Content uploaded by Daniel Mota-Rojas
Author content
All content in this area was uploaded by Daniel Mota-Rojas on Sep 27, 2021
Content may be subject to copyright.
Animals2021,11,2820.https://doi.org/10.3390/ani11102820www.mdpi.com/journal/animals
Review
QualityofDeathinFightingBullsduringBullfights:
NeurobiologyandPhysiologicalResponses
DanielMota‐Rojas
1,
*,FabioNapolitano
2
,AnaStrappini
3
,AgustínOrihuela
4,
*,JulioMartínez‐Burnes
5
,
IsmaelHernández‐Ávalos
6
,PatriciaMora‐Medina
6
andAntonioVelarde
7
1
Neurophysiology,BehaviorandAnimalWelfareAssessment,DPAA,XochimilcoCampus,Universidad
AutónomaMetropolitana,CiudaddeMéxico04960,Mexico
2
ScuoladiScienzeAgrarie,Forestali,AlimentariedAmbientali,UniversitàdegliStudidellaBasilicata,
85100Potenza,Italy;fabio.napolitano@unibas.it
3
AnimalScienceInstitute,FacultyofVeterinarySciences,UniversidadAustraldeChile,
Valdivia5090000,Chile;anastrappini@gmail.com
4
FacultaddeCienciasAgropecuarias,UniversidadAutónomadelEstadodeMorelos,
Cuernavaca62209,Mexico
5
AnimalHealthGroup,FacultyofVeterinaryMedicine,UniversidadAutónomadeTamaulipas,
CiudadVictoria87000,Mexico;jmburnes@docentes.uat.edu.mx
6
FacultaddeEstudiosSuperioresCuautitlán,UniversidadNacionalAutónomadeMéxico(UNAM),
StateofMexico54714,Mexico;mvziha@hotmail.com(I.H.‐Á.);mormed2001@yahoo.com.mx(P.M.‐M.)
7
IRTA,AnimalWelfareProgram,VeinatSiesS‐N,17121Monells,Spain;antonio.velarde@irta.cat
*Correspondence:dmota100@yahoo.com.mx(D.M.‐R.);aorihuela@uaem.mx(A.O.)
SimpleSummary:Fightingbullsthatparticipateinbullfightingfaceenergyandmetabolicde‐
mandsduetothehighintensityanddurationoftheexerciseperformed.Undertheseconditions,
specificcorporalmechanisms,suchastheacid–basebalance,areaffected,causingmetabolicacido‐
sis.However,fightingbullsalsoundergomuscularinjuries,physiologicalchanges,andhighen‐
zymeconcentrationsthatreflectthestresstowhichtheyaresubjected,andinsomebulls,bullfights
cantriggerelectrolyticimbalancesthatincludehypercalcaemia,hypermagnesaemia,andhyper‐
phosphataemia,exacerbatedbymuscularnecrosisandmyoglobinuria.
Abstract:Duringbullfights,bullsundergophysiometabolicresponsessuchasglycolysis,anaerobic
reactions,cellularoedema,spleniccontraction,andhypovolemicshock.Theobjectiveofthisreview
articleistopresentthecurrentknowledgeonthefactorsthatcausestressinfightingbullsduring
bullfights,includingtheirdyingprocess,bydiscussingtheneurobiologyandtheirphysiological
responses.Theliteratureshowsthatbiochemicalimbalancesoccurduringbullfights,includinghy‐
percalcaemia,hypermagnesaemia,hyperphosphataemia,hyperlactataemia,andhyperglycaemia,
associatedwithincreasedendogenouscortisolandcatecholaminelevels.Creatinekinase,citrate
synthase,andlactatedehydrogenaselevelsalsoincrease,coupledwithdecreasesinpH,bloodbi‐
carbonatelevels,excessbase,partialoxygenpressure,andoxygensaturation.Theintenseexercise
alsocausesamarkeddecreaseofglycogenintypeIandIImusclefibresthatcanproducemyoglo‐
binuriaandmuscularnecrosis.Otherobservationssuggestthepresenceofosteochondrosis.The
existinginformationallowsustoconcludethatduringbullfights,bullsfaceenergyandmetabolic
demandsduetothehighintensityanddurationoftheexerciseperformed,togetherwithmuscular
injuries,physiologicalchanges,andhighenzymeconcentrations.Inaddition,thefinalstageofthe
bullfightcausesaslowdyingprocessforananimalthatissentientandconsciousofitssurround‐
ings.
Keywords:pain;abattoir;sensitisation;stunning;cattle;animalwelfare;fightingbulls
Citation:Mota‐Rojas,D.;
Napolitano,F.;Strappini,A.;
Orihuela,A.;Martínez‐Burnes,J.;
Hernández‐Ávalos,I.;Mora‐Medina,
P.;Velarde,A.QualityofDeathin
FightingBullsduringBullfights:
NeurobiologyandPhysiological
Responses.Animals2021,11,2820.
https://doi.org/10.3390/ani11102820
AcademicEditor:ElbertLambooij
Received:13July2021
Accepted:24September2021
Published:27September2021
Publisher’sNote:MDPIstaysneu‐
tralwithregardtojurisdictional
claimsinpublishedmapsandinstitu‐
tionalaffiliations.
Copyright:©2021bytheauthors.Li‐
censeeMDPI,Basel,Switzerland.
Thisarticleisanopenaccessarticle
distributedunderthetermsandcon‐
ditionsoftheCreativeCommonsAt‐
tribution(CCBY)license(http://crea‐
tivecommons.org/licenses/by/4.0/).
Animals2021,11,28202of16
1.Introduction
Fightingbullsareconsideredaspecializedbreedofcattlethathasitsoriginsinthe
speciesBostaurus,whichincludesallbreedsofbovinesinvolvedinvariouszootechnical
practices[1].Aswithalldomesticbovines,certaincriteriaexistintheselectionoffighting
bulls.Since,inthiscase,theobjectiveistobreedanimalsthatwillperformwellduring
bullfights,behaviouralcharacteristicsincalvesandyoungbullsthatmanifestferocity,ag‐
gressiveness,andmobilityareamongthoseconsiderednecessaryforthisspectacle.The
selectionprocessofheifersandyoungbullsinvolvesatestingphase(tientainSpanish),
whileforbulls,itoccursafteranoutstandingperformancewherethebull’slifeisspared
oncethebullfightisover.Onegoalofthesepracticesistoidentifybullsthatwillfight
whenprovokedbyapersonusingsomekindoflure[2].
Duringbullfights,thephysiometabolicresponsescorrespondmainlytothepresence
ofdifferenttypesofstressors,suchasphysical(tissueinjury,pathologies,pain[3]),envi‐
ronmental(extremeweather,microclimate,nutrition,handling[4],transportation[5],
noise[6]),andpsychosocialfactors(socialisolation,overcrowding,pain,fearordistress
[7]).Forfightingbulls,similartoanyothermammal,theresponsedegreeandtheconse‐
quenceintheirhomeostasisdependsonthestressortype,thedurationofthestimulus,
andthepreviousexperiencesoftheanimal[8,9].However,ingeneral,whenanexternal
stimulusisperceivedaspotentiallyharmful,thecentralnervoussystem,throughtheac‐
tivationofthesympathoadrenalandhypothalamic–pituitary–adrenalaxes(Broom,2019)
andthelimbicsystem[7],triggersacascadeofphysiological(i.e.,tachycardia,tachypnea,
hyperthermia),metabolic(hyperglycemia)[9],endocrine(i.e.,stresshormones—catechol‐
aminesorglucocorticoids),andbehavioralresponses.Intheshortterm,thesechanges
serveasanadaptivedefensemechanism.However,whenananimalcannotmaintainits
homeostasisduetotheprocess’schronicityormagnitude,theorganismanditshealth
deterioratealongwithitswelfare[8].Understandingstressresponsesinlivestockcanhelp
refinemanagementproceduresandpromotetheselectionofstress‐tolerantanimals.
