Content uploaded by Gina Potarca
Author content
All content in this area was uploaded by Gina Potarca on Nov 02, 2021
Content may be subject to copyright.
Demography (2021) 58(5):1977–2007
DOI 10.1215/00703370-9420350 © 2021 The Author
This is an open access arti cle dis trib uted under the terms of a Creative Commons license (CC BY-NC-ND 4.0).
ELECTRONIC SUPPLEMENTARY MATERIAL The online ver sion of this arti cle (https: / /doi .org /10 .1215 /00703370
-9420350) con tains sup ple men tary mate rial.
Published online: 18 August 2021
Online Dating Is Shifting Educational Inequalities
in Marriage Formation in Germany
Gina Potarca
ABSTRACT Digital tech nol o gies gov ern a large part of our social lives, includ ing the
pur suit of a roman tic part ner. Despite recent inqui ries into the social con se quences of
meet ing online, what remains unclear is how the link between edu ca tion and union
formationvariesinonlineversusofinemeetingcontexts,particularlyontheback
drop of grow ing edu ca tional gaps in mar riage. Using 2008–2019 pairfam data from
Germany(N =3,561),thisstudyranaseriesofFineGraycompetingrisksmodelsto
assess how online dat ing shapes the tran si tion to mar riage for partnered adults with
nontertiaryandtertiaryeducation.Resultsrevealthatirrespectiveofeducation,menin
onlineformedcoupleshadgreaterchancesofmarryingthanmenincouplesestablished
ofine.Highly educatedwomen whomet theirpartnerinnondigitalwayswereless
pronetomarrythanlowereducatedwomen;forwomenin couplesinitiatedonline,
however,thepattern wasreversed.Theinternetdatingmarriage advantageofwell
educatedwomenwaspartlyrelatedtobettermatchingonmarriageattitudesandgen
derideology.Facingascarcityofeligiblepartnersofine,higheducatedwomendraw
onmoreabundantonlineoptionstoselectmoreegalitarianmindedmen.Thisstudy
over all sug gests that internet dat ing fos ters an uneven dis tri bu tion of oppor tu ni ties for
marriage,highlightingtheroleofdigitalpartnermarketsinthesocialdemographyof
union for ma tion.
KEYWORDS Marriage • Internetdating • Technology • Education • Gender
Introduction
Online dat ing through websites, phone apps, chat rooms, or social net works has
introduced new ways for individuals to meet and interact with potential partners
(Finkel et al. 2012). Research has already started noting some of the sociodemo
graphictransformations triggeredbyinternet dating.Forheterosexual couples,for
example,meetingonlineislinkedtomorecouplediversityintheUnitedStatesand
Germany(Potarca2017;Thomas2020) and to faster tran si tions to mar riage in the
UnitedStates(Rosenfeld2017).Still,howtheinternetasaprevalentsourceofmeet
ingpartners(Rosenfeldetal.2019) has affected mar i tal union for ma tion for dif fer ent
socialgroupsremainsunclear.Groupsaredenedherebyeducation,oneofthemost
Downloaded from http://read.dukeupress.edu/demography/article-pdf/58/5/1977/1204808/1977potarca.pdf by UNIVERSITE DE GENEVE user on 02 November 2021
1978 G. Potarca
importantcommoditiesonthemarriagemarket(Becker1993;Oppenheimer1988)
and,althoughbynomeanstheironlyindicator,areliablemarkerofeconomicand
culturalresources(Blossfeld2009).
InmostWesterncountries,currenteducationaldifferencesinunionformationdes
cribeapositivegradient,withmarriagemoreoftenassociatedwiththewelleducated
(McClendon2018;VanBaveletal.2018).ForGermany(thecountryoffocusinthis
study),pastresearchhasmostlyfoundtheopposite:individualsatthebottomofthe
educationaldistributionhavehadgreater chancesofmarryingthanthoseatthetop
(Baizánetal. 2003; Mulderetal.2006). Information based on more recent data is
neverthelesslacking.Regardlessofcurrentpatterns,severalpredictionscanbemade
about the internet’s role in shap ing union for ma tion across edu ca tional groups. On
the one hand, at a time when urban spaces and work set tings are becom ing more
socioeconomically segregated (Marcińczak et al. 2016; McClendon et al. 2014),
onlinemeetingpoolsprovidegreateropportunitiesforencounters,potentiallygener
at ing more chances for mar riage among peo ple of all edu ca tional lev els. On the other
hand,bettereducated adults, who are more skilled at navigating new technologies
(OllierMalaterreetal.2019),maybeengagingmoreeffectivelywithonlineresources
tomeetandndwellsuitedpartners.Facingashortageofeligiblecandidatesofine
(EckhardandStauder2019),universityeducatedwomenmay particularlyseize the
opportunities granted in a larger and less restrictive market to select more value
compatiblepartners(Finkeletal.2012)andthusformmoremarriageinducingunions
(Houtsetal.1996).
