Article

Anesthesia in mice activates discrete populations of neurons throughout the brain

Authors:
To read the full-text of this research, you can request a copy directly from the authors.

Abstract

The brain undergoes rapid, dramatic, and reversible transitioning between states of wakefulness and unconsciousness during natural sleep and in pathological conditions such as hypoxia, hypotension, and concussion. Transitioning can also be induced pharmacologically using general anesthetic agents. The effect is selective. Mobility, sensory perception, memory formation, and awareness are lost while numerous housekeeping functions persist. How is selective transitioning accomplished? Classically a handful of brainstem and diencephalic “arousal nuclei” have been implicated in driving brain-state transitions on the grounds that their net activity systematically varies with brain state. Here we used transgenic targeted recombination in active populations mice

No full-text available

Request Full-text Paper PDF

To read the full-text of this research,
you can request a copy directly from the authors.

... Specifically, there is a ubiquitous presence of neurons whose activity increases during anesthesia throughout the brain. 55 The balance in recruitment of anesthesia-on versus wake-on neuronal populations throughout the brain may be a key driver of regional and global vigilance states. We anticipate that MEA-enabled electrophysiological analysis strategy can be potentially replicated on small aquatic model organisms such as embryonal and larval stages of fish and amphibians as well as diverse invertebrate species. ...
... After physiological monitoring, the animals were decapitated using a guillotine (OpenScience, Moscow, Russia), as described previously (Aleshin et al. 2021b). This method of euthanasia was chosen as the most suitable for our studies on the brains of adult animals in view of strong interactions of anesthetics with the metabolic changes underlying the state of wakefulness, such as neurotransmitter levels, and with action of neuroprotectants (Müller et al. 2011;Leary et al. 2020;Yatziv et al. 2021). The method followed existing recommendations and was approved by Bioethics Committee of Lomonosov Moscow State University. ...
Article
Full-text available
Vitamins B1 (thiamine) and B6 (pyridox(al/ine/amine)) are crucial for CNS function and neurogenesis due to the coenzyme action of their phosphorylated derivatives in the brain metabolism of glucose and neurotransmitters. Here, the non-coenzyme action of thiamine on the major mammalian producers of pyridoxal-5'-phosphate (PLP), such as pyridoxal kinase (PdxK) and pyridoxine 5'-phosphate oxidase (PNPO), is characterized. Among the natural thiamine compounds, thiamine triphosphate (ThTP) is the best effector of recombinant human PdxK (hPdxK) in vitro, inhibiting hPdxK in the presence of Mg2+ , but activating the Zn2+ -dependent reaction. Inhibition of hPdxK by thiamine antagonists decreases from amprolium to pyrithiamine to oxythiamine, highlighting possible dysregulation of both the B1 - and B6 -dependent metabolism in the chemical models of thiamine deficiency. Compared to the canonical hPdxK, the D87H and V128I variants show a 2-fold increase in Kapp of thiamine inhibition, and the V128I and H246Q variants show a 4-fold and a 2-fold decreased Kapp of ThDP, respectively. Thiamine administration changes diurnal regulation of PdxK activity and phosphorylation at Ser213 and Ser285, expression of the PdxK-related circadian kinases / phosphatases in the rat brain, and ECG. In contrast to PdxK, PNPO is not affected by thiamine or its derivatives, either in vitro, or in vivo. Dephosphorylation of the PdxK Ser285, potentially affecting mobility of the ATP-binding loop, inversely correlates with the enzyme activity. Dephosphorylation of the PdxK Ser213, which is far away from the active site, does not correlate with the activity. The correlations analysis suggests the PdxK Ser213 to be a target of kinase MAP2K1 and phosphatase Ppp1ca. Diurnal effects of thiamine administration on the metabolically linked ThDP- and PLP-dependent enzymes may support the brain homeostatic mechanisms and physiological fitness.
Article
Full-text available
Inhaled anesthetics are a chemically diverse collection of hydrophobic molecules that robustly activate TWIK-related K ⁺ channels (TREK-1) and reversibly induce loss of consciousness. For 100 y, anesthetics were speculated to target cellular membranes, yet no plausible mechanism emerged to explain a membrane effect on ion channels. Here we show that inhaled anesthetics (chloroform and isoflurane) activate TREK-1 through disruption of phospholipase D2 (PLD2) localization to lipid rafts and subsequent production of signaling lipid phosphatidic acid (PA). Catalytically dead PLD2 robustly blocks anesthetic TREK-1 currents in whole-cell patch-clamp recordings. Localization of PLD2 renders the TRAAK channel sensitive, a channel that is otherwise anesthetic insensitive. General anesthetics, such as chloroform, isoflurane, diethyl ether, xenon, and propofol, disrupt lipid rafts and activate PLD2. In the whole brain of flies, anesthesia disrupts rafts and PLD null flies resist anesthesia. Our results establish a membrane-mediated target of inhaled anesthesia and suggest PA helps set thresholds of anesthetic sensitivity in vivo.
Article
Full-text available
General anesthesia (GA) can produce analgesia (loss of pain) independent of inducing loss of consciousness, but the underlying mechanisms remain unclear. We hypothesized that GA suppresses pain in part by activating supraspinal analgesic circuits. We discovered a distinct population of GABAergic neurons activated by GA in the mouse central amygdala (CeAGA neurons). In vivo calcium imaging revealed that different GA drugs activate a shared ensemble of CeAGA neurons. CeAGA neurons also possess basal activity that mostly reflects animals’ internal state rather than external stimuli. Optogenetic activation of CeAGA potently suppressed both pain-elicited reflexive and self-recuperating behaviors across sensory modalities and abolished neuropathic pain-induced mechanical (hyper-)sensitivity. Conversely, inhibition of CeAGA activity exacerbated pain, produced strong aversion and canceled the analgesic effect of low-dose ketamine. CeAGA neurons have widespread inhibitory projections to many affective pain-processing centers. Our study points to CeAGA as a potential powerful therapeutic target for alleviating chronic pain. Hua and Chen et al. show that general anesthesia activates a distinct population of central amygdala neurons and that these neurons can potently suppress pain responses through their widespread projections to many pain-processing centers in the brain.
Article
Full-text available
Memories of fearful events can last a lifetime. The prelimbic (PL) cortex, a subregion of prefrontal cortex, plays a critical role in fear memory retrieval over time. Most studies have focused on acquisition, consolidation, and retrieval of recent memories, but much less is known about the neural mechanisms of remote memory. Using a new knock-in mouse for activity-dependent genetic labeling (TRAP2), we demonstrate that neuronal ensembles in the PL cortex are dynamic. PL neurons TRAPed during later memory retrievals are more likely to be reactivated and make larger behavioral contributions to remote memory retrieval compared to those TRAPed during learning or early memory retrieval. PL activity during learning is required to initiate this time-dependent reorganization in PL ensembles underlying memory retrieval. Finally, while neurons TRAPed during earlier and later retrievals have similar broad projections throughout the brain, PL neurons TRAPed later have a stronger functional recruitment of cortical targets. © 2019, The Author(s), under exclusive licence to Springer Nature America, Inc.
