ArticlePDF AvailableLiterature Review

Abstract and Figures

During bullfights, bulls undergo physiometabolic responses such as glycolysis, anaerobic reactions, cellular oedema, splenic contraction, and hypovolemic shock. The objective of this review article is to present the current knowledge on the factors that cause stress in fighting bulls during bullfights, including their dying process, by discussing the neurobiology and their physiological responses. The literature shows that biochemical imbalances occur during bullfights, including hypercalcaemia, hypermagnesaemia, hyperphosphataemia, hyperlactataemia, and hyperglycaemia, associated with increased endogenous cortisol and catecholamine levels. Creatine kinase, citrate synthase, and lactate dehydrogenase levels also increase, coupled with decreases in pH, blood bicarbonate levels, excess base, partial oxygen pressure, and oxygen saturation. The intense exercise also causes a marked decrease of glycogen in type I and II muscle fibres that can produce myoglobinuria and muscular necrosis. Other observations suggest the presence of osteochondrosis. The existing information allows us to conclude that during bullfights, bulls face energy and metabolic demands due to the high intensity and duration of the exercise performed, together with muscular injuries, physiological changes, and high enzyme concentrations. In addition, the final stage of the bullfight causes a slow dying process for an animal that is sentient and conscious of its surroundings.
Content may be subject to copyright.
Animals2021,11,2820.https://doi.org/10.3390/ani11102820www.mdpi.com/journal/animals
Review
QualityofDeathinFightingBullsduringBullfights:
NeurobiologyandPhysiologicalResponses
DanielMotaRojas
1,
*,FabioNapolitano
2
,AnaStrappini
3
,AgustínOrihuela
4,
*,JulioMartínezBurnes
5
,
IsmaelHernándezÁvalos
6
,PatriciaMoraMedina
6
andAntonioVelarde
7
1
Neurophysiology,BehaviorandAnimalWelfareAssessment,DPAA,XochimilcoCampus,Universidad
AutónomaMetropolitana,CiudaddeMéxico04960,Mexico
2
ScuoladiScienzeAgrarie,Forestali,AlimentariedAmbientali,UniversitàdegliStudidellaBasilicata,
85100Potenza,Italy;fabio.napolitano@unibas.it
3
AnimalScienceInstitute,FacultyofVeterinarySciences,UniversidadAustraldeChile,
Valdivia5090000,Chile;anastrappini@gmail.com
4
FacultaddeCienciasAgropecuarias,UniversidadAutónomadelEstadodeMorelos,
Cuernavaca62209,Mexico
5
AnimalHealthGroup,FacultyofVeterinaryMedicine,UniversidadAutónomadeTamaulipas,
CiudadVictoria87000,Mexico;jmburnes@docentes.uat.edu.mx
6
FacultaddeEstudiosSuperioresCuautitlán,UniversidadNacionalAutónomadeMéxico(UNAM),
StateofMexico54714,Mexico;mvziha@hotmail.com(I.H.Á.);mormed2001@yahoo.com.mx(P.M.M.)
7
IRTA,AnimalWelfareProgram,VeinatSiesSN,17121Monells,Spain;antonio.velarde@irta.cat
*Correspondence:dmota100@yahoo.com.mx(D.M.R.);aorihuela@uaem.mx(A.O.)
SimpleSummary:Fightingbullsthatparticipateinbullfightingfaceenergyandmetabolicde
mandsduetothehighintensityanddurationoftheexerciseperformed.Undertheseconditions,
specificcorporalmechanisms,suchastheacid–basebalance,areaffected,causingmetabolicacido
sis.However,fightingbullsalsoundergomuscularinjuries,physiologicalchanges,andhighen
zymeconcentrationsthatreflectthestresstowhichtheyaresubjected,andinsomebulls,bullfights
cantriggerelectrolyticimbalancesthatincludehypercalcaemia,hypermagnesaemia,andhyper
phosphataemia,exacerbatedbymuscularnecrosisandmyoglobinuria.
Abstract:Duringbullfights,bullsundergophysiometabolicresponsessuchasglycolysis,anaerobic
reactions,cellularoedema,spleniccontraction,andhypovolemicshock.Theobjectiveofthisreview
articleistopresentthecurrentknowledgeonthefactorsthatcausestressinfightingbullsduring
bullfights,includingtheirdyingprocess,bydiscussingtheneurobiologyandtheirphysiological
responses.Theliteratureshowsthatbiochemicalimbalancesoccurduringbullfights,includinghy
percalcaemia,hypermagnesaemia,hyperphosphataemia,hyperlactataemia,andhyperglycaemia,
associatedwithincreasedendogenouscortisolandcatecholaminelevels.Creatinekinase,citrate
synthase,andlactatedehydrogenaselevelsalsoincrease,coupledwithdecreasesinpH,bloodbi
carbonatelevels,excessbase,partialoxygenpressure,andoxygensaturation.Theintenseexercise
alsocausesamarkeddecreaseofglycogenintypeIandIImusclefibresthatcanproducemyoglo
binuriaandmuscularnecrosis.Otherobservationssuggestthepresenceofosteochondrosis.The
existinginformationallowsustoconcludethatduringbullfights,bullsfaceenergyandmetabolic
demandsduetothehighintensityanddurationoftheexerciseperformed,togetherwithmuscular
injuries,physiologicalchanges,andhighenzymeconcentrations.Inaddition,thefinalstageofthe
bullfightcausesaslowdyingprocessforananimalthatissentientandconsciousofitssurround
ings.
Keywords:pain;abattoir;sensitisation;stunning;cattle;animalwelfare;fightingbulls
Citation:MotaRojas,D.;
Napolitano,F.;Strappini,A.;
Orihuela,A.;MartínezBurnes,J.;
HernándezÁvalos,I.;MoraMedina,
P.;Velarde,A.QualityofDeathin
FightingBullsduringBullfights:
NeurobiologyandPhysiological
Responses.Animals2021,11,2820.
https://doi.org/10.3390/ani11102820
AcademicEditor:ElbertLambooij
Received:13July2021
Accepted:24September2021
Published:27September2021
Publisher’sNote:MDPIstaysneu
tralwithregardtojurisdictional
claimsinpublishedmapsandinstitu
tionalaffiliations.
Copyright:©2021bytheauthors.Li
censeeMDPI,Basel,Switzerland.
Thisarticleisanopenaccessarticle
distributedunderthetermsandcon
ditionsoftheCreativeCommonsAt
tribution(CCBY)license(http://crea
tivecommons.org/licenses/by/4.0/).
Animals2021,11,28202of16
1.Introduction
Fightingbullsareconsideredaspecializedbreedofcattlethathasitsoriginsinthe
speciesBostaurus,whichincludesallbreedsofbovinesinvolvedinvariouszootechnical
practices[1].Aswithalldomesticbovines,certaincriteriaexistintheselectionoffighting
bulls.Since,inthiscase,theobjectiveistobreedanimalsthatwillperformwellduring
bullfights,behaviouralcharacteristicsincalvesandyoungbullsthatmanifestferocity,ag
gressiveness,andmobilityareamongthoseconsiderednecessaryforthisspectacle.The
selectionprocessofheifersandyoungbullsinvolvesatestingphase(tientainSpanish),
whileforbulls,itoccursafteranoutstandingperformancewherethebull’slifeisspared
oncethebullfightisover.Onegoalofthesepracticesistoidentifybullsthatwillfight
whenprovokedbyapersonusingsomekindoflure[2].
Duringbullfights,thephysiometabolicresponsescorrespondmainlytothepresence
ofdifferenttypesofstressors,suchasphysical(tissueinjury,pathologies,pain[3]),envi
ronmental(extremeweather,microclimate,nutrition,handling[4],transportation[5],
noise[6]),andpsychosocialfactors(socialisolation,overcrowding,pain,fearordistress
[7]).Forfightingbulls,similartoanyothermammal,theresponsedegreeandtheconse
quenceintheirhomeostasisdependsonthestressortype,thedurationofthestimulus,
andthepreviousexperiencesoftheanimal[8,9].However,ingeneral,whenanexternal
stimulusisperceivedaspotentiallyharmful,thecentralnervoussystem,throughtheac
tivationofthesympathoadrenalandhypothalamic–pituitary–adrenalaxes(Broom,2019)
andthelimbicsystem[7],triggersacascadeofphysiological(i.e.,tachycardia,tachypnea,
hyperthermia),metabolic(hyperglycemia)[9],endocrine(i.e.,stresshormones—catechol
aminesorglucocorticoids),andbehavioralresponses.Intheshortterm,thesechanges
serveasanadaptivedefensemechanism.However,whenananimalcannotmaintainits
homeostasisduetotheprocess’schronicityormagnitude,theorganismanditshealth
deterioratealongwithitswelfare[8].Understandingstressresponsesinlivestockcanhelp
refinemanagementproceduresandpromotetheselectionofstresstolerantanimals.
