml, the DM+metformin group was 7,34 ± 0,86ng/ml, and the DM+extract+metformin group was 6,93± 1,01 ng/ml.Conclusion: Nipah fruit extract contains carbohydrates, protein, fat and zinc. Administration of palm fruit extract for one month did not significantly effect on GLUT-2 in various groups of rats (0,83).
... The sample material used in this study has the ability to inhibit the activity of α-amylase enzymes. This is thought to be related to the secondary metabolic content in black turmeric, kencur, black cumin, forest bee honey and stevia leaves that are in line with research from M. Daud AK et al (2019) which states that active compounds contained in plant extracts have inhibitory properties good on the activity of the α-amylase enzymes and α-glucosidases such as tannins, flavonoids, polysaccharides, tercent and saponins so that plants that contain active substances are often used as herbal medicines in overcoming high blood sugar levels or preventing diabetes mellitus [21]. This study is in line with research conducted by [22] also said that the α-amylase inhibition mechanism of active biochemical compounds contained in the drug ingredients such as flavonoids, tannins, saponins and terpenes cannot be explained scientifically, But in several studies that have been carried out explains that these compounds are related to the bonds formed between αamylase and the active biochemistry [22]. ...
Article
Full-text available
The inhibition of α-amylase enzymes can delay the remaining carbohydrates in the small intestine and reduce the travel of postprandial blood glucose, therefore the content of compounds in the form of tannins, flavonoids, saponins and terpen is believed to be able inhibit the α-amylase enzymes. Knowing the effectiveness of α-amylase enzyme inhibition by some traditional medicine ingredients (Curcuma caesia, Kaempferia galanga, Nigella sativa, Apis dorsata, and Stevia rebaudiana) and organoleptic properties of the ready to drink formulation. This study is an experimental study using the design "Pretest-Posttest with control Groug" on the sample in the form of liquid extracts. Plant liquid extract is tested for its inhibition of α-amylase and used as a formulation of herbal drink ready to drink. The result IC50 values of black turmeric extract (6.46 mg/ml), aromatic ginger (6.10 mg/ml), black cumin (7.36 mg/ml), forest bee honey (2.59 mg//ml) and sweet leaves (4,85 mg/ml). The results of IC50 formulations 1 (8.03 mg/ml) and 2 (14.18 mg/ml) and glibenclamide values are (2.53 mg/ml). Conclusion the effectiveness of α-amylase inhibition of sweet leaf extract is better than other extracts and formulation 1 is better than formulation 2.
... Dihydroxy flavonols are a type of flavonoid that can inhibit α-amylase enzymes. Flavonoids inhibit α-amylase by interacting with its active site through OH groups (AK et al., 2019). The antidiabetic activity of secondary metabolites from avocado seeds can also be explained by the presence of triterpenoids, which block the sodium glucose transporter 1 (SGLT1) (Khathi et al., 2013). ...
Article
Full-text available
The accumulation of chromium in renal tissues promotes the generation of reactive oxygen species (ROS), leading to oxidative stress, genomic and cellular harm, and ultimately necrotic and apoptotic cell death induced by free radicals. Hence, the utilization of antioxidant phytochemicals becomes crucial for cellular defense against oxidative damage. This study endeavors to explore the potential protective effects of an aqueous avocado seed extract (ASE) on rabbit kidneys exposed to chromium‐induced damage. Fifteen adult rabbits were distributed into three groups: Group 1 was kept as the control. The second and third groups received a daily dose of K2Cr2O7 (5 mg/kg) intraperitoneally for 2 weeks. While the third group was given an oral dose of ASE (400 mg/kg). In rabbits administered with Cr (VI), kidney homogenates showed a marked increase in Malondialdehyde (MDA) (69.3 ± 4.1 nmol/g) along with a decrease in glutathione (59 ± 5.8 nmol/mg) content and the activity superoxide dismutase (SOD) (0.5 ± 0.05 U/mg protein), glutathione peroxidase (GPx) (16.7 ± 1.1 μmol/mg protein), and catalase (CAT) (73.8 ± 3.9 U/g protein) compared to the levels in control group. Also, the gene expression data for the enzymes SOD, GPx, and CAT dropped dramatically in kidney tissue following Cr (VI) injection. Additionally, Bowman's capsule and glomerulus showed degenerative alterations in the kidney's histopathology and immunohistochemistry. ASE treatment when administered along with Cr (VI) enhanced the activity and gene expression of antioxidant enzymes and improved histopathological conditions. The findings of this study unequivocally show that avocado seed extract, which is rich in phenolic derivatives, is a potent nephroprotective agent that inhibits nephrotoxicity induced by Cr (VI) in rabbits.
