Content uploaded by Miltiadis Athanasiou
Author content
All content in this area was uploaded by Miltiadis Athanasiou on Sep 30, 2021
Content may be subject to copyright.
20o -
1
-
20o -
2
-
-
-
ISBN: 978-618-84551-2-2
20o -
102
-
1 2
1ikoyr@hotmail.gr
2Wildfire Management Consulting and Training, 8, 13673 , info@m-
athanasiou.gr
(Elv BuA
- Fdt
hold overtime
Pyne Pyne Scott
cloud to ground lightning: CGL
Reineking -
-
mm/h
Mazarakis relative
flash density km2
intra-cloud lightning cloud to cloud lightning)
CGL
Ogilvie
ignition
Nash Johnson (1996), Anderson (2002), Pineda Rigo Schultz
20o -
103
(detection
(holdover time) (Wotton Martell
(Komarek 1968).
(Moris
(Pineda Rigo 2017, Schultz
Chen
N
Fdt
m)
Alt, m
BuA, ha holdover, h
20o -
104
BuA BuA Elv,
BuA
BuA
BuA ha
ha BuA (=3.951,1 ha
BuA=57,1 ha
BuA
Fdt
BuA BuA
Figure 1. Frequency distribution of wildfires for burned area (BuA) classes and the total burned area per class (N=76)
20o -
105
Figure 2. a) Frequency distribution of wildfires and maximum
elevation of lightning caused ignition (Elv) per month (N=76)
b) Frequency distribution of wildfires and the total BuA
per month (N=76)
Figure 3. Frequency distribution of wildfires and the total BuA per year (N=76)
Figure 4. a) Frequency distribution of wildfires and mean Elv
15,9 ha)
b) Frequency distribution of wildfires and the total BuA
per month (N=72,
20o -
106
ha)
Figure 5.
BuA Elv.
Table 3. Descriptive statistics of number of fires, BuA and Elv
(ha)
Elv (
m)
Elv
m) ha)
Elv
m) ha)
ha) /
(Elv, m)
(Mean) 4 52 1.253 10/(1.234) 8,2 4 / 1.293 3 0,8/(1.248)
S.E.)
0,6 42 27 4/(30) 5,2 0,6 / 39 1 0,4/(28)
(Median)
4 0,005 1.252 10/(1.244) 0,6 4 / 1.302 0,06 0,005/(1.241)
(Mode) 4 0,0001 1.418 10/(-) - 4 / (-) 0,05 0,0001/(1.342)
(S.D.)
3 367 236 10/(79) 13,8 3 / (170) 6,4 3/(241)
(min) 1 0,0001 420 1/(1.088) 0,0002 1 / (951) 0,004 0,0001/(420)
(max) 12 3.180 1.842 27/(1.340) 33,6 12 / (1.624) 20 15,9/(1.842)
76 3.951 - 72/(-) 57,1 72 / (-) 57,1 57,1/(-)
19 76 76 7/(7) 7 19 / (19) 19 72/(72)
20o -
107
Figure 6. a) Frequency distribution of wildfires
for fire detection time (Fdt) classes (N=72)
b) Frequency distribution of wildfires for holdover classes and the
total BuA per class(N=44)
Fdt, Elv, BuA holdover
Table 2. Descriptive statistics of Fdt, Elv, BuA and holdover (of Figure 6)
Fdt
(
hh
:
mm
)
Elv (m)
ha
)
Fdt (hh:mm) Elv (m) holdover (h) BuA
ha
)
Mean 15:47 1.243 10,4 15:26 1.202 22,5 17
S.E. 23 min 28 6 31 min 36 7 10
Median 17:09 1.241 0,005 15:45 1.186 1,6 0,005
Mode 17:30 1.342 0,005 17:30 - 0,2 0,0001
S.D. 3h &
19min 239 50,8 3h & 29min 240 46,1 64
min 08:02 420 0,0001 08:02 420 0,08 0,0001
max 21:30 1.842 300 21:30 1.842 222,8 300
- - 751,1 - - - 749
72 72 72 44 44 44 44
20o -
108
- 2020.
Figure 7: Spatial and temporal (per month) distribution of lightning caused wildfires on mount Mainalo, Arcadia Greece, for
the period 1998 to 2020.
–
( )
holdover time)
20o -
109
holdover time).
Kotroni Lagouvardos
Abstract
This paper concerns seventy-six (76) lightning-ignited wildfires on mount Mainalo and its peripheral
zone, during the May to November period of the years 1998 to 2020. Descriptive statistics (mean,
standard error, median, mode, standard deviation, minimum and maximum) and frequency distribution
histograms were used to describe the number of fires per year or month, the burned area per fire, the
total burned area per month or year, absolute or mean elevation of lightning-caused fire occurrence,
wildfire detection time, and the holdover time (the phase between ignition and detection). The analysis
shows that the frequency of lightning-caused wildfires is increased in August and July while most of the
fires have taken place at the south part of the mountain and have been detected in the afternoon hours.
