Conference Paper

FedRC: A Federated Learning-Based Roadside Computing Paradigm Through the Facilitation of Internet of Drones

Authors:
To read the full-text of this research, you can request a copy directly from the authors.

Abstract

The modern era is filled with smart entities (e.g., smart vehicles) that have both sense and actuate capabilities. These entities can collect lots of data during their functional period and these data can be utilized for the wellbeing of citizens. However, these data are very sensitive raising issues like privacy. Moreover, network scarcity, bandwidth consumption, etc. can worsen the circumstance. Federated learning (FL), internet of drones (IoD), and dew computing (DC) are revolutionary technologies that can be engaged to mitigate the aforementioned challenges. An FL-based computing paradigm is initiated over the dew computing to process road-related data to bring efficiency in the applications (e.g., finding parking locations) utilizing IoD. An experimental environment is established containing a traffic dataset as a proof of concept. The experimental results exhibit the feasibility of the proposed scheme.

No full-text available

Request Full-text Paper PDF

To read the full-text of this research,
you can request a copy directly from the authors.

... 21 In addition, the FL concept has also been used in miscellaneous fields like the Internet of Things and drone technology. 22,23 The summary table for the recent related state-of-the-art works about FL and computational pathology is given in Table 1. The main limitation of these recent related studies is the lack of analysis of FL performance under different data distribution scenarios. ...
Article
Full-text available
Colorectal cancer is the fourth fatal disease in the world, and the massive burden on the pathologists related to the classification of precancerous and cancerous colorectal lesions can be decreased by deep learning (DL) methods. However, the data privacy of the patients is a big challenge for being able to train deep learning models using big medical data. Federated Learning is a rising star in this era by providing the ability to train deep learning models on different sites without sacrificing data privacy. In this study, the Big Transfer model, which is a new General Visual Representation Learning method and six other classical DL methods are converted to the federated version. The effect of the federated learning is measured on all these models on four different data settings extracted from the MHIST and Chaoyang datasets. The proposed models are tested for single learning, centralized learning, and federated learning. The best AUC values of federated learning on Chaoyang are obtained by the Big Transfer and VGG models at 90.77% and 90.76%, respectively, whereas the best AUC value on MHIST is obtained by the Big Transfer model at 89.72%. The overall obtained results of models on all data settings show that the contribution of Federated Learning with respect to single learning is 4.71% and 11.68% for the “uniform” and “label-biased” data settings of Chaoyang, respectively, and 6.89% for the “difficulty level-biased” data setting of MHIST. Thus, it is experimentally shown that federated learning can be applied to the field of computational pathology for new institutional collaborations.
... Federated Learning (FL) is introduced with the promise of privacy [5]. In FL, data is trained on the user's end and only the weight of the trained model is collected from the user's end [6]. Thus, users don't need to be concerned about sharing their sensitive data. ...
Conference Paper
New diseases (e.g., monkeypox) are showing up and taking the form of a pandemic within a short time. Early detection can assist in reducing the spread. However, because of privacy-sensitive data, users do not share it continually. Thus, it becomes challenging to employ modern technologies (e.g., deep learning). Moreover, cyber threats encircle both communication and data. This paper introduces a blockchain-based data acquisition scheme during the pandemic in which federated learning (FL) is employed to assemble privacy-sensitive data as a form of the trained model instead of raw data. A secure training scheme is designed to mitigate cyber threats (e.g., man-in-the-middle-attack). An experimental environment is formulated based on a recent pandemic (i.e., monkeypox) to illustrate the feasibility of the proposed scheme.
... FL, IoD, and dew computing (DC) are transformative technologies that may be used to address the aforementioned issues. Using IoD, a FL-based computing paradigm was implemented over DC to analyze road-related data in order to improve the efficiency of applications, such as for identifying parking places [77]. ...
Article
Full-text available
As a result of the advancement in the fourth industrial revolution and communication technology, the use of digital twins (DT) and federated learning (FL) in the industrial Internet of Things (IIoT), the Internet of Vehicles (IoV), and the Internet of Drones (IoD) is increasing. However, the deployment of DT and FL for IoV is challenging. In this survey, we focus on DT and FL for IIoT, IoV, and IoD. Initially, we analyzed the existing surveys. In this paper, we present the applications of DT and FL in IIoT, IoV, and IoD. We also present the open research issues and future directions.
... FL provides new training methods that can help to create personalized models without infringing any user's privacy [7]. One of the core features of FL is to ensure users' privacy, and the approach is very different from traditional privacy protection algorithms [8]. In FL, training parameters are shared instead of actual data. ...
Conference Paper