... The inhibition of α-glucosidase enzyme activity in DM patients is useful for lowering blood glucose levels, especially after eating [3]. The α-glucosidase enzyme is an isoamylase enzyme that breaks down amylose/amylopectin by cutting the 1,4 glycosidic bonds and the 1,6 glycosidic bonds to produce simple sugars [20]. The inhibition of the α-glucosidase enzyme can reduce the absorption of carbohydrates from food by the intestine, thereby preventing an increase in blood glucose levels. ...
Conference Paper
Full-text available
The giant gourami (Osphronemus goramy), rice eel (Monopterus albus), and mackerel tuna (Euthynnus affinis) are among the sources of protein and albumin that have been used to lower the blood glucose level of people with Diabetes Mellitus (DM). This study aims to determine the protein levels and albumin content of O. goramy, M. albus, and E. affinis and the inhibition activity of albumin against the α-glucosidase enzyme. This study employed an experimental method with accidental sampling. The protein content of fresh fish fillets was tested using the Kjeldahl method and extracted using a centrifuge to obtain albumin. Albumin levels were determined using a visible spectrophotometer. The inhibitory activity of albumin against α-glucosidase enzyme was tested using an ELISA reader. The results showed a significant difference between freshwater and seawater fish proteins , namely giant gourami of 13.91%, rice eel of 14.41%, and mackerel tuna of 30.55%. The highest albumin content was obtained from mackerel tuna (4.75 ± 0.04 g/100 mL), followed by giant gourami (3.61 ± 0.26 g/100 mL), and rice eel (2.38 ± 0.26 g/100 mL). The albumin showed no significant activity against the α-glucosidase enzyme.
... Furthermore, Ningrum, Purwanti, & Sukarsono (2016) research showed that the alkaloids found in the karamunting plant were Maritidine, Homolycorine, Ismine, Tazettine, and Lycorine (Ningrum et al., 2016). α-Glucosidase inhibitor is a type of drug for type 2 diabetes that works to block starch metabolism by inhibiting enzymes in the intestine to break down carbohydrates to slow down glucose absorption (Ak, Juliani, Sugito, & Abrar, 2019;Laily & Khoiri, 2016;Ouassou et al., 2018;Yin, Zhang, Feng, Zhang, & Kang, 2014). ...
Article
Full-text available
Karamunting plant (Rhodomyrtus tomentosa) is a traditional medicinal plant. The leaves, roots, stems, and fruits of Karamunting have been identified, and their biological activities are antioxidants, antibacterial, antidiabetic, anti-inflammatory, and anticancer that contained alkaloids, tannins, and flavonoids. The types of alkaloids found in karamunting stems are homolycorine, ismine, lycorine, maritidine and tazetine. This study aims to determine the binding score of alkaloid-derived compounds with protein α-glucosidase and determine the protein's active site bound to the ligand. The method used in this research is Protein-Ligand ANT-System (PLANTS). The results showed that the anchoring score of homolycorine was -60.83 kcal/mol, ismine -64.42 kcal/mol, lycorine -71.20 kcal/mol, maritidine -61.82 kcal/mol, and tazetine -65.02 kcal/mol. The active sites used for binding are Glu526, Gly555, and Pro556. The average score for anchoring alkaloid-derived compounds with protein α-glucosidase is 83.84%. This number indicates that karamunting stems can be used as antidiabetic.
