Available via license: CC BY 4.0
Content may be subject to copyright.
Water2021,13,2375.https://doi.org/10.3390/w13172375www.mdpi.com/journal/water
Article
AnAnalyticalSolutionforInvestigatingtheCharacteristicsof
TidalWaveandSurgePropagationAssociatedwith
Non‐TropicalandTropicalCyclonesintheHumenEstuary,
PearlRiver
ZhuoZhang
1,2
,FeiGuo
1,2,
*,DiHu
1,2
andDongZhang
1,2
1
KeyLaboratoryofVirtualGeographicEnvironment,NanjingNormalUniversity,MinistryofEducation,
Nanjing210023,China;mercury1214@126.com(Z.Z.);09374@njnu.edu.cn(D.H.);
zhangdong@njnu.edu.cn(D.Z.)
2
JiangsuCenterforCollaborativeInnovationinGeographicalInformationResourceDevelopmentandAp‐
plication,Nanjing210023,China
*Correspondence:guofei@njnu.edu.cn
Abstract:TheHumenEstuary,oneofthelargestoutletsofthePearlRiver,isalongandwidetidal
channelwithaconsiderabletidalfloweveryyear.Stormsurges,alwayssuperposingspringtide,
travelfromtheestuaryandendangerthesafetyofpeoplelivingaroundtheriver.
However,little
researchhasquantifiedtherelationshipbetweenthehydrauliccharacteristicsandthegeometryfea‐
turesinthisestuary.Inthisregard,ananalyticalmodel,combinedwithanumericalmodel,isap‐
pliedtoinvestigatethecharacteristicsoftidalwavesandsurgepropagationsintheestuary.Given
thegeometric,topographic,andtidalparametersatthemouthoftheestuary,thetidaldampingand
waveceleritycanbecomputed.Thenumericalresultswereusedtocalibrateandverifytheanalyt‐
icalmodel.Theresultsindicatethattheanalyticalmodelcandescribetheastronomicaltidaldy‐
namicsverywellincorrespondencewiththenumericalresults.However,theanalyticalmodelcan‐
notpredictthetidewellwhenatropicalcyclone‐inducedsurgeissuperimposedontheastronomi‐
caltide.Thereasonisthatthismodeldoesnottakethewindstressandthepressuredepressioninto
account.AfterreducingManning’scoefficient,wefoundthattheanalyticalresultscouldbecloseto
thenumericalresults.Finally,weanalyzedthecharacteristicsofthetidalwaveintheHumenEstu‐
aryusingtheanalyticalsolutionanditsparameters.
Keywords:tidaldamping;wavepropagation;analyticalmodel;surge;pearlriver
1.Introduction
Tidalwavesareamajorhydrodynamicfactorthatinfluencestheflooding,ecosys‐
tems,transport,andmorphologicalevolutioninestuaries.Incontrasttotidalwavesin
deepoceans,whicharedrivenbyastronomicalforceswithahighdegreeofpredictability,
wavespropagatingalongestuariestendtoadjusttheiramplitude,celerity,andshapedur‐
inginteractionswithtopography,friction,andothersecondaryfactorssuchaswindstress
andrunoff.Atidalwaveinashallowestuaryhasthecharacteristicsofamplificationand
damping,whichalternatealongtheestuary.Thetidalamplitudeisinfluencedbytwo
dominantprocesses:amplificationduetoconvergentcrosssectionswithadecreasein
depthinthelandwarddirectionanddampingduetobottomfriction.Iftheformerprocess
dominatesoverthelatter,thewaveisamplified;otherwise,thewaveisdamped.Thece‐
lerityofpropagationisalsoinfluencedbytheprocessesoftidaldampingandamplifica‐
tion.Ifthetidalwaveisdamped,thecelerityisdecreased.Conversely,ifthetidalwaveis
amplified,thecelerityisincreased[1].Moreover,thetidalwavecanbestronglydistorted
Citation:Zhang,Z.;Guo,F.;Hu,D.;
Zhang,D.AnAnalyticalSolutionfor
InvestigatingtheCharacteristicsof
TidalWaveandSurgePropagation
AssociatedwithNon‐Tropicaland
TropicalCyclonesintheHumen
Estuary,PearlRiver.Water2021,13,
2375.https://doi.org/10.3390/
w13172375
AcademicEditor:TonyWong
Received:1June2021
Accepted:24August2021
Published:29August2021
Publisher’sNote:MDPIstaysneu‐
tralwithregardtojurisdictional
claimsinpublishedmapsandinstitu‐
tionalaffiliations.
Copyright:©2021bytheauthors.Li‐
censeeMDPI,Basel,Switzerland.
Thisarticleisanopenaccessarticle
distributedunderthetermsandcon‐
ditionsoftheCreativeCommonsAt‐
tribution(CCBY)license(http://crea‐
tivecommons.org/licenses/by/4.0/).
Water2021,13,23752of14
asitpropagatesintotheestuarinesystem[2].Therefore,tidalwavepropagationinan
estuaryisaninterestingbutdifficultissuetosolvebecauseofthenonlinearinteraction
resultingfromthecomplexestuarineboundarylinesandvariablyshallowtopography.