Thebullfightisdividedinthreestagescalledtercios:terciodevaras,terciodebanderillas,
andterciodemuleta.Inthefirststage,alanceisstabbedintothebull’shump,limitingits
mobility[10].Theinjuryinflictedbythelancedestroysbloodvesselsandhaemorrhages
thatcandecreasebloodvolumeby8–18%throughperforationsofthetrapezoidand
rhomboidmuscles,andthefunicularportionoftheoccipitalligament.Insomecases,this
injuryalsoaffectstheaccessorynerveandbrachialplexusfromspinalsegmentsC5,C6,
C7,C8,andT1,whichcontrolthemovementofthethoraciclimbs[11,12].Thelancecan
inflictwoundsasdeepas30cm.Ifnotappliedproperly,itcancompromisetheanimal’s
locomotion,asBaronaetal.[10]determinedintheiranalysisofthesite,depth,andsever
ityofthelesionsproducedbythisinstrumentafterexamining277fightingbullsfrom43
events.Theysuggestthatthoseinjuriesarelocated,inorderofimportance,inbull’sshoul
dersandhump.Ifthelancepenetratesthehindquarters,itcompromisesthebull’sphysi
calintegritybycausingpaininthedorsolumbarregionthatreducesitsforceoflocomo
tion.
Inthesecondstage,thematadorstabssixflags(banderillas)intothebull’sshoulders
and/orhump.Thisactionaggravatesthemuscledamagealreadyinflictedbythelance
becauseeverymovementthebullmakeswhilechargingthematadorandhisredcape
movestheflagsinsidethewounds.Theirsharppointslaceratemusclesindifferentdirec
tions,causingadditionalhaemorrhages[10].
Inthethirdstage,thematadorusesaswordtokillthebullbycausingprofusebleed
inginthethoraciccavity,eitherbypiercingthepleuratocausepneumothoraxandthe
consequentrespiratoryinsufficiency,orthelungorrightbronchia,allowingbloodtoleave
thelung,enterthebronchia,andreachthetrachea,oesophagus,andupperrespiratory
pathways[13].Inmostcases,theswordalsoseversthespinalcord’slateralnervecords
responsibleforinnervatingthethoraciccavity,producingparalysisandrespiratoryinsuf
ficiency.Theswordultimatelycausesasphyxiabyseveringofthemedullaoblongataorits
caudalnervousprojections[14–17].Inthiscase,theswordcutsbloodvessels,thelungs,
Animals2021,11,28203of16
andthebronchia,causingbronchoaspiration[18].Afterthesword,thebullisstabbedwith
apuntilla(shortknife)toendthefight,whichentersnearthefirstandsecondcervicalver
tebrae,itwilldamagethemotornerves,causingthebulltofallwithitslimbsextended.If
theinjuryismadeneartheatlantooccipitaljoint,thebulbiscutthespinalcordandits
caudalnerveprojections,possiblyleadingtothesameresult[11].
Thedeathofbullsduringbullfights—whetherbyasphyxiaorexsanguination—oc
curswhiletheanimalisfullyconsciousbecausethebrainstemand/orbraincortexremain
intact[17,19].
1.1.StressorsofPsychologicalOrigin
Regardingfightingbulls,studieshavedeterminedthataggressiveness(animal’sca
pacitytoconfrontthematadorvs.attemptingtoescape)andferocity(amountofstrength
itusestoattackwithitsentirebody,anditsresistancetopain)havestronggenetic[20]
andenvironment[21]bases.
Thetemperamentoftheanimalcouldbeanotherfactorthataffectsthequalityofits
death.However,studieshavedeterminedthatevenbovineswithharshtemperaments
(Bostaurus,includingfightingbulls)andotherspecieseventuallybecomehabituatedto
novelenvironmentalconditionsandreducetheirbehaviouralreactivity[22].
Thetypicalhandlingpracticesusedwithfightingbullsrequireminimisingorelimi
natingcontactwithhumans.Inpartforthisreason,noscientificstudieshaveyetdocu
mentedthepeculiaritiesofthisbreedofbulls(Bostaurusbrachyceros)underthesecircum
stances,thoughsimilarresultshavebeendeterminedinBosindicussteers[23],horses[24],
andpigs[25,26].Theanatomicalandphysiologicaldifferenceobservedinthefightingbull
havebeendescribedintheconformationofthecerebralhemispheres,inthebrain
weight/carcassweightratio,andinthesizeofthecerebralamygdala,observinganegative
relationshipwithrespecttotheaggressivenessofrace[27].
Ingeneral,acuteseverestressfromphysicaland/orpsychologicalinjuriesinindivid
ualscaninduceemotionssuchasfearoranxiety[28].Duringbullfights,factorssuchas
novelty,aggression,andnoise,amongothers,canbestressorsthatcouldtriggerthese
emotions[29].
Whenanimalsareexposedtosituationsthattheycannotcontrolorareunpredictable
(suchasisolation,acutenoise,orconfinement)[30],adaptivehypothalamic,sympathetic,
immune,andbehavioralresponsesservetosurvive[31].Infarmanimals,routinesitua
tionssuchashandling,restraining,ortransportareeventsthatcaninducestatesofanxi
ety,distress,depression,orfear[32,33].Fearisanegative,subjective,andemotionalex
periencederivedfromtherecognitionoranticipationofactualdanger[34].Theamygdala
isthemaincomponentofthesocalledfearsystem[32]andisinnatelypresentinmany
domesticspecies.Nonetheless,afearfulanimalisinastateofchronicstresswithitscor
respondingproductiveandphysiologicalconsequences[35].Infightingbulls,humancon
tactwithanimalsislimited,sometimesuntilthebullenterstheplaza,topreservethefear
fulnessandaggressivenesstowardspeople.TheaboveagreeswithDaigleetal.[36],who
mentionsthattemperamentandhuman–animalinteractioninfluencetheperceptionand
adaptationtovariouspsychologicalstressors.Ithasbeenreportedthatthereactionsde
rivedfromfearpreservetheintegrityoftheanimalandimproveanimalfitness.However,
aswithanyothernegativementalstate,iffearpersists,theanimalcannotadapttoits
environment,anditswelfareiscompromised[37].
1.2.StressorsofPhysicalOrigin
Oneexampleofastressorofphysicaloriginisfatigueduetotransportorothercauses
ofstrenuousexercise[38],whichresultsinanincreasedbodytemperature,heartandres
pirationrates,andactivationofthehypothalamic–pituitary–adrenalaxis[39].Inthephys
icalaspect,thereisanincreaseincreatinekinase(CK)activityintheblood,whichisdue
totissuedamageandpoorreperfusionofmuscletissue.Whenperformingphysicalactiv
ity,theactivemusclerequiresoxygenandreservesglycogenenergy.However,whenthe
Animals2021,11,28204of16
intensityofphysicalactivityincreases,theoxygendemandalsoincreases,exceedingthe
transportsystem’slevels.Inthisconditiontheactivemuscleuseenergyfromadifferent
source(anaerobic)andtheconcentrationoflacticacidisincreased,which,inturn,devel
opsametabolicacidosisthatcanleadtothebreakdownofthemusclefiber.Inaddition,
CKconcentrationincreasesinthebloodsinceitisresponsibleformaintainingenergyho
meostasisinsiteswithhighATPcontent.Creatinekinasehasbeenusedasabiomarkerof
physicalstressand/ormuscledamageinanimals[40].Thus,physicalstresspromotesthe
inhibitionofmotorfunctionwhenthelimitofmusculardemandisreached.Therefore,
CKpredominatesinphysicaleffortsofhighintensityandshortduration,suchastrans
portationandvigorousexercisethatfightingbullsdevelop.Thiscouldtriggerhighenzy
maticactivity.Purroyetal.[41]setouttoidentifypossiblemuscularpathologiesin
fightingbulls,andtodeterminewhethertheyarerelatedtotheweaknesstheyshowas
thebullfightproceeds.Inserumsamplesdrawnaftertheevent,theyidentifiedincreases
intheenzymaticactivityofcreatininekinase,lactatedehydrogenase,andaspartatetrans
aminase.Moreover,approximately78%ofthebullssampledinthatstudypresentedsome
histologicallesioninskeletalorcardiacmuscleswithpredominant,chroniclesions[41].
