Content uploaded by Anahita Hadidchi
Author content
All content in this area was uploaded by Anahita Hadidchi on Sep 28, 2021
Content may be subject to copyright.
University of Tehran
College of Science
School of Biology
Systematic studies on the genus of Delphinium L. sensu lato
(Ranunculaceae) in IRAN
By:
Anahita Hadidchi
Supervision:
Dr. Farideh Attar
Advisors:
Dr. Mohsen Falahati-Anbaran - Dr. Kazem Mahdigholi - Dr. Arash Sotoodeh
A Thesis Submitted to the "Graduate Studies Office" in Partial Fulfillment
of the Requirements for the Degree of Ph.D. in Biology (Plant Systematics)
September/2020
Delphinium L. sensu lato))
Abstract
The genus Delphinium and Consolida of Ranunculaceae, include 385 and 54 species in the
world, respectively. Of these, 32 species (12 endemic species) from Delphinium and 19 species
(4 endemic species) from Consolida present in Iran. In this study, Iranian species of Delphinium
and Consolida were investigated with morphological, micromorphological, phytochemical and
molecular markers. To study morphological characters, 82 quantitative and qualitative
characteristics related to vegetative and reproductive organs were selected. After obtaining the
results of the analysis, the species were divided into three groups. Taxonomic keys are presented
for 51 species of Iran. Also, In micromorphological studies, 33 characters were studied and
results showed that the species are also divided into three groups. In phytochemical studies,
total measurement of phenol, flavonol and flavonoid compounds were determined for 10
species. Results showed that species are divided in four groups (according to geographical
position). All results were analyzed by MVSP 3.1 software. In molecular studies, herbarium
specimens of both genera, which had not been sequenced before, were sequenced using nuclear
and chloroplast markers and phylogenetic analyses were performed based on Bayesian,
maximum parsimony and maximum likelihood methods. The phylogenetic trees obtained from
ITS and trnL-F data were more informative comparing to most recent studied of this genus,,
thus here some ambiguities in the phylogeny of the studied taxa are resolved. The results,
showed similarity to previous studies, Consolida is a monophyletic group embedded in
paraphyletic Delphinium. In addition, the species within Delphinium were divided into two
clades each representing a subgenus Delphinium and subgenus Oligophyllon (other species).
Similarly, species belonging to the two subgenus Aconitella and subgenus Consolida were
divided in two separate clades. Based on the molecular results, two new species were described
for the science. Also, Consolidae species were identified by their previous names: Delphinium.
Among them, two species that did not have the old name Delphinium, were introduced as new
combination.
Keywords: Delphinium sensu lato, Morphology, Micromorphology, phytochemical
phylogeny, ITS, trnL-F
Delphinium ConsolidaRanunculaceae
Delphinium
Consolida Delphinium
Consolida
.
MVSP 3.1
ITStrnL- F
ConsolidaDelphinium.
Oligophyllon
DelphiniumConsolida
Aconitella
ConsolidaDelphinium
Delphinium
: Delphinium sensu lato
ITS
trnL-
Ranunculaceae
Ranunculaceae
ITS
trnL-F
DelphinieaeRanunculoideae
DelphinieaeRanunculoideae
(Ranunculaceae
Delphinium L. sensu lato
Delphinium L. sensu lato
Delphinium L. sensu lato
Delphinium L. sensu lato
Delphinium L. sensu lato
Delphinium L. sensu lato
Delphinium L. sensu lato
Delphinium L. sensu lato
Delphinium L. sensu lato
Delphinium L. sensu lato
Delphinium L. sensu lato
Delphinium L. sensu lato
Delphinium L. sensu lato
SEM
trnL-F
ITS
DNA
PCR
ITS trnL-F PCR
3-1 Morphological study……………………………..……………...……61
3-1-1 Delphinium L. sensu lato ……………………………………………...…..…….62
3-1-2 Distribution and ecology in Iran…………………………………………………63
3-2 Fruit and seed micromorphology ……………………...…………..…64
3-2-1 Variation in seed and fruit……………………………………………..…………65
3-2-2 Diagnostic key to Delphinium L. sensu lato fruit and seed in Iran….....……...…66
3-3 Phytochemical studies…………………………….……………..……82
3-3-1 Measurement of total phenol………………………………………….....………82
3-3-2 Total phenol content……………………………………………………..………83
3-3-3 Measurement of total flavonoid ……………………………………..……..……84
3-3-4 Total flavonoid content………………………………………..………………....84
3-3-5 Measurement of total flavonol…………………………………………………..85
3-3-6 Total flavonol content…………………………………………………..………..86
3-3-7 Tree diagram of phytochemical traits………………………………..………..…87
3-4 Molecular studies …………………………………………..………...88
3-4-1 Sequence analyses………………………………………………………………..88
3-4-2 Phylogenetic tree of nrDNA ITS derived from Bayesian methods and maximum
parsimony ..89
3-4-3 Phylogenetic tree of cpDNA trnL-trnF derived from Bayesian methods and
maximum parsimony ..90
3-4-4 Differences between two nrDNA ITS tree derived from Bayesian methods and
maximum parsimony ..91
3-4-5 Differences between two cpDNA trnL- trnF tree derived from Bayesian methods