The results and the preliminary conclusions regarding the spatial and temporal distribution of lightning-
caused wildfires and the rest of the data series of this paper, represent the first approach of this type to
the lightning-ignited wildfires in Greece.
Anderson K., 2002. A model to predict lightning-caused fire occurrences. Int. J. Wildland Fire, 11,
163-172. https://doi.org/10.1071/WF02001
-
-
WWF
ISBN: 978-960-7506-28-3.
Chen, F., Du, Y., Niu, S. and Zhao, J., 2015. Modeling Forest Lightning Fire Occurrence in the
Daxinganling Mountains of Northeastern China with MAXENT. Forests 6, no. 5: 1422-1438.
https://doi.org/10.3390/f6051422
-
-
20o -
110
-29
25: 30-
Komarek, E.V., 1968. Lightning and lightning fires as ecological forces. In: Annual Tall Timbers
Fire Ecology Conference Number 7. Tall Timbers Research Station, Tallahassee, FL, pp. 169—198.
Kotroni, V. and Lagouvardos, K. 2008. Lightning occurrence in relation with elevation, terrain slope,
and vegetation cover in the Mediterranean. J. Geophys. Res.. 113, D21118, doi:10.1029/2008JD010605.
Mazarakis, N., Kotroni, V., Lagouvardos, K., and Argiriou, A., 2008. Storms and Lightning Activity
in Greece during the Warm Periods of 2003–06, J. Appl. Meteorol. Climatol. 47(12), 3089-3098.
Retrieved May 23, 2021, from https://journals.ametsoc.org /view/journals
/apme/47/12/2008jamc1798.1.xml.
Moris, J.V., Conedera, M., Nisi, L., Bernardi, M., Cesti, G. and Pezzatti, G., 2020. Lightning-caused
fires in the Alps: Identifying the igniting strokes. Agric. For. Meteorol. 290. 107990.
https://doi.org/10.1016/j.agrformet.2020.107990.
Nash, C.H. and Johnson, E.A., 1996. Synoptic climatology of lightning-caused forest fires in
subalpine and boreal forests. Can. J. For. Res. 26. 1859-1874. https://doi.org/10.1139/x26-211.
Ogilvie, C.J. 1989 Lightning fires in Saskatchewan forests. Fire Management Notes 50(1): 31-32.
Pérez-Invernón, F. J., Huntrieser, H., Soler, S., Gordillo-Vázquez, F. J., Pineda, N., Navarro-
González, J., Reglero, V., Montanyà, J., Van der Velde, O. and Koutsias, N., 2021. Lightning-ignited
wildfires and long-continuing-current lightning in the Mediterranean Basin: Preferential meteorological
conditions, Atmos. Chem. Phys. Discuss. [preprint], https://doi.org/10.5194/acp-2021-125, (under
review).
Pineda, N. and Rigo, T. 2017. The rainfall factor in lightning-ignited wildfires in Catalonia. Agric.
For. Meteorol. 239, 249-263.https://doi.org/10.1016/j.agrformet.2017.03. 016.
Pyne, S.J., Andrews, P.L. and Laven, R.D. 1996. Introduction to wildland fire, 2nd Ed. John Wiley &
Sons, Inc., New York.
Pyne, S.J. 2001. Fire: A Brief History. University of Washington Press, Seattle. ISBN:
9780295803272 0295803274, 204 p.
www.fire.gr
(https://www.fire.gr/?p=21226).
Scott A.C., Bowman D.M.J.S., Bond W.J., Pyne S.J. and Alexander M.E. 2014. Fire on earth: an
introduction. 1st Ed. John Wiley & Sons, Inc., New Jersey. USA. 434 p.
Reineking, B., Weibel, P., Conedera, M and, Bugmann, H. 2010. Environmental determinants of
lightning- v. human-induced forest fire ignitions differ in a temperate mountain region of Switzerland.
Int. J. Wildland Fire 19, 541-557. https://doi.org/10.1071/WF08206.
Schultz, C., Nauslar, N., Wachter, J., Hain, C. and Bell, J., 2019. Spatial, Temporal and Electrical
Characteristics of Lightning in Reported Lightning-Initiated Wildfire Events. Fire 2, no. 2: 18.
https://doi.org/10.3390/fire2020018
Wotton, B. and Martell, D., 2005. A lightning fire occurrence model for Ontario. Can. J. For. Res.
35(6): 1389--1401. https://doi.org/10.1139/x05-071