1.3.PhysiologicalResponsestoStressors
Stressresponsesconsistofaseriesofphysiologicalandbehaviouralmechanismsde
signedtopromoteadaptationandrestorehomeostasisintheindividual[42],including
physiometabolicchangessuchastachycardia,hypertension,andhyperthermia[43];
changesthataredetectableinanimals’immunologicalandbehaviouralresponses;elec
trolyteimbalances;andmoleculardeficienciesthatincreasetheincidenceofoxidative
stress,celldeath,andDNAalterations[44,45].Asoccursinothermammals,thisphysio
logicalresponsetostressbeginswithactivationofthehypothalamic–pituitary–adrenal
axis(HPA),whichtriggersmultiplereactionswhenthecentralnervoussystem(CNS)per
ceivesapotentialdanger.This,inturn,causesalterationsoftheautonomousnervoussys
tem(ANS),andtheneuroendocrinedisordersdescribedabove[46–48].
InBosindicus,excitableBrahmanheifershadsignificantlyhigherserumcortisolcon
centrationsthandocileones,whichnegativelyaffectedserumLHconcentrations[49].
Similarly,Curleyetal.[50]foundapositivecorrelationbetweentemperamentandcortisol
values.Theexercisethatfightingbullsperformduringthe15minthatanaveragefight
lasts[51]andthelowaerobicresistancecharacteristicofbullscouldleadtheirmetabolism
towardsananaerobicprocess[52].Inrelationtothis,EscaleraValenteetal.[51]observed
thephysiologicalresponseinbloodsamplesdrawnfrom3144–5yearoldfightingbulls
thatdiedafterfightscharacterisedbyintenseexercise.Theyfoundthatsomeresponses
haddecreased(bloodpH,HCO3,BE,PO2,sO2),othersremainedwithinnormalranges
(Na+,K+,iCa,Htc),andtherestincreased(PCO2,Hb,lactate)comparedtonormalrefer
encevaluesforotherbovinespecies.Clearly,theseeventscouldtriggermultiplemeta
bolicresponsesinfightingbulls,includingdecreasesintheacid–basebalanceandblood
pH[52],asoccursinotheranimalsundersimilarconditions.However,itisimportantto
pointoutthat,duetothehandlingproceduresusedwiththeseanimals,theresearchers
wereunabletodrawsamplesbeforetheeventthatwouldhavepermittedacomparative
analysis[51].ItiswellknownthataggressivebovinessuchasAnguscrosssteerscanshow
elevatedvaluesofcertainmetabolitesassociatedwithenergycatabolism[22],soitisnec
essarytoconductmorestudieswithfightingbullstodeterminewhetherthevaluesre
portedbyEscaleraValenteetal.[51]couldbeconsiderednormalduetothetemperament
ofthisbreed,regardlessoftheexerciseperformedduringbullfights.
Animals2021,11,28205of16
1.4.BehavioralResponsestoStressors
Animalsmodifytheirbehaviorasadefensemechanismtocopewithoravoidstress
ors[53].Thebehavioralchangescanincludeflight,fight,orfreezing,associatedwithan
increaseintheconcentrationofadrenalineorcortisol.Examplesofstressfulstimuliarea
newenvironment,transportation,vibration,noise,anddurationofthetrip[54],aswellas
beingexposedtoadverseweatherconditions[55].
Cattlecanperceivesoundsofmuchhigherfrequenciesthanhumans,andmayper
ceivethenoiseinthefightingringasathreat,whichisanotherstressorthatcanaffect
theirbehavior,producingfear[56],especiallyifwhenjoinedwithnoveltyandotherneg
ativeexperiences.Otherbehaviorsassociatedwithfearareincreasedeliminationpatterns
[57].
Thevocalizationsoftheanimalscanprovideanimportantsourceofinformation
aboutitsphysicalandpsychologicalcondition[58].Forthisreason,thevocalizationstruc
turehasbeenstudiedasanessentialbehavioralindicatoroftheirstresslevel.Lowinten
sityandlowerpitchedvocalizationshavebeenassociatedwithhighercortisolconcentra
tionsunderstressfulevents[59].
1.5.TheAimoftheReview
Inthiscontext,theaimofthisreviewistopresentcurrentknowledgeonthefactors
thatcausestressinfightingbullsduringbullfights,includingtheirdyingprocess,bydis
cussingtheneurobiologyandphysiologicalresponsestowhichtheyaresubjected.Dueto
thescarcityofscientificstudiesofthesetopics,comparisonstootherbreedsofcattleare
includedwhereappropriate.
2.NeurobiologyofPain
2.1.PainPerception
Animals’brainsareirrigatedthroughthebasioccipitalplexusandcarotidarteries,
whichsupplybloodprimarilytotheoccipitallobeofthecerebralcortex,andthebasilar
arteriesthatcarrybloodrostrally[60,61].Duringbullfights,bullsaresubjectedtoinjuries
becausethelance(puya)andflags(banderillas)arestabbedintotheirbodies,damaging
skin,muscles,arteries,veins,andconnectivetissue,allofwhichcontainphysiological
sensorscallednociceptors.Thesesensorsgenerateelectricalimpulsesthatsendsignalsto
thecentralnervoussystem,wherecattlecoulddetectthemaspain[60,62,63].Thissensory
informationistransmittedfromthereticularformationtothethalamus,andfromthereto
thecerebralcortex,wherethesensationofpainisfinallyperceived[19].Theprocesses
involvedinpainperceptionincludetransduction,transmission,modulation,projection,
andperception.Transductioncorrespondstothetransformationoftheharmfulstimulus
(inthiscase,mechanical)intoanelectricalimpulse[64]generatedbynociceptorsinthe
skin,muscles,bones,orviscera[65].Whenactivated,thesenociceptorsgeneratetheaper
tureofCa2+,K+,orNa+ionicchannelstocreatetheelectricalimpulsesthattravelthrough
neuronalaxonstocarrythenociceptivesignal,successively,tothespinalcord,brainstem,
thalamus,andcerebralcortex[66].Inthisprocess,informationistransmittedthroughAδ
nerveterminalsthatcanbenociceptiveornonnociceptiveandarecomposedoflow
threshold(<75%)andhighthreshold(>25%)mechanoreceptorsandmechanothermalre
ceptors.ThelatterarereferredtoasAδheatnociceptors.HighthresholdAδnociceptors
respondonlytotissuethreateningortissuedamagingstimulation.ManyoftheAδnoci
ceptorsrespondonlytospecificstimuli,whereasothersarepolymodalandrespondto
mechanical,chemical,andthermalstimulation[67].Inaddition,accordingtoBasbaumet
al.[68],firstandsecondpainreferstotheimmediateanddelayedpainresponsestonox
iousstimulation.Othertermsthatdenotethesepainsarefastandslowpainor
sharp/prickinganddull/burningpain.Thestimulithatgeneratefirstpainaretransmitted
byAdelta,small,andmyelinatedafferents.SecondpainresultsfromtheactivationofC
Animals2021,11,28206of16
fibres,whichconductimpulsesmuchmoreslowly,thusaccountingforthetimediffer
ence.Reactiontimestofirstandsecondpainareabout400–500and1000ms,respectively.
Lesionstriggerthereleaseoftheproinflammatorycytokines(prostaglandins,leukotri
enes,bradykinin,serotonin,histamine,substanceP)thatconstitutethesocalled“inflam
matorysoup”[69].This“soup”cancause,orintensify,nociceptiveimpulsesthatfacilitate
paintransmission[65].Transmissionisfollowedbymodulation,whichbeginswhenthe
stimulusiscarriedtothedorsalhornofthespinalcordinRexedlaminaeI,II,andV[70].
Theseeventsstimulatevariousbrainregions,includingthecerebralcortexandreticular
formation,whichtransmitsensoryinformationfromthethalamus.Thisisthepointat
whichtheperceptionofpaininthethalamusandcerebralcortexoccursthroughthespi
nothalamicandspinoreticulartracts[19,71](Figure1).