and maximum parsimony .............................................................92
3-5 New species ......................................................................................... ..97
4-1 Morphometric information…………………...…………………...…113
4-1-1 Diagnostic key to Delphinium L. taxa in Iran……………..…….…...……114
4-2 Micro-morphology of fruits and seeds……….…………………....…149
4-3 phytochemical studies…………………..……………………...……151
4-5 Phylogenetic analyses…………………………………….…………153
4- 6 Conclusion…………………………………………………….….…157
Delphinium L. sensu lato
Consolida
PCR
Genbank (NCBI
TABLE 3-1 List of characters of seed morphology and fruit morphology recorded
comparatively for 37 species of Delphinium L. sensu lato………………...…………....69
TABLE 3-2 Comparative recording of the [33] characters seed morphology and fruit
morphology…………………………………………………………………..………. ..71
TABLE 3-3 Content of Phenol, Flavonoid, Flavonol compounds in some species of
Delphinium sensu lato…………………………………………………………………..87
TABLE 3-4 Morphological differences of D. mazandaranicum , D. iranicum and D.
cyphoplectrum, D. aquilegifolium…………………………….……………………..………..97
NOR
Delphinieae
DelphinieaeRanunculoideae
Croteau 2000
Delphinium L. sensu lato
Delphinium L. sensu lato
Delphinium L. sensu lato
trnL-F LSC
ITS
- ITS .
trn LF
FIGURE 3-1 Dendrogram cluster analysis of data of Delphinium L. sensu lato………62
FIGURE 3-2 Distribution map of Delphinium ……………………………………..…63
FIGURE 3-3 Distribution map of Consolida…………………………………..………64
FIGURE 3-4 Dendrogram cluster analysis of fruit and seed data of Delphinium L. sensu
lato……………….……………………………………………………………………..71
FIGURE 3-5 Some samples of variation in seed color and seed
lamella……………………………………………………………………………….....72
FIGURE 3-6 Trichomes shape of fruit……………………………................................73
FIGURE 3-7 Surface sculpture of seeds of species of Delphinium L. sensu
lato……………………………………………………………………………………..74
FIGURE 3-8 Surface sculpture of seeds of 37 species of Delphinium L. sensu
lato……………………………………………………………………………...……...75
FIGURE 3-9 Surface sculpture of seeds of 37 species of Delphinium L. sensu
lato………………………………………………………………………………..…....76
FIGURE 3-10 Surface sculpture of seeds of species of Delphinium L. sensu lato..
……………………………………………………………………………………...…..77
FIGURE 3-11 Surface sculpture of seeds ……………………………………………...78
FIGURE 3-12 Surface sculpture of seeds ………………………………………….…..79
FIGURE 3-13 Surface sculpture of seeds ………………………………………...…....80
FIGURE 3-14 Surface sculpture of seeds ………………………………………...…....81
FIGURE 3-15The standard diagram of gallic acid for phenol ………………...……....82
FIGURE 3-16 Total Phenol content in some Species of Delphinium sensu
lato……………………………………………………………………………..…...…..83
FIGURE 3-17 The standard diagram of gallic acid for flavonoids ………………..…..84
FIGURE 3-18 Total flavonoid content in some Species of Delphinium sensu
lato………………………………………………………………………………….…..85
FIGURE 3-19 The standard diagram of quercetin for flavonol …………...…………..85
FIGURE 3-20 Total flavonol content in some Species of Delphinium sensu
lato………………………………………………………………………………….…..86
FIGURE 3-21 Dendrogram analysis of phytochemical studies of some Species of
Delphinium sensu lato……………………………………………………………...…..88
FIGURE 3-22 Bayesian inference tree of data set nrDNA ITS in Delphinium……… ..93
FIGURE 3-23 Maximum parsimony and Maximum liklihoode inference tree of data set
nrDNA ITS in Delphinium ……………………………………………………....……94
FIGURE 3-24 Bayesian inference tree of data set nrDNA trn L-F in Delphinium
…………………………………………………………………………………….…....95
FIGURE 3-25 Maximum parsimony and inference tree of data set nrDNA trn L-F in
Delphinium …………………………………………………………………………....96
FIGURE 3-26 SEM micrographs of pollen and leaves morphology of new
species………………………………………………………………….…………….. 99
FIGURE 3-27 Surface sculpture of seeds and surface sculpture of fruits of new species
…………………………………………………………………………………..….…100
FIGURE 3-28 Holotype of D. mazanderanica Hadidchi & Attar, D. iranicum Hadidchi
&
Attar…………………………………………………………………………….…......101
FIGURE 3- 29 Holotype of D. cyphoplectrum, D. aquilegifolium…………...………101
FIGURE 3-30 D. macrostachyum.. ..............................................................................102
FIGURE 3-31 D. cyphoplectrum. ................................................................................ 102
FIGURE 3-32 D. schmalhausenii.. .............................................................................. 102
FIGURE 3-33 D. pallidiflorum..................................................................................... 102
FIGURE 3-34 D. elbursense........ ................................................................................103
FIGURE 3-35 D. biternatum..... ...................................................................................103