Article
Full-text available
The systems-level mechanisms underlying loss of consciousness (LOC) under anesthesia remain unclear. General anesthetics suppress sensory responses within higher-order cortex and feedback connections, both critical elements of predictive coding hypotheses of conscious perception. Responses to auditory novelty may offer promise as biomarkers for consciousness. This study examined anesthesia-induced changes in auditory novelty responses over short (local deviant [LD]) and long (global deviant [GD]) time scales, envisioned to engage preattentive and conscious levels of processing, respectively. Electrocorticographic recordings were obtained in human neurosurgical patients (3 male, 3 female) from four hierarchical processing levels: core auditory cortex, non-core auditory cortex, auditory-related, and PFC. Stimuli were vowel patterns incorporating deviants within and across stimuli (LD and GD). Subjects were presented with stimuli while awake, and during sedation (responsive) and following LOC (unresponsive) under propofol anesthesia. LD and GD effects were assayed as the averaged evoked potential and high gamma (70–150 Hz) activity. In the awake state, LD and GD effects were present in all recorded regions, with averaged evoked potential effects more broadly distributed than high gamma activity. Under sedation, LD effects were preserved in all regions, except PFC. LOC was accompanied by loss of LD effects outside of auditory cortex. By contrast, GD effects were markedly suppressed under sedation in all regions and were absent following LOC. Thus, although the presence of GD effects is indicative of being awake, its absence is not indicative of LOC. Loss of LD effects in higher-order cortical areas may constitute an alternative biomarker of LOC.
Article
Full-text available
Cortical neurons are often functionally heterogeneous even for molecularly defined subtypes. In sensory cortices, physiological responses to natural stimuli can be sparse and vary widely even for neighboring neurons. It is thus difficult to parse out circuits that encode specific stimuli for further experimentation. Here, we report the development of a Cre-reporter mouse that allows recombination for cellular labeling and genetic manipulation, and use it with an activity-dependent Fos-CreERT2driver to identify functionally active circuits in the auditory cortex. In vivo targeted patch recordings validate our method for neurons responding to physiologically relevant natural sounds such as pup wriggling calls and ultrasonic vocalizations (USVs). Using this system to investigate cortical responses in postpartum mothers, we find a transient recruitment of neurons highly responsive to USVs. This subpopulation of neurons has distinct physiological properties that improve the coding efficiency for pup USV calls, implicating it as a unique signature in parental plasticity.
Article
Full-text available
The lateral habenula has been widely studied for its contribution in generating reward-related behaviors [1, 2]. We have found that this nucleus plays an unexpected role in the sedative actions of the general anesthetic propofol. The lateral habenula is a glutamatergic, excitatory hub that projects to multiple targets throughout the brain, including GABAergic and aminergic nuclei that control arousal [3-5]. When glutamate release from the lateral habenula in mice was genetically blocked, the ability of propofol to induce sedation was greatly diminished. In addition to this reduced sensitivity to propofol, blocking output from the lateral habenula caused natural non-rapid eye movement (NREM) sleep to become highly fragmented, especially during the rest ("lights on") period. This fragmentation was largely reversed by the dual orexinergic antagonist almorexant. We conclude that the glutamatergic output from the lateral habenula is permissive for the sedative actions of propofol and is also necessary for the consolidation of natural sleep.
Article
Full-text available
Water deprivation produces a drive to seek and consume water. How neural activity creates this motivation remains poorly understood. We used activity-dependent genetic labeling to characterize neurons activated by water deprivation in the hypothalamic median preoptic nucleus (MnPO). Single-cell transcriptional profiling revealed that dehydration-activated MnPO neurons consist of a single excitatory cell type. After optogenetic activation of these neurons, mice drank water and performed an operant lever-pressing task for water reward with rates that scaled with stimulation frequency. This stimulation was aversive, and instrumentally pausing stimulation could reinforce lever-pressing. Activity of these neurons gradually decreased over the course of an operant session. Thus, the activity of dehydration-activated MnPO neurons establishes a scalable, persistent, and aversive internal state that dynamically controls thirst-motivated behavior.
Article
Full-text available
The tamoxifen-inducible Cre-loxP system is widely used to overcome gene targeting pre-adult lethality, to modify a specific cell population at desired time-points, and to visualize and trace cells in fate-mapping studies. In this study we focused on tamoxifen degradation kinetics, because for all genetic fate-mapping studies, the period during which tamoxifen or its metabolites remain active in the CNS, is essential. Additionally, we aimed to define the tamoxifen administration scheme, enabling the maximal recombination rate together with minimal animal mortality. The time window between tamoxifen injection and the beginning of experiments should be large enough to allow complete degradation of tamoxifen and its metabolites. Otherwise, these substances could promote an undesired recombination, leading to data misinterpretation. We defined the optimal time window, allowing the complete degradation of tamoxifen and its metabolites, such as 4-hydroxytamoxifen, N-desmethyltamoxifen, endoxifen and norendoxifen, in the mouse brain after intraperitoneal tamoxifen injection. We determined the biological activity of these substances in vitro, as well as a minimal effective concentration of the most potent metabolite 4-hydroxytamoxifen causing recombination in vivo. For this purpose, we analyzed the recombination rate in double transgenic Cspg4-cre/Esr1/ROSA26Sortm14(CAG-tdTomato) mice, in which tamoxifen administration triggers the expression of red fluorescent protein in NG2-expressing cells, and employed a liquid chromatography, coupled with mass spectrometry, to determine the concentration of studied substances in the brain. We determined the degradation kinetics of these substances, and revealed that this process is influenced by mouse strains, age of animals, and dosage. Our results revealed that tamoxifen and its metabolites were completely degraded within 8 days in young adult C57BL/6J mice, while the age-matched FVB/NJ male mice displayed more effective degradation. Moreover, aged C57BL/6J mice were unable to metabolize all substances within 8 days. The lowering of initial tamoxifen dose leads to a significantly faster degradation of all studied substances. A disruption of the blood-brain barrier caused no concentration changes of any tamoxifen metabolites in the ipsilateral hemisphere. Taken together, we showed that tamoxifen metabolism in mouse brains is age-, strain- and dose-dependent, and these factors should be taken into account in the experimental design.
Article
Full-text available
The dorsal pons has long been implicated in the generation of rapid eye movement (REM) sleep, but the underlying circuit mechanisms remain poorly understood. Using cell-type-specific microendoscopic Ca 2+ imaging in and near the laterodorsal tegmental nucleus, we found that many glutamatergic neurons are maximally active during REM sleep (REM-max), while the majority of GABAergic neurons are maximally active during wakefulness (wake-max). Furthermore, the activity of glutamatergic neurons exhibits a medio-lateral spatial gradient, with medially located neurons more selectively active during REM sleep.
Article
Full-text available
The mammalian basal forebrain (BF) has important roles in controlling sleep and wakefulness, but the underlying neural circuit remains poorly understood. We examined the BF circuit by recording and optogenetically perturbing the activity of four genetically defined cell types across sleep-wake cycles and by comprehensively mapping their synaptic connections. Recordings from channelrhodopsin-2 (ChR2)-tagged neurons revealed that three BF cell types, cholinergic, glutamatergic and parvalbumin-positive (PV+) GABAergic neurons, were more active during wakefulness and rapid eye movement (REM) sleep (wake/REM active) than during non-REM (NREM) sleep, and activation of each cell type rapidly induced wakefulness. By contrast, activation of somatostatin-positive (SOM+) GABAergic neurons promoted NREM sleep, although only some of them were NREM active. Synaptically, the wake-promoting neurons were organized hierarchically by glutamatergic→cholinergic→PV+ neuron excitatory connections, and they all received inhibition from SOM+ neurons. Together, these findings reveal the basic organization of the BF circuit for sleep-wake control.
Article
Full-text available
The NeuN protein is localized in nuclei and perinuclear cytoplasm of most of the neurons in the central nervous system of mammals. Monoclonal antibodies to the NeuN protein have been actively used in the immunohistochemical research of neuronal differentiation to assess the functional state of neurons in norm and pathology for more than 20 years. Recently, NeuN antibodies have begun to be applied in the differential morphological diagnosis of cancer. However, the structure of the protein, which can be revealed by antibodies to NeuN, remained unknown until recently, and the functions of the protein are still not fully clear. In the present mini-review, data on NeuN accumulated so far are summarized and analyzed. Data on the structure and properties of the protein, its isoforms, intracellular localization, and hypothesized functions are reported. The application field of immunocytochemical detection of NeuN in scientific and clinical studies, as well as the difficulties in the interpretation of the obtained experimental data and their possible causes, is described in details.