Tounderstandthemechanismoftidalwavepropagationalonganestuary,vastef‐
fortshavebeenmadetoinduceandsolvetheestuaryhydrodynamicmodel.Generally,
theseworkscanbedividedintotwomethods:analyticalsolutionsandnumericalsimula‐
tions.Withadvancesincomputationaltechnology,tidalwavepropagationcanbeaccu‐
ratelysimulatedbynumericalmodels[2–5].Comparedwithanalyticalsolutions,numer‐
icalmodelsarebetteratprovidinghigh‐resolutiondataundervariouscontrollingcondi‐
tions,whichcanbecomparablewiththemeasurementsinarealestuary.However,the
numericalresultsshouldbefurtherinvestigatedandextractedthroughtheanalyticalso‐
lutiontoobtainadeeperunderstandingoftheeffectbymultiplecontrollingfactorswith
therespectoftidalwavepropagation.Specifically,tofigureouttherelationshipbetween
hydrodynamicsandthegeometryoftheestuary,weneedtheanalyticalsolutionnotonly
tofitthedatabutalsotoextractsomeimportantparameterssuchasvelocitynumber,
dampingnumber,celeritynumber,andtheirrelationshipswiththegeometryparameter
oftheestuary.Thus,ananalyticalsolutionisstillanirreplaceableinstrumentinanalyzing
thepropertiesoftidalwavespropagatinginanestuary.Thusfar,arangeofanalytical
solutionsbasedon1DSaint–VenantequationshavebeenderivedbyHunt[6](1964),Ippen
[7],andPrandle[8],whichareallforaprismaticestuaryandriver.Meanwhile,thesolu‐
tionsforamorewidelyconvergentestuaryhavebeenpresentedbyGodin[9],Jay[10],
LanzoniandSeminara[11],andVanRijn[12].Mostoftheaboveinvestigatorslinearized
theequationsbymeansoftheperturbationmethodinanEulerianframework.Incontrast,
Savenije[13]derivedarelativelysimplesolutioninaLagrangianframework.Furthermore,
Savenije[14]presentedafullyexplicitsolutionofthetidalequationsbysolvingthesetof
fourimplicitequationsderivedfromtheSaint–Venantequations.Withtheadvantageof
consideringthenonlineareffectofthebottomfriction,Savenije’sanalyticalsolutioniscon‐
stantlyimprovedandwidelyusedinanalyzingthewavepropagationontypicalalluvial
estuaries[15,16].
TheHumenEstuary,oneofthemajoraccessesforatidalwavefromtheSouthChina
SeaenteringthePearlRivernetwork,hasasignificanteffectonfloodingandinundation
inGuangzhoucity,whichisthecapitalandeconomiccenterofGuangdongProvince.
However,limitedmeasureddataintheHumenEstuaryrestricttheunderstandingoftidal
wavepropagationalongtheHumenEstuaryintheupstreamdirection.Althoughsome
previousnumericalsimulationshavebeenperformed[17,18],theirresultsarenotdirect
andclearenoughtoreflectthecharacteristicsofhowacertaincontrollingparameteraf‐
fectsotherparameters.AnotherquestioniswhetherSavenije’sanalyticalsolutioncanbe
appliedtothesituationundertheinteractionoftidesandsurgesduringtyphoonlandfall.
Ifnot,whatarethechangesinthehydrodynamicsystemandwhichparametersshould
beadjustedintheanalyticalsolution?
Withthequestionsmentionedabove,theobjectivesofthestudyareasfollows:1.to
composeandvalidateamethodofanalysisthatcombinesaclassicalanalyticalsolution
andthenumericalresultsandisabletocorrectlyreflectthecharacteristicsoftidepropa‐
gationintheHumenEstuary;2.tocheckandverifyawaytoadaptthemethodofanalysis
tothecontextoftidalwaveandsurgepropagationassociatedwithtropicalcyclones;and
3.toextractinsightintothehydrodynamicfeaturesandfactorsintheHumenEstuary.
Thus,weapplySavenije’sanalyticalsolutiontotheHumenEstuaryinconjunctionwith
numericalsimulationresultstodescribeandanalyzethecharacteristicsofthetidalwave
intheHumenEstuary,PearlRiver.Aseriesoftestsareconductedtoanswertheabove
questionsinthispaper.
Water2021,13,23753of14
Thesectionsareorganizedasfollows.First,somebackgroundinformationaboutthe
HumenEstuaryinthePearlRivernetworkisintroducedinSection2,followedbyabrief
introductionofSavenije’sanalyticalsolutioninSection3.InSection4,thenumerical
modelisverified.InSection5,calibrationandverificationforastronomictidesandstorm
surgesarecarriedout.InSection6,thediscussionfocusesonthecharacteristicsoftidal
wavesintheHumenEstuary.Finally,conclusionsaredrawninSection7.