FIGURE 3-36 D. speciosum...... ...................................................................................103
FIGURE 3-37 D. tuberosum..... ....................................................................................103
FIGURE 3-38 D. jacobsi.. ............................................................................................104
FIGURE 3-39 D. venulosum.. ......................................................................................104
FIGURE 3-40 D. carduchorum.. ..................................................................................104
FIGURE 3-41 D. lanigerum. ........................................................................................104
FIGURE 3-42 D. quercetorum..... ................................................................................105
FIGURE 3-43 D. aquilegifolium.... ..............................................................................105
FIGURE 3-44 D. ochruleucum.. ...................................................................................105
FIGURE 3-45 D. urcinum. ...........................................................................................105
FIGURE 3-46 D. ilgazense............................................................................................106
FIGURE 3-47 D. macropogon.. ...................................................................................106
FIGURE 3-48 D. dasystachyson...................................................................................106
FIGURE 3-49 D. laxiusculum.. ....................................................................................107
FIGURE 3-50 D. szowitsianum.. ..................................................................................107
FIGURE 3-51 D. saniculifolium. ................................................................................. 107
FIGURE 3-52 D. D. mazandaranicum..............................................................................
107
FIGURE 3-53 D. iranicum. ............................................................................................
108
FIGURE 3-54 C. trigonelloides.....................................................................................118
FIGURE 3-55 C. oliveriana. ........................................................................................119
FIGURE 3-56 C. rugulosa............................................................................................119
FIGURE 3-57 C. leptocarpa.........................................................................................119
FIGURE 3-58 C. anthoroidea.......................................................................................110
FIGURE 3-59 C. orientalis. .........................................................................................110
FIGURE 3-60 C. linarioide. .........................................................................................110
FIGURE 3-61 C. camptocarpa......................................................................................110
FIGURE 3-62 C. lorestanica.........................................................................................111
FIGURE 3-63 C. hohenackeri....................................... ...............................................111
FIGURE 3-64 C. oligantha............................................. .............................................111
FIGURE 3-65 C. regalis...................................................... .........................................111
FIGURE 3-66 C. persica....................................................... .......................................112
FIGURE 3-67 C. tehranica.................................................. ........................................112
FIGURE 3-68 Structure of flowers in Consolida..........................................................112
FIGURE 3-69 Structure of flowers in Delphinium.......................................................112
عبانم
References
. 1373 . . : . . 21- 25. .
Adanson, M. (1763). Familles des plantes. Paris, Chez Vincent.
Aitzetmüller, K., Tsevegsüren, N., & Werner, G. (1999). Seed oil fatty acid patterns of
the Aconitum-Delphinium-Helleborus complex (Ranunculaceae). Plant systematics
and evolution, 215 (1-4), 37-47.
Akkol, E. K., Yeşilada, E., & Güvenç, A. (2008). Valuation of anti-inflammatory and
antinociceptive activities of Erica species native to Turkey. Journal of
ethnopharmacology, 116(2), 251-257.
Attar, F., Riahi, M., Daemi, F., & Aghabeigi, F. (2011). Preliminary molecular phylogeny
of Eurasian Scrophularia (Scrophulariaceae) based on DNA sequence data from trn S-
trn G and ITS regions. Plant Biosystems-An International Journal Dealing with all
Aspects of Plant Biology, 145(4), 857-865.
Blanché, C. (1990). Delphinium L. subgen. Delphinium: Origen i tendències evolutives.
Collectanea Botanica, 19, 75-96.
Boisser، P . E. (1867). Flora Orientalis، I. Basileae et Genevae.