In the modern era, the internet of vehicles (IoV) is being utilized in commercial applications and extensively explored in research. However, internal fault in IoV can cause accidents on the road. Moreover, privacy concerns can hamper the internal data sharing to build a model to detect the anomaly. Federated learning (FL) and blockchain are emerging technologies that can assist in mitigating these challenges. FL-based anomaly detection is introduced to prevent road accidents with the help of blockchain. An environment is built to conduct experiments to prove the feasibility of the proposed scheme. The performance analysis demonstrates that our presented scheme outperforms the traditional scheme while having privacy concerns.
Article
Full-text available
Contagious disease pandemics present a significant threat worldwide in terms of both human health and economic damage. New diseases emerge annually and place enormous burdens on many countries. Additionally, using humans to handle pandemic situations increases the chances of disease spreading. Therefore, various technologies that do not directly involve humans should be employed to handle pandemic situations. The Internet of Drones (IoDT), artificial intelligence (AI), and blockchain are emerging technologies that have revolutionized the modern world. This paper presents a blockchain-based AIempowered pandemic situation supervision scheme in which a swarm of drones embedded with AI is engaged to autonomously monitor pandemic outbreaks, thereby keeping human involvement as low as possible. A use case based on a recent pandemic (i.e., COVID-19) is discussed. Two types of drone swarms are used to handle multiple tasks (e.g., checking face masks and imposing lockdowns). A lightweight blockchain is considered to handle situations in remote areas with poor network connectivity. Additionally, a two-phase lightweight security mechanism is adopted to validate the entities in the proposed scheme. A proof of concept is established using an experimental environment setup and dataset training. An analysis of the experimental results demonstrates the feasibility of the proposed scheme.
Article
Full-text available
Throughout the world, major cities are experiencing ever-increasing urbanization and mobility challenges. Current estimates of 55% of the world’s population residing in cities and towns is set to increase to 68% by 2050. An ever-growing population is adding much pressure on existing infrastructure, forcing city leaders to look towards technologies such as “Internet of Things” to aid in improving municipal quality of life, transforming cities into “Smart Cities”. An important subset of Smart Cities are the connected vehicles operating within its proximity. Aggregated vehicle data can provide “data blanketing” of every street throughout the city, while monitoring vehicle parameters such as vehicle speed, RPM, idle time, fuel usage, location and CO2 emissions. Gathering such data is referred to as Vehicle Telematics, and can be obtained through On-Board Units and AVL (Automatic Vehicle Location) devices. This work aims to compare and evaluate two well-known standards for extracting this vehicle information. Both OBDII and FMS standards are widely used for fleet management and monitoring driving behavior. Through statistical analysis, we propose two algorithms for monitoring instantaneous fuel economy via OBDII. The objective of this research is to determine the best standard for retrieving vehicle sensor data to use when monitoring fuel economy, CO2 emissions, and other attributes that may affect quality of life in Smart Cities.
Article
Full-text available
This paper presents a blockchain enabled secure data acquisition scheme utilizing an Unmanned Aerial Vehicle (UAV) swarm where data are collected from internet of things (IoT) devices and subsequently, forwarded to the nearest server through the UAV swarm. Before initiating data acquisition, the UAV swarm shares a shared key with IoT devices in order to maintain communications. However, prior to transmitting data, IoT devices encrypt the data and forward it to the UAV swarm. Upon receiving the data, the UAV swarm implements a two-phase validation utilizing the π-hash bloom filter and the digital signature algorithm to validate the sender; in addition, prior to forwarding data to the nearest server, it performs encryption. However, before adding data in blockchain, consent from all validators is required. Finally, the data are stored in blockchain with the approval of validators. A security analysis is performed to demonstrate the feasibility of the proposed scheme. Finally, the effectiveness of the proposed scheme is manifested through implementation and simulation. The security analysis and the performance results show that UAV assist IoT devices both in terms of connectivity and energy consumption, and provides security against the threats mentioned in the paper.
Article
Full-text available
The inception of the smart cities concept provides a compelling platform to support innovative applications. It provides distinctive view of cities, where mobile devices, pedestrians, and electronic gadgets can communicate with each other to build an effective urban environment to further improve the living standards. Similarly, the role of the Internet of Things (IoT) and vehicular computing has emerged due to smart cities. This is further complemented by edge and fog computing architectures. The emerging concept of vehicular fog computing has enabled the platform to support delay-sensitive applications and to reduce the workload on the backend networks. Vehicular fog computing is a paradigm that touches the boundaries of thinking vehicles as an infrastructures-as-a-service. The use of vehicles to provide computation on-the-move poses various challenges. The vehicles with onboard computing equipment can facilitate delay-sensitive applications. These vehicles can act as an edge device to reduce the load from a backbone network. However, due to continuous mobility, it is difficult to use traditional frameworks to distribute the computation task among vehicles. In this paper, we propose a framework termed vFog. The vFog is designed to provide computing facilities from nearby fog vehicles. The framework utilizes the onboard computing facility of vehicles without the support of roadside units (RSUs). Moreover, the proposed framework handles churn behavior and supports multi-hop communication to improve the task delivery ratio. The proposed framework allows researchers to benchmark their own task distribution algorithms over the dynamic vehicular networks.