To test these sce nar ios and assess whether the edu ca tional gap in mar riage varies
acrossmeetingcontexts,thisstudyfocusesonhowpeoplewithlower(i.e.,nonter
tiary)andhigher(i.e.,tertiary)educationexperiencethetransitionintomarriage,as
opposed to cohabiting or break ing up, among partnered men and women who met
theirmatchonlineversuselsewhere.BasedontheGermanFamilyPanel(pairfam)
data, this research targets adults aged 18–48, a subpopulation most likely to be
using the internet as a romantic marketplace. By providing a wealth of couple
level infor ma tion, pairfam also allows for direct empir i cal tests of the o ret i cal
mechanisms,particularlytheexaminationofhowpartnermatchingonfamilyval
ues(Press2004), such asmarriageattitudes and genderideology,affectsmarital
chancesforcoupleswhometonlinecomparedwiththosewhometthroughconven
tionalchannels.Marriagefavorableattitudesandexpectationsatboththeindivid
ual(SasslerandSchoen1999)andthecouplelevel(WallerandMcLanahan2005)
represent acentral correlateof eventualtransitionstomarriage. Genderideology
embodies a set of beliefs regard ing men’s and women’s involve ment in sep a rate
spheresofactivity (Davis and Greenstein 2009).Traditionalideology imposes a
gendereddivisionoflabor(e.g.,menasbreadwinnersandwomenascaregivers),
whereasegalitarianprescriptspromotejointresponsibilitiesforbothgenders.How
(dis)similarromanticpartnersareingenderideologymattersnotonlyfortheactual
divisionofunpaidwork(NitscheandGrunow2016, 2018) but also for rela tion ship
progression;recentstudiessimilarlyusingpairfam data have high lighted the effect
ofgenderideologyonpartnershipstability(Hudde2020)andthetransitiontopar
enthood(HuddeandEngelhardt2020). I con tend that if internet dat ing encour ages
morecompatibilityinfamilyvalues(Finkeletal.2012),especiallyforthewelloff,
Downloaded from http://read.dukeupress.edu/demography/article-pdf/58/5/1977/1204808/1977potarca.pdf by UNIVERSITE DE GENEVE user on 02 November 2021
1979Online Dating and Educational Inequalities in Marriage Formation
then indi vid u als who met their part ner online and who belong to a cer tain social
backgroundwillmarryfasterthanothers.
Germany is a compelling context in which to study the consequences of digi
tal dating on educational inequalities in marriage. Germany is not only a context
withwidelyadoptedonlinedatingpractices,basedontoolssuchasdatingplatforms
(Schulzetal.2008)or(morerecently)phone apps (Bitkom Research 2017; Suhr
2020), but it is also rep re sen ta tive of Western countries stuck in a male bread win ner
model(Bellani,EspingAndersen,andPessin2017;Blossfeld2009). The internet and
itspromiseofchallenginggenderedconceptsofcourtship(Hardey2002)mayhave
openeduppartneringpossibilitiesbyallowinghigheducatedwomentoselectpart
nerswillingtotakeamorenontraditionalroleinmarriage.Furthermore,despitehav
inganestablishedsystemofstratiededucation,knownforefcientlycoordinating
withthelabormarket(Dieckhoff2008),Germanyhasalsodisplayedarecentupturn
intheunemployment(Klein2015)andpovertygaps(Spannagel2016) between the
lowerandhighereducated.Inlightofthesegrowinginequalitiesandtheresulting
declineintheeconomicmatevalueofthelowereducated(ZagelandBreen2018),
thisstudyseekstoidentifywhetherthepreviouslyobservednegativemarriagegap
still holds and which German adults are more likely to marry in the digital age.
AlthoughtheGermancontextalsorequiresconsideringcohabitationasaviablelong
termunionform(Hiekeletal.2015),thisanalysisfocusesmainlyonmarriage,given
itsgreaterculturalandinstitutionaladvantages(LückandRuckdeschel2018).
Thecurrentresearchmakesseveralimportantcontributions.First,itisoneofthe
few stud ies seek ing to under stand the demo graphic con se quences of online dat ing,
anditisthersttoexamineeducationaldifferencesintheinternet’seffectonmar
riageformation.Withdigitaldatingbecomingoneofthemainwaystondapartner
(Rosenfeld and Thomas 2012; Rosenfeld et al. 2019), an increase in the partner
ing(dis)advantageofcertaingroupsamongonlineformedcouplescouldpotentially
redraw cur rent inequalities in mar riage.