Boonyuen, C., Wangkarn, S., Suntornwat, O., & Chaisuksant, R. (2009). Antioxidant
capacity and phenolic content of Mimusops elengi fruit extract. Kasetsart Journal
(Natural Science), 43(1), 21-27.
Bosch, M., & Waser, N. M. (1999). Effects of local density on pollination and
reproduction in Delphinium nuttallianum and Aconitum columbianum
(Ranunculaceae). American Journal of Botany, 86(6), 871-879.
Bruno, L. S., Angelie, E. E., & Da Costa, F. B. (2012). Effect of the environment on the
secondary metabolic profile of Tithonia diversifolia: A model for environmental
metabolomics of plant. Sci Rep, 6, 29265.
Cai, Y. F., Li, S. W., Chen, M., Jiang, M. F., Liu, Y., Xie, Y. F., ... & Zhang, R. (2010).
Molecular phylogeny of Ranunculaceae based on rbc L sequences. Biologia, 65(6),
997-1003.
Chapman, R. L., Buchheim, M. A., Delwiche, C. F., Friedl, T., Huss, V. A., Karol, K. G.,
... & Waters, D. A. (1998). Molecular systematics of the green algae. In Molecular
systematics of plants II (pp. 508-540). Springer, Boston, MA.
Chang, C. C., Yang, M. H., Wen, H. M., & Chern, J. C. (2002). Estimation of total
flavonoid content in propolis by two complementary colorimetric methods. Journal of
food and drug analysis, 10(3).
Cheng, T., Xu, C., Lei, L., Li, C., Zhang, Y., & Zhou, S. (2016). Barcoding the
kingdom Plantae: new PCR primers for ITS regions of plants with improved
universality and specificity. Molecular Ecology Resources, 16(1), 138-149.
Chor, B., & Tuller, T. (2005). Maximum likelihood of evolutionary trees: hardness and
approximation. Bioinformatics, 21(suppl_1), i97-i106.
Constantinidis, T., Psaras, G. K., & Kamari, G. (2001). Seed morphology in relation to
infrageneric classification of Consolida (DC.) Gray (Ranunculaceae). Flora, 196(2),
81-100.
Cook, C.D.K. (1966a) A monographic study of Ranunculus subgenus Batrachium (DC.)
A. Gray. Mitteilungen der Botanischen Staatssammlung München 6: 47–237.
Cronquist, A. (1981). An integrated system of classification of flowering plants, new
York : Columbia Univ.
Croteau, R., Kutcahn, T.M. and Lewis, N.G. (2000) Natural products. In Biochemistry
and Molecular Biology of Plants (Buchanan, B., Gruissem, W. and Jones, R., eds).
Rockville, MD: American Society of Plant Physiologists, pp. 1250–1318.
Davis، P. H. & F. Sorger. (1982). New Anatolian turkey species of Consolida. The Royal
botanic garden edinberg. 40 (1):89-92.
De Candolle AP. 1816 . Essaisur les propridtdsmédicales des plantes, cornparees avec
leurs forms extérieuresetleur classification naturelle, Second Edition, Paris,.
De Candolle, A. p. (1818). Regni Vegetabilis Systema natural, I, parisiis.
Denisow, B. Wrzesien, M. (2015). Does vegetation impact on the population dynamics
and male function in Anemone sylvestris L. (Ranunculaceae)? A case study in three
natural populations of xerothermic grasslands, Does vegetation impact on the
population dynamics and male function in Anemone sylvestris L. (Ranunculaceae).
Acta Soc Bot Pol 84: 197–205.
Després, L., Gielly, L., Redoutet, B., & Taberlet, P. (2003). Using AFLP to resolve
phylogenetic relationships in a morphologically diversified plant species complex
when nuclear and chloroplast sequences fail to reveal variability. Molecular
Phylogenetics and Evolution, 27(2), 185-196.
Emadzade, K., Lehnebach, C., Lockhart, P., & Hörandl, E. (2010). A molecular
phylogeny, morphology and classification of genera of Ranunculeae (Ranunculaceae).
Taxon, 59(3), 809-828.
Ezelarab, G. E., & Dormer, K. J. (1963). The organization of the primary vascular system
in Ranunculaceae. Annals of Botany, 27(1), 23-38.
Felsenstein, J., & Felenstein, J. (2004). Inferring phylogenies (Vol. 2, p. 664).
Sunderland, MA: Sinauer associates.
Gheybi, S., Asnaashari, S., Moghaddam, S. B., Ebrahimi, A., & Afshar, F. H. (2015).
Volatile components of aerial parts of Delphinium speciosum MB growing in Iran.
Journal of Reports in Pharmaceutical Sciences, 4(2), 191-195.
Gray, S. F. (1821). A Natural Arrangement of British Plants: According to Their
Relations to Each Other as Pointed Out by Jussieu, De Candolle, Brown, &c… (Vol.