Figure1.IllustrationoftheroutefollowedbythenociceptivetransmissionfromtheperipheralnervestotheCNSafterthe
initialreceptionoftheharmfulstimulusduringabullfight(i.e.,placingofthebanderillas).Theprocessincludestransfor
mationoftheharmfulstimulusintoanelectricalimpulsegeneratedbynociceptorsintheskinandmusclesthatgenerate
theapertureofCa2+,K+,orNa+ionicchannelstocreatetheelectricalimpulsesthattravelthroughneuronalaxonstocarry
thenociceptivesignaltothespinalcord.Inthisprocess,informationistransmittedthroughtwoprimaryafferentnocicep
tiveneuronscalledAδandCfibrestothedorsalhornofthespinalcordandisthenprojectedbyelectricalimpulsesand
brainstemtothethalamus,reticularformation,andcerebralcortex,wherethepainisperceived.
2.2.EmotionsandPain
Somestudiesofbeefanddairycattlehaveusedtheextensionofeyewhiteandear
positionasindicatorswhenevaluatingtheemotionalstatesofanimals.Battinietal.[72],
forexample,analyzed430photographsoftheheadsofdairycowsclassifiedinfourlevels
accordingtothedegreeofeyeopeningandearposition.Forthelatterindicator,drooping
earsindicatedgreaterrelaxation,whileanuprightearpositionsuggestedgreaterexcita
tion.Thismodelwastestedunderdifferentconditions:duringfeeding,whileatrest,and
whilegrazing,complementedbyanavoidancedistancetrialatthefeedingplace(ADF).
Theirfindingsshowedthatwhentheanimalswererelaxed,theireyestendedtoremain
halfclosedandtheirearsdrooped(67.8%ofhalfclosedeyes,77.3%withearsdrooping
orbackward,whilegrazing).Inthecaseofexcitation,incontrast,thewhitesurfaceofthe
eyeincreasedinextensionandwasmorevisible(excitementduringtheADFtestshowed
44.8%ofeyewhiteclearlyvisible),andtheearswerepushedforwardtowardstheap
proachingevaluator(95.5%).Thoseresultssupportusingeyewhiteandearpostureas
Animals2021,11,28207of16
reliableindicatorsofemotionsindairycows.Theeyewhiteindicatorwasalsotestedby
Coreetal.[73]topredicttemperamentinaherdofcattle.The147animalsstudiedwerea
mixofBritish(predominantlyAngus),Continental(predominantlySimmental),andPied
montesebreeds.Theyweregroupedasheifers(n=48),bulls(n=39),andsteers(n=60),
andthenvideotapedwhileinasqueezechutewheretheywereselected.Chutetempera
mentscoreswereassignedasfollows:1(calm)to5(agitated),andtheeyewhiteareawas
expressedasthepercentageofexposedeyearea.Thoseauthorsfoundthehighestaverage
percentageofeyewhiteinthebulls(31.43±14.77),followedbytheheifersandsteers
(30.14±14.37and28.57±12.38,respectively).ThePearsoncorrelationcoefficientsforeye
whitepercentageandchutetemperamentscoreswere0.95forbulls(p<0.0001),0.674for
heifers(p<0.0001),and0.696forsteers(p<0.0001).Thus,theyconcludedthatthepercent
ageofeyewhiteincattlecanbeusedasaquantitativetoolthatrequiresminimalequip
menttoassesstemperamentinbeefcattle,andthatitprovidesanobjectivemethodfor
temperamentselection.Theseindicatorsmight,therefore,alsobeusedasnoninvasive
toolsforevaluatingthedegreeofexcitationinfightingbulls,thoughunderdifferentcon
ditions.
Fightingbullsarerearedinextensiveenvironmentswithminimalexposuretohu
mans.Fearisarguablythemostinvestigatedemotionindomesticanimals.Itisapotent
stressor.Thehighlyvariableresultsarelikelyduetodifferentlevelsofphysiologicalstress
suchasfearstress,includinghandling,contactwithpeople,orexposuretonovelty.How
ever,welackscientificstudiesofthisbreedthatevaluatethedegreeofexpressionofpos
itiveandnegativeemotionsunderdifferentconditions.Sincethestimulithatcancause
fearinbulls—andotheranimals—duringfightsincludeconfrontingaclosed,unfamiliar
environment,isolation,separationfromconspecifics,exposuretopredatorsoraggressors,
theabsenceofescaperoutesorrefuge,andthepresenceofharmfulstimuliinconditions
thatprecludeescape[74].Painandemotionarepartofamoreextensivemotivational
systemthatpromotessurvival,andtheneurocircuitriesassociatedwithemotionandpain
overlapsignificantly[75].
2.3.AnalgesicEffects
Itispossible,however,thatthestressprovokedcouldinhibitthetransmissionofpain
stimuliinthebrainandspinalcord[76].Tobecomeeffective,thispainreductionprocess
mustbeactivatedbytheamygdala.Thisinvolvesendogenousopioidsthatmodulatesig
nallingandsynaptictransmissionintheneurallocithatcontributetotheexperienceof
pain[77].Thegeneticmakeupandaggressivebehaviourtypicaloffightingbullsduring
eventsleadsthemtoadoptachallengingattitudeastheyconfronttheirattacker,making
noattempttofleefromthesituation.Theactivationofneuroendocrinemechanismsallows
releaseofthehormoneproopiomelanocortin(POMC),β‐endorphins,andmethaneceph
alins,cortisol,andACTHinresponsetostress.Centenera[78]tookbloodsamplesfrom
fightingbullsatfourstagesoftheevent:immediatelyuponenteringthering(n=159
bulls),afterthewoundsinflictedbythelance(n=137bulls),aftertheplacingoftheban
derillas(n=110bulls),andattheendofthefightwhenthebulliskilled(estoque)(n=80
bulls).TheirposteventfindingsshowedanincreaseintheconcentrationofPOMC—a
precursorhormoneoftheβendorphinsandmethanecephalins—thatwassixtimes
higherintheanimalsaftertheestoquecomparedtotheconcentrationsdeterminedwhen
thebullsenteredthering(p<0.01).WithrespecttoserumACTHandcortisollevels,that
studyfoundhigherconcentrationsinthebullsimmediatelyafterleavingthering,while
thelowestvaluesweredeterminedforthesamplesdrawnandanalyzedafterthefinal
estocada(fourandthreetimeslower,respectively)(p<0.01).
3.MuscleSkeletalInjuriesduringBullfights
AccordingtoFernándezandVillalón’s[11]anatomicalreview,fightingbullslack
clavicles,sotheirtwoanteriorextremitiesarejoinedatthetrunk,mainlybymuscles.The
Animals2021,11,28208of16
scapulahasaprolongationcartilagewherethosemusclesareinsertedtojointhetwoex
tremitiesmorestronglyandfixthemtothetrunk.Musclefibres,ofcourse,areclassified
histologicallyinvarioustypesaccordingtotherelationbetweenmyosinadenosinetri
phosphataseactivity(mATPase)andpH[79].WhenpHisalkaline,typeImusclefibres
(slowcontracting)havelowmATPaseactivity,whiletypeIIfibres(fastcontracting)have
highmATPaseactivity[80].Underconditionsofintenseexercise,suchasabullfight,the
fastcontractingmusclefibreswithlowoxidativecapacity(typeII)arethemainonesthat
functiontoproduceanaerobicglycolysisasapathwayforproducingtheenergyrequired
fortheeffortinvolved.Duringthisprocess,eitherpyruvateisformedandusedbythe
mitochondria,orlactateisproduced,whichis(partly)deliveredtothebloodstream.From
there,itreachestheliverandkidneysthatconvertittoglycogen,asoccursinothermam
malspecies,includinghumans[81–84].Theenzymelactatedehydrogenasecatalysesthe
interconversionofpyruvateandlactate.However,whenlactateisabundant,itremains
detectableandindicatesrecentlyperformedheavyphysicalactivity.Increasedphysical
activitymayalsoinducedamagetomusclefibresandthereleaseofcreatinephosphoki
nase(anenzymeusedbythemusculartissueforproducecreatine)intotheblood[85].
Duringbullfights,bullsaresubjectedtoanatomicalinjuriessuchastornmuscles,liga
ments,tendons,andrupturednervesandbloodvesselscausedbythebullfighters’weap
ons[11].Otherinjuriesthatmayoccurincludefracturesoftheribs,thespinousprocesses
onthevertebrae,andprolongationcartilages[11]thatcouldcauseseverepainand
changesintheanimal’sneurobiology.