Article
Full-text available
The Garuga floribunda (Garuga floribunda Decne) plant is one of the species known for its various medicinal properties. This research aims to investigate the inhibitory activity of α- glucosidase and α-amylase enzymes and to determine the optimum concentration of the methanol extract of Garuga floribunda leaves as an antidiabetic agent. The leaves extraction is obtained through an extraction process using methanol as the solvent and tested for itsinhibitory activity against the α-glucosidase enzyme using the p-nitrophenyl-α-D- glucopyranoside (p-NPG) substrate and the α-amylase enzyme using the DNS (3,5- dinitrosalicylic acid) substrate. The method is UV-Vis spectrophotometry. The Phytochemical tests of this plant reveal the presence of flavonoids, alkaloids, saponins, tannins, steroids, and terpenoids. The inhibition test results show that the methanol extract of Garuga floribundaleaves exhibited significant inhibitory activity against both enzymes. The highest inhibition percentage against the α-glucosidase enzyme is 91.09%, indicating very high antidiabetic activity. Meanwhile, the inhibition against the α-amylase enzyme is 7.56%, showing no significant antidiabetic activity. The optimum concentration for inhibiting both enzymes is 1000 ppm.
Article
Full-text available
Plant is well known as an excellent source for bioactive compounds. Metabolomics was reported as a potential tool to accelerate plant acitive compounds identification. In this research, FTIR-based metabolomics method was used to identify active compounds with α-glucosidase inhibitory and antioxidant activity in aerial parts of Orthosiphon stamineus (OS) extract and its fractions. Chemical profile of OS methanolic extracts and hexane, chloroform, butanol, and water fractions were analyzed using infrared spectroscopy. OS extracts and fractions showed inhibitory activity against α-glucosidase enzymes with IC50 value 154.07±30.60-465.83±85.34 µg/mL and antioxidant activity with IC50 value 7.41±0.02-19.35±0.09 µg/mL. Butanol fraction was the fraction with the highest α-glucosidase inhibitory activity and moderate antioxidant activity with IC50 value between 154.07±30.60 µg/mL and 10.84±0.54 µg/mL, respectively. The correlation between the biological activity and chemical composition data were analyzed using Orthogonal Projections to Latent Structures (OPLS). Based on the VIP (variable influence on projection), the coefficient value of the respective OPLS models, and IR database of compounds previously identified in OS, it was suggested that methoxy flavonoid (sinensitin and 5,6,7,3’-tetramethoxy-4’-hydroxy-8-C-preny-lflavone), diterpenes (orthosiphols, orthoarisins, neoorthosiphols, staminols, and staminolactones) and triterpenes (ursolic acid, oleanolic acid, betulinic acid, hydroxybetulinic acid, maslinic acid, α-amyrin and β-amyrin) were identified as responsible compounds for the α-glucosidase inhibitory activity. Meanwhile phenolic (rosmarinic acid), methoxy flavonoid (eupatorin, sinensetin, 5-hydroxy-6,7,3’,4’-tetramethoxyflavone, salvigenin, 6-hydroxy-5,7,3’-trimethoxyflavone and 5,6,7,3’-tetramethoxy-4’-hydroxy-8-C-prenylflavone), diterpenes (orthosiphols, orthoarisins, neoortho-siphols, staminols, and staminolactones) and triterpenes (ursolic acid, oleanolic acid, betulinic acid, hydroxybetulinic acid, maslinic acid, α-amyrin and β-amyrin) were identified as responsible compounds for the antioxidant activity.
Article
Full-text available
Wide varieties of synthetic drugs are available for combating type 2 diabetes but are not free of associated side effects. Commercially available antidiabetic drugs are known to be potent inhibitors of α-amylase which reduce postprandial hyperglycaemia. Here, we have investigated Alpinia nigra seed extracts and the isolated two labdane diterpenes (I and II) for the α-amylase inhibitory activity. These labdane type diterpenes showed more promising inhibitory effects (IC50 value 24.3 ± 2.05 and 15.167 ± 0.52 μM for compound I and II, respectively) against α-amylase than the standard inhibitor, acarbose. For both compounds, the mode of enzymatic inhibition was found to be non-competitive with K i 13.303 ± 0.065 and 12.19 ± 0.099 μM, respectively. Molecular docking studies revealed that both I and II bind the human pancreatic α-amylase in the active site cleft similar to the acarbose. Among all the compounds under investigation, acarbose and compound II were found to have the highest MolDock and re-rank score. Further molecular dynamic simulation studies also supports the docking results obtained for both I and II. This is the first report on α-amylase inhibitory effect of the two labdane diterpenes with their potential candidature as future antidiabetic drugs of herbal origin.
Article
Full-text available
Diabetes Mellitus (DM) is a morbid disease worldwide, with increasing incidence as time passes. It has macro-vascular and micro-vascular complications. The main cause of these complications is poorly controlled postprandial hyperglycaemia. Alpha glucosidase inhibitors, namely acarbose, voglibose and miglitol, are available for therapy. Voglibose is well tolerated and effective in comparable doses among these drugs. This article highlights the important features of voglibose.