Second,thisstudyusesrich,multiactorlongitudinaldatatomodelthecomplexity
ofunionformationandtotestfordyadic(i.e.,respondentpartner)matchingonfam
ilyvalues.Althoughfullyovercomingthelimitationsofpreviousworkfocusingon
associationsisunlikely,giventhatthedataarestillbasedonanonrandomsampleof
observations,thecurrentstudyaccountsformultiplesourcesofselectionbiasbycon
trollingfortheobservedheterogeneityofpeopledatingonlineandbyalsoaddressing
prepartneringpatterns.
Finally,thisresearchoffersanunprecedentedempiricalwindowintohowdigital
modesofinteractionchangemarriageformation.Macrolevelstudiesexaminingthe
dif fu sion of sta ble broad band con nec tions within house holds have con cluded that
theexpansionoftheinternetincreasedthenumberofpeoplegettingmarried(Bellou
2014).Thistypeofresearch,though,cannotdeterminewhethernewtechnologiesare
actualagentsofchangeoraresimplyreectingpreexistingshiftsinunionformation.
AsCesareetal.(2018) argued, under stand ing whether dig i tal tools for dat ing have
genuinelyalteredmaritalpatternsrequiresadirectcomparisonbetweenadultswho
usedonlinedatingandthosewhodidnot.Thisstudyhencereliesonamicrolevel,
eventcenteredapproachtoidentifythestratifyingconsequencesofonlinedatingon
mar i tal union for ma tion.
Downloaded from http://read.dukeupress.edu/demography/article-pdf/58/5/1977/1204808/1977potarca.pdf by UNIVERSITE DE GENEVE user on 02 November 2021
1980 G. Potarca
The Educational Marriage Gap
IntheUnitedStates,lesseducatedindividualshavelowerchancesofgettingmarried
aswell asstayingmarried(McClendon2018;ParkerandStepler2017).Apositive
educationalgradientinmarriage for bothmenand(morerecently) women isalso
evidentinEurope(Jalovaara2012;VanBaveletal.2018),althoughitsextentvaries
fromcountrytocountry,dependingonprevailinggenderrolesandlevelsofeconomic
inequality(Kalmijn2013).InGermany,Kalmijn(2013) found a pos i tive gra di ent
fortheprobabilityofbeinginaunionamong40to49yearoldmenbornbetween
1953and 1971.AmongWestGermanwomenborn duringapproximatelythesame
period, how ever, a high level of school ing was linked to a lower risk of transitioning
toarstunion(cohabitationordirectmarriage)oroftransitioningfromcohabitation
tomarriage(Baizánetal.2003).Mulderandcolleagues(2006) also showed that in
contrasttotheUnitedStates,highereducationisassociatedwithalowerlikelihood
ofrstunionformationforyoungwomeninGermany.Whereassomestudieshave
assertedthatthispatternmerelyreectsthedelayingeffectofeducationalexpansion
(BlossfeldandJaenichen 1992), oth ers have pos tu lated an over all neg a tive human
capitaleffectonmarriagepropensity,bothduring andafterschooling(Brüderl and
Diekmann 1994).
Aspreviously noted, welackdirectevidence regarding morerecentpatterns of
partneringormarriageacrosseducationalgroupsinGermany.Onecanexpectthatris
inglevelsofeconomicinequality(LippsandOesch2018) over the last two decades,
particularlyamongmen(ZagelandBreen2018),createdconditionsforapositivegra
dientinunionformation.Givenincreasedreturnstoeducation(Psacharopoulosand
Patrinos2018),onecouldalsoexpectthatforthegrowingnumbersofyoungwomen
investingintheireducation,thepreviouslyconventionaloptionofchoosingmarriage
overfulltimeemployment(Drobnicetal.1999)isnolongeroptimal.Researchhas
conrmedthatcomparedwiththelesseducated,bettereducatedGermanwomenare
moreoftenlinkedtolifelongsinglehood(Bellani,EspingAndersen,andNedoluzhko
2017),childlessness,andnonfamilylivingarrangements(Sobotka2011). Inacon
textinwhichthemalebreadwinnermodelisstillthriving(Bellani,EspingAndersen,
andPessin2017),itmayseemthateconomicallyindependentwomenaregradually
withdrawingfromtraditionalmarriage.Nevertheless,itisunclearwhetherthispattern
reectsadecreasingcentralityofmarriage(Oppenheimer1994) or scarce meet ing and
matingopportunities(EckhardandStauder2019). If the lat ter is the case, then dig i tal
datingmodalitiesandthelargesetofoptionstheyprovidecouldsignicantlyboost
marriageopportunitiesformarriageorienteduniversityeducatedGermanwomen.