Article
Full-text available
The altered state of consciousness produced by general anesthetics is associated with a variety of changes in the brain's electrical activity. Under hyperpolarizing influences such as anesthetic drugs, cortical neurons oscillate at ~1 Hz, which is measurable as slow waves in the electroencephalogram (EEG). We have administered propofol anesthesia to 16 subjects and found that, after they had lost behavioral responsiveness (response to standard sensory stimuli), each individual's EEG slow-wave activity (SWA) rose to saturation and then remained constant despite increasing drug concentrations. We then simultaneously collected functional magnetic resonance imaging and EEG data in 12 of these subjects during propofol administration and sensory stimulation. During the transition to SWA saturation, the thalamocortical system became isolated from sensory stimuli, whereas internal thalamocortical exchange persisted. Rather, an alternative and more fundamental cortical network (which includes the precuneus) responded to all sensory stimulation. We conclude that SWA saturation is a potential individualized indicator of perception loss that could prove useful for monitoring depth of anesthesia and studying altered states of consciousness.
Article
Full-text available
Numerous mouse models have utilized Cre/loxP technology to modify gene expression. Adverse effects of Cre recombinase activity have been reported, including in the heart. However, the mechanisms associated with cardiac Cre toxicity are largely unknown. Here, we show that expression of Cre in cardiomyocytes induces a DNA damage response, resulting in cardiomyocyte apoptosis and cardiac fibrosis and dysfunction. In an effort to increase the recombination efficiency of a widely used tamoxifen-sensitive Cre transgene under control of the α-myosin heavy chain promoter (α-MHC-MerCreMer), we observed myocardial dysfunction and decreased survival, which were dependent on the dose of tamoxifen injected. After excluding a Cre-independent contribution by tamoxifen, we found that Cre induced myocardial fibrosis, activation of pro-fibrotic genes, and cardiomyocyte apoptosis. Examination of the molecular mechanisms showed activation of DNA damage response signalling and p53 stabilization in the absence of loxP sites, suggesting that Cre induced illegitimate DNA breaks. Cardiomyocyte apoptosis was also induced by expressing Cre using adenoviral tranduction, indicating that the effect was not dependent on genomic integration of the transgene. Cre-mediated homologous recombination at loxP sites was dose-dependent and had a ceiling effect at approximately 80% of cardiomyocytes showing recombination. By titrating the amount of tamoxifen to maximize recombination while minimizing animal lethality, we determined that 30 μg/gm/day of tamoxifen for three consecutive days is the optimal condition for the α-MHC-MerCreMer system to induce recombination in the Rosa26-lacZ strain. Our results further highlight the importance of experimental design and of including appropriate genetic controls for Cre expression.
Article
Full-text available
Fiji is a distribution of the popular open-source software ImageJ focused on biological-image analysis. Fiji uses modern software engineering practices to combine powerful software libraries with a broad range of scripting languages to enable rapid prototyping of image-processing algorithms. Fiji facilitates the transformation of new algorithms into ImageJ plugins that can be shared with end users through an integrated update system. We propose Fiji as a platform for productive collaboration between computer science and biology research communities.
Article
Full-text available
One of the greatest challenges of modern neuroscience is to discover the neural mechanisms of consciousness and to explain how they produce the conscious state. We sought the underlying neural substrate of human consciousness by manipulating the level of consciousness in volunteers with anesthetic agents and visualizing the resultant changes in brain activity using regional cerebral blood flow imaging with positron emission tomography. Study design and methodology were chosen to dissociate the state-related changes in consciousness from the effects of the anesthetic drugs. We found the emergence of consciousness, as assessed with a motor response to a spoken command, to be associated with the activation of a core network involving subcortical and limbic regions that become functionally coupled with parts of frontal and inferior parietal cortices upon awakening from unconsciousness. The neural core of consciousness thus involves forebrain arousal acting to link motor intentions originating in posterior sensory integration regions with motor action control arising in more anterior brain regions. These findings reveal the clearest picture yet of the minimal neural correlates required for a conscious state to emerge.
Article
Full-text available
Neuronal excitability in the adult brain is controlled by a balance between synaptic excitation and inhibition mediated by glutamate and GABA, respectively. While generally inhibitory in the adult brain, GABAA receptor activation is excitatory under certain conditions in which the GABA reversal potential is shifted positive due to intracellular Cl accumulation, such as during early postnatal development and brain injury. However, the conditions under which GABA is excitatory are generally either transitory or pathological. Here, we reveal GABAergic synaptic inputs to be uniformly excitatory in vasopressin (VP)-secreting magnocellular neurons in the adult hypothalamus under normal conditions. The GABA reversal potential (EGABA) was positive to resting potential and spike threshold in VP neurons, but not in oxytocin (OT)-secreting neurons. The VP neurons lacked expression of the K-Cl cotransporter 2 (KCC2), the predominant Cl exporter in the adult brain. The EGABA was unaffected by inhibition of KCC2 in VP neurons, but was shifted positive in OT neurons, which express KCC2. Alternatively, inhibition of the Na-K-Cl cotransporter 1 (NKCC1), a Cl importer expressed in most cell types mainly during postnatal development, caused a negative shift in EGABA in VP neurons, but had no effect on GABA currents in OT neurons.GABAA receptor blockade caused a decrease in the firing rate of VP neurons, but an increase in firing in OT neurons. Our findings demonstrate thatGABAis excitatory in adultVPneurons, suggesting that the classical excitation/inhibition paradigm of synaptic glutamate andGABA control of neuronal excitability does not apply to VP neurons.
Article
Full-text available
The presence of large-amplitude, slow waves in the EEG is a primary characteristic that distinguishes cerebral activity during sleep from that which occurs during wakefulness. Although sleep-active neurons have been identified in other brain areas, neurons that are specifically activated during slow-wave sleep have not previously been described in the cerebral cortex. We have identified a population of cells in the cortex that is activated during sleep in three mammalian species. These cortical neurons are a subset of GABAergic interneurons that express neuronal NOS (nNOS). Because Fos expression in these sleep-active, nNOS-immunoreactive (nNOS-ir) neurons parallels changes in the intensity of slow-wave activity in the EEG, and these neurons are innvervated by neurotransmitter systems previously implicated in sleep/wake control, cortical nNOS-ir neurons may be part of the neurobiological substrate that underlies homeostatic sleep regulation. • Fos • interneuron • neuronal NOS • sleep deprivation • wakefulness
Article
Full-text available
Placing a patient in a state of general anesthesia is crucial for safely and humanely performing most surgical and many nonsurgical procedures. How anesthetic drugs create the state of general anesthesia is considered a major mystery of modern medicine. Unconsciousness, induced by altered arousal and/or cognition, is perhaps the most fascinating behavioral state of general anesthesia. We perform a systems neuroscience analysis of the altered arousal states induced by five classes of intravenous anesthetics by relating their behavioral and physiological features to the molecular targets and neural circuits at which these drugs are purported to act. The altered states of arousal are sedation-unconsciousness, sedation-analgesia, dissociative anesthesia, pharmacologic non-REM sleep, and neuroleptic anesthesia. Each altered arousal state results from the anesthetic drugs acting at multiple targets in the central nervous system. Our analysis shows that general anesthesia is less mysterious than currently believed.