Article
In this work, the inhibitory effects of tannic acid on the α-glucosidase and trypsin were systematically evaluated by comparing with the clinical diabetes healer acarbose and the soybean-derived trypsin inhibitor using fluorescence spectroscopy and enzymatic kinetics methods. We showed that the anti-α-glucosidase activity of tannic acid (IC50 = 0.44 μg/mL) was higher than that of acarbose (IC50 > 0.60 μg/mL), while its anti-trypsin activity (IC50 = 0.79 mg/mL) was significantly lower than that of the trypsin inhibitor from soybean (IC50 < 0.20 mg/mL). Enzymatic kinetics measurements confirmed that the inhibitory pattern of tannic acid toward two tested enzymes was a mixed competitive and noncompetitive inhibition. Tannic acid could bind the enzymes to form new complexes, presenting a strong static fluorescence quenching. The presence of tannic acid led to the hypsochromic shift of the maximum fluorescence in trypsin, but not in α-glucosidase. The thermodynamic parameters indicated that the main driving force between tannic acid and both the enzymes was the hydrophobic interaction followed by the electrostatic interaction. Our work suggests that tannic acid is a strong anti-α-glucosidase natural inhibitor with a low inhibitory activity for trypsin, thus its roles in functional food and medicinal plants should be re-recognized.
Article
Slowing down starch digestion is one method of controlling postprandial hyperglycaemia of diabetes, for which naturally occurring alpha-amylase inhibitors from edible botanicals have a great potential. We reported herein that Eugenia jambolana, a traditional herbal tea for the treatment of diabetes in South Asia, contains potent alpha-amylase inhibitors because of monomeric and polymeric hydrolyzable tannins (HT). These compounds demonstrated a dose dependent inhibitory activity against alpha-amylase (IC50 = 1.1 +/- 0.4 mu g/mL), which was significantly stronger than acarbose (IC50 = 19.0 +/- 2.0 mu g/mL). Kinetic studies revealed that the HT were mixed non-competitive inhibitors against alpha-amylase. Using an in vitro human starch digestion model, incorporation of 0.125 mg/mL HT into a real food system (wheat flour) was effective in delaying enzymatic starch digestion moderately, with a significantly stronger inhibitory effect in the absence of proteins in the food matrix. Pre-incubation of HT with alpha-amylase prior to substrate addition also significantly enhanced their inhibitory activity. These results provide useful knowledge on HT as potential alpha-amylase inhibitors, which could potentially alleviate postprandial hyperglycaemia in diabetic patients.
Article
This study evaluated the inhibitory effects of the green tea extract on human pancreatic α-amylase activity and its molecular mechanism. The green tea extract was composed of epicatechin (59.2%), epigallocatechin gallate (14.6%) and epicatechin gallate (26.2%) as determined by HPLC analysis. Enzyme activity measurement showed that % inhibition and IC50 of the green tea extract (10%, based on starch) were 63.5% and 2.07mg/ml, respectively. The Michaelis-Menten constant remained unchanged but the maximal velocity decreased from 0.43 (control) to 0.07mg/(ml×min) (4mg/ml of the green tea extract), indicating that the green tea extract was an effective inhibitor against α-amylase with a non-competitive mode. The fluorescence data revealed that the green tea extract bound with α-amylase to form a new complex with static quenching mechanism. Docking study showed the epicatechin gallate in the green tea extract presented stronger affinity than epigallocatechin gallate, with more number of amino acid residues involved in amylase binding with hydrogen bonds and Van der Waals forces. Thus, the green tea extract could be used to manipulate starch digestion for potential health benefits. Copyright © 2015 Elsevier Ltd. All rights reserved.