Social Structure and Foci of Interaction
The the ory of social struc ture(Blau1978;Blauetal.1984) states that inter per sonal
choices,includingthoserelatedtopartners,arelargelyaffectedbythemacrosocial
structureoftheenvironment.Opportunitiesforcontactdeterminenotonlytheproba
bilityofndingamaritalpartnerbutalsothedegreeofsorting—thatis,howsimilar
partnersareonvarioussocialaspects(BlauandSchwartz1997). The con cept of foci
of activ ity (Feld 1984; Marsden1990)narrowsstructural inuence to the specic
Downloaded from http://read.dukeupress.edu/demography/article-pdf/58/5/1977/1204808/1977potarca.pdf by UNIVERSITE DE GENEVE user on 02 November 2021
1981Online Dating and Educational Inequalities in Marriage Formation
contextswhereindividualsroutinelyinteract,suchastheworkplace,neighborhood,
orfamily.Theirdifferentsizeandlevelofsociodemographicsegregationmeanthat
eachsettingprovidesadistinctsetofpossibilitiesforinteractionandaspecicpool
ofpotentialpartners. Several studies have conrmed the relevanceofwherecou
plesmeet(KalmijnandFlap2001;McClendon2018), includ ing the role of meet ing
online(Potarca2017;Rosenfeld2017;Thomas2020),forthetimingofmarriagefor
ma tion and the mech a nism of sorting.
Despitetheparticularitiesofdifferentonlinedatingcontexts(e.g.,seesectionA
oftheonlineappendixforadiscussion),thisstudyconsidersthemasasinglepart
nershipmarketbyvirtueofthemsharingstructuralfeaturesthatuniquelydistinguish
themfromallofinepartnermarkets.Inadditiontoreducinguncertaintybymaking
partneringintentionsexplicitandunequivocal(Schmitz2017), internet dat ing grants
accesstoanunprecedentedlydiversepoolofcandidatesandprovidesuserswithvar
iousscreeningtoolstonetunetheirchoices. Inlightofthesefeatures,onecould
arguethatinternetdatingimprovesmaritalchancesacrossallgroups.Online,indi
vidualsofbothlowerandhighereducationndavarietyandabundanceofchoices
thatwouldnototherwisebeaccessible.Withoutexploringpatternsacrosspeoplewith
differentsocialbackgrounds,previousworkindeedfoundthatU.S.heterosexualcou
ples who met online experienced faster transitions to marriage (Rosenfeld 2017).
Certaingroups,however,mightbenetfromcertainsocialcontexts,includingonline
dat ing spaces, more than oth ers.
Cultural Capital and Digital Skills
InBourdieu’s(1989, 1998, 2013)conceptualizationofsocialspaceandsymbolic
goods,socialstructureisviewedasbothexternalandinternalized in the form of
preferences. Bourdieu (2008), cited by Schmitz (2017), also showed that a wider
structureofopportunitydoesnotnecessarilypromptanallencompassingincrease
inmaritalprospects:beforetheinternetage,anenlargementofthemarriagemarket
in1960sruralFrance(asaresultofmodernizedinfrastructureandeconomy)ledto
moresegregationratherthantoanopeningofmaritalchoices.Thetheoryofsocial
space (Bourdieu 1989, 1998, 2013) states that social agents position and classify
themselvesinrelationtootheragentsbylevelofculturalcapital.Socializationpro
cessesandeducationensurethatindividualsexhibitclassspecictastes,dispositions,
andhabits(i.e.,embodiedcapital),ownsymbolicpossessions(i.e.,objectiedcapi
tal),andhavespecicqualicationsandskills(i.e.,institutionalizedcapital).Social
groupswith greaterculturalcapitalconvertsuchassetsinto moreorothertypesof
capitaltopreservedominanceandexcludeothersfromgaininghighstatuspositions,
hencereinforcingsocialinequality.ApplyingaBourdieusianviewondigitalmating
inGermany,andshowingthatsocialclassreproductionstronglypermeatespeople’s
onlinepreferencesandinteractions,Schmitz(2017)alreadynotedthatinternetdating
benetswellpositionedgroupsmorethanothers.