Thebullfightisdividedinthreestagescalledtercios:terciodevaras,terciodebanderillas,
andterciodemuleta.Inthefirststage,alanceisstabbedintothebull’shump,limitingits
mobility[10].Theinjuryinflictedbythelancedestroysbloodvesselsandhaemorrhages
thatcandecreasebloodvolumeby8–18%throughperforationsofthetrapezoidand
rhomboidmuscles,andthefunicularportionoftheoccipitalligament.Insomecases,this
injuryalsoaffectstheaccessorynerveandbrachialplexusfromspinalsegmentsC5,C6,
C7,C8,andT1,whichcontrolthemovementofthethoraciclimbs[11,12].Thelancecan
inflictwoundsasdeepas30cm.Ifnotappliedproperly,itcancompromisetheanimal’s
locomotion,asBaronaetal.[10]determinedintheiranalysisofthesite,depth,andsever‐
ityofthelesionsproducedbythisinstrumentafterexamining277fightingbullsfrom43
events.Theysuggestthatthoseinjuriesarelocated,inorderofimportance,inbull’sshoul‐
dersandhump.Ifthelancepenetratesthehindquarters,itcompromisesthebull’sphysi‐
calintegritybycausingpaininthedorso‐lumbarregionthatreducesitsforceoflocomo‐
tion.
Inthesecondstage,thematadorstabssixflags(banderillas)intothebull’sshoulders
and/orhump.Thisactionaggravatesthemuscledamagealreadyinflictedbythelance
becauseeverymovementthebullmakeswhilechargingthematadorandhisredcape
movestheflagsinsidethewounds.Theirsharppointslaceratemusclesindifferentdirec‐
tions,causingadditionalhaemorrhages[10].
Inthethirdstage,thematadorusesaswordtokillthebullbycausingprofusebleed‐
inginthethoraciccavity,eitherbypiercingthepleuratocausepneumothoraxandthe
consequentrespiratoryinsufficiency,orthelungorrightbronchia,allowingbloodtoleave
thelung,enterthebronchia,andreachthetrachea,oesophagus,andupperrespiratory
pathways[13].Inmostcases,theswordalsoseversthespinalcord’slateralnervecords
responsibleforinnervatingthethoraciccavity,producingparalysisandrespiratoryinsuf‐
ficiency.Theswordultimatelycausesasphyxiabyseveringofthemedullaoblongataorits
caudalnervousprojections[14–17].Inthiscase,theswordcutsbloodvessels,thelungs,
Animals2021,11,28203of16
andthebronchia,causingbronchoaspiration[18].Afterthesword,thebullisstabbedwith
apuntilla(shortknife)toendthefight,whichentersnearthefirstandsecondcervicalver‐
tebrae,itwilldamagethemotornerves,causingthebulltofallwithitslimbsextended.If
theinjuryismadeneartheatlantooccipitaljoint,thebulbiscutthespinalcordandits
caudalnerveprojections,possiblyleadingtothesameresult[11].
Thedeathofbullsduringbullfights—whetherbyasphyxiaorexsanguination—oc‐
curswhiletheanimalisfullyconsciousbecausethebrainstemand/orbraincortexremain
intact[17,19].
1.1.StressorsofPsychologicalOrigin
Regardingfightingbulls,studieshavedeterminedthataggressiveness(animal’sca‐
pacitytoconfrontthematadorvs.attemptingtoescape)andferocity(amountofstrength
itusestoattackwithitsentirebody,anditsresistancetopain)havestronggenetic[20]
andenvironment[21]bases.
Thetemperamentoftheanimalcouldbeanotherfactorthataffectsthequalityofits
death.However,studieshavedeterminedthatevenbovineswithharshtemperaments
(Bostaurus,includingfightingbulls)andotherspecieseventuallybecomehabituatedto
novelenvironmentalconditionsandreducetheirbehaviouralreactivity[22].
Thetypicalhandlingpracticesusedwithfightingbullsrequireminimisingorelimi‐
natingcontactwithhumans.Inpartforthisreason,noscientificstudieshaveyetdocu‐
mentedthepeculiaritiesofthisbreedofbulls(Bostaurusbrachyceros)underthesecircum‐
stances,thoughsimilarresultshavebeendeterminedinBosindicussteers[23],horses[24],
andpigs[25,26].Theanatomicalandphysiologicaldifferenceobservedinthefightingbull
havebeendescribedintheconformationofthecerebralhemispheres,inthebrain
weight/carcassweightratio,andinthesizeofthecerebralamygdala,observinganegative
relationshipwithrespecttotheaggressivenessofrace[27].
Ingeneral,acuteseverestressfromphysicaland/orpsychologicalinjuriesinindivid‐
ualscaninduceemotionssuchasfearoranxiety[28].Duringbullfights,factorssuchas
novelty,aggression,andnoise,amongothers,canbestressorsthatcouldtriggerthese
emotions[29].
Whenanimalsareexposedtosituationsthattheycannotcontrolorareunpredictable
(suchasisolation,acutenoise,orconfinement)[30],adaptivehypothalamic,sympathetic,
immune,andbehavioralresponsesservetosurvive[31].Infarmanimals,routinesitua‐
tionssuchashandling,restraining,ortransportareeventsthatcaninducestatesofanxi‐
ety,distress,depression,orfear[32,33].Fearisanegative,subjective,andemotionalex‐
periencederivedfromtherecognitionoranticipationofactualdanger[34].Theamygdala
isthemaincomponentoftheso‐calledfearsystem[32]andisinnatelypresentinmany
domesticspecies.Nonetheless,afearfulanimalisinastateofchronicstresswithitscor‐
respondingproductiveandphysiologicalconsequences[35].Infightingbulls,humancon‐
tactwithanimalsislimited,sometimesuntilthebullenterstheplaza,topreservethefear‐
fulnessandaggressivenesstowardspeople.TheaboveagreeswithDaigleetal.[36],who
mentionsthattemperamentandhuman–animalinteractioninfluencetheperceptionand
adaptationtovariouspsychologicalstressors.Ithasbeenreportedthatthereactionsde‐
rivedfromfearpreservetheintegrityoftheanimalandimproveanimalfitness.However,
aswithanyothernegativementalstate,iffearpersists,theanimalcannotadapttoits
environment,anditswelfareiscompromised[37].
1.2.StressorsofPhysicalOrigin
Oneexampleofastressorofphysicaloriginisfatigueduetotransportorothercauses
ofstrenuousexercise[38],whichresultsinanincreasedbodytemperature,heartandres‐
pirationrates,andactivationofthehypothalamic–pituitary–adrenalaxis[39].Inthephys‐
icalaspect,thereisanincreaseincreatinekinase(CK)activityintheblood,whichisdue
totissuedamageandpoorreperfusionofmuscletissue.Whenperformingphysicalactiv‐
ity,theactivemusclerequiresoxygenandreservesglycogenenergy.However,whenthe
Animals2021,11,28204of16
intensityofphysicalactivityincreases,theoxygendemandalsoincreases,exceedingthe
transportsystem’slevels.Inthisconditiontheactivemuscleuseenergyfromadifferent
source(anaerobic)andtheconcentrationoflacticacidisincreased,which,inturn,devel‐
opsametabolicacidosisthatcanleadtothebreakdownofthemusclefiber.Inaddition,
CKconcentrationincreasesinthebloodsinceitisresponsibleformaintainingenergyho‐
meostasisinsiteswithhighATPcontent.Creatinekinasehasbeenusedasabiomarkerof
physicalstressand/ormuscledamageinanimals[40].Thus,physicalstresspromotesthe
inhibitionofmotorfunctionwhenthelimitofmusculardemandisreached.Therefore,
CKpredominatesinphysicaleffortsofhighintensityandshortduration,suchastrans‐
portationandvigorousexercisethatfightingbullsdevelop.Thiscouldtriggerhighenzy‐
maticactivity.Purroyetal.[41]setouttoidentifypossiblemuscularpathologiesin
fightingbulls,andtodeterminewhethertheyarerelatedtotheweaknesstheyshowas
thebullfightproceeds.Inserumsamplesdrawnaftertheevent,theyidentifiedincreases
intheenzymaticactivityofcreatininekinase,lactatedehydrogenase,andaspartatetrans‐
aminase.Moreover,approximately78%ofthebullssampledinthatstudypresentedsome
histologicallesioninskeletalorcardiacmuscleswithpredominant,chroniclesions[41].
1.3.PhysiologicalResponsestoStressors
Stressresponsesconsistofaseriesofphysiologicalandbehaviouralmechanismsde‐
signedtopromoteadaptationandrestorehomeostasisintheindividual[42],including
physiometabolicchangessuchastachycardia,hypertension,andhyperthermia[43];
changesthataredetectableinanimals’immunologicalandbehaviouralresponses;elec‐
trolyteimbalances;andmoleculardeficienciesthatincreasetheincidenceofoxidative
stress,celldeath,andDNAalterations[44,45].Asoccursinothermammals,thisphysio‐
logicalresponsetostressbeginswithactivationofthehypothalamic–pituitary–adrenal
axis(HPA),whichtriggersmultiplereactionswhenthecentralnervoussystem(CNS)per‐
ceivesapotentialdanger.This,inturn,causesalterationsoftheautonomousnervoussys‐
tem(ANS),andtheneuroendocrinedisordersdescribedabove[46–48].