2.StudyAreas
2.1.Overview
ThePearlRivernetwork,locatedinSouthChina,deliversalargeamountoffresh
water(rangingfrom20,000m
3
/sinthewetsummerto3600m
3
/sinthedrywinter)into
thenorthernSouthChinaSeathrougheightoutlets(Figure1).Fouroftheeightoutlets
(Humen,Jiaomen,Hongqimen,andHengmen)enterLingdingyangBay,whichhasa
trumpet‐likeshapewithawidthof5kmnearthenorthernendand35kmatthesouthern
end.Amongthefouroutlets,theHumenEstuaryisthelargestmouthwithalargeamount
oftidalinfluxandoutfluxbetweentheestuaryandoffshore.Itisobviousthatthetrumpet‐
likebaytendstoamplifythetideamplitudeinconjunctionwiththeconvergentestuary
whenthetidalwavepropagatesfromthedeepseaintotheHumenEstuaryintheland‐
warddirection.Thus,wefocusonthecharacteristicsofthetidalwavealongtheHumen
Estuary,specificallythesegmentfromthemouthupstreamtoapproximately1.5km
downstreamfromHuangpuBridge.
Figure1.ThelocationoftheoutletsofthePearlRivernetwork.
Water2021,13,23754of14
2.2.ShapeoftheHumenEstuary
Theshapesofmostalluvialestuariesaresimilarallovertheworld.Thewidthand
theareaofthecrosssectiondecreasesintheupstreamdirection,resultinginaconvergent
(funnel‐shaped)estuary.Themaingeometricparametersoftheconvergentestuarycanbe
describedbyexponentialfunctionsalongtheestuaryaxiswiththeoriginatthemouth:
𝐴
𝐴
𝑒𝑥𝑝 𝑥
𝑎(1)
𝐵𝐵𝑒𝑥𝑝 𝑥
𝑏(2)
ℎℎ𝑒𝑥𝑝 𝑥
𝑑(3)
whereA,B,andharethetidalaveragecross‐sectionalarea,width,anddepth;A0,B0,and
h0arethesamevariablesattheestuarymouth;xisthedistancefromtheestuarymouth;
anda,b,anddareconvergentlengthsofthecross‐sectionalarea,width,anddepth.
TheparametersofEquations(1)–(3)canbeobtainedbyregressiononthetopographic
data.Fromthedigitalelevationmodel(DEM)ofthePearlRiverDelta,54crosssections
wereextractedtoobtainthecross‐sectionalarea,width,anddepth(Figure2).Then,the
datawereusedtoderivetheconvergentlengthsa,b,anddlistedinTable1.Figure3shows
theregressionlinesplottedonsemilogarithmiccoordinates.ItshowsthattheHumenEs‐
tuarycanbedividedintothreesections:thedownstreammouthsection(x=0–8.7km),
themiddlesection(x=8.7–30.4km),andtheupstreamsection(x=30.4–36km).Themouth
sectionisnearaprismaticestuary,andthemiddleandupstreamsectionsarethetypical
convergentestuary.
Table1.ShapecharacteristicsoftheHumenEstuary.
SubsectionsRange(km)A(km)B(km)D(km)
Mouth0–8.7166.7333.3333.3
Middle8.7–30.42571.440.0
Upstream30.4–36208.3208.3
Figure2.ThedeploymentofthecrosssectionsalongtheHumenEstuary.
Water2021,13,23755of14
Figure3.Theregressionlinesforthecross‐sectionalareaA(m
2
),widthB(m),anddepthh(m)along
theestuary.
3.AnalyticalSolution
ThetidaldynamicsinanestuarycanbedescribedbythefollowingSaint–Venant
equations:
𝜕𝑈
𝜕𝑡𝑈𝜕𝑈
𝜕𝑥𝑔𝜕𝑑
𝜕𝑥𝑔𝐼
𝑔𝑛
𝑈|𝑈|
𝑑
/
0
(4)
𝑟
𝜕𝐴
𝜕𝑡𝜕𝑄
𝜕𝑥0
(5)
whereUisthetidalflowcross‐sectionalvelocity,gistheaccelerationduetogravity,dis
theflowdepth,Iisthebottomslope,nistheManningcoefficient,andQisthetidalflow
discharge.𝑟 isdefinedastheratiobetweenthestoragewidthandthestreamwidth,
whichisoftenmorethanunityintheriverwithshallowplains[14](Savenije,2008).