Generallymoreendowedwithculturalcapitalandspecicallymoreequippedin
knowinghowtoengagewithtechnology(OllierMalaterreetal.2019),highlyedu
catedadultsarelikelymoreskilledatnavigatingandultimatelyseizingwhatonline
partnermarkets have to offer.Comparedwiththose who have less education,the
Downloaded from http://read.dukeupress.edu/demography/article-pdf/58/5/1977/1204808/1977potarca.pdf by UNIVERSITE DE GENEVE user on 02 November 2021
1982 G. Potarca
welleducatedarebetteratselfpresentation,canlocate digitalresourcesmoreef
ciently,andareabletomoreeasilysiftthroughunwantedoptions(OllierMalaterre
et al. 2019).Intheonlinequestforapartner,digitalskillsandstrategiesofefciency
(DrögeandVoirol2011)mayresultinbettermatchedunions,withagreaterlikeli
hood of advanc ing to mar riage.
Thegreaterinternetrelatedaccelerationinmarriageformationforindividualswith
tertiaryeducationrelativetoothersmightparticularlyapplytowomen.Facinglim
itedmaritalprospectsinofinespaces,higheducatedwomenmaymorepurposely
engagewithandbenetfrominternetdatingthanhigheducatedmen.Onlinedating
poolsoftenincludeasurplusofmen(Felicianoetal.2009;Skopeketal.2011),the
oretically providing ademographicadvantage to women acrosstheboard.Never
theless,by meansofgreatereconomicresources,highlytrainedwomenhavemore
bargainingpowerandcouldthusmoreeasilyupholdtheirpreferencesthanthelower
educated(Meeussenetal.2019).Becauseindividualswithhighermatestandardsare
moredeterminedtondacompatiblepartner(Sprecheretal.2019),higheducated
womenmightthusmakethebestuseofdigitaldatingpossibilitiesformorerened,
marriagepromotingpartnershipchoices.
Online Matching on Marital and Gender Values
Universityeducatedwomenmayalsoaccessonlinepartner markets to seek com
patibility along noneconomiclines,suchasshared values orinterests.Inlight of
enhancedparticipationinthelabormarketandincreasesinnancialindependence,
highlyeducatedwomenarefocusing less on the economic prospects of a partner
andmoreonnonmaterialtraits(Press2004). The recent increase in the prev a lence
andstability of hypogamous unions (Grow et al. 2017; Schwartz and Han2014),
inwhichthefemalepartner is bettereducatedandoftentheprimary breadwinner
ofthefamily(KlesmentandVanBavel2017;Qian2018;VanBavelandKlesment
2017), is also believed to her ald a shift in the qual i ties that women pre fer in a part ner
(BouchetValatandDutreuilh2015).Less reliant onmen’seconomic resourcesor
highsocialstatus,welleducatedwomenmayinsteadevaluateprospectivematesin
termsofpotentialcontributionstodomesticandfamilywork,personality,physical
attractiveness,orsociability(Press2004;ZentnerandEagly2015).Recentevidence
conrmedthateconomicallywelloffwomenpreferfamilyorientedmenwhopriori
tizetimewiththeirfamilyandtakeanontraditionalroleincaringforchildren(Croft
et al. 2020;Meeussenetal.2019;ThomaeandHouston2016).
The realization of such preferences, however, is often contingent on a coun
try’s advancement toward gender equality (Zentner and Eagly 2015). In contexts
oftransitional genderideology(Press 2004),whereprogressin achievingequality
between men and women has stalled (England et al. 2020), universityeducated
women are often caught between mod ern and tra di tional scripts, encour aged to gain
(some)incomebutstillexpectedtodothelion’sshareofhousework(Gui2020). In
Germany,whereaconservativeculturalandinstitutionalcontextstillsanctionsanon
egalitarian division oflabor,marriage remainsalargelytraditional affair(Bellani,
EspingAndersen, and Pessin 2017;MüllerandDräger2019). Even within highly
Downloaded from http://read.dukeupress.edu/demography/article-pdf/58/5/1977/1204808/1977potarca.pdf by UNIVERSITE DE GENEVE user on 02 November 2021
1983Online Dating and Educational Inequalities in Marriage Formation
educatedhomogamouscouples,partnersstillspecialize,partakinginanunequaldivi
sionofpaidandunpaidwork(Buschneret al.2018).Given limitedavailabilityof
eligiblepartners(EckhardandStauder2019),higheducatedwomenlivingintradi
tionalcontextsmaystillneedtodisplaytraditionalfamilyvalues(Blossfeld2009),
whethergenuinelyselfendorsedorresultingfromanticipatingafuturepartnerwho
islesslikelytotakeonacaregivingrole(BargandBeblo2012;Croftetal.2020).