InBosindicus,excitableBrahmanheifershadsignificantlyhigherserumcortisolcon‐
centrationsthandocileones,whichnegativelyaffectedserumLHconcentrations[49].
Similarly,Curleyetal.[50]foundapositivecorrelationbetweentemperamentandcortisol
values.Theexercisethatfightingbullsperformduringthe15minthatanaveragefight
lasts[51]andthelowaerobicresistancecharacteristicofbullscouldleadtheirmetabolism
towardsananaerobicprocess[52].Inrelationtothis,Escalera‐Valenteetal.[51]observed
thephysiologicalresponseinbloodsamplesdrawnfrom3144–5‐year‐oldfightingbulls
thatdiedafterfightscharacterisedbyintenseexercise.Theyfoundthatsomeresponses
haddecreased(bloodpH,HCO3,BE,PO2,sO2),othersremainedwithinnormalranges
(Na+,K+,iCa,Htc),andtherestincreased(PCO2,Hb,lactate)comparedtonormalrefer‐
encevaluesforotherbovinespecies.Clearly,theseeventscouldtriggermultiplemeta‐
bolicresponsesinfightingbulls,includingdecreasesintheacid–basebalanceandblood
pH[52],asoccursinotheranimalsundersimilarconditions.However,itisimportantto
pointoutthat,duetothehandlingproceduresusedwiththeseanimals,theresearchers
wereunabletodrawsamplesbeforetheeventthatwouldhavepermittedacomparative
analysis[51].ItiswellknownthataggressivebovinessuchasAngus‐crosssteerscanshow
elevatedvaluesofcertainmetabolitesassociatedwithenergycatabolism[22],soitisnec‐
essarytoconductmorestudieswithfightingbullstodeterminewhetherthevaluesre‐
portedbyEscalera‐Valenteetal.[51]couldbeconsiderednormalduetothetemperament
ofthisbreed,regardlessoftheexerciseperformedduringbullfights.
Animals2021,11,28205of16
1.4.BehavioralResponsestoStressors
Animalsmodifytheirbehaviorasadefensemechanismtocopewithoravoidstress‐
ors[53].Thebehavioralchangescanincludeflight,fight,orfreezing,associatedwithan
increaseintheconcentrationofadrenalineorcortisol.Examplesofstressfulstimuliarea
newenvironment,transportation,vibration,noise,anddurationofthetrip[54],aswellas
beingexposedtoadverseweatherconditions[55].
Cattlecanperceivesoundsofmuchhigherfrequenciesthanhumans,andmayper‐
ceivethenoiseinthefightingringasathreat,whichisanotherstressorthatcanaffect
theirbehavior,producingfear[56],especiallyifwhenjoinedwithnoveltyandotherneg‐
ativeexperiences.Otherbehaviorsassociatedwithfearareincreasedeliminationpatterns
[57].
Thevocalizationsoftheanimalscanprovideanimportantsourceofinformation
aboutitsphysicalandpsychologicalcondition[58].Forthisreason,thevocalizationstruc‐
turehasbeenstudiedasanessentialbehavioralindicatoroftheirstresslevel.Low‐inten‐
sityandlower‐pitchedvocalizationshavebeenassociatedwithhighercortisolconcentra‐
tionsunderstressfulevents[59].
1.5.TheAimoftheReview
Inthiscontext,theaimofthisreviewistopresentcurrentknowledgeonthefactors
thatcausestressinfightingbullsduringbullfights,includingtheirdyingprocess,bydis‐
cussingtheneurobiologyandphysiologicalresponsestowhichtheyaresubjected.Dueto
thescarcityofscientificstudiesofthesetopics,comparisonstootherbreedsofcattleare
includedwhereappropriate.
2.NeurobiologyofPain
2.1.PainPerception
Animals’brainsareirrigatedthroughthebasioccipitalplexusandcarotidarteries,
whichsupplybloodprimarilytotheoccipitallobeofthecerebralcortex,andthebasilar
arteriesthatcarrybloodrostrally[60,61].Duringbullfights,bullsaresubjectedtoinjuries
becausethelance(puya)andflags(banderillas)arestabbedintotheirbodies,damaging
skin,muscles,arteries,veins,andconnectivetissue,allofwhichcontainphysiological
sensorscallednociceptors.Thesesensorsgenerateelectricalimpulsesthatsendsignalsto
thecentralnervoussystem,wherecattlecoulddetectthemaspain[60,62,63].Thissensory
informationistransmittedfromthereticularformationtothethalamus,andfromthereto
thecerebralcortex,wherethesensationofpainisfinallyperceived[19].Theprocesses
involvedinpainperceptionincludetransduction,transmission,modulation,projection,
andperception.Transductioncorrespondstothetransformationoftheharmfulstimulus
(inthiscase,mechanical)intoanelectricalimpulse[64]generatedbynociceptorsinthe
skin,muscles,bones,orviscera[65].Whenactivated,thesenociceptorsgeneratetheaper‐
tureofCa2+,K+,orNa+ionicchannelstocreatetheelectricalimpulsesthattravelthrough
neuronalaxonstocarrythenociceptivesignal,successively,tothespinalcord,brainstem,
thalamus,andcerebralcortex[66].Inthisprocess,informationistransmittedthroughAδ
nerveterminalsthatcanbenociceptiveornonnociceptiveandarecomposedoflow‐
threshold(<75%)andhigh‐threshold(>25%)mechanoreceptorsandmechanothermalre‐
ceptors.ThelatterarereferredtoasAδheatnociceptors.High‐thresholdAδnociceptors
respondonlytotissue‐threateningortissue‐damagingstimulation.ManyoftheAδnoci‐
ceptorsrespondonlytospecificstimuli,whereasothersarepolymodalandrespondto
mechanical,chemical,andthermalstimulation[67].Inaddition,accordingtoBasbaumet
al.[68],firstandsecondpainreferstotheimmediateanddelayedpainresponsestonox‐
iousstimulation.Othertermsthatdenotethesepainsarefastandslowpainor
sharp/prickinganddull/burningpain.Thestimulithatgeneratefirstpainaretransmitted
byA‐delta,small,andmyelinatedafferents.SecondpainresultsfromtheactivationofC
Animals2021,11,28206of16
fibres,whichconductimpulsesmuchmoreslowly,thusaccountingforthetimediffer‐
ence.Reactiontimestofirstandsecondpainareabout400–500and1000ms,respectively.
Lesionstriggerthereleaseoftheproinflammatorycytokines(prostaglandins,leukotri‐
enes,bradykinin,serotonin,histamine,substanceP)thatconstitutetheso‐called“inflam‐
matorysoup”[69].This“soup”cancause,orintensify,nociceptiveimpulsesthatfacilitate
paintransmission[65].Transmissionisfollowedbymodulation,whichbeginswhenthe
stimulusiscarriedtothedorsalhornofthespinalcordinRexedlaminaeI,II,andV[70].
Theseeventsstimulatevariousbrainregions,includingthecerebralcortexandreticular
formation,whichtransmitsensoryinformationfromthethalamus.Thisisthepointat
whichtheperceptionofpaininthethalamusandcerebralcortexoccursthroughthespi‐
nothalamicandspinoreticulartracts[19,71](Figure1).
Figure1.IllustrationoftheroutefollowedbythenociceptivetransmissionfromtheperipheralnervestotheCNSafterthe
initialreceptionoftheharmfulstimulusduringabullfight(i.e.,placingofthebanderillas).Theprocessincludestransfor‐
mationoftheharmfulstimulusintoanelectricalimpulsegeneratedbynociceptorsintheskinandmusclesthatgenerate
theapertureofCa2+,K+,orNa+ionicchannelstocreatetheelectricalimpulsesthattravelthroughneuronalaxonstocarry
thenociceptivesignaltothespinalcord.Inthisprocess,informationistransmittedthroughtwoprimaryafferentnocicep‐
tiveneuronscalledAδandCfibrestothedorsalhornofthespinalcordandisthenprojectedbyelectricalimpulsesand
brainstemtothethalamus,reticularformation,andcerebralcortex,wherethepainisperceived.