2). Baldwin, Cradock, and Joy.
Gregory, W. C. (1941). Phylogenetic and cytological studies in the Ranunculaceae Juss.
Transactions of the American Philosophical Society, 31(5), 443-521.
Hadidchi, A., Attar, F., & Ullah, F. (2019). Using microscopic techniques for taxonomic
implications of seed and fruits of Delphinium L.sensu lato(Ranunculaceae). Microscopy
research and technique.
Harborne, A. J. (1998). Phytochemical methods a guide to modern techniques of plant
analysis. Springer science & business media.
Hasanbarani M., Sharifnia, F , Nejadatari, T, Asadi, M. (2016). Morphological study of
gelatin epidermal pattern in species Genus Delphinium L. in Iran. Developmental
biology. 12– 22.
Hasanbarani M., Sharifnia. F., Asadi. (2019). M. The value of taxonomy flower and spur
in species Delphinium in Iran. Iranian journal of Biologycal Sciences. Volume 13,
Issue 3.
Hillis, D. M., Morits, C. & Mable, B. K. (1996). Molecular systematics, Proteins:
Isozym Electrophoresis. Sinauer Inc.
Hillis, D. M., Dixon, M. J., (1991). Ribosomal DNA: molecular evolution and
phylogenetic inference. Q. Rev. Biol., 66, 411-453.a.
Hoot, S. B. (1991). Phylogeny of the Ranunculaceae based on epidermal micocharacters
and macromorphology. Systematic Botany 16:741-755.
Hoot, S. B. (1995). Phylogeny of Ranunculaceae، based on preliminary atpB، rbcL and
18s nuclear ribosomal DNA sequence data, Pl. syst. Evol. [supp1.] 9:241-251.
Horandl E, Paun O, Johanson JT, Lehnebach C, Armstrong T, Chen L, Lockhart P (2005)
Phylogenetic relationships and evolutionary traits in Ranunculus s.l. (Ranunculaceae)
inferred from ITS sequence analysis. Mol Phyl Evol 36, 305-327.
Hutchinson, J. (1923). Contributions towards a phylogenetic classifica tion of flowering
plants I. Kew Bull. 2: 65-89.
Ilarslan, H., Ilarslan, R., & Blanch, C. (1997). Seed morphology of the genus
Delphinium L. (Ranunculaceae) in Turkey. Collectanea Botanica
(Barcelona), 23, 79–95.
Iranshahr, M., (1992). Ranunculaceae, Flora Iranicum, No. 171. Akademische Druck- u.
Verlagsanstalt Graz- Austria., 44-114.
Jabbour, F., Ronse De Craene, L. P., Nadot, S., & Damerval, C. (2009). Establishment of
zygomorphy on an ontogenic spiral and evolution of perianth in the tribe Delphinieae
(Ranunculaceae). Annals of botany, 104(5), 809-822.
Jabbour, F., & Renner, S. S. (2011). Consolida and Aconitella are an annual clade of
Delphinium (Ranunculaceae) that diversified in the Mediterranean basin and the Irano‐
Turanian region. Taxon, 60(4), 1029-1040.
Jabbour،F & S. Renner، S (2011). A phylogeny of Delphinieae (Ranunculaceae) shows
that Aconitum is nested within Delphinium and that Late Miocene transitions to long
life cycles in the Himalayas and Southwest China coincide with bursts diversification.
Molecular Phylogenetics and Evolution. Article in press. No. of Pages 15، Model 5G.
Jabbour،F & S. Renner، S (2011).Resurrection of the genus Staphisagria J. Hill, sister to
all the other Delphinieae (Ranunculaceae), PhytoKeys 7: 21–26
Jabbour, F.& Renner, S. (2012). Spurs in a spur perianth evolution in the Delphinieae
(Rununculaceae). Plant Sciences.1036-1054.
Jensen, U., (1968). Serologisehe Beiträge zur Systematik der Ranunculaceae. - Bot. Jahrb.
Syst. 88: 204-268.
Johansson, J. T., & Jansen, R. K. (1993). Chloroplast DNA variation and phylogeny of
the Ranunculaceae. Plant Systematics and Evolution, 187(1-4), 29-49.
Judd, W. S., Campbell, C. S., Kellogg, E. A., Stevens, P. F., & Donoghue, M. J. (1999).
Plant systematics: a phylogenetic approach. ecologia mediterranea, 25(2), 215.
Kim, K. M., Choi, J. W., Yoon, H. S., Jang, H. S., & Hong, J. W. (2018). Complete
mitochondrial genome of Sargassum yezoense (Sargassaceae, Phaeophyceae).