By providing ample matching possibilities and a less constraining dating space,
where partnering choices could bet ter align with peo ple’s gen u ine pref er ences and
expectations(Geser2007), internetdatingmayallow universityeducatedwomento
bemoreselective.Withmuchgreateropportunitiestomeettheirdemand,highlyedu
catedwomenwhowish tomarryyetequallyshare paidandfamilyworkcould use
internetdatingoptionstond more genderprogressivemen.Welleducatedwomen
actively searching for marital partners online would then hypothetically establish
semitraditional arrange ments in which part ners match on tra di tional views regard ing
marriage(e.g.,seenas an unbreakablebond,aninstitution central tofamilylife)as
wellas progressivegender roleattitudes.Highlytrainedwomenwouldthusreap the
symbolicandstatusenhancingrewardsofmarriage(Cherlin2020)whilealsonegoti
atingamoreegalitariangenderideology(andperhapspractices)withinthehousehold.
Comparatively,inadditiontobeingless(digitally)skilledatidentifyingandconverting
onlineopportunitiesintopartneringsuccess,lowereducatedwomenwhoalsohopefor
ashareddivision oflaborbut arelesseconomicallyindependent(i.e.,lessattractive
marriagepartners)mayfacemoredifcultymeetingtheirdemandandthusendupin
lesswellmatchedunions.
Whatfollows,giventheimportanceofcompatibilityandpartnerssharingpartnership
oriented values for relationship development and the transition to marriage (Chi
et al. 2020;Houts etal.1996;KellyandConley1987),isthatthehighlyeducated
(particularlywomen)whousedigitaltoolsfordatingaremorelikelytomarrythan
thelowereducated.Thispatternwouldalsooccurbeyondtheeffectofsociodemo
graphichomogamy.Pastwork showedthatsortingon socialbackgroundmattered
moreintheearlyphaseof partnering, when individualsselectedsimilar othersto
guaranteeshared interests,whereassimilarityinvalueswasmoreimportanttothe
couple’sprogressiontoamorecommittedstageoftheirunion(KerckhoffandDavis
1962). Therefore, higheducated women in couples that formed online, with high
valuescompatibility,areexpectedtoprogressmuchfastertowardmarriagethanthe
lowereducated, irrespective of status compatibility(e.g.,sharing the same educa
tional level, or the same place of ori gin).
Hypotheses
Tosummarize,Ianticipatethathighlyeducatedadultswhomettheirpartneronline
will more often transition to marriage than the lesseducated, particularly among
women(Hypothesis1).Theonlinedatingmarriageadvantageofthehighlyeducated
willholdbeyondtheeffectof sociodemographic homogamy and willbepartially
explained by matching on traditional marriage values and egalitarian gender role
beliefs(Hypothesis2).
Downloaded from http://read.dukeupress.edu/demography/article-pdf/58/5/1977/1204808/1977potarca.pdf by UNIVERSITE DE GENEVE user on 02 November 2021
1984 G. Potarca
Are Online and Oine Dating Spaces Mutually Exclusive?
Theargumentspresentedearlierdonotimplyanyoverlapbetweenconventionaland
onlinedating, butthelines betweenthetwo maynotbethatclearinreallife.For
example,coupleswhomet ofinemaystillusedigitalcommunication(e.g.,social
media, messaging apps, video calls) as a relationship maintenance tool (Bergdall
et al. 2012).Nevertheless,evenifofinedatersunavoidablyendupinteractingdig
itally,whatdistinguishesthemfrom onlinedatersishowtheyselect theirpartners.
Aspreviouslystated,onlinecontextsprovideaccesstonumerouspotentialencoun
tersandpossibilitiesofscreening,whichpeoplepotentiallyusetoselectmorewell
suitedpartners.Searchingforapartneronlinecouldgeneratedifferentmatchesthan
exclusivelysearching ofine,withimplicationsforfurtherprogressionto marriage
likelyunalteredbyanysubsequent useofdigital communicationbetweenalready
established part ners.