Gomarizetal.[12]attemptedtodeterminethecausesofthephysiologicaldisequilib
riumofthelocomotorapparatusbyevaluatingvarioustransversalcutsofseveralmus
cles—commondigitalextensor,longdigitalextensor,longthorax,Latissimusdorsi,Ven
tralthoracicserrate,andgluteobiceps—fromsixfightingbullskilledbythematador’s
swordthatpresentedanobviouslackofstrengthbeforedeath,manifestedinfrequent
fallsrecordedintheirmovementprofile,asTable1shows.Theyusedhistologicaland
histochemicaltechniques,stainedtheirsamplesandthenmicrophotographedthemat10×,
20×,and40×.Findingsallowedthemtoidentifythefollowinglesions:mitochondrialal
terations,lossofthepolygonalcontouroffibres,centralizationofnuclei,necroticpro
cesses,fibrillarfragmentation,andvacuolizationofthesarcoplasm.Insomesubjects,the
injuriesexaminedwereaccompaniedbyalterationsoftheconnectivetissue(perianden
domysialfibrosis).Theauthorsconcludedthatthisseriesofinjuriescouldbeaconse
quenceoftheexcessivemusculareffortthatthebullsmadeinashorttimeperiod.They
didnotruleoutthepossibilitythatsomeoftheanimalsmayhavesufferfromamyopathy.
Whateverthecase,theysuggestthatthelesionsaffectedmusclefibresandconnectivetis
sue,leadingtoalossofstrengthandfrequentfallsduringthebullfights.
Table1.Contributionofmusclestomovementinfightingbulls.
MuscleGroupFunction
Commondigitalextensor,gluteo
b
iceps,andlongdigitalextensor Supportinextendingandretractingextremities
Longthorax
Fixingandrightingactionoftherachis;dorsalflexor
agentofthethoraciclumbarrachis;regulatingme
chanicalinfluencesintheprotraction–retractionof
pelvicmembers
Latissimusdorsi
Whencontracted,oncetheprotractionofthethoracic
memberisculminated(supportinextension);drags
b
odymasswhileretractionofthememberlasts
VentralthoracicserrateConstitutestheprincipalsuspensoragentofthe
trunk.
FromGomarizetal.[12]
Animals2021,11,28209of16
Inadditiontotheinjuriesvisibleatfirstsightduringabullfight,thereareconditions
infightingbullsthatcouldexacerbatemuscularandskeletaldamage.Thestudyof120
fightingbullsbyLomillosPérezandAlonsodelaVarga[86]detectedthepresenceofos
teochondrosisinover70%oftheanimalsevaluated,bilaterallyin78.3%ofthem.Various
authorsidentifyosteochondrosisasanelementthatpredisposesfightingbullstodevelop
thesocalled“fallingsyndrome”[87,88],anafflictioncharacterizedbylossofequilibrium
andtransitoryfallingthathasalsobeenassociatedwithdamagetomusclecells[12].
Martínez[89]andLomillosPérezetal.[90]reportedthatcausesofthefallingsyn
dromecanincludegeneticfactors,transportconditions,thephysicaldemandsofthebull
fight,alackoffunctionalexercise,alimentarydeficiencies,andcirculatory,nervous,met
abolic,endocrine,oretiologicaldisorders.AccordingtoLomillosPérezetal.[90],thissyn
dromehasdecreasedovertime,asincidencehasdecreasedfrom99.56to79.82%,andthat
itisinthethird(cape)stageofthebullfightthatitoccursmostfrequently.Eventhough
theincidenceremainsveryhigh,itisnoteworthythatthispartialdecreaseinincidence
occursduringthebanderillasstage.Dávilaetal.[91]pointoutthatanydiscussionofthe
aetiologyofosteochondrosisinfightingbullsmustmentionthetraumaandbiochemical
elementsofthecartilage,whichcanbeaffectedbynutritionaldeficiencies,hormonalim
balances,inadequatevascularcontribution,andgeneticfactors.
4.HypovolemicShock
Thewoundinflictedbythelancecausesalossofbloodvolume,thefirsteventina
seriesthatendsinhypovolemicshock[10].Hypovolemiaisthereductionofbloodvolume
duetomassivehaemorrhagingthatinducesseveredehydration.Inthiscondition,both
theamountofbloodthatreachesthebody’svitalorgansandthepressurewithwhichit
arrivesareinsufficient,impedingtheirfunctioningandviability[92].Threephasesof
hypovolemicshockhavebeendescribed:compensatory,inwhichtheorganismgenerates
aneuroendocrineresponseasitstrugglestomaintainhaemodynamicstatus;decompen
satory,whenitsustainscontinuoushypoperfusionthattriggersaprocessofcellinjury
anddeath;andmicrocirculatorydysfunction,whentheparenchymaltissueisdamaged
andinflammatorycellsareactivated[93].Thisconditionispartiallycompensatedatonset
bythereleaseofK+ionsfromtheintracellularspacetotheblood.Thismechanismaimsto
selfcompensateandcauseisotonicdehydrationandhyperkalaemia,buttheresultinghy
droelectrolyticimbalanceproducesvasculardysfunction.Atthesametime,othercom
pensatingmechanismsareactivatedtolowerarterialpressure.Thisisdetectedinitially
bybaroreceptorsintheaorticarchandcarotidsinus,leadingtoactivationofthesympa
theticsystemthatsecretescatecholamines,angiotensinII,andtheantidiuretichormoneto
preservecardiacoutputandmaintainadequatecerebralandcardiacperfusion[94].
Otheressentialresponsesofthefightingbull’sorganismduringabullfightinclude
spleniccontraction,whenerythrocytesaremobilizedtowardsthezoneswhereadditional
oxygensupportisrequiredwithincreasedhaematocritduetothedehydrationtheani
malsmaypresentasaconsequenceoftheintensephysicalactivityperformedinashort
period[51].
5.MetabolicResponsesLinkedtoPsychologicalStressandPhysicalExercise
Animalsaresubjecttovariousenvironmentalandbehaviouralstressorsthataffect
theirsurvivalandphysicalstate[95].Torespondphysiologicallytothesestressors,they
presentaseriesofneuralandendocrineresponsesthatdivertenergyawayfromshort
term,nonessentialphysiologicalprocessessuchasgrowth,digestion,andreproduction,
inanefforttoresolvethestressfulsituation.Meanwhile,theneuralstressresponsein
volvessecretingcatecholaminesfromtheadrenalmedullaandthesympatheticnervous
system,andmobilisingenergytoincreasecardiacfrequency,bloodpressure,andrespira
tion[96,97].
Theexertiondemandedofbullsduringthe15–18minthatbullfightsusuallylastcan
beconsideredsimilartothatperformedbyathleticanimalsforcedtoperformenormously
Animals2021,11,282010of16
intensiveexercise[52,98].Thisexplainswhyacid–basebalancealterationsareobserved
thatlowerbloodpH[51].Undertheseconditions,bloodpHcandecreasetolevelsbelow
7.2,aerobicglycolysisisinhibited,extracellularosmolarityincreases,andcellularoedema
mayoccur.Itiswellknownthatincreasedaciditycanproduceabroadrangeofharmful
effectsonneuralfunctioning,suchasincreasingthepermeabilityoftheblood–brainbar
rier,inhibitingmitochondrialfunction,andalteringsynaptictransmissionandionicfunc
tions[99].Amongthemechanismsthattheorganismhasatitsdisposaltoeliminatehy
drogenionsandmaintainpH,wecanmentionseveralbufferingsystems,suchastheres
piratoryandbufferbases[100].