Mitochondrial DNA Part B, 3(1), 424-425.
Kolar, F., Pai, S. R., & Dixit, G. B. (2017). Delphinium malabaricum (huth) munz.: a
potential ornamental crop from Western Ghats. Horticulture International Journal,
1(1), 16-21.
Kosuge, K., & Tamura, M. (1988). Morphology of the petal inAconitum. The botanical
magazine= Shokubutsu-gaku-zasshi, 101(3), 223-237.
Kovach, W. (1985-2002). Institute of Earth Studies, -University college of Wales,
(Shareware), -MVSP Version 3.2, 1985-2002 Kovach Computing Services
http://www.kovcomp.com/MVPs/downl2.html.
Krumbiegel, A., (2001). Vegetative reproduction strategies of pseudoannual plants in
central Europe. Beitr. Biol. Pflanzen 72, 287–313.
Kubitzki ،K. (1993). The families and genera of vascular plant، vol.2. Flowering plant،
dicotyledon: Magnoliid، Hamamelid، and Caryophyllid families. Berlin، Spring
Verlag.
Kuddisi , E, Emine, A, Tugay, O. (2010). Characterization of Consolida S.F. Gray
(Ranunculaceae). Biochemistry–Turk J Biochem, 99-– 104.
Langlet, O. (1932). Uber Chromosomenverhaltniss und Systematik der Ranunculaceae .
Svensk. Bol. Tidskr., 26.
Lehnebach C, Cano A, Monsalve C, McLenachan P, Ho¨randl E, Lockhart, P. (2007)
Phylogenetic relationships of the monotypic Peruvian genus Laccopetalum
(Ranunculaceae). Pl Syst Evol 264:109–116.
Liangqian, L., Kadota, Y., (2001). Aconitum L. In: Wu, Z.Y., Raven, P.H., (Eds.), Flora
of China, vol. 6. Science Press/Missouri Botanical Garden, Beijing/St. Louis, pp. 149–
222.
Liu, W., Yin, D., Li, N., Hou, X., Wang, D., Li, D., & Liu, J. (2016). Influence of
environmental factors on the active substance production and antioxidant activity in
Potentilla fruticosa L. and its quality assessment. Scientific reports, 6, 28591.
Marinova, D., Ribarova, F., & Atanassova, M. (2005). Total phenolics and total
flavonoids in Bulgarian fruits and vegetables. Journal of the university of chemical
technology and metallurgy, 40(3), 255-260.
Metcalfe, C. R., & Chalk, L. (1950). Anatomy of the Dicotyledons: leaves, stem, and
wood, in relation to taxonomy, with notes on economic uses. Anatomy of the
Dicotyledons: leaves, stem, and wood, in relation to taxonomy, with notes on
economic uses.
Miller, R. E., Jensen, R., & Woodrow, I. E. (2006). Frequency of cyanogenesis in tropical
rainforests of far north Queensland, Australia. Annals of Botany, 97(6), 1017-1044.
Morales‐Briones, D. F., Arias, T., Di Stilio, V. S., & Tank, D. C. (2019). Chloroplast
primers for clade‐wide phylogenetic studies of Thalictrum. Applications in plant
sciences, 7(10), e11294.
NEVSKII, S. A. 1937: Delphinium L. In:Shishkin, B. K. (ed.), Flora of the Ussr, 7: 79–
143. – Moskva,
Olmstead, R. G. (1996). Molecular systematics (Vol. 23). D. M. Hillis, C. Moritz, & B.
K. Mable (Eds.). Sunderland, MA: Sinauer Associates.
Orellana, M. R., Blanché, C., Simon, J., & Bosch, M. (2009). Genetic diversity within
and among disjunct populations of the Mediterranean Island endemic Delphinium
pictum and D. requienii (Ranunculaceae). Folia geobotanica, 44(1), 47-63.
Orellana, M. R., López-Pujol, J., Blanché, C., Rovira, A. M., & Bosch, M. (2009). Genetic
diversity in Delphinium staphisagria (Ranunculaceae), a rare Mediterranean dysploid
larkspur with medicinal uses. Genetica, 135(2), 221-232.
Özden, S., Ertepinar, H., & Dürüst, N. (1990). Trans-aconitic and phenolic acids from
Consolida armeniaca flowers. Pharmazie, 45(10), 803-804.
Ozden, S., Ozen T,، Attila A., Kucukislamoglu M. & A. oktan.(1992). Isolation and
identification via high-performance liquid chromatography and thin-layer
chromatography of Benzoxazolinone precursors from Consolida orientalis flowers.
Journal of chromatography. 609(1-2): 402-406.