Article
The increasing number of Internet of Things (IoT) devices motivate the data sharing that improves the quality of IoT services. However, data providers usually suffer from the privacy leakage caused by direct data sharing. To solve this problem, in this paper, we propose a Federated Learning based Secure data Sharing mechanism for IoT, named FL2S. Specifically, to accomplish efficient and secure data sharing, a hierarchical asynchronous federated learning (FL) framework is developed based on the sensitive task decomposition. In addition, to improve data sharing quality, the deep reinforcement learning (DRL) technology is utilized to select participants of sufficient computational capabilities and high quality datasets. By integrating task decomposition and participant selection, reliable data sharing is realized by sharing local data models instead of the source data with data privacy preserved. Experiment results show that the proposed FL2S achieves high accuracy in secure data sharing for various IoT applications.
Article
Federated learning is a set-up in which multiple clients collaborate to solve machine learning problems, which is under the coordination of a central aggregator. This setting also allows the training data decentralized to ensure the data privacy of each device. Federated learning adheres to two major ideas: local computing and model transmission, which reduces some systematic privacy risks and costs brought by traditional centralized machine learning methods. The original data of the client is stored locally and cannot be exchanged or migrated. With the application of federated learning, each device uses local data for local training, then uploads the model to the server for aggregation, and finally the server sends the model update to the participants to achieve the learning goal. To provide a comprehensive survey and facilitate the potential research of this area, we systematically introduce the existing works of federated learning from five aspects: data partitioning, privacy mechanism, machine learning model, communication architecture and systems heterogeneity. Then, we sort out the current challenges and future research directions of federated learning. Finally, we summarize the characteristics of existing federated learning, and analyze the current practical application of federated learning.
Conference Paper
Internet of Things (IoT) established the foundation of the smart world via its diverse functionalities (e.g., remote data acquisition, automated task execution). This trend continues to military applications too by introducing internet of military things (IoMT). Due to being at infancy level, new technologies require to move forward and assist IoMT to gain maturity. Mixed reality (MR) can be a potential technology which fuses the virtual and actual world. MR can improve the quality of service (QoS) in terms of inventory management, remote mission handling, battlefield assistance, etc. However, data among these applications is surrounded by cyber threats (e.g., illegal data modification, unauthorised data access). Blockchain is another promising technology which brings security in the distributed world. A content sharing scheme for MR application is proposed on the top of blockchain to bring security in the multi-user environment in IoMT. A smart contract is employed to manage security in accessing data by different users. Moreover, an experimental environment is set to observe the performance of the proposed scheme. The analysis manifests that proposed scheme maintains security without affecting the regular performance.
Article
This paper introduces a blockchain-based secure healthcare scheme in which health data (HD) are collected from users via an unmanned aerial vehicle (UAV) and stored on the nearest server. In the proposed scheme, a UAV first establishes a relation with body sensor hives (BSHs) via a token and then shares a shared key with BSHs to enable low-power secure communication. After retrieving the HD, the UAV decrypts the encrypted HD (encrypted by a BSH) using the shared key and exercises a two-phase authentication mechanism. Upon successful validation, the UAV transmits the HD to the nearest server to store it securely in blockchain. A security analysis is discussed to show the feasibility of the proposed secure healthcare scheme. Finally, the performance of the proposed scheme is investigated through simulation and implementation. The security and the performance analysis demonstrate that the proposed scheme supports better assistance to BSHs while maintaining security.
Article