AfterthescalingofEquations(4)and(5)andundertheassumptionofaharmonic
wavetravelingfromtheestuarymouthtotheupstreamreach,thefollowingdimension‐
lessparametercanbeobtained:
𝛾𝑐
𝜔𝑎
(6)
𝜒
𝑟
𝑓
𝑐
𝜔ℎ𝜁
(7)
𝜇1
𝑟
𝑣ℎ
𝜂𝑐
(8)
𝜆𝑐
𝑐
(9)
𝛿1
𝜂𝑑𝜂
𝑑𝑥𝑐
𝜔
(10)
Water2021,13,23756of14
wherec0istheclassicalwavecelerityofafrictionlessprogressivewave,ωisthefre‐
quencyofthewave,𝜁
isthedimensionlesstidalamplitude,and𝑓isthedimension‐
lessfrictionfactordefinedas
𝑓
𝑔𝑛
ℎ/14
3𝜁(11)
UsingtheabovedimensionlessparametersinEquations(6)–(11),thescalingformof
Equations(4)and(5)canbesolvedonthebasisoftheequationsforthephaselag:
𝑡𝑎𝑛𝜖𝜆
𝛾𝛿(12)
𝜇𝑠𝑖𝑛 𝜖
𝜆𝑐𝑜𝑠 𝜖
𝛾𝛿(13)
𝛿 𝜇
𝜇1𝛾
𝜒
𝜇𝜆(14)
𝜆1𝛿𝛾𝛿(15)
where𝜖isthephasedifferencebetweenhighwaterandhighwaterslack.Itisclearthat,
foraprogressivewave,𝜖0.5πandthat,forastandingwave,𝜖0.Theaboveequa‐
tionsshouldbeappliedtothefollowingconditions:(1)theratiobetweenthetidalampli‐
tudeandthewaterdepthislessthanunity,(2)therunoffismuchlessthanthetidalinflux
andoutflux,and(3)theincidentwavecanbesimplifiedasaharmonicwave.Equations
(12)–(15)canbesolvedbyaniterationprocesswhen γand χhavebeendetermined.
4.NumericalModelandVerification
TheFiniteVolumeCommunityOceanModel(FVCOM),anunstructured‐gridfinite‐
volume,three‐dimensionalprimitiveequationcoastaloceanmodeldevelopedoriginally
byChenetal.[19]andupgradedbytheUMASS‐D/WHOImodeldevelopmentteam
[20,21],isappliedtosimulatethetideandsurgepropagationprocessinthePearlRiver
network.AsshowninFigure4,themodeldomaincoverstheentireregionofthePearl
Rivernetwork,eightestuaries,andthenearshore.Themodelcontains58,564nodesand
91,572elements.Horizontally,thespatialresolutionvariesfrom40to50mwithinthe
rivernetworkandfrom600to1000mneartheestuarinemouthandbayto5kmatthe
offshoreopenboundary.Tomodelthesurgeundervariousapproachingcyclonesinsum‐
merdays,thePearlRivernetworkmodelisnestedattheopenboundarywiththeSouth
ChinaSeamodel,whichisalsobasedonthesphericalcoordinateversionoftheFVCOM.
Vertically,themodelcontainsfiveuniformsigmalayerstocapturetheprocessofturbu‐
lencemomentumtransferringupwardsfromthebottom.
TheforcesdrivingthemodelincludetidalwavesfromtheSouthChinaSeaand
surgescausedbymeteorologicalforcessuchasstorms,cyclones,andrainfalls.Inthispa‐
per,weconsideronlytropicalcyclone.Thesemi‐empiricalparametriccyclonemodelis
integratedintotheoceanmodeltodrivethesurge.Theadvantageoftheparametriccy‐
clonemodelisthatitdoesnotrequireasmuchmeteorologicaldataasthedynamicmodel
todrivethemodel.Theonlydataneededcontainthetrackofthecyclone,thecenterpres‐
suredrop,theforwardspeed,andthemaximumwindradius,mostofwhichareavailable
onweatherforecastwebsitesexceptforthemaximumwindradius,whichshouldbeob‐
tainedusingastatisticalformulaandthenadjustedaccordingtothesurgeresults.Here,
thecycloneNo.1822(Table2),wellknownastheSuperTyphoonMangosteen(2018),is
usedasanexampletosimulatethestormsurgeinconjunctionwiththeastronomicaltide.
Thenumericalresultsarecomparedwiththemeasurementsanddemonstrategoodagree‐
mentinthehighsurgelevelbetweentheminFigure5.
Water2021,13,23757of14
Figure4.ThedomainandgridsofthePearlRivernetworkmodel.
(a)NanshaStation(b)WanqingshaStation
(c)HengmenStation(d)NeigangStation
Figure5.Verificationofthenumericalmodelinfourstations:Nansha,Wanqinsha,Henmeng,and
Neigang.
Water2021,13,23758of14
Table2.TheparametersoftheTyphoonMangosteen(twodaysbeforelandfall).
TimeLatitude(N) Longitude(E)Pressure(hPa)MaximumWindSpeed(m/s)
00:0014/0916126.990556.6
06:0014/0916.7125.790556.6
12:0014/0917.4124.190556.6
18:0014/0918122.390556.6
00:0015/0918120.594046.3
06:0015/0918.5119.794046.3
12:0015/0919.2118.395043.7
18:0015/0919.811795541.2
00:0016/0920.6115.396038.6
06:0016/0921.7113.596038.6
12:0016/0922.2111.697033.4
18:0016/0922.7109.798028.3
5.Results
WeusedtheHumenEstuarygeometrypresentedinTable1andthenumericalresults
on8–9September2018(aboutoneweekbeforethetyphoonlandfall)tocalibratetheana‐
lyticalmodel.Thecalibrationprocessareasfollows:wefirstdividedtheparameterrange
intosmallsubareaswithanincrementof0.1for𝑟and0.001fornwiththeirrangeslisted
inTable3.Therangeof𝑟andnwerereferredtoSavenijeetal.(2005;2008)[1,14].Then,
weusedtheseparameterstoobtainthetidalresults.Lastly,wecomparetheanalytical
solutionswiththenumericalresultsandcomputetheRMSE(rootmeansquareerror)for
everyanalyticalsolutioncorrespondingtotheparameters.TheonewiththeleastRMSE
isconsideredthebestfitsolution,anditsparametersaretheoptimalones.Thecalibration
parametersarepresentedinTable3.Ingeneral,theanalyticalsolutionfitsthenumerical
resultverywell(Figure6),andthecalibratedparametersarewithinthephysicallyproper
range.Incontrast,intheupstreamsection,thereappearstobemoredeviationthaninthe
othertwosections.Thereasonisprobablythatthelengthofthissectionistooshortto
matchamorereasonableconvergentlength.