Ozden, S., Kucukislamoglu M. & T. Ozden. (1995). Determination of carboxylic acids
on Consolida species by high performance liquid chromatography. Pharmazie. 50(12):
818-820.
Page, R. D., & Holmes, E. C. (2009). Molecular evolution: a phylogenetic approach. John
Wiley & Sons
Peng, F., Wang, Hongjuan, Yu, Hao, Chen, Shuihui, (2006). Preparation of aluminum
foil-supported nano-sized ZnO thin films and its photo catalytic degradation to phenol
under visible light irradiation. Mater. Res. Bull. 41, 2123–2129.
Pakravan, M. (2016). Palynological study of the genus Consolida (Ranunculaceae) in
Iran. Nova Biologica Reperta, 3(2), 177-183.
Pavarini, D. P., Pavarini, S. P., Niehues, M., & Lopes, N. P. (2012). Exogenous influences
on plant secondary metabolite levels. Animal Feed Science and Technology, 176(1-
4), 5-16.
Poorhabibian R. Tavassoli A, Pakravan M, Kiarostami K, (2012). Karyotype analysis in
some species of Consolida (Ranunculaceae) from Iran. Fedd Repert 123 (4): 257- 263.
Punt, W., & Hoen, P. P. (2009). The Northwest European Pollen Flora, 70: Asteraceae—
Asteroideae. Review of Palaeobotany and Palynology, 157(1-2), 22-183.
Rastipishe, S., Pakravan, M., & Tavassoli, A. (2011). Phylogenetic relationships in
Ranunculus species (Ranunculaceae) based on nrDNA ITS and cpDNA trnL-F
sequences. Progress in Biological Sciences, 1(1), 41-87.
Raška, I., Koberna, K., Malínský, J., Fidlerová, H., & Mašata, M. (2004). The nucleolus
and transcription of ribosomal genes. Biology of the Cell, 96(8), 579-594.
Rewicz, A., Bomanowska, A., Magda, J., & Rewicz, T. (2017). Morphological variability
of Consolida regalis seeds of south-eastern and central Europe. Systematics and
Biodiversity, 15(1), 25-34.
Roodehen, I. (2011). Biosystematics study of Consolida persica (Boiss.) Schrod. &
Consolida rugulosa (Boiss.) Schrod.(Ranunculaceae) in Iran. Australian Journal of
Basic and Applied Sciences, 5(6), 1160-1166.Heim, K. E., Taigliaferro, A. R., &
Bobilya, D. J. (2002). Flavonoid antioxidants: Chemistry, metabolism and structure-
activity relationships. The Journal of Nutritional Biochemistry, 13, 572–584.
Ruggiero, M,. Gordon, P, Orrell1,T, Bailly,N Bourgoin, T, Brusca,R, Cavalier-Smith,T,
GuiryM, . Kirk, M. (2015) .A Higher Level Classification of All Living Organisms.
PLOS ONE | DOI:10.1371/journal.pone.0119248 .
Saito, N., Toki, K., Özden, S., & Honda, T. (1996). Acylated delphinidin glycosides in
the blue-violet flowers of Consolida armeniaca. Phytochemistry, 41(6), 1599-1605.
Sharifnia, F., Hasanbarani, M. & Assadi, M. (2013). Notes on some species of the genus
Delphinium (Ranunculaceae) in Iran. Iranian J Bot, 19(2), 202-210.
Singh, G. (2016). Plant systematics, 3/ed.: An integrated approach. CRC Press.
Singh, R. (2016). Chemotaxonomy: A Tool for Plant Classification. Journal of Medicinal
Plants Studies 2016; 4(2): 90-93.
Small, R. L., Cronn, R. C., & Wendel, J. F. (2004). Use of nuclear genes for phylogeny
reconstruction in plants. Australian Systematic Botany, 17(2), 145-170.
Soják, J. (1969). Aconitella Spach, eine vergessene Gattung der FamilieRanunculaceae.
Folia geobotanica & phytotaxonomica, 4(4), 447-449.
Soltis, P., & Doyle, J. J. (1998). Molecular systematics of plants II: DNA sequencing.
Springer Science & Business Media.
Soltis, D. E., Soltis, P. S., 2003. The Role of phylogenetics in Comparative Genetics.
Plant Physiology.132:1790-1800.
Sotoodeh, A., (2015). Biogeographical And Evolutionary History Of The Genes
Verbascum And Artemisia In Iran Using Molecular Phylogeny. Doctoral dissertation:
Paul Sabatier University, Toulouse.
Sotoodeh A., Attar F., Andalo C., Mirtadzadini M., Civeyrel L., (2018). Focusing on three
Verbascum L. taxa (Scrophulariaceae) of the Flora of Iran. Adansonia, sér. 3, 40: 171-
181
Stace, C. A. (1989). Plant Taxonomy and Biosystematics، second edition. Press syndicate
of the university of the Cambridge.