Bullfightsdemandanenormousphysicaleffortbythebulls,sotheseanimalsmustbe
inoptimalhealthconditionsbeforeparticipating.Theintensityofthefighttriggerssignif
icantmetabolicalterationsthatareobservableaftertheevent,includinghaematological
changes(increasedredbloodcellsandhaematocrit),andelevatedperoxidesandlacticacid
productionthatreduceconcentrationsofmuscleglycogenandpH[101].Accordingly,
LacourtandTarrant[102]andAgüeraetal.[103]showedthatthephysicalandemotional
stressandexercisetowhichfightingbullsaresubjectedduringaneventcausesamarked
reductionofglycogenintypeIandtypeIIfibres.Thesechangesareaccompaniedbythe
releaseoflargeamountsofenzymesintothebloodstream,includingcreatininekinase
(CK),lactatedehydrogenase(LDH),andaspartateaminotransferase(AST)[52].Theante
mortemanalysisofcertainbiologicalvariablesinanimalscanbeusefulfordiagnosing
diseasesordetectingmetabolicstates[104].Fightingbullsareknownfortheiraggressive
nessandnaturalresistancetohandling,sodrawinginvivobloodsamplescanbeex
tremelydifficult[105].Althoughtheemotionalandphysicalstressthatthesebullsexperi
enceduringbullfightscancausesignificantchangesinbloodanalytelevels(Figure2),
bloodvariablesareinfluencedbyphysicalexertionandstressfulsituations;consequently,
postmortembloodanalysisdoesnotreflectbasalconcentrationsforthisspecies.There
fore,theseindicatorscannotalwaysbeusedasdiagnosticfindingsinpostmortemblood
evaluations[106].However,ocularfluidssuchasvitreoushumourmaintainastablecom
positionafterdeathandcanbeusedpostmortemtoestimatethebloodlevelsthatanimals
presentedantemortem.GonzálezMontañaetal.[105]usedpostmortemocularfluidsin
fightingbulls,findingthatallthevariablesassessedinplasmashowedconcentrations
abovebasallevels.Specifically,alterationswereobservedforglucose,uricacid,LDH,and
creatininekinase(CK).Thesefindingscanbecausedbytheoverexertion,stressfulsitua
tion,destructionofmusclecells,andlossofbodilyfluidsthatthebullsundergoduringthe
intenseexerciseofabullfight.Severalstudiesofpigsandhorsesshowedthatanimalsper
forminghighlevelsofphysicalactivityandtraininghaveacorrespondinghigheroxidative
capacity,higherglycogencontent,andlargeramountsoftypeIImusclefibresthananimals
thatperformlessphysicalactivity[106–109].Itseemsthatthemetaboliccapacityofbulls
variesaccordingtoage.AstudyofyoungandmaturefightingbullsbyAgüeraetal.[103]
analysedthevaluesofcitratesynthase(CS),3hydroxyacylcoenzymeAdehydrogenase
(HAD),LDH,glycogen,lactate,andpHinbiopsiesofthegluteusmediusmuscleobtained
afterbullfights.TheyobservedthatHADandLDHactivitywerehigherinthegroupof
olderbulls.GlycogenconcentrationsandpHwerelowinbothgroups,butlactateconcen
trationswerehigherintheolderbulls.Theseresultsshowthatyoungandoldbullshave
similarmusclefibretypecompositionbutthemetaboliccapacitydiffers,withahighergly
colyticcapacityandlactateproductioninolderbulls[103].Inanotherstudy,Purroyand
Buitrago[110]observedthatthelevelsofCK,oxalacetateglutamatetransaminase(GOT),
andLDHwerehigherpostmortembecausetheanimalshadbeensubjectedtomorein
tenseexerciseinthedaysleadinguptobullfights.Whenthedataobtainedafterexercise
infightingbullswerecomparedtonormalreferencevaluesforcattle,itwasclearthatsome
bloodvariables—pH,bicarbonate(HCO3),baseexcess(BE),oxygenpartialpressure(PO2),
andoxygensaturation(sO2)—decreased,whileothers—sodium(Na+),potassium(K+),cal
ciumion(iCa),andhaematocrit(Htc)—remainedwithinnormallimits[51].Otherana
lytes,suchasPCO2,haemoglobin(Hb),andlactate,wereabovenormalvalues.Astudyby
Animals2021,11,282011of16
MuñozJuzadoetal.[111]evaluatedtheoxidativeandglycolyticpotentialinmusclebiop
siesoffightingbullstakenafteranevent.Samplesweredrawnfromthegluteusmediusand
semitendinosusmusclesofbullsaged1to3years.Thoseauthorsfoundthatthehighest
oxidativemuscularpotentialwasmanifestedinthe2yearoldbullsandthatglycolytic
capacityincreasedprogressivelywithage.Thiscontrastswithotherbovines,whereare
ductionintheoxidativepotentialoccursfromthetimeofbirthonwards[102].Thesefind
ingsleadtothesuggestionthattheageofthebullmightparticipatesignificantlyinthe
metabolicresponsesduringbullfights,asitdoesinmuscleenzymeproduction.Physiolog
icalresponsesarethereactionstostressfulstimulithatoccurinorganisms.Heartrateis
themostusefulparameterforevaluatingtheactivationoftheflightorfightsyndrome
[103].Whencorrelatedwithbodytemperature,itcanbeinterpretedastheheart’sresponse
tometabolicdemand[92].Likewise,skintemperatureisausefulparameterforevaluating
vascularresistance,vasodilatation,andvasoconstriction.Whenbodytemperaturede
creasesdistally,vasoconstrictionispresentwithlowcardiacoutputandlikely,hypovole
mia[112].If,incontrast,thetemperaturetendstoincreasetowardsdistalareas,vasodila
tationisoccurringwithhighcardiacoutput[113].Finally,tocompensatetheconditionof
metabolicacidosis,animalspresenthyperventilationortachypnea,whichcanbedetected
bytheflaringorflappingoftheirnostrilsandmoreevidentinspiratorymovementsofthe
abdominalandthoracicwalls.
Figure2.Metabolic,haematological,andacid–basebalancealterationsthatoccurduringtheendo
crineresponsetostressandthephysicaleffortinfightingbulls.Oneofthemainmetabolicresponses
thatoccursduringstressfulconditionsconsistsinanincreaseofadrenalglucocorticoids,suchas
cortisol,thatcirculateinthebloodstream[95].Inotherspecies,itiswellknownthatshortperiods
ofglucocorticoidreleasecancauseirreversibledamage,includingreproductivedisorders,immu
nosuppression,andreducedlifeexpectancy[96,114,115].Inaddition,theemotionalstressandin
tenseexercisethatfightingbullsundergoandtheexposuretoanewenvironmentduringtheevent
producemarkedincreasesofcortisol,glucose,andT3inthebloodstreamthatcangeneratesignifi
cantbiochemicalchangesintheorganismbytriggeringthestressadaptationsyndrome[52].Cate
cholaminesfunctiontoprepareanorganismforthe“flightorfight”responsebuttriggerstachycar
dia,hypertension,hyperthermia,hyperventilation,andsweating[48,116].Cortisolbeginstobese
cretedbytheadrenalcortexaroundfiveminutesafterthestressfulstimulusispresented.Thissub
stance,whichcanbedetectedinblood,saliva,urine,andfaeces,performstheprimaryfunctionof
increasingandthenmaintainingbloodglucoselevelsusingreservesofhepaticandmusculargly
cogentoprovidetheanimalwithsufficientenergytosustainthephysicaleffortthatthesituation
demands[117].CRF:corticotropinreleasingfactor;HPA:hypothalamicpituitaryadrenocortical
axis;ACTH:adrenocorticotropichormone;ATP:adenosinetriphosphate;ANS:autonomicnervous
system;HR:heartrate;RR:respiratoryrate;CK:creatinekinase;LDH:lactatedehydrogenase;AST:
aspartateaminotransferase;ROS:reactiveoxygenspecies;BBB:blood–brainbarrier.
Animals2021,11,282012of16
AccordingtoGarcíaBelengueretal.[118],fightingbullspresentlowseleniumand
vitaminElevelsbuthighcopperlevelsintheblood,possiblyassociatedwithexercise
duringthefight.Carpinteroetal.[119]identifiedthatcalcium,phosphorus,andmagne
siumlevelsarewellabovenormalphysiologicalvaluesafterbullfights.Theyattributed
hypercalcaemiaandhypermagnesaemiatodehydrationduringfightsandthefindingof
hyperphosphatemiatorespiratoryandlacticacidosis.Afterabullfight,highmagnesium
andphosphoruslevelswerereportedbyGonzálezMontañaetal.[120]in15fightingbulls
aged4–5years,basedonmeasurementsofthevitreoushumour,aqueoushumour,and
blood.Theyalsodeterminedthattheselevelswerehigherinbloodplasmathaninthe
vitreoushumour,whilecalcium,chrome,andsodiumlevelsweresimilarinallthreeflu
ids.Selenium,iron,zinc,andcoppervalueswere16–32timeshigherinplasmathaninthe
ocularfluids.Insummary,studieshavefoundthatchangesatthemuscularlevelandin
diversebodyfluidsresultfromthephysiologicaleffortandenergydemandtowhich
fightingbullsaresubjectedduringbullfightingevents[103,111].Themostsignificant
changesfromtheperspectiveofanimalwelfareincludethoserelatedwithpsychological
stress[121]withnegativeemotions,includingfear,pain,andtriggeringphysiologicalre
sponses,includingdehydration,hypermagnesaemia,hypotension,muscularnecrosis,
myoglobinuria,andmetabolicacidosis.