Selection Into Online Dating
Drawing causal infer ences about the effect of online dat ing on mar riage for ma tion
wouldideally requireanexperimental designrandomly assigningadultstodifferent
search strat e gies. In the absence of such ran dom assign ment, obser va tional stud ies of
differencesin maritalchancesbetween ofineandonline datersmightbe subjectto
selectionbiases. Inadditiontospecicities insociodemographicprole(e.g.,Hitsch
et al. 2010)—including an overrepresentation of men (Schulz et al. 2008)—people
adoptingonlinematingstrategiesmayhaveinherentlydifferentxedorvariablechar
acteristics,whichmightinturnaffectunionformation. Severalidiosyncratic factors
maydetermineboththechoiceofdatingstrategyandmaritalsuccess.First,thepsy
chologicalproleofonlinedaterscouldplayarole.Althoughinitialaccountsdepicted
individualsusinginternetdatingasstereotypicallyshyandsociallyanxious(McKenna
et al. 2002;Whittyand Carr2006),subsequent studieshavefoundsuch technology
userstoscorelowondatinganxiety(ValkenburgandPeter2007)andhighonsociabil
ity(Kimetal.2009),extraversion,oropenness(TimmermansandDeCaluwé2017).
Otherstudiesfoundnoconnectionbetweenpersonality,selfesteem,anddigitaldating
(Blackhartetal.2014;Oroszetal.2018),butscholarshaveacknowledgedthatthepsy
chologicalproleofonlinepartnerseekerslikelychangesasnewtechnologiesemerge
andthusshouldbeaccountedfor(WhittyandYoung2016).
Second,researchhasshownthatpeopleuseonlinemeetingtoolsfordifferent
purposes,withmotivationsrangingfromcasualsextocommittedlongtermunions
(Gudelunas2012;Sumteretal.2017).Individualswhoattachgreatervaluetolong
termrelationships (e.g., more marriageoriented,ascribing more social value to
romanticunions)mayspecicallychooseinternetdatingtosearchmoreeasilyfor
marriagecandidates.Prepartneringdifferencesinvalueorientationbetweenonline
andofinedaters—andnotnecessarilybettermatchingoccurringonline—couldthen
explaindifferentspeedsofprogressiontowardmarriage.Todealwiththesemultiple
sourcesofbias,Icontrolforacomprehensivesetofpotentiallyconfoundingobserved
factorsandalsoconductacomplementarysetofanalysesexaminingprepartnering
pat terns.
Downloaded from http://read.dukeupress.edu/demography/article-pdf/58/5/1977/1204808/1977potarca.pdf by UNIVERSITE DE GENEVE user on 02 November 2021
1985Online Dating and Educational Inequalities in Marriage Formation
Data and Methods
Data
IusedtheGermanFamilyPanel(pairfam),release11.0(Brüderletal.2020),alongi
tudinalsurveydatasetcontainingdetailedyearlyinformationonindividuals’socio
demographicprole,preferences,andvalues,aswellasthecontextinwhichtheymet
theirpartner(ifinaunion).Thepairfam data con tain infor ma tion on the part ner ship
trajectoriesofaninitialsampleof12,402randomlyselectedmenandwomenwhoare
nationallyrepresentativeofcohortsbornin1971–1973,1981–1983,and1991–1993.
DemoDiff,whichconsists ofanoversampleof 1,489 EasternGerman respondents
bornin1971–1973and1981–1983(Kreyenfeldetal.2012), was ini ti ated in par al lel
with pairfam’s Wave II. DemoDiffwasseparately conductedforthreewaves until
WaveV,whenitwasfullyintegratedintopairfam.InWaveXI,arefreshmentsam
plewasadded,includingapproximately5,000respondentsfrombirthcohorts1981–
1983and1991–1993aswellasanew, youngercohort(2001–2003);becausethe
currentanalysistargetsrespondentswithatleasttwomeasurementpoints(forwhom
change over time can be traced), none of the respon dents in the refresh ment sam ple
wasincludedinthesample.Responseratesforpairfamwereapproximately30%to
45%ateachwave,whichiscommonforlargescalesurveysconductedinGermany
(Brüderletal.2019).Adetaileddescriptionofthestudyanditscohortstratiedran
domsamplecanbefoundinHuininketal.(2011).Thedataideallysuittheobjectives
ofthisstudy:theyrecordinformationonadulthood,astage thatnotonlyisdemo
graphicallydenseinfamilyformationevents(Rindfuss1991) but also entails a high
degreeoffamiliaritywiththeinternetanditsmultiplesocialuses(Helsperandvan
Deursen 2015). In addi tion, the panel design of pairfamperfectlytstheaimoftrack
ing partnering tran si tions across time.