Taberlet, P., Gielly, L., Pautou, G., & Bouvet, J. (1991). Universal primers for
amplification of three non-coding regions of chloroplast DNA. Plant molecular
biology, 17(5), 1105-1109.
Takhtajan, A., Crovello, T. J., & Cronquist, A. (1986). Floristic regions of the world (Vol.
544). Berkeley: University of California press.
Tamura، M.N. (1966). Morology، Ecology and Phylogeny of Ranunculaceae VI. Science
Reports Osaka University، 15، 13-35.
Tamura، M.N. (1967). Morphology، Ecology and Phylogeny of Ranunculaceae VII.
Science Reports Osaka University، 16،21- 43.
Tamura, M. N. (1968). Morphology, Ecology and Phylogeny of Ranunculaceae VIII.
Scince Reports Osaka University , 17, 41-65.
Taylor LP, Grotewold E. (2005). Flavonoids as developmental regulators. Current
Opinion in Plant Biology 8: 317–323.
Thiers, B. (2017). Index Herbariorum: A global directory of public herbaria and
associated staff. http://sweetgum.nybg.org/science/ih/.
Ting-Feng, Z. H. A. N. G., Yuan-Wen, D. U. A. N., & Jian-Quan, L. (2006). Pollination
ecology of Aconitum gymnandrum (Ranunculaceae) at two sites with different
altitudes. Journal of Systematics and Evolution, 44(4), 362-370.
Townsend، C. C. (1980). Consolida Fl. Turkey. Published by the Ministry of Agriculture
of the republic.
Trifinova, V. I. (1990). Comparative biomorphological study of the taxonomy and
phylogeny of the genera Consolida (DC.) SF Gray and Aconitella Spach. Collectanea
Botánica, (19), 97-110.
Turabekova, M. A., Rasulev, B. F., Dzhakhangirov, F. N., Leszczynska, D., &
Leszczynski, J. (2010). Aconitum and Delphinium alkaloids of curare-like activity.
QSAR analysis and molecular docking of alkaloids into AChBP. European journal of
medicinal chemistry, 45(9), 3885-3894.
Utelli, A. B., Roy, B. A., & Baltisberger, M. (2000). Molecular and morphological
analyses of EuropeanAconitum species (Ranunculaceae). Plant Systematics and
Evolution, 224(3-4), 195-212.
Verma, N., & Shukla, S. (2015). Impact of various factors responsible for fluctuation in
plant secondary metabolites. Journal of Applied Research on Medicinal and Aromatic
Plants, 2(4), 105-113.
Wang, L., Abbott, R. J., Zheng, W. E. I., Chen, P., Wang, Y., & Liu, J. (2009). History
and evolution of alpine plants endemic to the Qinghai‐Tibetan Plateau: Aconitum
gymnandrum (Ranunculaceae). Molecular Ecology, 18(4), 709-721.
Wang, W.T., Warnock, M.J. (2001). Delphinium L. In: Wu, Z.Y., Raven, P.H., (Eds.),
Flora of China, vol. 6. Science Press/Missouri Botanical Garden, Beijing/St. Louis, pp.
223–237.
Wolters، D.R. and Keil، D. (2006). Vascular plant taxonomy، pp 59-64، Kendall/Huth
Publishing company.
Woese, C. R., Fox, G. E., 1977. Phylogenetic structure of the prokaryotic domain: the
primary kingdoms. Proc. Natl. Acad. Sci. USA, 74, 5088-5090.
Yang, Z., & Rannala, B. (1997). Bayesian phylogenetic inference using DNA sequences:
a Markov Chain Monte Carlo method. Molecular biology and evolution, 14(7), 717-
724.
Yang, J. B., Tang, M., Li, H. T., Zhang, Z. R., & Li, D. Z. (2013). Complete chloroplast
genome of the genus Cymbidium: lights into the species identification, phylogenetic
implications and population genetic analyses. BMC evolutionary biology, 13(1), 84.
Yoon, J., Nam, G. H., Lee, B. Y., & Kwak, M. (2019). The complete chloroplast genome
sequence of Lychnis kiusiana (Caryophyllaceae). Mitochondrial DNA Part B, 4(2),
2570-2571.
Zhao, Y., Bu, G., Zhou, Y., Lv, L., Yan, G., Chen, B., Wang, L., Cen, X., 2010.
Mechanism study of Aconitum-induced neurotoxicity in PC12 cells: involvement of
dopamine release and oxidative damage. Neurotoxicology 31, 752–757.