6.Conclusions
Theexistinginformationallowsustoconcludethatbullsfaceenergyandmetabolic
demandsduringbullfightsduetothehighintensityanddurationoftheexerciseper
formed,togetherwithmuscularinjuries,physiologicalchanges,andhighenzymeconcen
trations.Inaddition,thefinalstageofthebullfightcausesaslowdyingprocessforan
animalthatissentientandconsciousofitssurroundings.Unfortunately,duetothescant
literatureonthisbreed,manygapsexistintheavailableinformation;morespecificinfor
mation,suchasphysiologicalevaluations,couldhelpverifytheseeffects.
AuthorContributions:Conceptualization,D.M.R.,A.O.,andA.V.;methodology,D.M.R.,A.S.,
J.M.B.;investigation,D.M.R.,A.O.,I.H.Á.,P.M.M.,J.M.B.,F.N.,andA.V.;writing—originaldraft
preparation,D.M.R.,A.O.,F.N.,I.H.Á.,P.M.M.andA.S.;writing—reviewandediting,A.O.D.M.
R.,I.H.Á.,P.M.M.andJ.M.B.;finalsupervision,A.O.,andD.M.R.Allauthorshavereadand
agreedtothepublishedversionofthemanuscript.
Funding:Thisresearchreceivednoexternalfunding.
InstitutionalReviewBoardStatement:Notapplicable.
InformedConsentStatement:Notapplicable.
DataAvailabilityStatement:Notapplicable.
ConflictsofInterest:Theauthorsdeclarenoconflictofinterest.
References
1. Wilson,D.E.;Reeder,A.MammalSpeciesoftheWorld.ATaxonomicandGeographicReference;Wilson,D.E.,Reeder,A.,Eds.;Johns
HopkinsUniversityPress:Baltimore,MA,USA,2005;ISBN0801882214.
2. DomínguezViveros,J.;RodríguezAlmeida,F.A.;RafaelNúñezDomínguez,R.;RamírezValverde,R.;RuizFlores,A.Genetic
parametersandgenetictrendsforbehaviortraitsinMexicanbullfightingherds.Rev.Mex.Cienc.Pecu.2015,5,261–271,
doi:10.22319/rmcp.v5i3.3970.
3. deBoyerdesRoches,A.;Faure,M.;Lussert,A.;Herry,V.;Rainard,P.;Durand,D.;Foucras,G.Behavioralandpathophysiolo
gicalresponseaspossiblesignsofpainindairycowsduringEscherichiacolimastitis:Apilotstudy.J.DairySci.2017,100,8385–
8397,doi:10.3168/jds.201712796.
4. EdwardsCallaway,L.N.;Cramer,M.C.;Cadaret,C.N.;Bigler,E.J.;Engle,T.E.;Wagner,J.J.;Clark,D.L.Impactsofshadeon
cattlewellbeinginthebeefsupplychain.J.Anim.Sci.2021,99,doi:10.1093/jas/skaa375.
5. GarcíaTorres,S.;CabezadeVaca,M.;Tejerina,D.;RomeroFernández,M.P.;Ortiz,A.;Franco,D.;Sentandreu,M.A.;Oliván,
M.AssessmentofstressbyserumbiomarkersincalvesandtheirrelationshiptoultimatepHasanindicatorofmeatquality.
Animals2021,11,2291,doi:10.3390/ani11082291.
Animals2021,11,282013of16
6. Kareklas,K.;Kunc,H.P.;Arnott,G.Extrinsicstressorsmodulateresourceevaluations:Insightsfromterritorialityunderartificial
noise.Front.Zool2021,18,12,doi:10.1186/s1298302100397x.
7. Gimsa,U.;Tuchscherer,M.;Kanitz,E.Psychosocialstressandimmunity—Whatcanwelearnfrompigstudies?Front.Behav.
Neurosci.2018,12,1–9,doi:10.3389/fnbeh.2018.00064.
8. Hughes,H.D.;Carroll,J.A.;Sanchez,N.C.B.;Richeson,J.T.Naturalvariationsinthestressandacutephaseresponsesofcattle.
InnateImmun.2014,20,888–896,doi:10.1177/1753425913508993.
9. Chen,Y.;Stookey,J.;Arsenault,R.;Scruten,E.;Griebel,P.;Napper,S.Investigationofthephysiological,behavioral,andbio
chemicalresponsesofcattletorestraintstress.J.Anim.Sci.2016,94,3240–3254,doi:10.2527/jas.20160549.
10. BaronaHernández,L.;CuestaLópez,A.;&MonteroAgüera,I.Cumplenlaspuyassumisión?Rev.Estud.Taur.1999,9,95–112.
11. Fernández,S.J.;Villalón,G.C.EstudiodelaslesionesproducidasporlasuertedevarasenlasegundapartedelaFeriadeSan
Isidrode1998.Rev.Estud.Taur.1999,9,113–139.
12. Gomariz,F.M.;Vázquez,J.M.;Gil,F.;Moreno,F.;Ramírez,G.;Latorre,R.;Albors,O.L.Muscleinjuriesinthefightingbull(Bos
taurusibericus)afterthebullfight.An.Vet.Murcia1999,15,17–24.
13. FernándezNovo,A.;LomillosPérez,J.M.;GarcíaGarcía,J.A.Lesionesmacroscópicasenpulmonesenganadodelidia.Inf.
Technol.Econ.Agrar.2020,doi:10.12706/itea.2019.022.
14. Oquendo,Y.H.E.;Navarro,L.R.;Pereira,B.F.;Martínez,E.D.;Méndez,D.R.Importanciadelosconocimientosanatómicosen
laslesionesdemédulaespinal.Rev.Inf.Científica2004,43,1–8.
15. Restrepo,J.R.M.Sistematizaciónmedular.Correlaciónanatómicayclínica.Med.UPB2002,21,119–135.
16. Limon,G.;Guitian,J.;Gregory,N.G.Anevaluationofthehumanenessofpuntillaincattle.Meat.Sci.2010,84,352–355,
doi:10.1016/j.meatsci.2009.09.001.
17. Terlow,E.M.C.Thephysiologyofthebrainanddetermininginsensibilityandunconsciousness.InTheSlaughterofFarmedAni
mals:PracticalWaysofEnhancingAnimalWelfare;CABI:Wallingford,CT,USA,2020;pp.202–228.
18. Gregory,N.G.;vonWenzlawowicz,M.;Holleben,K.Bloodintherespiratorytractduringslaughterwithandwithoutstunning
incattle.MeatSci.2009,82,13–16,doi:10.1016/j.meatsci.2008.11.021.
19. Terlouw,C.;Bourguet,C.;Deiss,V.Consciousness,unconsciousnessanddeathinthecontextofslaughter.PartI.Neurobiolo
gicalmechanismsunderlyingstunningandkilling.MeatSci.2016,118,133–146.
20. Silva,B.;Gonzalo,A.;Cañón,J.Geneticparametersofaggressiveness,ferocityandmobilityinthefightingbullbreed.Anim.
Res.2006,55,65–70,doi:10.1051/animres:2005046.
21. MenéndezBuxadera,A.;Cortés,O.;Cañon,J.Genetic(co)varianceandplasticityofbehaviouraltraitsinLidiabovinebreed.
Ital.J.Anim.Sci.2017,16,208–216,doi:10.1080/1828051X.2017.1279035.
22. Lockwood,S.A.;Kattesh,H.G.;Krawczel,P.D.;Kirkpatrick,F.D.;Saxton,A.M.;Rhinehart,J.D.;Wilkerson,J.B.Relationships
amongtemperament,behavior,andgrowthduringperformancetestingofbulls.J.Anim.Sci.2015,93,5856–5862,
doi:10.2527/jas.20159302.