2.2.EmotionsandPain
Somestudiesofbeefanddairycattlehaveusedtheextensionofeyewhiteandear
positionasindicatorswhenevaluatingtheemotionalstatesofanimals.Battinietal.[72],
forexample,analyzed430photographsoftheheadsofdairycowsclassifiedinfourlevels
accordingtothedegreeofeyeopeningandearposition.Forthelatterindicator,drooping
earsindicatedgreaterrelaxation,whileanuprightearpositionsuggestedgreaterexcita‐
tion.Thismodelwastestedunderdifferentconditions:duringfeeding,whileatrest,and
whilegrazing,complementedbyanavoidancedistancetrialatthefeedingplace(ADF).
Theirfindingsshowedthatwhentheanimalswererelaxed,theireyestendedtoremain
half‐closedandtheirearsdrooped(67.8%ofhalf‐closedeyes,77.3%withearsdrooping
orbackward,whilegrazing).Inthecaseofexcitation,incontrast,thewhitesurfaceofthe
eyeincreasedinextensionandwasmorevisible(excitementduringtheADFtestshowed
44.8%ofeyewhiteclearlyvisible),andtheearswerepushedforwardtowardstheap‐
proachingevaluator(95.5%).Thoseresultssupportusingeyewhiteandearpostureas
Animals2021,11,28207of16
reliableindicatorsofemotionsindairycows.Theeyewhiteindicatorwasalsotestedby
Coreetal.[73]topredicttemperamentinaherdofcattle.The147animalsstudiedwerea
mixofBritish(predominantlyAngus),Continental(predominantlySimmental),andPied‐
montesebreeds.Theyweregroupedasheifers(n=48),bulls(n=39),andsteers(n=60),
andthenvideotapedwhileinasqueezechutewheretheywereselected.Chutetempera‐
mentscoreswereassignedasfollows:1(calm)to5(agitated),andtheeyewhiteareawas
expressedasthepercentageofexposedeyearea.Thoseauthorsfoundthehighestaverage
percentageofeyewhiteinthebulls(31.43±14.77),followedbytheheifersandsteers
(30.14±14.37and28.57±12.38,respectively).ThePearsoncorrelationcoefficientsforeye
whitepercentageandchutetemperamentscoreswere0.95forbulls(p<0.0001),0.674for
heifers(p<0.0001),and0.696forsteers(p<0.0001).Thus,theyconcludedthatthepercent‐
ageofeyewhiteincattlecanbeusedasaquantitativetoolthatrequiresminimalequip‐
menttoassesstemperamentinbeefcattle,andthatitprovidesanobjectivemethodfor
temperamentselection.Theseindicatorsmight,therefore,alsobeusedasnon‐invasive
toolsforevaluatingthedegreeofexcitationinfightingbulls,thoughunderdifferentcon‐
ditions.
Fightingbullsarerearedinextensiveenvironmentswithminimalexposuretohu‐
mans.Fearisarguablythemostinvestigatedemotionindomesticanimals.Itisapotent
stressor.Thehighlyvariableresultsarelikelyduetodifferentlevelsofphysiologicalstress
suchasfearstress,includinghandling,contactwithpeople,orexposuretonovelty.How‐
ever,welackscientificstudiesofthisbreedthatevaluatethedegreeofexpressionofpos‐
itiveandnegativeemotionsunderdifferentconditions.Sincethestimulithatcancause
fearinbulls—andotheranimals—duringfightsincludeconfrontingaclosed,unfamiliar
environment,isolation,separationfromconspecifics,exposuretopredatorsoraggressors,
theabsenceofescaperoutesorrefuge,andthepresenceofharmfulstimuliinconditions
thatprecludeescape[74].Painandemotionarepartofamoreextensivemotivational
systemthatpromotessurvival,andtheneurocircuitriesassociatedwithemotionandpain
overlapsignificantly[75].
2.3.AnalgesicEffects
Itispossible,however,thatthestressprovokedcouldinhibitthetransmissionofpain
stimuliinthebrainandspinalcord[76].Tobecomeeffective,thispainreductionprocess
mustbeactivatedbytheamygdala.Thisinvolvesendogenousopioidsthatmodulatesig‐
nallingandsynaptictransmissionintheneurallocithatcontributetotheexperienceof
pain[77].Thegeneticmakeupandaggressivebehaviourtypicaloffightingbullsduring
eventsleadsthemtoadoptachallengingattitudeastheyconfronttheirattacker,making
noattempttofleefromthesituation.Theactivationofneuroendocrinemechanismsallows
releaseofthehormoneproopiomelanocortin(POMC),β‐endorphins,andmethaneceph‐
alins,cortisol,andACTHinresponsetostress.Centenera[78]tookbloodsamplesfrom
fightingbullsatfourstagesoftheevent:immediatelyuponenteringthering(n=159
bulls),afterthewoundsinflictedbythelance(n=137bulls),aftertheplacingoftheban‐
derillas(n=110bulls),andattheendofthefightwhenthebulliskilled(estoque)(n=80
bulls).Theirpost‐eventfindingsshowedanincreaseintheconcentrationofPOMC—a
precursorhormoneoftheβ‐endorphinsandmethanecephalins—thatwassixtimes
higherintheanimalsaftertheestoquecomparedtotheconcentrationsdeterminedwhen
thebullsenteredthering(p<0.01).WithrespecttoserumACTHandcortisollevels,that
studyfoundhigherconcentrationsinthebullsimmediatelyafterleavingthering,while
thelowestvaluesweredeterminedforthesamplesdrawnandanalyzedafterthefinal
estocada(fourandthreetimeslower,respectively)(p<0.01).
3.Muscle‐SkeletalInjuriesduringBullfights
AccordingtoFernándezandVillalón’s[11]anatomicalreview,fightingbullslack
clavicles,sotheirtwoanteriorextremitiesarejoinedatthetrunk,mainlybymuscles.The
Animals2021,11,28208of16
scapulahasaprolongationcartilagewherethosemusclesareinsertedtojointhetwoex‐
tremitiesmorestronglyandfixthemtothetrunk.Musclefibres,ofcourse,areclassified
histologicallyinvarioustypesaccordingtotherelationbetweenmyosinadenosinetri‐
phosphataseactivity(m‐ATPase)andpH[79].WhenpHisalkaline,typeImusclefibres
(slow‐contracting)havelowm‐ATPaseactivity,whiletypeIIfibres(fast‐contracting)have
highm‐ATPaseactivity[80].Underconditionsofintenseexercise,suchasabullfight,the
fast‐contractingmusclefibreswithlowoxidativecapacity(typeII)arethemainonesthat
functiontoproduceanaerobicglycolysisasapathwayforproducingtheenergyrequired
fortheeffortinvolved.Duringthisprocess,eitherpyruvateisformedandusedbythe
mitochondria,orlactateisproduced,whichis(partly)deliveredtothebloodstream.From
there,itreachestheliverandkidneysthatconvertittoglycogen,asoccursinothermam‐
malspecies,includinghumans[81–84].Theenzymelactatedehydrogenasecatalysesthe
interconversionofpyruvateandlactate.However,whenlactateisabundant,itremains
detectableandindicatesrecentlyperformedheavyphysicalactivity.Increasedphysical
activitymayalsoinducedamagetomusclefibresandthereleaseofcreatinephosphoki‐
nase(anenzymeusedbythemusculartissueforproducecreatine)intotheblood[85].
Duringbullfights,bullsaresubjectedtoanatomicalinjuriessuchastornmuscles,liga‐
ments,tendons,andrupturednervesandbloodvesselscausedbythebullfighters’weap‐
ons[11].Otherinjuriesthatmayoccurincludefracturesoftheribs,thespinousprocesses
onthevertebrae,andprolongationcartilages[11]thatcouldcauseseverepainand
changesintheanimal’sneurobiology.