Themodelwasfurtherverifiedwiththenumericalresultson16–17September2018.
ThereasonforchoosingthisperiodisthatSuperTyphoonMangosteenapproachedand
madelandfallonthecoastofGuangdongProvinceduringthistime.Thus,atfirst,weonly
simulatedtheastronomicaltidewithoutexertingawindforceinthenumericalmodel.
Throughthissimulation,theanalyticalresultwascomparedwiththenumericalresult
assumingnocyclonelandfall.FromFigure7,itcanbeseenthatthecorrespondencewith
thenumericalresultisgoodforthetidalamplitude.However,thedeviationforthetravel
timeshowsthattheanalyticalmodeltendstooverestimatetheceleritycomparedwiththe
numericalmodel.Asimilarproblemconcerningthedistinctaccuraciesbetweenthetidal
amplitudeandthetraveltimewasalsoencounteredbyothersusingSavenije’sanalytical
model,whoattributedthisdeviationtotheeffectofthestoragewidthratio𝑟atdifferent
tidalamplitudes(Caietal.,2012).
Then,wesimulatedthetyphoon‐surgescenariobysettingthecyclonemodelandby
exertingthewindandpressureforcesonthesurfaceofthetidalflow.Theanalyticalresult
wascomparedwiththenumericalresult.ItisshowninFigure8thatthedifferencebetween
themcanreachamaximumofasmuchas0.6m.Thisresultisunsurprisingbecausethe
originalscopeoftheanalyticalmodeldoesnotincludestormsurges.Withrespecttothe
equation,awindstresstermshouldbesupplementedinthemomentumequationasfol‐
lows: 𝜕𝑈
𝜕𝑡𝑈𝜕𝑈
𝜕𝑥𝑔𝜕𝑑
𝜕𝑥𝑔𝐼𝑔𝑛𝑈|𝑈|
𝑑
τ0(16)
Water2021,13,23759of14
whereτisthewindstressalongthex‐coordinatedirectionwithapositivedirection
fromthemouthtotheupstream.
FromEquation(16),wecanfindthattheeffectofthepositivewindstressterm,which
causedamaximumsurge,isequivalenttoareductionintheManningcoefficient:
𝑔𝑛
𝑈|𝑈|
𝑑
τ
𝑔𝑛
𝑈|𝑈|
𝑑
(17)
𝑛
𝑛
τ
𝑑
𝑔𝑈|𝑈|
(18)
where𝑛isconsideredthereducedversionoftheoriginalManningcoefficientnunder
thecyclonesurgescenarios.
Therefore,wecanmaketheanalyticalsolutionclosetothenumericalresultbytuning
Manning’scoefficienttobeless.Theanalyticallycalculatedtidalamplitudesbeforeand
aftertuningthecoefficientareshowninFigure8,andalloftheparametersarelistedin
Table3.TheManningcoefficientconsideringthecyclonesurgeissignificantlylessthan
thatonlyconsideringtheastronomicaltide.Someareevenbelowthelowerlimitofthe
physicallyreasonablerange.Thismeansthattheeffectofthestormsurgeonthetidal
dampingissimilartothereductioninthebottomfriction.Inotherwords,thewindthat
blewintheupstreamdirectionbeforelandfallofthecyclonecounteractedpartofthefric‐
tionwhenthetidalwavetraveledupstreamalongtheriver.Foranapplicationoftheso‐
lutioninasurgescenarioandaphysicallyreasonableestimateoftheManningcoefficient
inthemeantime,anewsolutionbasedonSavenije’sanalyticalmodel,whichcontainsthe
windstressterm,shouldbederivedinthefuture.
(a)(b)
Figure6.Comparisonoftheanalyticalresultsfor(a)tidalamplitudeand(b)traveltime,andthenumericalsimulation
aftercalibrationduring8–9September2018.Thediamondsdenotesthenumericalsimulationresultsandthesameforthe
followingfigures.
Water2021,13,237510of14
(a)(b)
Figure7.Comparisonoftheanalyticalresultsfor(a)tidalamplitudeand(b)traveltime,andthenumericalsimulationfor
verificationunderastronomicaltideduring16–17September2018.
Figure8.Comparisonoftheanalyticaltidalamplitudebefore(solidline)andafter(dashline)tuning
Manning’scoefficient,andnumericalsimulationforverificationundertideandsurgeduring16–17
September2018.
Table3.Parametersusedforanalyticalmodel.
