DataPDF Available
Effect of fuel mass fraction heterogeneity
on the detonation propagation speed
25th International Congress of Theoretical and Applied Mechanics
Alberto Cuadra *, César Huete & Marcos Vera
*acuadra@ing.uc3m.es
Grupo de Mecánica de Fluidos
Universidad Carlos III de Madrid
Milano |August 22-27, 2021
Effect of fuel mass
fraction heterogeneity
on the detonation
propagation speed
A. Cuadra (presenter)
Grupo de Mecánica de
Fluidos |UC3M
1Introduction
Detonation in
heterogeneous
gaseous mixture
Influences on the
propagation properties
Introduction
Reactive Rankine-Hugoniot equations
1. Fresh homogeneous mixture with
Mu≥ Mcj = (1 + Q)1/2+Q1/2.
2. Obtain the Rankine-Hugoniot jump
conditions from the conservation
equations and assuming a calorically
perfect gas, namely
Rd=ρd
ρu
=(γ+ 1) M2
u
γM2
u+ 1 [(M2
u1)24QM2
u]1/2,
Pd=pd
pu
=γM2
u+1+γ(M2
u1)24QM2
u1/2
γ+ 1 ,
for density and pressure, respectively.
planar detonation
Effect of fuel mass
fraction heterogeneity
on the detonation
propagation speed
A. Cuadra (presenter)
Grupo de Mecánica de
Fluidos |UC3M
Introduction
2Detonation in
heterogeneous
gaseous mixture
Influences on the
propagation properties
Detonation in heterogeneous gaseous mixture
How will heterogeneities in the gas mixture affect the detonation
properties?
Faster detonation speed!
The deviation of the fuel mass
fraction δYuintroduce two
source of perturbations:
1. δρ,
2. δqu.
New contributions:
acoustic,
rotational,
entropic.
Linear analysis: weak
deviations
|δYu|=|Yu− hYui|  1.
Effect of fuel mass
fraction heterogeneity
on the detonation
propagation speed
A. Cuadra (presenter)
Grupo de Mecánica de
Fluidos |UC3M
Introduction
3Detonation in
heterogeneous
gaseous mixture
Influences on the
propagation properties
Detonation in heterogeneous gaseous mixture
The slopes Wand Hplay a pivotal role in the turbulence generation.
destructive interference constructive interference
Effect of fuel mass
fraction heterogeneity
on the detonation
propagation speed
A. Cuadra (presenter)
Grupo de Mecánica de
Fluidos |UC3M
Introduction
Detonation in
heterogeneous
gaseous mixture
4Influences on the
propagation properties
Influences on the propagation properties
Average density and pressure are lower while average velocity and Mach
are higher.
Do they affect the detonation propagation speed?
hρdi
hρui=Rd1 + ¯2δR,hpdi
pu
=Pd1 + ¯2δP,hudi
uu
=1
Rd
1 + ¯2δU.
3
2,5
2
1,5
1
0,5
0
102101100101
3
2,5
2
1,5
1
0,5
0
102101100101
0
0,5
1
1,5
2
2,5
1021011001010
0,5
1
1,5
2
2,5
102101100101
Figure 1: Three-dimensional second-order correction to the RH jump conditions (a) δR, (b) δP, (c) δU,
and (d) δMas a function of the overdrive parameter Mu/Mcj 1. Computations correspond to
γ= 1.2,Q= 1 ,and |W||H|( ), |H||W|( ), W=H( ) and W=H
( ).
Effect of fuel mass
fraction heterogeneity
on the detonation
propagation speed
A. Cuadra (presenter)
Grupo de Mecánica de
Fluidos |UC3M
Introduction
Detonation in
heterogeneous
gaseous mixture
5Influences on the
propagation properties
Influences on the propagation properties
2nd-order variations
δS|δhMdi=0 =1
RdPddMd
dMu1δU+1
2δR − 1
2δP.(1)
Effect of fuel mass
fraction heterogeneity
on the detonation
propagation speed
A. Cuadra (presenter)
Grupo de Mecánica de
Fluidos |UC3M
Introduction
Detonation in
heterogeneous
gaseous mixture
5Influences on the
propagation properties
Influences on the propagation properties
2nd-order variations
δS|δhMdi=0 =1
RdPddMd
dMu1δU+1
2δR − 1
2δP.(1)
new equilibrium
point correction
by second-order
turbulent luctuations
Effect of fuel mass
fraction heterogeneity
on the detonation
propagation speed
A. Cuadra (presenter)
Grupo de Mecánica de
Fluidos |UC3M
Introduction
Detonation in
heterogeneous
gaseous mixture
5Influences on the
propagation properties
Influences on the propagation properties
2nd-order variations
δS|δhMdi=0 =1
RdPddMd
dMu1δU+1
2δR − 1
2δP.(1)
Figure 2: Three-dimensional second-order correction of the detonation propagation velocity δS,
according to (1), as a function of the overdrive parameter Mu/Mcj 1. Computations are provided
for γ= 1.2,˜
Q= 1 (a) and ˜
Q= 10 (b) evaluated for |W||H|( ), |H||W|( ),
W=H( ) and W=H( ).
Key takeaways
The thin-detonation limit allows the description of the transient evolution in
analytical form.
Turbulence generation provides second-order corrections to the averaged
Rankine–Hugoniot jump conditions.
In almost most of the cases of interest, these (purely) hydro-averaged
perturbations translate into faster propagation speeds.

File (1)

Content uploaded by Alberto Cuadra Lara
Author content
ResearchGate has not been able to resolve any citations for this publication.
ResearchGate has not been able to resolve any references for this publication.