Gomarizetal.[12]attemptedtodeterminethecausesofthephysiologicaldisequilib‐
riumofthelocomotorapparatusbyevaluatingvarioustransversalcutsofseveralmus‐
cles—commondigitalextensor,longdigitalextensor,longthorax,Latissimusdorsi,Ven‐
tralthoracicserrate,andgluteobiceps—fromsixfightingbullskilledbythematador’s
swordthatpresentedanobviouslackofstrengthbeforedeath,manifestedinfrequent
fallsrecordedintheirmovementprofile,asTable1shows.Theyusedhistologicaland
histochemicaltechniques,stainedtheirsamplesandthenmicrophotographedthemat10×,
20×,and40×.Findingsallowedthemtoidentifythefollowinglesions:mitochondrialal‐
terations,lossofthepolygonalcontouroffibres,centralizationofnuclei,necroticpro‐
cesses,fibrillarfragmentation,andvacuolizationofthesarcoplasm.Insomesubjects,the
injuriesexaminedwereaccompaniedbyalterationsoftheconnectivetissue(perianden‐
domysialfibrosis).Theauthorsconcludedthatthisseriesofinjuriescouldbeaconse‐
quenceoftheexcessivemusculareffortthatthebullsmadeinashorttime‐period.They
didnotruleoutthepossibilitythatsomeoftheanimalsmayhavesufferfromamyopathy.
Whateverthecase,theysuggestthatthelesionsaffectedmusclefibresandconnectivetis‐
sue,leadingtoalossofstrengthandfrequentfallsduringthebullfights.
Table1.Contributionofmusclestomovementinfightingbulls.
MuscleGroupFunction
Commondigitalextensor,gluteo‐
b
iceps,andlongdigitalextensor Supportinextendingandretractingextremities
Longthorax
Fixingandrightingactionoftherachis;dorsalflexor
agentofthethoracic‐lumbarrachis;regulatingme‐
chanicalinfluencesintheprotraction–retractionof
pelvicmembers
Latissimusdorsi
Whencontracted,oncetheprotractionofthethoracic
memberisculminated(supportinextension);drags
b
odymasswhileretractionofthememberlasts
VentralthoracicserrateConstitutestheprincipalsuspensoragentofthe
trunk.
FromGomarizetal.[12]
Animals2021,11,28209of16
Inadditiontotheinjuriesvisibleatfirstsightduringabullfight,thereareconditions
infightingbullsthatcouldexacerbatemuscularandskeletaldamage.Thestudyof120
fightingbullsbyLomillos‐PérezandAlonsodelaVarga[86]detectedthepresenceofos‐
teochondrosisinover70%oftheanimalsevaluated,bilaterallyin78.3%ofthem.Various
authorsidentifyosteochondrosisasanelementthatpredisposesfightingbullstodevelop
theso‐called“fallingsyndrome”[87,88],anafflictioncharacterizedbylossofequilibrium
andtransitoryfallingthathasalsobeenassociatedwithdamagetomusclecells[12].
Martínez[89]andLomillos‐Pérezetal.[90]reportedthatcausesofthefallingsyn‐
dromecanincludegeneticfactors,transportconditions,thephysicaldemandsofthebull‐
fight,alackoffunctionalexercise,alimentarydeficiencies,andcirculatory,nervous,met‐
abolic,endocrine,oretiologicaldisorders.AccordingtoLomillos‐Pérezetal.[90],thissyn‐
dromehasdecreasedovertime,asincidencehasdecreasedfrom99.56to79.82%,andthat
itisinthethird(cape)stageofthebullfightthatitoccursmostfrequently.Eventhough
theincidenceremainsveryhigh,itisnoteworthythatthispartialdecreaseinincidence
occursduringthebanderillasstage.Dávilaetal.[91]pointoutthatanydiscussionofthe
aetiologyofosteochondrosisinfightingbullsmustmentionthetraumaandbiochemical
elementsofthecartilage,whichcanbeaffectedbynutritionaldeficiencies,hormonalim‐
balances,inadequatevascularcontribution,andgeneticfactors.
4.HypovolemicShock
Thewoundinflictedbythelancecausesalossofbloodvolume,thefirsteventina
seriesthatendsinhypovolemicshock[10].Hypovolemiaisthereductionofbloodvolume
duetomassivehaemorrhagingthatinducesseveredehydration.Inthiscondition,both
theamountofbloodthatreachesthebody’svitalorgansandthepressurewithwhichit
arrivesareinsufficient,impedingtheirfunctioningandviability[92].Threephasesof
hypovolemicshockhavebeendescribed:compensatory,inwhichtheorganismgenerates
aneuroendocrineresponseasitstrugglestomaintainhaemodynamicstatus;decompen‐
satory,whenitsustainscontinuoushypoperfusionthattriggersaprocessofcellinjury
anddeath;andmicrocirculatorydysfunction,whentheparenchymaltissueisdamaged
andinflammatorycellsareactivated[93].Thisconditionispartiallycompensatedatonset
bythereleaseofK+ionsfromtheintracellularspacetotheblood.Thismechanismaimsto
self‐compensateandcauseisotonicdehydrationandhyperkalaemia,buttheresultinghy‐
droelectrolyticimbalanceproducesvasculardysfunction.Atthesametime,othercom‐
pensatingmechanismsareactivatedtolowerarterialpressure.Thisisdetectedinitially
bybaroreceptorsintheaorticarchandcarotidsinus,leadingtoactivationofthesympa‐
theticsystemthatsecretescatecholamines,angiotensinII,andtheantidiuretichormoneto
preservecardiacoutputandmaintainadequatecerebralandcardiacperfusion[94].
Otheressentialresponsesofthefightingbull’sorganismduringabullfightinclude
spleniccontraction,whenerythrocytesaremobilizedtowardsthezoneswhereadditional
oxygensupportisrequiredwithincreasedhaematocritduetothedehydrationtheani‐
malsmaypresentasaconsequenceoftheintensephysicalactivityperformedinashort
period[51].
5.MetabolicResponsesLinkedtoPsychologicalStressandPhysicalExercise
Animalsaresubjecttovariousenvironmentalandbehaviouralstressorsthataffect
theirsurvivalandphysicalstate[95].Torespondphysiologicallytothesestressors,they
presentaseriesofneuralandendocrineresponsesthatdivertenergyawayfromshort
term,non‐essentialphysiologicalprocessessuchasgrowth,digestion,andreproduction,
inanefforttoresolvethestressfulsituation.Meanwhile,theneuralstressresponsein‐
volvessecretingcatecholaminesfromtheadrenalmedullaandthesympatheticnervous
system,andmobilisingenergytoincreasecardiacfrequency,bloodpressure,andrespira‐
tion[96,97].
Theexertiondemandedofbullsduringthe15–18minthatbullfightsusuallylastcan
beconsideredsimilartothatperformedbyathleticanimalsforcedtoperformenormously
Animals2021,11,282010of16
intensiveexercise[52,98].Thisexplainswhyacid–basebalancealterationsareobserved
thatlowerbloodpH[51].Undertheseconditions,bloodpHcandecreasetolevelsbelow
7.2,aerobicglycolysisisinhibited,extracellularosmolarityincreases,andcellularoedema
mayoccur.Itiswellknownthatincreasedaciditycanproduceabroadrangeofharmful
effectsonneuralfunctioning,suchasincreasingthepermeabilityoftheblood–brainbar‐
rier,inhibitingmitochondrialfunction,andalteringsynaptictransmissionandionicfunc‐
tions[99].Amongthemechanismsthattheorganismhasatitsdisposaltoeliminatehy‐
drogenionsandmaintainpH,wecanmentionseveralbufferingsystems,suchastheres‐
piratoryandbufferbases[100].