SubsectionsStorageWidthRatio
r
s
ValueRangeManning’sCoefficientn(m
−1/3
s)
AstronomicalSpringTideConsideringCycloneSurgeValueRange
Mouth11–20.0050.0050.017–0.06
Middle1.81–20.0310.0180.017–0.06
Upstream 1.51–20.0350.0150.017–0.06
6.Discussion
6.1.TheCharacteristicsoftheTidalWavePropagationintheHumenEstuary
Savenije’ssolutiondescribesthevariationofthefourdimensionlessparametersϵ,
μ, δ,andλasafunctionoftheshapenumberγandthefrictionnumberχ,whichisde‐
pictedinFigure9.Asshowninthesefigures,thesolutionscanbegenerallydividedinto
twofamilies.Fortheareaswithasmallshapenumberγ(γ<2),alloftheparameters
dependonfrictionnumberχ.Thephaselagϵdecreaseswithanincreaseinχ,andthe
tidalwaveisamixtureoftheprogressivewaveandstandingwave,indicatingariverine
estuary.Incontrast,fortheareaswithalargeshapenumberγ(γ>3.5),thefrictionnum‐
berhaslittleinfluenceonthefourdimensionlessparameters.Thephaselagϵincreases
withanincreaseofχ,andthetidalwaveismuchclosertothestandingwave,indicating
anoceanicestuary.Intheintermediateareawithin2<γ<3.5,thecriticalγfortrans‐
formingfromtheprogressivewavetothestandingwaveincreaseswiththeincreasein χ.
Thehydrodynamicanalysis,aswiththegeometricanalysis,indicatesthatthereare
threedistinctsegmentsforthemainstreamoftheHumenestuary.Figure9showsthe
Water2021,13,237511of14
parametersforthethreesegmentsoftheestuary.Inthemouthsection(0–8.7km),asa
resultofthenearlyprismaticestuary,thissectionisfeaturedbytheriverineestuarydue
tothesmallγ.Moreover,thefrictioninthissectionisalsoverysmall.Boththesmallγ
and χmakethetidalwaveinthissectiontravelasaseriesofprogressivewaves,with
smallamplificationofthewaveamplitudeintheupstreamdirection.Inthemiddlesection
(8.7–30.4km),γiswithintheintermediateareaandbecomessmallupstreamwhile χbe‐
comeslargeinthesamedirection.Thesectionalcurveiscrossedanddividedintotwo
partsbytheidealrivercurve.Abovetheidealrivercurve,theeffectofcross‐sectional
convergencedominatesoverthefriction;thus,thetidalenergyisaccumulatedandthe
tideisamplifiedinthedownstreampartofthemiddlesection.Belowtheidealrivercurve,
thefrictioneffectdominatesoverthecross‐sectionalconvergence;thus,thetidalenergyis
dissipatedandthetideisdamped.Theanalysiscorrespondswiththeresultinthelast
section.Intheupstreamsection(30.4–36km),thelargeγmakesthissectionmoresimilar
toanoceanicestuary.Theconvergenceeffectissuperiortofrictionaccordingtothevalue
of
𝛿
;thus,thetideisamplified.Thewaveinthissectionistypicalofastandingwave,
whichisnearlyindependenttothefriction.Intheprocessofcalibration,thissectionis
insensitivetoManning’scoefficient.
Toinvestigatethedifferencemadebythestormsurgecomparedwiththenormal
tidalwave,wedepictedthecalibratedparametercurvesinthemiddlesectionunderthe
stormsurge.Asexpected,thecurvesunderthesurgemoveslightlytowardthezonewith
lessfrictionfromtheoriginalcurvesundertheastronomicaltide.Thisisinagreementwith
theanalysisoftheresultsintheformersection.Previousstudieshaveindicatedthatrunoff
canincreasethefrictionforwavepropagationinanestuary;however,thisstudyshowsthat
stormsurgecanreducethefrictionforthewavepropagationwhileexaggeratingthewave
amplitude.
(a)(b)
(c)(d)
Water2021,13,237512of14
Figure9.Therelationbetweenfourparameters:(a)velocitynumber,(b)dampingnumber,(c)celeritynumber,and(d)
phaselag.Theestuaryshapenumber γfordifferentfrictionnumbers χisindicatedbydifferentlinetypes.Theboldlines
indicatetheparametersfortheHumenEstuaryunderastronomicaltide(red)andtideplussurge(blue),withthenumbers
indicatingthedistancefromtheestuarymouthinkilometers.Thedrawnlinewiththecrossesrepresentstheidealestuary.