Article
Full-text available
When we are anesthetized, we expect consciousness to vanish. But does it always? Although anesthesia undoubtedly induces unresponsiveness and amnesia, the extent to which it causes unconsciousness is harder to establish. For instance, certain anesthetics act on areas of the brain's cortex near the midline and abolish behavioral responsiveness, but not necessarily consciousness. Unconsciousness is likely to ensue when a complex of brain regions in the posterior parietal area is inactivated. Consciousness vanishes when anesthetics produce functional disconnection in this posterior complex, interrupting cortical communication and causing a loss of integration; or when they lead to bistable, stereotypic responses, causing a loss of information capacity. Thus, anesthetics seem to cause unconsciousness when they block the brain's ability to integrate information.
Article
In light of the general shift from rats to mice as the leading rodent model in neuroscience research we used c-Fos expression as a tool to survey brain regions in the mouse in which neural activity differs between the states of wakefulness and pentobarbital-induced general anesthesia. The aim was to complement prior surveys carried out in rats. In addition to a broad qualitative review, 28 specific regions of interest (ROIs) were evaluated quantitatively. Nearly all ROIs in the cerebral cortex showed suppressed activity. Subcortically, however, some ROIs showed suppression, some showed little change, and some showed increased activity. The overall picture was similar to the rat. Special attention was devoted to ROIs significantly activated during anesthesia as such loci might actively drive the transition to anesthetic unconsciousness rather than responding passively to inhbitory agents distributed globally (the “wet blanket” hypothesis). Twelve such “anesthesia-on” ROIs were identified: the paraventricular hypothalamic nucleus, supraoptic nucleus, tuberomamillary nucleus, lateral habenular nucleus, dentate gyrus, nucleus raphe pallidus, central amygdaloid nucleus, perifornical lateral hypothalamus, ventro-lateral preoptic area, lateral septum, paraventricular thalamic nucleus and zona incerta. The same primary anti-FOS antibody was used in all mice, but two alternative reporter systems were employed: ABC-diaminobenzidine and the currently more popular AlexaFluor488. Fluorescence tagging revealed far fewer FOS-immunoreactive neurons, sounding an alert that the reporter system chosen can have major effects on results obtained.
Article
Mother-infant bonding develops rapidly following parturition and is accompanied by changes in sensory perception and behavior. Here, we study how ultrasonic vocalizations (USVs) are represented in the brain of mothers. Using a mouse line that allows temporally controlled genetic access to active neurons, we find that the temporal association cortex (TeA) in mothers exhibits robust USV responses. Rabies tracing from USV-responsive neurons reveals extensive subcortical and cortical inputs into TeA. A particularly dominant cortical source of inputs is the primary auditory cortex (A1), suggesting strong A1-to-TeA connectivity. Chemogenetic silencing of USV-responsive neurons in TeA impairs auditory-driven maternal preference in a pup-retrieval assay. Furthermore, dense extracellular recordings from awake mice reveal changes of both single-neuron and population responses to USVs in TeA, improving discriminability of pup calls in mothers compared with naive females. These data indicate that TeA plays a key role in encoding and perceiving pup cries during motherhood.
Article
Despite its ubiquitous use in medicine, and extensive knowledge of its molecular and cellular effects, how anesthesia induces loss of consciousness (LOC) and affects sensory processing remains poorly understood. Specifically, it is unclear whether anesthesia primarily disrupts thalamocortical relay or intercortical signaling. Here we recorded intracranial electroencephalogram (iEEG), local field potentials (LFPs), and single-unit activity in patients during wakefulness and light anesthesia. Propofol infusion was gradually increased while auditory stimuli were presented and patients responded to a target stimulus until they became unresponsive. We found widespread iEEG responses in association cortices during wakefulness, which were attenuated and restricted to auditory regions upon LOC. Neuronal spiking and LFP responses in primary auditory cortex (PAC) persisted after LOC, while responses in higher-order auditory regions were variable, with neuronal spiking largely attenuated. Gamma power induced by word stimuli increased after LOC while its frequency profile slowed, thus differing from local spiking activity. In summary, anesthesia-induced LOC disrupts auditory processing in association cortices while relatively sparing responses in PAC, opening new avenues for future research into mechanisms of LOC and the design of anesthetic monitoring devices.
Article
The mesopontine tegmental anesthesia area (MPTA) is a small brainstem nucleus that, when exposed to minute quantities of GABAA receptor agonists, induces a state of general anesthesia. In addition to immobility and analgesia this state is accompanied by widespread suppression of neural activity in the cerebral cortex and high delta-band power in the electroencephalogram. Collectively, MPTA neurons are known to project to a variety of forebrain targets which are known to relay to the cortex in a highly distributed manner. Here we ask whether ascending projections of individual MPTA neurons collateralize to several of these cortical relay nuclei, or access only one. Using rats, contrasting retrograde tracers were microinjected pairwise on one side into three ascending relays: the basal forebrain, the zona incerta-lateral hypothalamus and the intralaminar thalamic nuclear group. In addition, in separate animals, each target was microinjected bilaterally. MPTA neurons were then identified as being single-or double-labeled, indicating projection to one target nucleus or collateralization to both. Results indicated that double-labeling was rare, occurring on average in only 1.3% of the neurons sampled. The overwhelming majority of individual MPTA neurons showed specific connectivity, contributing to only one of the major ascending pathways, either ipsilaterally or contralaterally, but not bilaterally. This architecture would permit particular functional aspects of anesthetic loss-of-consciousness to be driven by specific subpopulations of MPTA neurons.
Article
What we already know about this topic: Lesions of the mesopontine tegmental anesthesia area in the brainstem render rats strongly insensitive to pentobarbitalThe effects of mesopontine tegmental anesthesia area lesions on responses to other anesthetics have not been previously reported WHAT THIS ARTICLE TELLS US THAT IS NEW: Targeted microinjection of ibotenic acid into the mesopontine tegmental anesthesia area in adult rats led to an up to twofold loss in anesthetic potency of etomidate and propofolIn contrast, the potency of ketamine, medetomidine, and alfaxolone/alfadolone was unaffectedThese observations suggest that the mesopontine tegmental anesthesia area of the brainstem may serve as a key structure to selectively mediate transition from wakefulness into an anesthetic state in response to γ-aminobutyric acid-mediated anesthetics BACKGROUND:: The brainstem mesopontine tegmental anesthesia area is a key node in circuitry responsible for anesthetic induction and maintenance. Microinjecting the γ-aminobutyric acid-mediated (GABAergic) anesthetic pentobarbital in this nucleus rapidly and reversibly induces general anesthesia, whereas lesioning it renders the animal relatively insensitive to pentobarbital administered systemically. This study investigated whether effects of lesioning the mesopontine tegmental anesthesia area generalize to other anesthetic agents. Methods: Cell-selective lesions were made using ibotenic acid, and rats were later tested for changes in the dose-response relation to etomidate, propofol, alfaxalone/alfadolone, ketamine, and medetomidine delivered intravenously using a programmable infusion pump. Anesthetic induction for each agent was tracked using five behavioral endpoints: loss of righting reflex, criterion for anesthesia (score of 11 or higher), criterion for surgical anesthesia (score of 14 or higher), antinociception (loss of pinch response), and deep surgical anesthesia (score of 16). Results: As reported previously for pentobarbital, on-target mesopontine tegmental anesthesia area lesions reduced sensitivity to the GABAergic anesthetics etomidate and propofol. The dose to achieve a score of 16 increased to 147 ± 50% of baseline in control animals ± SD (P = 0.0007; 7 lesioned rats and 18 controls) and 136 ± 58% of baseline (P = 0.010; 6 lesioned rats and 21 controls), respectively. In contrast, responsiveness to the neurosteroids alfaxalone and alfadolone remained unchanged compared with baseline (94 ± 24%; P = 0.519; 6 lesioned rats and 18 controls) and with ketamine increased slightly (90 ± 11%; P = 0.039; 6 lesioned rats and 19 controls). The non-GABAergic anesthetic medetomidine did not induce criterion anesthesia even at the maximal dose tested. The dose to reach the maximal anesthesia score actually obtained was unaffected by the lesion (112 ± 8%; P = 0.063; 5 lesioned rats and 18 controls). Conclusions: Inability to induce anesthesia in lesioned animals using normally effective doses of etomidate, propofol, and pentobarbital suggests that the mesopontine tegmental anesthesia area is the effective target of these, but not necessarily all, GABAergic anesthetics upon systemic administration. Cortical and spinal functions are likely suppressed by recruitment of dedicated ascending and descending pathways rather than by direct, distributed drug action.