Bullfightsdemandanenormousphysicaleffortbythebulls,sotheseanimalsmustbe
inoptimalhealthconditionsbeforeparticipating.Theintensityofthefighttriggerssignif‐
icantmetabolicalterationsthatareobservableaftertheevent,includinghaematological
changes(increasedredbloodcellsandhaematocrit),andelevatedperoxidesandlacticacid
productionthatreduceconcentrationsofmuscleglycogenandpH[101].Accordingly,
LacourtandTarrant[102]andAgüeraetal.[103]showedthatthephysicalandemotional
stressandexercisetowhichfightingbullsaresubjectedduringaneventcausesamarked
reductionofglycogenintypeIandtypeIIfibres.Thesechangesareaccompaniedbythe
releaseoflargeamountsofenzymesintothebloodstream,includingcreatininekinase
(CK),lactatedehydrogenase(LDH),andaspartateaminotransferase(AST)[52].Theante‐
mortemanalysisofcertainbiologicalvariablesinanimalscanbeusefulfordiagnosing
diseasesordetectingmetabolicstates[104].Fightingbullsareknownfortheiraggressive‐
nessandnaturalresistancetohandling,sodrawinginvivobloodsamplescanbeex‐
tremelydifficult[105].Althoughtheemotionalandphysicalstressthatthesebullsexperi‐
enceduringbullfightscancausesignificantchangesinbloodanalytelevels(Figure2),
bloodvariablesareinfluencedbyphysicalexertionandstressfulsituations;consequently,
post‐mortembloodanalysisdoesnotreflectbasalconcentrationsforthisspecies.There‐
fore,theseindicatorscannotalwaysbeusedasdiagnosticfindingsinpost‐mortemblood
evaluations[106].However,ocularfluidssuchasvitreoushumourmaintainastablecom‐
positionafterdeathandcanbeusedpost‐mortemtoestimatethebloodlevelsthatanimals
presentedantemortem.González‐Montañaetal.[105]usedpost‐mortemocularfluidsin
fightingbulls,findingthatallthevariablesassessedinplasmashowedconcentrations
abovebasallevels.Specifically,alterationswereobservedforglucose,uricacid,LDH,and
creatininekinase(CK).Thesefindingscanbecausedbytheoverexertion,stressfulsitua‐
tion,destructionofmusclecells,andlossofbodilyfluidsthatthebullsundergoduringthe
intenseexerciseofabullfight.Severalstudiesofpigsandhorsesshowedthatanimalsper‐
forminghighlevelsofphysicalactivityandtraininghaveacorrespondinghigheroxidative
capacity,higherglycogencontent,andlargeramountsoftypeIImusclefibresthananimals
thatperformlessphysicalactivity[106–109].Itseemsthatthemetaboliccapacityofbulls
variesaccordingtoage.AstudyofyoungandmaturefightingbullsbyAgüeraetal.[103]
analysedthevaluesofcitratesynthase(CS),3‐hydroxyacylcoenzymeAdehydrogenase
(HAD),LDH,glycogen,lactate,andpHinbiopsiesofthegluteusmediusmuscleobtained
afterbullfights.TheyobservedthatHADandLDHactivitywerehigherinthegroupof
olderbulls.GlycogenconcentrationsandpHwerelowinbothgroups,butlactateconcen‐
trationswerehigherintheolderbulls.Theseresultsshowthatyoungandoldbullshave
similarmusclefibretypecompositionbutthemetaboliccapacitydiffers,withahighergly‐
colyticcapacityandlactateproductioninolderbulls[103].Inanotherstudy,Purroyand
Buitrago[110]observedthatthelevelsofCK,oxalacetateglutamatetransaminase(GOT),
andLDHwerehigherpost‐mortembecausetheanimalshadbeensubjectedtomorein‐
tenseexerciseinthedaysleadinguptobullfights.Whenthedataobtainedafterexercise
infightingbullswerecomparedtonormalreferencevaluesforcattle,itwasclearthatsome
bloodvariables—pH,bicarbonate(HCO3−),baseexcess(BE),oxygenpartialpressure(PO2),
andoxygensaturation(sO2)—decreased,whileothers—sodium(Na+),potassium(K+),cal‐
ciumion(iCa),andhaematocrit(Htc)—remainedwithinnormallimits[51].Otherana‐
lytes,suchasPCO2,haemoglobin(Hb),andlactate,wereabovenormalvalues.Astudyby
Animals2021,11,282011of16
Muñoz‐Juzadoetal.[111]evaluatedtheoxidativeandglycolyticpotentialinmusclebiop‐
siesoffightingbullstakenafteranevent.Samplesweredrawnfromthegluteusmediusand
semitendinosusmusclesofbullsaged1to3years.Thoseauthorsfoundthatthehighest
oxidativemuscularpotentialwasmanifestedinthe2‐year‐oldbullsandthatglycolytic
capacityincreasedprogressivelywithage.Thiscontrastswithotherbovines,whereare‐
ductionintheoxidativepotentialoccursfromthetimeofbirthonwards[102].Thesefind‐
ingsleadtothesuggestionthattheageofthebullmightparticipatesignificantlyinthe
metabolicresponsesduringbullfights,asitdoesinmuscleenzymeproduction.Physiolog‐
icalresponsesarethereactionstostressfulstimulithatoccurinorganisms.Heartrateis
themostusefulparameterforevaluatingtheactivationoftheflight‐or‐fightsyndrome
[103].Whencorrelatedwithbodytemperature,itcanbeinterpretedastheheart’sresponse
tometabolicdemand[92].Likewise,skintemperatureisausefulparameterforevaluating
vascularresistance,vasodilatation,andvasoconstriction.Whenbodytemperaturede‐
creasesdistally,vasoconstrictionispresentwithlowcardiacoutputandlikely,hypovole‐
mia[112].If,incontrast,thetemperaturetendstoincreasetowardsdistalareas,vasodila‐
tationisoccurringwithhighcardiacoutput[113].Finally,tocompensatetheconditionof
metabolicacidosis,animalspresenthyperventilationortachypnea,whichcanbedetected
bytheflaringorflappingoftheirnostrilsandmoreevidentinspiratorymovementsofthe
abdominalandthoracicwalls.
Figure2.Metabolic,haematological,andacid–basebalancealterationsthatoccurduringtheendo‐
crineresponsetostressandthephysicaleffortinfightingbulls.Oneofthemainmetabolicresponses
thatoccursduringstressfulconditionsconsistsinanincreaseofadrenalglucocorticoids,suchas
cortisol,thatcirculateinthebloodstream[95].Inotherspecies,itiswellknownthatshortperiods
ofglucocorticoidreleasecancauseirreversibledamage,includingreproductivedisorders,immu‐
nosuppression,andreducedlifeexpectancy[96,114,115].Inaddition,theemotionalstressandin‐
tenseexercisethatfightingbullsundergoandtheexposuretoanewenvironmentduringtheevent
producemarkedincreasesofcortisol,glucose,andT3inthebloodstreamthatcangeneratesignifi‐
cantbiochemicalchangesintheorganismbytriggeringthestress‐adaptationsyndrome[52].Cate‐
cholaminesfunctiontoprepareanorganismforthe“flight‐or‐fight”responsebuttriggerstachycar‐
dia,hypertension,hyperthermia,hyperventilation,andsweating[48,116].Cortisolbeginstobese‐
cretedbytheadrenalcortexaroundfiveminutesafterthestressfulstimulusispresented.Thissub‐
stance,whichcanbedetectedinblood,saliva,urine,andfaeces,performstheprimaryfunctionof
increasingandthenmaintainingbloodglucoselevelsusingreservesofhepaticandmusculargly‐
cogentoprovidetheanimalwithsufficientenergytosustainthephysicaleffortthatthesituation
demands[117].CRF:corticotropinreleasingfactor;HPA:hypothalamic‐pituitary‐adrenocortical
axis;ACTH:adrenocorticotropichormone;ATP:adenosinetriphosphate;ANS:autonomicnervous
system;HR:heartrate;RR:respiratoryrate;CK:creatinekinase;LDH:lactatedehydrogenase;AST:
aspartateaminotransferase;ROS:reactiveoxygenspecies;BBB:blood–brainbarrier.
Animals2021,11,282012of16
AccordingtoGarcía‐Belengueretal.[118],fightingbullspresentlowseleniumand
vitaminElevelsbuthighcopperlevelsintheblood,possiblyassociatedwithexercise
duringthefight.Carpinteroetal.[119]identifiedthatcalcium,phosphorus,andmagne‐
siumlevelsarewellabovenormalphysiologicalvaluesafterbullfights.Theyattributed
hypercalcaemiaandhypermagnesaemiatodehydrationduringfightsandthefindingof
hyperphosphatemiatorespiratoryandlacticacidosis.Afterabullfight,highmagnesium
andphosphoruslevelswerereportedbyGonzález‐Montañaetal.[120]in15fightingbulls
aged4–5years,basedonmeasurementsofthevitreoushumour,aqueoushumour,and
blood.Theyalsodeterminedthattheselevelswerehigherinbloodplasmathaninthe
vitreoushumour,whilecalcium,chrome,andsodiumlevelsweresimilarinallthreeflu‐
ids.Selenium,iron,zinc,andcoppervalueswere16–32timeshigherinplasmathaninthe
ocularfluids.Insummary,studieshavefoundthatchangesatthemuscularlevelandin
diversebodyfluidsresultfromthephysiologicaleffortandenergydemandtowhich
fightingbullsaresubjectedduringbullfightingevents[103,111].Themostsignificant
changesfromtheperspectiveofanimalwelfareincludethoserelatedwithpsychological
stress[121]withnegativeemotions,includingfear,pain,andtriggeringphysiologicalre‐
sponses,includingdehydration,hypermagnesaemia,hypotension,muscularnecrosis,
myoglobinuria,andmetabolicacidosis.