Internet of things (IoT), mobile edge computing (MEC), and unmanned aerial vehicle (UAV) have attracted significant attention in both industry and academic research. By consolidating these technologies, IoT can be facilitated with improved connectivity, better data transmission, energy saving, and other advantages. However, the communication between these entities is subject to potential cyber threats. In addition, the integrity of the data must be maintained after storing into local storage. Blockchain is a data structure that supports features like pseudonymity, data integrity etc. This paper represents a blockchain based data acquisition process in which information is gathered from IoTs using UAV as a relay and is securely kept in blockchain at MEC server. In the proposed scheme, data are encrypted prior to transfer to MEC server with the assistance of a UAV. Upon receiving the data, MEC server validates the data and the identity of the sender. Successful validation is followed by stocking of the data into blockchain, subsequent to obtaining consent from the validators. Security analysis is conducted in order to show the feasibility of the proposed secure scheme. Finally, the performance of the proposed scheme is analyzed via simulation and implementation.
Conference Paper
Unmanned aerial vehicle (UAV) is an emerging technology that becomes popular not only in military operation but also in civil applications. Internet of things (IoT) is another popular technology which brings automation in our daily life. Like other areas, IoT also exposes its potential in healthcare. Using IoT sensors, it becomes easy to monitor the health of a user remotely. UAV consolidated with mobile edge computing (MEC) can provide real-time services in outdoor health monitoring. However, communication among them surrounds with cyber threats and data integrity issue. Blockchain is a data structure in which data are shared among peers. In this paper, a blockchain based secure outdoor health monitoring scheme using UAV is proposed for a smart city. In the proposed scheme, health data (HD) are accumulated from users wearable sensors and these HD are transmitted to the nearest MEC server via UAV. Prior to transmitting to MEC, HD experience encryption in order to provide protection against cyber threats. Moreover, after arriving at MEC, HD are diagnosed and if any abnormalities are found in the user’s health, MEC server notifies the user and the nearest hospitals. When the processing is completed, HD are stored in blockchain with the consent of validators. Finally, simulation results and experimental set up are discussed in order to manifest the feasibility of the proposed scheme.
Article
In last two decades, various monitoring systems have been designed and deployed in urban environments, toward the realization of the so called smart cities. Such systems are based on both dedicated sensor nodes, and ubiquitous but not dedicated devices such as smart phones and vehicles’ sensors. When we design sensor network monitoring systems for smart cities, we have two essential problems: node deployment and sensing management. These design problems are challenging, due to large urban areas to monitor, constrained locations for deployments, and heterogeneous type of sensing devices. There is a vast body of literature from different disciplines that have addressed these challenges. However, we do not have yet a comprehensive understanding and sound design guidelines. This article addresses such a research gap and provides an overview of the theoretical problems we face, and what possible approaches we may use to solve these problems. Specifically, this paper focuses on the problems on both the deployment of the devices (which is the system design/configuration part) and the sensing management of the devices (which is the system running part). We also discuss how to choose the existing algorithms in different type of monitoring applications in smart cities, such as structural health monitoring, water pipeline networks, traffic monitoring. We finally discuss future research opportunities and open challenges for smart city monitoring.
Article
We introduce Adam, an algorithm for first-order gradient-based optimization of stochastic objective functions. The method is straightforward to implement and is based an adaptive estimates of lower-order moments of the gradients. The method is computationally efficient, has little memory requirements and is well suited for problems that are large in terms of data and/or parameters. The method is also ap- propriate for non-stationary objectives and problems with very noisy and/or sparse gradients. The method exhibits invariance to diagonal rescaling of the gradients by adapting to the geometry of the objective function. The hyper-parameters have intuitive interpretations and typically require little tuning. Some connections to related algorithms, on which Adam was inspired, are discussed. We also analyze the theoretical convergence properties of the algorithm and provide a regret bound on the convergence rate that is comparable to the best known results under the online convex optimization framework. We demonstrate that Adam works well in practice when experimentally compared to other stochastic optimization methods.
An introduction to dew computing: Definition, concept and implications
  • P P Ray
P. P. Ray, "An introduction to dew computing: Definition, concept and implications," IEEE Access, vol. 6, pp. 723-737, 2018.
Communication-efficient learning of deep networks from decentralized data
  • B Mcmahan
  • E Moore
  • D Ramage
  • S Hampson
  • B A Arcas
B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas, "Communication-efficient learning of deep networks from decentralized data," in Proceedings of the 20th International Conference on Artificial Intelligence and Statistics, AISTATS 2017, 20-22 April 2017, Fort Lauderdale, FL, USA, ser. Proceedings of Machine Learning Research, A. Singh and X. J. Zhu, Eds., vol. 54. PMLR, 2017, pp. 1273-1282.
Communication-efficient learning of deep networks from decentralized data
  • mcmahan