Article
As a well-known traditional Chinese medicine the root bark of Aralia taibaiensis has traditionally been used as the medicine considered alleviating several disorders including diabetes mellitus (DM). Chikusetsu saponin IVa (CHS) has been defined as a major active ingredient of triterpenoid saponins extracted from Aralia taibaiensis. The scientific evidence of anti-diabetic effect for CHS remains unknown and the purpose of our study was to study its hypoglycemic and insulin secretagogue activities. In vivo studies were performed on type 2 diabetic mellitus (T2DM) rats given CHS for 28 days to test the antihyperglycemic activity. The in vitro effects and possible mechanisms of CHS on the insulin secretion in pancreatic β-cell line βTC3 were determined. Oral administration of CHS dose-dependently increased the level of serum insulin and decreased the rise in blood glucose level in an in vivo treatment. In vitro, CHS potently stimulated the release of insulin from βTC3 cells at both basal and stimulatory glucose concentrations, the effect which was changed by the removal of extracellular Ca(2+). Two methods showed that CHS enhanced the intracellular calcium levels in βTC3 cells. CHS was capable of enhancing the phosphorylation of extracellular signal-regulated protein kinases C (PKC), which could be reversed by a PKC inhibitor (RO320432), and the insulin secretion induced by CHS was also inhibited by RO320432. Further study also showed that the insulinotropic effect, intracellular calcium levels and the phosphorylation of PKC were reduced by inhibiting G protein-coupled receptor 40 (GPR40) by a GPR40 inhibitor (DC126026). These observations suggest that the signaling of CHS-induced insulin secretion from βTC3 cells via GPR40 mediated calcium and PKC pathways and thus CHS might be developed into a new potential for therapeutic agent used in T2DM patients. Copyright © 2015. Published by Elsevier Ireland Ltd.
Article
In this study, the crude polysaccharide (APPS) from the fruiting bodies of apricot (Armeniaca sibirica L. Lam.) was isolated and fractionated by ultrafiltration and Sephadex G-75 gel chromatography. The hypoglycemic activities of all fractions were determined by α-glucosidase inhibitory activity in vitro. The fraction APPS1-2 showed the best activity with an IC50 of 6.06 mg/mL. The properties and chemical compositions of this fraction were analyzed with high-performance liquid chromatography, gel permeation chromatography-eighteen angle laser light scattering instrument, UV spectroscopy, infrared spectroscopy, and NMR spectroscopy (1H). The results demonstrated that APPS1-2 was a neutral glycoconjugate with a molecular weight of 25.93 kDa. It comprised rhamnose, glucose, mannose, and galactose, with a relative molar ratio of 1.34:2.01:0.48:0.35. The backbone of APPS1-2 may consist of rhamnose and glucose, but its branches may consist of mannose and galactose. The IR and UV spectrum of APPS1-2 revealed the typical characteristics of heteropolysaccharide. 1H NMR spectrum showed that APPS1-2 contained α-configurations.
Article
In the present study, an efficient procedure for ultrasound-assisted compound enzymatic extraction of polysaccharides from blackcurrant fruits was investigated using response surface methodology (RSM). The Box-Behnken design was applied to optimize the effects of enzyme concentration (X1), pH (X2) and ultrasonic time (X3). The statistical analysis indicated that the independent variables (X1) and the quadratic terms (X1(2) and X3(2)) had significant effects on the yield of blackcurrant polysaccharides (BCP). The optimal conditions were: enzyme concentration 1.575%, pH 5.3, and ultrasonic time 25.6min. The experimental yield of BCP was 14.28±0.06%, which was closely matched with the predicted yield of 14.31%. After preliminary purification, BCP I was obtained and characterized by GC, HPLC, and IR. BCP I comprised rhamnose, arabinose, xylose, mannose, glucose, and galactose in a molar ratio of 1.818:1.362:0.377:0.501:1.581:1.722 and its molecular weight was 8146kDa. BCP I showed notable α-amylase inhibitory activity. Copyright © 2014 Elsevier Ltd. All rights reserved.
Article
We isolated and purified polysaccharides from the Camellia oleifera Abel. fruit hull and studied its hypoglycemic potential. Our results revealed six polysaccharides (CFPA-1–5 & CFPB) from the aqueous extract from the defatted C. oleifera fruit hull. Purified polysaccharides (purity >90%) were investigated for the inhibition of α-glucosidase activity in vitro. Two polysaccharides, CFPB and CFPA-3 were present in high concentration in the fruit hull and showed a dose-dependent inhibition of α-glucosidase activity, with IC50 concentrations of 11.80 and 10.95 μg/mL, respectively. This result suggests that polysaccharides (CFP) extracted from the fruit hull of C. oleifera may have potential as functional foods with featuring a hypoglycemic effect.