6.Conclusions
Theexistinginformationallowsustoconcludethatbullsfaceenergyandmetabolic
demandsduringbullfightsduetothehighintensityanddurationoftheexerciseper‐
formed,togetherwithmuscularinjuries,physiologicalchanges,andhighenzymeconcen‐
trations.Inaddition,thefinalstageofthebullfightcausesaslowdyingprocessforan
animalthatissentientandconsciousofitssurroundings.Unfortunately,duetothescant
literatureonthisbreed,manygapsexistintheavailableinformation;morespecificinfor‐
mation,suchasphysiologicalevaluations,couldhelpverifytheseeffects.
AuthorContributions:Conceptualization,D.M.‐R.,A.O.,andA.V.;methodology,D.M.‐R.,A.S.,
J.M.‐B.;investigation,D.M.‐R.,A.O.,I.H.‐Á.,P.M.‐M.,J.M.‐B.,F.N.,andA.V.;writing—originaldraft
preparation,D.M.‐R.,A.O.,F.N.,I.H.‐Á.,P.M.‐M.andA.S.;writing—reviewandediting,A.O.D.M.‐
R.,I.H.‐Á.,P.M.‐M.andJ.M.‐B.;finalsupervision,A.O.,andD.M.‐R.Allauthorshavereadand
agreedtothepublishedversionofthemanuscript.
Funding:Thisresearchreceivednoexternalfunding.
InstitutionalReviewBoardStatement:Notapplicable.
InformedConsentStatement:Notapplicable.
DataAvailabilityStatement:Notapplicable.
ConflictsofInterest:Theauthorsdeclarenoconflictofinterest.
References
1. Wilson,D.E.;Reeder,A.MammalSpeciesoftheWorld.ATaxonomicandGeographicReference;Wilson,D.E.,Reeder,A.,Eds.;Johns
HopkinsUniversityPress:Baltimore,MA,USA,2005;ISBN0‐8018‐8221‐4.
2. Domínguez‐Viveros,J.;Rodríguez‐Almeida,F.A.;RafaelNúñez‐Domínguez,R.;Ramírez‐Valverde,R.;Ruiz‐Flores,A.Genetic
parametersandgenetictrendsforbehaviortraitsinMexicanbullfightingherds.Rev.Mex.Cienc.Pecu.2015,5,261–271,
doi:10.22319/rmcp.v5i3.3970.
3. deBoyerdesRoches,A.;Faure,M.;Lussert,A.;Herry,V.;Rainard,P.;Durand,D.;Foucras,G.Behavioralandpatho‐physiolo‐
gicalresponseaspossiblesignsofpainindairycowsduringEscherichiacolimastitis:Apilotstudy.J.DairySci.2017,100,8385–
8397,doi:10.3168/jds.2017‐12796.
4. Edwards‐Callaway,L.N.;Cramer,M.C.;Cadaret,C.N.;Bigler,E.J.;Engle,T.E.;Wagner,J.J.;Clark,D.L.Impactsofshadeon
cattlewell‐beinginthebeefsupplychain.J.Anim.Sci.2021,99,doi:10.1093/jas/skaa375.
5. García‐Torres,S.;CabezadeVaca,M.;Tejerina,D.;Romero‐Fernández,M.P.;Ortiz,A.;Franco,D.;Sentandreu,M.A.;Oliván,
M.AssessmentofstressbyserumbiomarkersincalvesandtheirrelationshiptoultimatepHasanindicatorofmeatquality.
Animals2021,11,2291,doi:10.3390/ani11082291.
Animals2021,11,282013of16
6. Kareklas,K.;Kunc,H.P.;Arnott,G.Extrinsicstressorsmodulateresourceevaluations:Insightsfromterritorialityunderartificial
noise.Front.Zool2021,18,12,doi:10.1186/s12983‐021‐00397‐x.
7. Gimsa,U.;Tuchscherer,M.;Kanitz,E.Psychosocialstressandimmunity—Whatcanwelearnfrompigstudies?Front.Behav.
Neurosci.2018,12,1–9,doi:10.3389/fnbeh.2018.00064.
8. Hughes,H.D.;Carroll,J.A.;Sanchez,N.C.B.;Richeson,J.T.Naturalvariationsinthestressandacutephaseresponsesofcattle.
InnateImmun.2014,20,888–896,doi:10.1177/1753425913508993.
9. Chen,Y.;Stookey,J.;Arsenault,R.;Scruten,E.;Griebel,P.;Napper,S.Investigationofthephysiological,behavioral,andbio‐
chemicalresponsesofcattletorestraintstress.J.Anim.Sci.2016,94,3240–3254,doi:10.2527/jas.2016‐0549.
10. BaronaHernández,L.;CuestaLópez,A.;&MonteroAgüera,I.Cumplenlaspuyassumisión?Rev.Estud.Taur.1999,9,95–112.
11. Fernández,S.J.;Villalón,G.‐C.EstudiodelaslesionesproducidasporlasuertedevarasenlasegundapartedelaFeriadeSan
Isidrode1998.Rev.Estud.Taur.1999,9,113–139.
12. Gomariz,F.M.;Vázquez,J.M.;Gil,F.;Moreno,F.;Ramírez,G.;Latorre,R.;Albors,O.L.Muscleinjuriesinthefightingbull(Bos
taurusibericus)afterthebullfight.An.Vet.Murcia1999,15,17–24.
13. Fernández‐Novo,A.;Lomillos‐Pérez,J.M.;García‐García,J.A.Lesionesmacroscópicasenpulmonesenganadodelidia.Inf.
Technol.Econ.Agrar.2020,doi:10.12706/itea.2019.022.
14. Oquendo,Y.H.E.;Navarro,L.R.;Pereira,B.F.;Martínez,E.D.;Méndez,D.R.Importanciadelosconocimientosanatómicosen
laslesionesdemédulaespinal.Rev.Inf.Científica2004,43,1–8.
15. Restrepo,J.R.M.Sistematizaciónmedular.Correlaciónanatómicayclínica.Med.UPB2002,21,119–135.
16. Limon,G.;Guitian,J.;Gregory,N.G.Anevaluationofthehumanenessofpuntillaincattle.Meat.Sci.2010,84,352–355,
doi:10.1016/j.meatsci.2009.09.001.
17. Terlow,E.M.C.Thephysiologyofthebrainanddetermininginsensibilityandunconsciousness.InTheSlaughterofFarmedAni‐
mals:PracticalWaysofEnhancingAnimalWelfare;CABI:Wallingford,CT,USA,2020;pp.202–228.
18. Gregory,N.G.;vonWenzlawowicz,M.;Holleben,K.Bloodintherespiratorytractduringslaughterwithandwithoutstunning
incattle.MeatSci.2009,82,13–16,doi:10.1016/j.meatsci.2008.11.021.
19. Terlouw,C.;Bourguet,C.;Deiss,V.Consciousness,unconsciousnessanddeathinthecontextofslaughter.PartI.Neurobiolo‐
gicalmechanismsunderlyingstunningandkilling.MeatSci.2016,118,133–146.
20. Silva,B.;Gonzalo,A.;Cañón,J.Geneticparametersofaggressiveness,ferocityandmobilityinthefightingbullbreed.Anim.
Res.2006,55,65–70,doi:10.1051/animres:2005046.
21. Menéndez‐Buxadera,A.;Cortés,O.;Cañon,J.Genetic(co)varianceandplasticityofbehaviouraltraitsinLidiabovinebreed.
Ital.J.Anim.Sci.2017,16,208–216,doi:10.1080/1828051X.2017.1279035.
22. Lockwood,S.A.;Kattesh,H.G.;Krawczel,P.D.;Kirkpatrick,F.D.;Saxton,A.M.;Rhinehart,J.D.;Wilkerson,J.B.Relationships
amongtemperament,behavior,andgrowthduringperformancetestingofbulls.J.Anim.Sci.2015,93,5856–5862,
doi:10.2527/jas.2015‐9302.
23. Parker,A.J.;Hamlin,G.P.;Coleman,C.J.;Fitzpatrick,L.A.Quantitativeanalysisofacid‐basebalanceinBosindicussteerssub‐
jectedtotransportationoflongduration.J.Anim.Sci.2003,81,1434–1439.