Article
The perioculomotor (pIII) region of the midbrain was postulated as a sleep-regulating center in the 1890s but largely neglected in subsequent studies. Using activity-dependent labeling and gene expression profiling, we identified pIII neurons that promote non-rapid eye movement (NREM) sleep. Optrode recording showed that pIII glutamatergic neurons expressing calcitonin gene-related peptide alpha (CALCA) are NREM-sleep active; optogenetic and chemogenetic activation/inactivation showed that they strongly promote NREM sleep. Within the pIII region, CALCA neurons form reciprocal connections with another population of glutamatergic neurons that express the peptide cholecystokinin (CCK). Activation of CCK neurons also promoted NREM sleep. Both CALCA and CCK neurons project rostrally to the preoptic hypothalamus, whereas CALCA neurons also project caudally to the posterior ventromedial medulla. Activation of each projection increased NREM sleep. Together, these findings point to the pIII region as an excitatory sleep center where different subsets of glutamatergic neurons promote NREM sleep through both local reciprocal connections and long-range projections. Identification of sleep-active excitatory midbrain neurons that are interconnected and promote sleep via long range projections to other sleep centers of the mouse brain.
Article
How general anesthesia (GA) induces loss of consciousness remains unclear, and whether diverse anesthetic drugs and sleep share a common neural pathway is unknown. Previous studies have revealed that many GA drugs inhibit neural activity through targeting GABA receptors. Here, using Fos staining, ex vivo brain slice recording, and in vivo multi-channel electrophysiology, we discovered a core ensemble of hypothalamic neurons in and near the supraoptic nucleus, consisting primarily of neuroendocrine cells, which are persistently and commonly activated by multiple classes of GA drugs. Remarkably, chemogenetic or brief optogenetic activations of these anesthesia-activated neurons (AANs) strongly promote slow-wave sleep and potentiates GA, whereas conditional ablation or inhibition of AANs led to diminished slow-wave oscillation, significant loss of sleep, and shortened durations of GA. These findings identify a common neural substrate underlying diverse GA drugs and natural sleep and reveal a crucial role of the neuroendocrine system in regulating global brain states. VIDEO ABSTRACT.
Article
The question of how general anesthetics suppress consciousness has persisted since the mid-19th century, but it is only relatively recently that the field has turned its focus to a systematic understanding of emergence. Once assumed to be a purely passive process, spontaneously occurring as residual levels of anesthetics dwindle below a critical value, emergence from general anesthesia has been reconsidered as an active and controllable process. Emergence is driven by mechanisms that can be distinct from entry to the anesthetized state. In this narrative review, we focus on the burgeoning scientific understanding of anesthetic emergence, summarizing current knowledge of the neurotransmitter, neuromodulators, and neuronal groups that prime the brain as it prepares for its journey back from oblivion. We also review evidence for possible strategies that may actively bias the brain back toward the wakeful state.
Article
The induction of general anesthesia shares many features with the transition from wakefulness to non-rapid eye movement (NREM) sleep, suggesting that the two types of brain-state transition are orchestrated by a common neuronal mechanism. Previous studies revealed a brainstem locus, the mesopontine tegmental anesthesia area (MPTA), that is of singular importance for anesthetic induction. Microinjection there of GABAergic anesthetics induces rapid loss-of-consciousness and lesions render the animal relatively insensitive to anesthetics administered systemically. Here we show that MPTA lesions also alter the natural sleep-wake rhythm by increasing overall wake time at the expense of time asleep (NREM and REM sleep equally), with nearly all of the change occurring during the dark hours of the light-dark cycle. The effect was proportional to the extent of the lesion and was not seen after lesions just outside of the MPTA, or following sham lesions. Thus, MPTA neurons appear to play a role in natural bistable brain-state switching (sleep-wake) as well as in loss and recovery of consciousness induced pharmacologically.
Article
The MPTA (mesopontine tegmental anesthesia area) is a key node in a network of axonal pathways that collectively engage the key components of general anesthesia: immobility and atonia, analgesia, amnesia and loss-of-consciousness. In this study we have applied double retrograde tracing to analyze MPTA connectivity, with a focus on axon collateralization. Prior tracer studies have shown that collectively, MPTA neurons send descending projections to spinal and medullary brain targets associated with atonia and analgesia as well as ascending projections to forebrain structures associated with amnesia and arousal. Here we ask whether individual MPTA neurons collateralize broadly as might be expected of modulatory circuitry, sending axonal branches to both caudal and to rostral targets, or whether connectivity is more selective. Two distinguishable retrograde tracers were microinjected into pairs ("dyads") of known synaptic targets of the MPTA, one caudal and one rostral. We found that neurons that were double-labeled, and hence project to both targets were rare, constituting <0.5% on average of all MPTA neurons that project to these targets. The large majority sent axons either caudally, presumably to mediate mobility and/or antinociception, or rostrally, presumably to mediate mnemonic and/or arousal/cognitive functions. MPTA neurons with descending vs. ascending projections also differed in size and shape, supporting the conclusion that they constitute distinct neuronal populations. From these and prior observations we conclude that the MPTA has a hybrid architecture including neurons with heterogeneous patterns of connectivity, some highly collateralized and some more targeted.
Article
The transition from wakefulness to general anesthesia is widely attributed to suppressive actions of anesthetic molecules distributed by the systemic circulation to the cerebral cortex (for amnesia and loss of consciousness) and to the spinal cord (for atonia and antinocice-ption). An alternative hypothesis proposes that anesthetics act on one or more brainstem or diencephalic nuclei, with suppression of cortex and spinal cord mediated by dedicated axonal pathways. Previously, we documented induction of an anesthesia-like state in rats by microinjection of small amounts of GABAA-receptor agonists into an upper brainstem region named the mesopontine tegmental anesthesia area (MPTA). Correspondingly, lesioning this area rendered animals resistant to systemically delivered anesthetics. Here, using rats of both sexes, we applied a modified microinjection method that permitted localization of the anesthetic-sensitive neurons with much improved spatial resolution. Microinjected at the MPTA hotspot identified, exposure of 1900 or fewer neurons to muscimol was sufficient to sustain whole-body general anesthesia; microinjection as little as 0.5 mm off-target did not. The GABAergic anesthetics pentobarbital and propofol were also effective. The GABA-sensitive cell cluster is centered on a tegmental (reticular) field traversed by fibers of the superior cerebellar peduncle. It has no specific nuclear designation and has not previously been implicated in brain-state transitions.