23. Parker,A.J.;Hamlin,G.P.;Coleman,C.J.;Fitzpatrick,L.A.QuantitativeanalysisofacidbasebalanceinBosindicussteerssub
jectedtotransportationoflongduration.J.Anim.Sci.2003,81,1434–1439.
24. Tharwat,M.;AlSobayil,F.InfluenceofTransportationontheSerumConcentrationsoftheCardiacBiomarkersTroponinIand
CreatineKinasemyocardialBand(CKMB)andonCortisolandLactateinHorses.J.EquineVet.Sci.2014,34,662–667,
doi:10.1016/j.jevs.2013.12.008.
25. BecerrilHerrera,M.;AlonsoSpilsbury,M.;Ortega,M.E.T.;GuerreroLegarreta,I.;RamírezNecoechea,R.;PérezSato,M.;Soní
Guillermo,E.;MotaRojas,D.Changesinbloodconstituentsofswinetransportedfor8or16htoanAbattoir.MeatSci.2010,86,
945–948,doi:10.1016/j.meatsci.2010.07.021.
26. MotaRojas,D.;BecerrilHerrera,M.;Roldan,P.;AlonsoSpilsbury,M.;FloresPeinado,S.;RamírezNecoechea,R.;Ramírez
Telles,J.A.;MoraMedina,P.;Pérez,M.;Molina,E.;etal.EffectsoflongdistancetransportationandCO2stunningoncritical
bloodvaluesinpigs.MeatSci.2012,90,893–898.
27. Gouveia,A.J.;Orge,L.;Carvalho,P.Adimensãodaamígdalacerebraleaagressividadenotourodelide.Arch.Zootec.2016,65,
59–65.
28. Du,K.;Lu,W.;Sun,Y.;Feng,J.;Wang,J.H.mRNAandmiRNAprofilesinthenucleusaccumbensarerelatedtofearmemory
andanxietyinducedbyphysicalorpsychologicalstress.J.Psychiatr.Res.2019,118,44–65.
29. Hemsworth,P.H.;Coleman,G.J.HumanLivestockInteractions:TheStockpersonandtheProductivityandWelfareofIntensiveFarmed
Animals,2nded.;Hemsworth,P.H.,Coleman,G.J.,Eds.;CABInternational:Wallingford,UK,2010;pp.1–194.
30. Hennessy,M.B.;Willen,R.M.;Schiml,P.A.Psychologicalstress,itsreduction,andlongtermconsequences:Whatstudieswith
laboratoryanimalsmightteachusaboutlifeinthedogshelter.Animals2020,10,2061.
31. Rostamkhani,F.;Zardooz,H.;Zahediasl,S.;Farrokhi,B.Comparisonoftheeffectsofacuteandchronicpsychologicalstresson
metabolicfeaturesinrats.J.ZhejiangUniv.Sci.B2012,13,904–912.
32. Grandin,T.;Shivley,C.Howfarmanimalsreactandperceivestressfulsituationssuchashandling,restraint,andtransport.
Animals2015,5,1233–1251,doi:10.3390/ani5040409.
33. Li,X.;Sun,H.;Zhang,L.;Liu,H.;Li,J.;Wang,C.;Zhang,M.;Bao,J.TechnicalNote:Effectsofageandconfinementonpupillary
lightreflexinsows.J.Anim.Sci.2019,97,2009–2014,doi:10.1093/jas/skz100.

Animals2021,11,282014of16
34. Raber,J.;Arzy,S.;Bertolus,J.B.;Depue,B.;Haas,H.E.;Hofmann,S.G.;Kangas,M.;Kensinger,E.;Lowry,C.A.;Marusak,H.A.;
etal.Currentunderstandingoffearlearningandmemoryinhumansandanimalmodelsandthevalueofalinguisticapproach
foranalyzingfearlearningandmemoryinhumans.Neurosci.Biobehav.Rev.2019,105,136–177,doi:10.1016/j.neubio
rev.2019.03.015.
35. Bacher,L.;Prieur,V.;Lardy,R.;Boivin,X.Doestheavoidancedistancetestatthefeedbarrierhavescientificvalidityforeva
luatingreactivitytohumansinLimousinbreedingbulls?LivestSci.2021,249,104535.
36. Daigle,C.L.;Hubbard,A.J.;Grandin,T.Theuseoftraditionalfearteststoevaluatedifferentemotionalcircuitsincattle.J.Vis.
Exp.2020,doi:10.3791/60641.
37. Cannas,S.;Palestrini,C.;Canali,E.;Cozzi,B.;Ferri,N.;Heinzl,E.;Minero,M.;Chincarini,M.;Vignola,G.;DallaCosta,E.
Thermographyasanoninvasivemeasureofstressandfearofhumansinsheep.Animals2018,8,146,doi:10.3390/ani8090146.
38. Grandin,T.Assessmentofstressduringhandlingandtransport.J.Anim.Sci.1997,75,249.
39. Swanson,J.C.;MorrowTesch,J.Cattletransport:Historical,research,andfutureperspectives.J.Anim.Sci.2001,79,E102,
doi:10.2527/jas2001.79ESupplE102x.
40. Mpakama,T.;Chulayo,A.Y.;Muchenje,V.Bruisinginslaughtercattleanditsrelationshipwithcreatinekinaselevelsandbeef
qualityasaffectedbyanimalrelatedfactors.AsianAustralas.J.Anim.Sci.2014,27,717–725.
41. Purroy,A.;GarcíaBelenguer,S.;González,J.;Gascon,M.;Barberan,M.Muscularlesionsandenzymaticactivitiesinfighting
bulls.Ann.Rech.Vet.1992,23,59–62.
42. Godoy,L.D.;Rossignoli,M.T.;DelfinoPereira,P.;GarciaCairasco,N.;deLimaUmeoka,E.H.AComprehensiveOverviewon
StressNeurobiology:BasicConceptsandClinicalImplications.Front.Behav.Neurosci.2018,12,1–23,
doi:10.3389/fnbeh.2018.00127.
43. Kassahn,K.S.;Crozier,R.H.;Pörtner,H.O.;Caley,M.J.Animalperformanceandstress:Responsesandtolerancelimitsatdiffe
rentlevelsofbiologicalorganisation.Biol.Rev.2009,84,277–292.
44. McCobb,E.C.;Patronek,G.J.;Marder,A.;Dinnage,J.D.;Stone,M.S.Assessmentofstresslevelsamongcatsinfouranimal
shelters.J.Am.Vet.Med.Assoc.2005,226,548–555,doi:10.2460/javma.2005.226.548.
45. Bohacek,J.;Mansuy,I.M.Molecularinsightsintotransgenerationalnongeneticinheritanceofacquiredbehaviours.Nat.Rev.
Genet.2015,16,641–652,doi:10.1038/nrg3964.
46. Martin,L.;Andreassi,E.;Watson,W.;Coon,C.Stressandanimalhealth:Physiologicalmechanismsandecologicalconsequen
ces.Nat.Educ.Knowl.2011,3,11.
47. MotaRojas,D.;Ghezzi,M.D.;Napolitano,F.;Rosmini,M.R.;GuerreroLegarreta,I.;MartínezBurnes,J.;LezamaGarcía,K.;
MirandaCortés,A.;delaVega,L.T.;MoraMedina,P.;etal.Qualityofdeathintheriverbuffalo(Bubalusbubalis).J.Anim.Behav.
Biometeorol.2021,9,doi:10.31893/jabb.21015.
48. MotaRojas,D.;Napolitano,F.;Strappini,A.;Orihuela,A.;Ghezzi,M.D.;HernándezÁvalos,I.;MoraMedina,P.;Whittaker,
A.L.PainattheSlaughterhouseinRuminantswithaFocusontheNeurobiologyofSensitisation.Animals2021,11,1085,
doi:10.3390/ani11041085.
49. Stahringer,R.C.;Randel,R.D.;Neuendorff,D.A.Effectsofnaloxoneandanimaltemperamentonserumluteinizinghormone
andcortisolconcentrationsinseasonallyanestrousBrahmanheifers.Theriogenology1990,34,393–406,doi:10.1016/0093
691X(90)90531W.
50. Curley,K.O.;Paschal,J.C.;Welsh,T.H.;Randel,R.D.Technicalnote:Exitvelocityasameasureofcattletemperamentisrepea
tableandassociatedwithserumconcentrationofcortisolinBrahmanbulls1.J.Anim.Sci.2006,84,