6.2.ComparisonwithOtherEstuaries
TheHumenEstuaryissocomplicatedthatitcanbedividedintothreesections.Any
sectiondemonstratesitsdistinctfeaturescomparedwiththeothers.Tobetterunderstand
theproperty,wecomparedthemwithothertypicalestuaries,whichhavebeenanalyzed
bySavenijeetal.[14](2008).Thefeatureofthemouthsection(0–8.7km)intheHumen
estuarycanbecomparablewiththeHauEstuariy,especiallytheupstreamsection(57–160
km).Theyareallriverineestuarieswithsmallshapenumbers.Thus,theyhaveariverine
characterwithalongconvergencelengthandahighphaselag.Thedifferenceisthatthe
mouthsectionoftheHumenEstuaryhaslessfrictionthantheHauEstuary.Therefore,the
tideisamplifiedfortheformeranddampedforthelatter,andthecelerityinthemouth
sectionoftheHumenEstuaryislargerthanthatoftheHauestuary.Themiddlesection(8.7–
30.4km)oftheHumenEstuaryiscomparablewiththeScheldeEstuary,withcloseshape
numberslocatedintheintermediatezone.Bothoftheircurvescrosstheidealestuarycurve,
whichindicatesatransitionpointbetweentidaldampingandamplification.Thedifference
isthatthedepthoftheHumenEstuaryisdecreasedintheupstreamdirectionandthatitis
theoppositefortheScheldeEstuary.Moreover,thelengthofthemiddleHumenestuaryis
muchlessthanthatoftheScheldeEstuary,butthecurvelengthissimilar.Thismeansthat
theparametervariationrateofthemiddleHumenEstuaryisgreaterthanthatoftheSchelde
Estuary.
(a)(b)
Figure10.PositioningoftheHumen(redline),Schelde(yellowsquares),andHau(pinktriangles)Estuariesinthedamp‐
ingnumber(a)andceleritynumber(b)diagrams,withthenumbersattheinflectionpointsindicatingthedistancefrom
theestuarymouth(inkilometers).TheotherlinesarethesameasthoseinFigure9.
7.Conclusions
Inthisstudy,Savenije’ssolutionwasappliedforthefirsttimetotheHumenEstuary.
Duetothescarcityandlowresolutionofthemeasureddata,weusedthenumericalresults
tocalibrateandverifytheanalyticalmodel.Themeritofusingananalyticalmodelisthat
itcanprovidedirectinsightintorelationshipsamongthetidalproperties,suchasvelocity
amplitude,thetidaldampingrate,andwavecelerity;thegeometryindicator;friction;and
thetidalforces.Thisanalyticalmodeldemonstratedgoodaccuracywhenitwasapplied
toanestuarywherethetidedominatesincomparisonwiththeriverdischarge.Theresults
indicatethattheanalyticalmodelcanpredicttheastronomicaltidewellintheHumen
Estuaryaftercalibration.However,itcannotpredictthetidewellwhenatropicalcyclone‐
inducedsurgeissuperimposedontotheastronomicaltide.Thereasonmaylieinthefact
Water2021,13,237513of14
thatSavenije’ssolutiondoesnottakethewindforcesintoaccount.AfterreducingMan‐
ning’scoefficient,wefoundthattheanalyticalresultcouldbeclosetothenumericalre‐
sults.Thismeansthatthelossofthewindforcingcanpartlybecompensatedbyadjusting
thefriction.
ByanalyzingthetidalwavepropagationalongtheHumenEstuary,wefoundthat
thecharacteristicsofthethreesections—themouthsection(0–8.7km),themiddlesection
(8.7–30.4km),andtheupstreamsection(30.4–36km)—arenotalikeatall.Themouthsec‐
tionisatypicalriverineestuarywithanearlyconstantcrosssection.Thetidalwavetrav‐
elingthereisintheformofaprogressivewaveandwithanearlyclassicalcelerityina
frictionlessstate.Incontrast,theupstreamsectionisatypicaloceanicestuarywithashort
convergencelength.Thetidalwavethereisintheformofastandingwavewithanearly
infinitecelerity.Themiddlesectionisintheintermediatezoneofthetwosolutionfami‐
lies.Thetidalwaveisfirstamplifiedandthendamped,withatransitionpointthatisthe
locationofthemaximumtidalamplitude.Finally,acomparisonwasconductedbetween
theHumenEstuaryandotherestuaries.
AuthorContributions:Conceptualization,Z.Z.andF.G.;methodology,Z.Z.;validation,Z.Z.;for‐
malanalysis,D.Z.;investigation,Z.Z.;resources,D.H.;datacuration,D.H.;writing—originaldraft
preparation,Z.Z.;writing—reviewandediting,F.G.;visualization,D.Z.;supervision,D.Z.;project
administration,F.G.;fundingacquisition,F.G.Allauthorshavereadandagreedtothepublished
versionofthemanuscript.
Funding:ThispaperwassupportedbytheNationalKeyR&DProgramofChina(grantNo.
2018YFB0505500and2018YFB0505502)andbytheNationalNaturalScienceFoundationofChina
(grantNo.41771421,41771447,and41571386).
InstitutionalReviewBoardStatement:Notapplicable.
InformedConsentStatement:Notapplicable.
DataAvailabilityStatement:Noreportanydata.
ConflictsofInterest:Theauthorsdeclarenoconflictofinterest.
References
1. Savenije,H.H.G.;Veling,E.J.M.Relationbetweentidaldampingandwavecelerityinestuaries.J.Geophys.Res.SpacePhys.2005,
110,04007,doi:10.1029/2004jc002278.