Article
Intensive Care Unit (ICU) or emergency care patients, exposed to traumatic events, are at increased risk for Post-Traumatic Stress Disorder (PTSD) development. Commonly used sedative/anesthetic agents can interfere with the mechanisms of memory formation, exacerbating or attenuating the memory for the traumatic event, and subsequently promote or reduce the risk of PTSD development. Here, we evaluated the effects of ketamine, dexmedetomidine and propofol on fear memory consolidation and subsequent cognitive and emotional alterations related to traumatic stress exposure. Immediately following an inhibitory avoidance training, rats were intraperitoneally injected with ketamine (100–125 mg/kg), dexmedetomidine (0.3-0.4 mg/kg) or their vehicle and tested for 48 h memory retention. Furthermore, the effects of ketamine (125 mg/kg), dexmedetomidine (0.4 mg/kg), propofol (300 mg/kg) or their vehicle on long-term memory and social interaction were evaluated two weeks after drug injection in a rat PTSD model. Ketamine anesthesia increased memory retention without altering the traumatic memory strength in the PTSD model. However, ketamine induced a long-term reduction of social behavior. Conversely, dexmedetomidine markedly impaired memory retention, without affecting long-lasting cognitive or emotional behaviors in the PTSD model. We have previously shown that propofol anesthesia enhanced 48 h memory retention. Here, we found that propofol induced an enduring traumatic memory enhancement and anxiogenic effects in the PTSD model. These findings provide new evidence for clinical studies showing that the use of ketamine or propofol anesthesia in emergency care and ICU might be more likely to promote the development of PTSD, while dexmedetomidine might have prophylactic effects.
Article
We review evidence that the induction of anesthesia with GABAergic agents is mediated by a network of dedicated axonal pathways, which convey a suppressive signal to remote parts of the central nervous system. The putative signal originates in an anesthetic-sensitive locus in the brainstem that we refer to as the mesopontine tegmental anesthesia area (MPTA). This architecture stands in contrast to the classical notion that anesthetic molecules themselves directly mediate anesthetic induction after global distribution by the vascular circulation. The MPTA came to light in a systematic survey of the rat brain as a singular locus at which microinjection of minute quantities of GABAergic anesthetics is able to reversibly induce a state resembling surgical anesthesia. The rapid onset of anesthesia, the observed target specificity, and the fact that effective doses are far too small to survive dilution during vascular redistribution to distant areas in the central nervous system are all incompatible with the classical global suppression model. Lesioning the MPTA selectively reduces the animal's sensitivity to systemically administered anesthetics. Taken together, the microinjection data show that it is sufficient to deliver γ-aminobutyric acid A receptor (GABAA-R) agonists to the MPTA to induce an anesthesia-like state and the lesion data indicate that MPTA neurons are necessary for anesthetic induction by the systemic route at clinically relevant doses. Known connectivity of the MPTA provides a scaffold for defining the specific projection pathways that mediate each of the functional components of anesthesia. Because MPTA lesions do not induce coma, the MPTA is not a key arousal nucleus essential for maintaining the awake state. Rather, it appears be a "gatekeeper" of arousal function, a major element in a flip-flop switching mechanism that executes rapid and reversible transitions between the awake and the anesthetic state.
Article
Transient loss of consciousness (TLOC), frequently triggered by perturbation in essential physiological parameters such as pCO2or O2, is considered a passive consequence of generalized degradation in high-level cerebral functioning.However, the fact that it is almost always accompanied by atonia and loss of spinal nocifensive reflexes suggests that it might actually be part of a "syndrome" mediated by neural circuitry, and ultimately be adaptive. Widespread suppression by molecules distributed in the vasculature is also the classical explanation of general anesthesia. Recent data, however, suggest that anesthesia is due, rather, to drug action at a specific brainstem locus, the mesopontine tegmental anesthesia area (MPTA), with the spectrum of anesthetic effects resulting from secondary recruitment of specific axonal pathways. If so, might the MPTA also be involved in TLOC induced by hypercapnia and hypoxia?We exposed rats to gas mixtures that provoke hypercapnia and hypoxia and asked whether cell-selective lesions of the MPTA affect TLOC. Entry into TLOC, monitored as time to loss of the righting reflex (LORR) was unaffected. However, resumption of the righting reflex (RORR), and of response to pinch stimuli (ROPR), was significantly delayed. The extent of both effects correlated with the extent of damage in the MPTA, but was unrelated to damage that extended beyond the borders of the MPTA. The results implicate neurons in a specific common-core region of the MPTA in TLOC induced by both forms of asphyxia. This is the same area responsible for general anesthesia induced by GABAergic anesthetic agents. This implies the involvement of a common set of brain nuclei and dedicated axonal pathways, rather than nonspecific global suppression, in the mechanism mediating all three instances of TLOC.
Article
Background: Although the effects of propofol on cerebral metabolism have been studied in animals, these effects have yet to be directly examined in humans. Consequently, we used positron emission tomography (PET) to demonstrate in vivo the regional cerebral metabolic changes that occur in humans during propofol anesthesia, Methods: Six volunteers each underwent two PET scans; one scan assessed awake-baseline metabolism, and the other assessed metabolism during anesthesia with a propofol infusion titrated to the point of unresponsiveness (mean rate +/- SD = 7.8 +/- 1.5 mg.kg(-1).h(-1)). Scans were obtained using the (18)fluorodeoxyglucose technique. Results: Awake whole-brain glucose metabolic rates (GMR) averaged 29 +/- 8 mu moles.100g(-1)min(-1) (mean +/- SD). Anesthetized whole-brain GMR averaged 13 +/- 4 mu moles.100g(-1).min(-1) (paired t test, P less than or equal to 0.007), GMR decreased in all measured areas during anesthesia. However, the decrease in GMR was not uniform. Cortical metabolism was depressed 58%, whereas subcortical metabolism was depressed 48% (P less than or equal to 0.001). Marked differences within cortical regions also occurred. In the medial and subcortical regions, the largest percent decreases occurred in the left anterior cingulate and the inferior colliculus. Conclusion: Propofol produced a global metabolic depression on the human central nervous system, The metabolic pattern evident during anesthesia was reproducible and differed from that seen in the awake condition. These findings are consistent with those from previous animal studies and suggest PET may be useful for investigating the mechanisms of anesthesia in humans.
Article
General anesthetic agents induce loss of consciousness coupled with suppression of movement, analgesia and amnesia. Although these diverse functions are mediated by neural structures located in wide-ranging parts of the neuraxis, anesthesia can be induced rapidly and reversibly by bilateral microinjection of minute quantities of GABAA -R agonists at a small, focal locus in the mesopontine tegmentum (MPTA). State switching under these circumstances is presumably executed by dedicated neural pathways and does not require widespread distribution of the anesthetic agent itself, the classical assumption regarding anesthetic induction. Here we asked whether these pathways serve each hemisphere independently, or whether there is bilateral redundancy such that the MPTA on each side is capable of anesthetizing the entire brain. Either of two GABAA -R ligands were microinjected unilaterally into the MPTA in awake rats, the barbiturate modulator pentobarbital and the direct receptor agonist muscimol. Both agents, microinjected on either side, induced clinical anesthesia including bilateral atonia, bilateral analgesia and bilateral changes in cortical activity. The latter was monitored using c-fos expression and electroencephalography. This action, however, was not simply a consequence of suppressing spike activity in MPTA neurons as unilateral (or bilateral) microinjection of the local anesthetic lidocaine at the same locus failed to induce anesthesia. We propose a model of the state-switching circuitry that accounts for the bilateral action of unilateral microinjection and also for the observation that inactivation with lidocaine is not equivalent to inhibition with GABAA -R agonists. This is a step in defining the overall switching circuitry that underlies anesthesia. This article is protected by copyright. All rights reserved.