24. Tharwat,M.;Al‐Sobayil,F.InfluenceofTransportationontheSerumConcentrationsoftheCardiacBiomarkersTroponinIand
CreatineKinase‐myocardialBand(CK‐MB)andonCortisolandLactateinHorses.J.EquineVet.Sci.2014,34,662–667,
doi:10.1016/j.jevs.2013.12.008.
25. Becerril‐Herrera,M.;Alonso‐Spilsbury,M.;Ortega,M.E.T.;Guerrero‐Legarreta,I.;Ramírez‐Necoechea,R.;Pérez‐Sato,M.;Soní‐
Guillermo,E.;Mota‐Rojas,D.Changesinbloodconstituentsofswinetransportedfor8or16htoanAbattoir.MeatSci.2010,86,
945–948,doi:10.1016/j.meatsci.2010.07.021.
26. Mota‐Rojas,D.;Becerril‐Herrera,M.;Roldan,P.;Alonso‐Spilsbury,M.;Flores‐Peinado,S.;Ramírez‐Necoechea,R.;Ramírez‐
Telles,J.A.;Mora‐Medina,P.;Pérez,M.;Molina,E.;etal.EffectsoflongdistancetransportationandCO2stunningoncritical
bloodvaluesinpigs.MeatSci.2012,90,893–898.
27. Gouveia,A.J.;Orge,L.;Carvalho,P.Adimensãodaamígdalacerebraleaagressividadenotourodelide.Arch.Zootec.2016,65,
59–65.
28. Du,K.;Lu,W.;Sun,Y.;Feng,J.;Wang,J.‐H.mRNAandmiRNAprofilesinthenucleusaccumbensarerelatedtofearmemory
andanxietyinducedbyphysicalorpsychologicalstress.J.Psychiatr.Res.2019,118,44–65.
29. Hemsworth,P.H.;Coleman,G.J.Human‐LivestockInteractions:TheStockpersonandtheProductivityandWelfareofIntensiveFarmed
Animals,2nded.;Hemsworth,P.H.,Coleman,G.J.,Eds.;CABInternational:Wallingford,UK,2010;pp.1–194.
30. Hennessy,M.B.;Willen,R.M.;Schiml,P.A.Psychologicalstress,itsreduction,andlong‐termconsequences:Whatstudieswith
laboratoryanimalsmightteachusaboutlifeinthedogshelter.Animals2020,10,2061.
31. Rostamkhani,F.;Zardooz,H.;Zahediasl,S.;Farrokhi,B.Comparisonoftheeffectsofacuteandchronicpsychologicalstresson
metabolicfeaturesinrats.J.ZhejiangUniv.Sci.B2012,13,904–912.
32. Grandin,T.;Shivley,C.Howfarmanimalsreactandperceivestressfulsituationssuchashandling,restraint,andtransport.
Animals2015,5,1233–1251,doi:10.3390/ani5040409.
33. Li,X.;Sun,H.;Zhang,L.;Liu,H.;Li,J.;Wang,C.;Zhang,M.;Bao,J.TechnicalNote:Effectsofageandconfinementonpupillary
lightreflexinsows.J.Anim.Sci.2019,97,2009–2014,doi:10.1093/jas/skz100.
Animals2021,11,282014of16
34. Raber,J.;Arzy,S.;Bertolus,J.B.;Depue,B.;Haas,H.E.;Hofmann,S.G.;Kangas,M.;Kensinger,E.;Lowry,C.A.;Marusak,H.A.;
etal.Currentunderstandingoffearlearningandmemoryinhumansandanimalmodelsandthevalueofalinguisticapproach
foranalyzingfearlearningandmemoryinhumans.Neurosci.Biobehav.Rev.2019,105,136–177,doi:10.1016/j.neubio‐
rev.2019.03.015.
35. Bacher,L.;Prieur,V.;Lardy,R.;Boivin,X.Doestheavoidancedistancetestatthefeedbarrierhavescientificvalidityforeva‐
luatingreactivitytohumansinLimousinbreedingbulls?LivestSci.2021,249,104535.
36. Daigle,C.L.;Hubbard,A.J.;Grandin,T.Theuseoftraditionalfearteststoevaluatedifferentemotionalcircuitsincattle.J.Vis.
Exp.2020,doi:10.3791/60641.
37. Cannas,S.;Palestrini,C.;Canali,E.;Cozzi,B.;Ferri,N.;Heinzl,E.;Minero,M.;Chincarini,M.;Vignola,G.;DallaCosta,E.
Thermographyasanon‐invasivemeasureofstressandfearofhumansinsheep.Animals2018,8,146,doi:10.3390/ani8090146.
38. Grandin,T.Assessmentofstressduringhandlingandtransport.J.Anim.Sci.1997,75,249.
39. Swanson,J.C.;Morrow‐Tesch,J.Cattletransport:Historical,research,andfutureperspectives.J.Anim.Sci.2001,79,E102,
doi:10.2527/jas2001.79E‐SupplE102x.
40. Mpakama,T.;Chulayo,A.Y.;Muchenje,V.Bruisinginslaughtercattleanditsrelationshipwithcreatinekinaselevelsandbeef
qualityasaffectedbyanimalrelatedfactors.Asian‐Australas.J.Anim.Sci.2014,27,717–725.
41. Purroy,A.;García‐Belenguer,S.;González,J.;Gascon,M.;Barberan,M.Muscularlesionsandenzymaticactivitiesinfighting
bulls.Ann.Rech.Vet.1992,23,59–62.
42. Godoy,L.D.;Rossignoli,M.T.;Delfino‐Pereira,P.;Garcia‐Cairasco,N.;deLimaUmeoka,E.H.AComprehensiveOverviewon
StressNeurobiology:BasicConceptsandClinicalImplications.Front.Behav.Neurosci.2018,12,1–23,
doi:10.3389/fnbeh.2018.00127.
43. Kassahn,K.S.;Crozier,R.H.;Pörtner,H.O.;Caley,M.J.Animalperformanceandstress:Responsesandtolerancelimitsatdiffe‐
rentlevelsofbiologicalorganisation.Biol.Rev.2009,84,277–292.
44. McCobb,E.C.;Patronek,G.J.;Marder,A.;Dinnage,J.D.;Stone,M.S.Assessmentofstresslevelsamongcatsinfouranimal
shelters.J.Am.Vet.Med.Assoc.2005,226,548–555,doi:10.2460/javma.2005.226.548.
45. Bohacek,J.;Mansuy,I.M.Molecularinsightsintotransgenerationalnon‐geneticinheritanceofacquiredbehaviours.Nat.Rev.
Genet.2015,16,641–652,doi:10.1038/nrg3964.
46. Martin,L.;Andreassi,E.;Watson,W.;Coon,C.Stressandanimalhealth:Physiologicalmechanismsandecologicalconsequen‐
ces.Nat.Educ.Knowl.2011,3,11.
47. Mota‐Rojas,D.;Ghezzi,M.D.;Napolitano,F.;Rosmini,M.R.;Guerrero‐Legarreta,I.;Martínez‐Burnes,J.;Lezama‐García,K.;
Miranda‐Cortés,A.;delaVega,L.T.;Mora‐Medina,P.;etal.Qualityofdeathintheriverbuffalo(Bubalusbubalis).J.Anim.Behav.
Biometeorol.2021,9,doi:10.31893/jabb.21015.
48. Mota‐Rojas,D.;Napolitano,F.;Strappini,A.;Orihuela,A.;Ghezzi,M.D.;Hernández‐Ávalos,I.;Mora‐Medina,P.;Whittaker,
A.L.PainattheSlaughterhouseinRuminantswithaFocusontheNeurobiologyofSensitisation.Animals2021,11,1085,
doi:10.3390/ani11041085.
49. Stahringer,R.C.;Randel,R.D.;Neuendorff,D.A.Effectsofnaloxoneandanimaltemperamentonserumluteinizinghormone
andcortisolconcentrationsinseasonallyanestrousBrahmanheifers.Theriogenology1990,34,393–406,doi:10.1016/0093‐
691X(90)90531‐W.
50. Curley,K.O.;Paschal,J.C.;Welsh,T.H.;Randel,R.D.Technicalnote:Exitvelocityasameasureofcattletemperamentisrepea‐
tableandassociatedwithserumconcentrationofcortisolinBrahmanbulls1.J.Anim.Sci.2006,84,