2. Lu,S.;Tong,C.;Lee,D.;Zheng,J.;Shen,J.;Zhang,W.;Yan,Y.PropagationoftidalwavesupinYangtzeEstuaryduringthe
dryseason.J.Geophys.Res.Oceans2015,120,6445–6473,doi:10.1002/2014jc010414.
3. Rossiter,J.R.InteractionBetweenTideandSurgeintheThames.Geophys.J.Int.1961,6,29–53,doi:10.1111/j.1365‐
246x.1961.tb02960.x.
4. Prandle,D.;Wolf,J.TheinteractionofsurgeandtideintheNorthSeaandRiverThames.Geophys.J.Int.1978,55,203–216,
doi:10.1111/j.1365‐246x.1978.tb04758.x.
5. Zhang,W.Z.;Shi,F.;Hong,H.S.;Shang,S.P.;Kirby,J.T.Tide‐surgeInteractionIntensifiedbytheTaiwanStrait.J.Geophys.Res.
SpacePhys.2010,115,06012,doi:10.1029/2009jc005762.
6. Hunt,J.N.TidalOscillationsinEstuaries.Geophys.J.Int.1964,8,440–455,doi:10.1111/j.1365‐246X.1964.tb03863.x.
7. Ippen,A.T.Tidaldynamicsinestuaries,partI:Estuariesofrectangularcross‐section.InEstuaryandCoastlineHydrodynamics;
McGraw‐Hill:NewYork,NY,USA,1966.
8. Prandle,D.Estuaries;CambridgeUniversityPress:Cambridge,UK,2009.
9. Godin,G.Tides;CentrodeInvestigacionCientificiaydeEducacionSuperiordeEnsenada:Ensenada,Mexico,1988.
10. Jay,D.A.Greens’slawrevisited:Tidallong‐wavepropagationinchannelswithstrongtopography.J.Geophys.Res.1991,96,
20585–20598.
11. Lanzoni,S.;Seminara,G.Ontidepropagationinconvergentestuaries.J.Geophys.Res.SpacePhys.1998,103,30793–30812,
doi:10.1029/1998jc900015.
12. VanRijn,L.C.Analyticalandnumericalanalysisoftidesandsalinitiesinestuaries;PartI:Tidalwavepropagationinconvergent
estuaries.OceanDyn.2011,61,1719–1741,doi:10.1007/s10236‐011‐0453‐0.
13. Savenije,H.H.G.AnalyticalExpressionforTidalDampinginAlluvialEstuaries.J.Hydraul.Eng.1998,124,615–618,
doi:10.1061/(asce)0733‐9429(1998)124:6(615).
14. Savenije,H.H.G.;Toffolon,M.;Haas,J.;Veling,E.J.M.Analyticaldescriptionoftidaldynamicsinconvergentestuaries.J.Ge‐
ophys.Res.SpacePhys.2008,113,10025,doi:10.1029/2007jc004408.
Water2021,13,237514of14
15. Zhang,E.F.;Savenije,H.H.G.;Chen,S.L.;Mao,X.H.AnanalyticalsolutionfortidalpropagationintheYangtzeEstuary,China.
Hydrol.EarthSyst.Sci.2012,16,3327–3339,doi:10.5194/hess‐16‐3327‐2012.
16. Cai,H.;Savenije,H.H.G.;Yang,Q.;Ou,S.;Lei,Y.InfluenceofRiverDischargeandDredgingonTidalWavePropagation:
ModaomenEstuaryCase.J.Hydraul.Eng.2012,138,885–896,doi:10.1061/(asce)hy.1943‐7900.0000594.
17. Yin,K.;Xu,S.;Huang,W.;Xie,Y.EffectsofsealevelriseandtyphoonintensityonstormsurgeandwavesinPearlRiverEstuary.
OceanEng.2017,136,80–93,doi:10.1016/j.oceaneng.2017.03.016.
18. Lai,Z.;Ma,R.;Gao,G.;Chen,C.;Beardsley,R.C.ImpactofmultichannelrivernetworkontheplumedynamicsinthePearl
Riverestuary.J.Geophys.Res.Oceans.2015,120,5766–5789.
19. Chen,C.;Liu,H.;Beardsley,R.Anunstructuredgrid,finite‐volume,three‐dimensional,primitiveequa‐tionsoceanmodel:
Applicationtocoastaloceanandestuaries.J.Atm.OceanTech.2003,20,159–186.
20. Qi,J.;Chen,C.;Beardsley,R.C.;Perrie,W.;Cowles,G.W.;Lai,Z.Anunstructured‐gridfinite‐volumesurfacewavemodel
(FVCOM‐SWAVE):Implementation,validationsandapplications.OceanModel.2009,28,153–166,doi:10.1016/j.oce‐
mod.2009.01.007.
21. Chen,C.;Beardsley,R.C.;Luettich,R.A.;Westerink,J.J.;Wang,H.;Perrie,W.;Xu,Q.;Donahue,A.S.;Qi,J.;Lin,H.;etal.Extra‐
tropicalstorminundationtestbed:IntermodelcomparisonsinScituate,Massachusetts.J.Geophys.Res.Oceans2013,118,5054–
5073,doi:10.1002/jgrc.20397.
.