Article
The molecular agents that induce loss of consciousness during anesthesia are classically believed to act by binding to cognate transmembrane receptors widely distributed in the CNS and critically suppressing local processing and network connectivity. However, previous work has shown that microinjection of anesthetics into a localized region of the brainstem mesopontine tegmentum (MPTA) rapidly and reversibly induces anesthesia in the absence of global spread. This implies that functional extinction is determined by neural pathways rather than vascular distribution of the anesthetic agent. But does clinical (systemic-induced) anesthesia employ MPTA-linked circuitry? Here we show that cell-selective lesioning of the MPTA in rats does not, in itself, induce anesthesia or coma. However, it increases the systemic dose of pentobarbital required to induce anesthesia, in a manner proportional to the extent of the lesion. Such lesions also affect emergence, extending the duration of anesthesia. Off-target and sham lesions were ineffective. Combined with the prior microinjection data, we conclude that drug delivery to the MPTA is sufficient to induce loss-of-consciousness and that neurons in this locus are necessary for anesthetic induction at clinically relevant doses. Together, the results support an architecture for anesthesia with the MPTA serving as a key node in an endogenous network of dedicated pathways that switch between wake and unconsciousness. As such, the MPTA might also play a role in syncope, concussion and sleep.
Article
Targeting genetically encoded tools for neural circuit dissection to relevant cellular populations is a major challenge in neurobiology. We developed an approach, targeted recombination in active populations (TRAP), to obtain genetic access to neurons that were activated by defined stimuli. This method utilizes mice in which the tamoxifen-dependent recombinase CreER(T2) is expressed in an activity-dependent manner from the loci of the immediate early genes Arc and Fos. Active cells that express CreER(T2) can only undergo recombination when tamoxifen is present, allowing genetic access to neurons that are active during a time window of less than 12 hr. We show that TRAP can provide selective access to neurons activated by specific somatosensory, visual, and auditory stimuli and by experience in a novel environment. When combined with tools for labeling, tracing, recording, and manipulating neurons, TRAP offers a powerful approach for understanding how the brain processes information and generates behavior.
Article
Anesthetics have been used in clinical practice for over a hundred years, yet their mechanisms of action remain poorly understood. One tempting hypothesis to explain their hypnotic properties posits that anesthetics exert a component of their effects by "hijacking" the endogenous arousal circuitry of the brain. Modulation of activity within sleep- and wake-related neuroanatomic systems could thus explain some of the varied effects produced by anesthetics. There has been a recent explosion of research into the neuroanatomic substrates affected by various anesthetics. In this review, we will highlight the relevant sleep architecture and systems and focus on studies over the past few years that implicate these sleep-related structures as targets of anesthetics. These studies highlight a promising area of investigation regarding the mechanisms of action of anesthetics and provide an important model for future study.
Article
The excitatory effect of γ-Aminobutyric acid (GABA) has been recognized in very young animals and in seizure generation, but not so much in animals after weaning age or in adults. The existence of this phenomenon in mature brain is still controversial. In the course of debate, creative studies have identified and characterized the phenomenon in suprachiasmatic nucleus, cortex, hippocampus and basolateral amygdala, albeit mostly in single neurons. In neural circuit activity, presumed GABAergic excitation was observed in basolateral amygdala during the study of a neuropeptide, cholecystokinin. Though the functional meaning of this phenomenon in vivo remains to be uncovered, it may be implicated in epilepsy or anxiety in the adult brain.
Article
Delineating the final fate of progenitor cells that transiently express a regulatory gene may shed light on how the gene participates in regulating retinal development. We describe the steps in tracing final fates of progenitor cells that once transiently express neurogenin2 (ngn2) during mouse retinal development with the binary, conditional Ngn2-CreER(™)-LacZ reporter system. Ngn2-CreER(™) mice (Zirlinger et al. Proc Natl Acad Sci USA 99:8084-8089, 2002), in which ngn2 promoter drives the expression of Cre-estrogen receptor CreER(™) (Littlewood et al. Nuc Acid Res 23:1686-1690, 1995; Hayashi and McMahon Dev Biol 244:305-318, 2002), are crossed with Rosa26-LoxP-LacZ reporter mice (Soriano Nat Genet 21:70-71, 1999), in which the expression of lacZ requires the removal of "stop" by Cre recombinase (Wagner et al. Transgenic Res 10:545-553, 2001). 4-hydroxytamoxifen (4-OHT), a synthetic ligand with high affinity for ER(™), is administered to double transgenic embryos and/or neonatal mice. Binding of 4-OHT to Cre-ER(™) activates Cre recombinase, which then catalyzes the removal of the "stop" sequence from the LoxP-LacZ transgene, leading to lacZ expression in cells that express ngn2. Retinal tissues are fixed at different time points after 4-OHT treatment and analyzed for LacZ activities by colorimetric reaction. Double-labeling with a cell type-specific marker can be used to define the identity of a LacZ(+) cell. Combining persisted lacZ expression through the life of the cell and the short half-life (0.5-2 h) of 4-OHT (Danielian et al. Curr Biol 8:1323-1326, 1998), this system offers the opportunity to track the final fates of cells that have expressed ngn2 during the brief presence of 4-OHT administered during retinal development.
1.1. By the use of microelectrode and evoked potential techniques, effects of pentothal (thiopental sodium) on neural activity in the somatosensory cortex and the brain stem were studied.2.2. A clear-cut relation between the evoked slow potential and unit response is not proved either in the somatosensory cortex or in the mesencephalic reticular formation.3.3. The spontaneous firing of a neuron is the most sensitive component to pentothal anaesthesia. It is first to be affected with a small dose of this drug while the unit response to peripheral stimulation still persists. This is equally true for cortical and brain stem neurons.4.4. When the spike train of unit response is examined under the action of pentothal, the spikes which are suppressed are those occurring in the later phases of the train, while the early occurring spikes may persist unchanged.5.5. The sensitivity to pentothal of the unit response elicited by peripheral stimulation is a function of the latency of the very first spike of the response. The shorter the latency, the more resistant the unit response is to pentothal. This is true in the mesencephalic reticular formation as well as in the lemniscal system.
Article
Pentobarbital microinjected into a restricted locus in the upper brainstem induces a general anesthesia-like state characterized by atonia, loss of consciousness, and pain suppression as assessed by loss of nocifensive response to noxious stimuli. This locus is the mesopontine tegmental anesthesia area (MPTA). Although anesthetic agents directly influence spinal cord nociceptive processing, antinociception during intracerebral microinjection indicates that they can also act supraspinally. Using neuroanatomical tracing methods we show that the MPTA has multiple descending projections to brainstem and spinal areas associated with pain modulation. Most prominent is a massive projection to the rostromedial medulla, a nodal region for descending pain modulation. Together with the periaqueductal gray (PAG), the MPTA is the major mesopontine input to this region. Less dense projections target the PAG, the locus coeruleus and pericoerulear areas, and dorsal and ventral reticular nuclei of the caudal medulla. The MPTA also has modest direct projections to the trigeminal nuclear complex and to superficial layers of the dorsal horn. Double anterograde and retrograde labeling at the light and electron microscopic levels shows that MPTA neurons with descending projections synapse directly on spinally projecting cells of rostromedial medulla. The prominence of the MPTA's projection to the rostromedial medulla suggests that, like the PAG, it may exert antinociceptive actions via this bulbospinal relay.
Article
By means of single-unit recordings, as we have already performed in other studies, we have found that in the awake, drug-free, freely moving rat, there is only one neuronal class potentially involved in nociception and its control at the ventromedial medulla level (VMM, a structure involved in the spinal descending control systems of nociception): the ‘multireceptive multimodal’ units. These neurons are always activated by very light mechanical (air puff, light touch) and mechanical (pinch, pin-prick) or thermal noxious stimuli, in addition to an auditory stimulus. During identical VMM penetrations, performed in the same animals tested first awake and then anesthetized a few days later with 30 mg/kg of i.p. pentobarbital, we once again found the ‘multireceptive multimodal’ units, but this time with physiological properties that were strongly modified: in particular, we noted a disappearance of the nociceptive responses consecutive to a strong noxious heat pulse application (36–51 °C), associated sometimes with a reduction of the responses due to innocuous stimulation. This is in agreement with the classical effects of barbiturates. In light of previous observations reported in the literature devoted to the VMM physiology in the anesthetized rat, the most important observation in our study was that, with pentobarbital anesthesia, we recorded ‘new’ neuronal classes as compared to the awake condition. In these classes, which appeared to be qualitatively similar to those already reported under anesthesia, we found the units exclusively driven by innocuous stimulation (excited for the majority), the units specifically driven by noxious stimulation (half excited, half inhibited) and a ‘multireceptive multimodal’ group inhibited or excited-inhibited by non-noxious and noxious stimuli (half of the multireceptive group). All these data demonstrate that barbiturate anesthesia strongly modifies the VMM physiology in relation to nociception. Furthermore, since our results, that were obtained in anesthetized rats, were qualitatively identical to those described in the literature under similar experimental conditions, they raise the question of the appropriateness of using a barbiturate anesthetic in order to study the cellular mechanisms related to nociception at this level. In addition, these findings indicate that the obtention of only one neuronal class in the awake, drug-free, freely moving rat (the excited ‘multireceptive’ neurons) is not due to an experimental bias, which strongly emphasizes the reliability of using awake animals. However, it remains to be determined by which mechanisms pentobarbital ‘distorts’ the VMM physiology as compared to the normal, standard physiological conditions of the awake animal.
Article
The sites where anesthetics produce unconsciousness are not well understood. Likely sites include the cerebral cortex, thalamus, and reticular formation. We examined the effects of propofol and etomidate on neuronal function in the cortex, thalamus, and reticular formation in intact animals. Five cats had a recording well and electroencephalogram screws placed under anesthesia. After a 5-day recovery period, the cats were repeatedly studied 3 to 4 times per week. Neuronal (single-unit) activity in the cerebral cortex (areas 7, 18 and 19), thalamus (ventral posterolateral and ventral posteromedial nuclei and medial geniculate body), and reticular formation (mesencephalic reticular nucleus and central tegmental field) was recorded before, during, and after infusion of either propofol or etomidate. Cortical neuronal action potentials were analyzed separately as either regular spiking neurons or fast spiking neurons. Propofol and etomidate decreased the spontaneous firing rate of cortical neurons by 37% to 41%; fast spiking neurons and regular spiking neurons were similarly affected by the anesthetics. The neuronal firing rate in the thalamus and reticular formation decreased 30% to 49% by propofol and etomidate. The electroencephalogram shifted from a low-amplitude, high-frequency pattern to a high-amplitude, low-frequency pattern during drug infusion suggesting an anesthetic effect; peak power occurred at 12 to 13 Hz during propofol infusion. There were 2 major peaks during etomidate anesthesia: one at 12 to 14 Hz and another at 7 to 8 Hz. The cats were heavily sedated, with depressed corneal and whisker reflexes; withdrawal to noxious stimulation remained intact. These data show that neurons in the cortex, thalamus, and reticular formation are similarly depressed by propofol and etomidate. Although anesthetic depression of neuronal activity likely contributes to anesthetic-induced unconsciousness, further work is needed to determine how anesthetic effects at these sites interact to produce unconsciousness.
Article
Anesthesia, slow-wave sleep, syncope, concussion and reversible coma are behavioral states characterized by loss of consciousness, slow-wave cortical electroencephalogram, and motor and sensory suppression. We identified a focal area in the rat brainstem, the mesopontine tegmental anesthesia area (MPTA), at which microinjection of pentobarbital and other GABA(A) receptor (GABA(A)-R) agonists reversibly induced an anesthesia-like state. This effect was attenuated by local pre-treatment with the GABA(A)-R antagonist bicuculline. Using neuroanatomical tracing we identified four pathways ascending from the MPTA that are positioned to mediate electroencephalographic synchronization and loss of consciousness: (i) projections to the intralaminar thalamic nuclei that, in turn, project to the cortex; (ii) projections to several pontomesencephalic, diencephalic and basal forebrain nuclei that project cortically and are considered parts of an ascending "arousal system"; (iii) a projection to other parts of the subcortical forebrain, including the septal area, hypothalamus, zona incerta and striato-pallidal system, that may indirectly affect cortical arousal and hippocampal theta rhythm; and (iv) modest projections directly to the frontal cortex. Several of these areas have prominent reciprocal projections back to the MPTA, notably the zona incerta, lateral hypothalamus and frontal cortex. We hypothesize that barbiturate anesthetics and related agents microinjected into the MPTA enhance the inhibitory response of local GABA(A)-R-bearing neurons to endogenous GABA released at baseline during wakefulness. This modulates activity in one or more of the identified ascending neural pathways, ultimately leading to loss of consciousness.
Article
Microinjection of pentobarbital into a restricted region of rat brainstem, the mesopontine tegmental anesthesia area (MPTA), induces a reversible anesthesia-like state characterized by loss of the righting reflex, atonia, antinociception, and loss of consciousness as assessed by electroencephalogram synchronization. We examined cerebral activity during this state using FOS expression as a marker. Animals were anesthetized for 50 min with a series of intracerebral microinjections of pentobarbital or with systemic pentobarbital and intracerebral microinjections of vehicle. FOS expression was compared with that in awake animals microinjected with vehicle. Neural activity was suppressed throughout the cortex whether anesthesia was induced by systemic or MPTA routes. Changes were less consistent subcortically. In the zona incerta and the nucleus raphe pallidus, expression was strongly suppressed during systemic anesthesia, but only mildly during MPTA-induced anesthesia. Dissociation was seen in the tuberomammillary nucleus where suppression occurred during systemic-induced anesthesia only, and in the lateral habenular nucleus where activity was markedly increased during systemic-induced anesthesia but not following intracerebral microinjection. Several subcortical nuclei previously associated with cerebral arousal were not affected. In the MPTA itself FOS expression was suppressed during systemic anesthesia. Differences in the pattern of brain activity in the two modes of anesthesia are consistent with the possibility that anesthetic endpoints might be achieved by alternative mechanisms: direct drug action for systemic anesthesia or via ascending pathways for MPTA-induced anesthesia. However, it is also possible that systemically administered agents induce anesthesia, at least in part, by a primary action in the MPTA with cortical inhibition occurring secondarily.
Article
C-fos is a proto-oncogene that is expressed within some neurons following depolarization. The protein product, c-fos protein, can be identified by immunohistochemical techniques. Therefore, c-fos expression might be used as a marker for neuronal activity throughout the neuraxis following peripheral stimulation. This study has analyzed patterns of c-fos expression in both control and anesthetized animals and in anesthetized rats subjected to various forms of peripheral stimulation. Labeled cells were counted in the spinal cord, brainstem, hypothalamus, and thalamus. Little c-fos immunoreactivity was found in control animals. Prolonged inhalational anesthesia increased the number of labeled cells at several brainstem sites. Noxious stimulation of anesthetized rats induced c-fos within the neuraxis in patterns consistent with data obtained from electrophysiological studies and in additional locations for which few direct electrophysiological data are available, such as the ventrolateral medulla, the posterior hypothalamic nucleus, and the reuniens and paraventricular thalamic nuclei. Gentle mechanical stimulation was ineffective in inducing c-fos-like protein. The data suggest that c-fos can be used as a transynaptic marker for neuronal activity following noxious stimulation. However, c-fos is expressed only in some kinds of neurons following peripheral stimulation, and it therefore may be an incomplete marker for nociresponsive activity. In addition, at least a few neurons express c-fos protein in the absence of noxious stimulation. Experiments analyzing c-fos expression must be designed with care, as both extraneous stimuli and anesthetic depth influence the results.