Toanalyze competingtransitions to marriage,longtermcohabitation, orunion
dissolution (thelatter includingthevepartnerships thatendedin partner’sdeath)
asopposedtoremaininginanonresidentialunion,Icreatedapersonpartnershiple
basedonthe11availablewaves(2008/2009–2018/2019).Participantswerecensored
oncetheyexperiencedoneoftheeventsofinterestor,ifnotransitionoccurred,atthe
lastinterview.Fortheconstructionofthedataset,Irstdiscardedthosewhowere
continuouslysinglewhileinthepanel(n =5,260).Certainrespondents(n = 157) had
morethanonerelationshipspellwiththesamepartner.Assumingthatconditions
leadinguptomarriageformationdifferedovertime,Ichosenottoexcludethesecond
transition.Needingtoaccountforinitialassortmentinmaritalandgendervalues(i.e.,
similarityasclosetothepointofrelationshiponsetaspossible)ratherthanconverged
ideologiesovertime(AxinnandBarber1997;Hakim2003),Ididnotincluderespon
dentsinongoingmarriages(whocouldhaveprovidedonly postmarriageinforma
tiononvalues)norotherretrospectivelyrecordedrelationships(e.g.,ineventhistory
calendars),forwhichinformationonmeetingcontextwasalsomissing.Thisledto
theexclusionof6,474cases.Ialsoremovednonheterosexualrespondents(n = 129),
thosewhocontributedonlyoneobservationperpartnership(n =2,708),andpartner
shipsthatstarted whentherespondent wasyounger thanage18(n =624). Finally,
Iexcludedparticipantswhohadmissing informationonkey variables(n = 66). To
avoidhavingcasesofzerosurvivaltime(n =116)dismissedintheanalysis,Iadded
Downloaded from http://read.dukeupress.edu/demography/article-pdf/58/5/1977/1204808/1977potarca.pdf by UNIVERSITE DE GENEVE user on 02 November 2021
1986 G. Potarca
asmallunit(0.5)tothetimevariable,asisstandardpractice(Alexandersson2015).
Asaresultofallrestrictions,Irananalysesonasampleof3,561partneredindivid
uals,with4,043observations(i.e.,partnershipspells)and1,240recordedmarriage
for ma tion events.
Measures
The depen dent var i able is sur vival time fromrelationship entryuntilthe occurrenceof
marriage,cohabitation,orbreakup.Themajorityofrespondentswhotransitionedtomar
riageexperiencedaspellofcohabitationbeforemarrying.Thenumberofcoupleswho
metonlineandtransitionedstraightintoamaritalunionwas,however,toosmall(n = 14)
to war rant a dif fer en ti a tion between direct and indi rect mar riage. I cen sored time at the
dateofthelastinterviewifnotransitionwasobserved—thatis,ifindividualsremainedin
non res i den tial part ner ships. The var i able was constructed on the basis of infor ma tion on
relationshipduration,cohabitationduration,ormarriageduration(inmonths).
To cap ture meet ing set ting,Iusedinformationonhowrespondentsmettheirpart
ners.Themeasureallowsforasingleanswerfromthefollowingoptions:(1)school,
training,work;(2) hobby,club,sports;(3) bar,nightclub;(4) friends oracquain
tances;(5)relatives;(6) apersonalad;(7)theinternet;(8)vacation;and(9) other.
Allnondigitalsettingsaregroupedunderasingle(0)ofinecategory.OnlyinWave
IVdidpairfam begintodistinguish betweentwoonline settings(meetingthrough
aninternetpartnerndingservicevs.meetingthroughonlinesocialnetworks,chat
rooms,andsoon);startingwithWaveX,itfurtheraddedthepossibilityofhavingmet
throughdatingapps.Tomaximizethedataathand,andinlinewithearliertheoretical
arguments,Iusedabroadonlinecategoryforall11waves.
Thesecondkeypredictorisedu ca tional level,categorizedasnontertiaryeduca
tion(rangingfromnodegree,completedtherstandsecondstageofbasiceducation,
highschooleducation,tocompletedpostsecondaryeducationaltrainingmeanttopre
pareforlabormarketentryand/ortertiaryeducation)andtertiaryeducation(abach
elor’sdegreeand/orpostgraduatestudies).Therstcategoryislargelycomposedof
respondentswithsecondaryeducation;thenumberofindividualswithprimaryedu
cationwhomettheirpartneronlineistoosmalltoconsiderseparately.Giventhatthe
analysistargetedcouplesintheirlastyearofparticipationorduringtheyearofexpe
riencingaspecicevent,educationwastimeconstantandxedatthemostrecently
observedlevel.Eventhoughremovingrespondentsyoungerthan18wasintendedto
minimizetheamountofintraindividualchangesineducation,thisdecisionaddition
allyensured,forinstance,thatrespondentswhoenteredapartnershipwhilehaving
onlyasecondarydegreebutwhoenrolledinandcompletedahighereducationpro
gramduringthecourseoftherelationshipwereregardedashighlyeducated.
Basedonrespondents’andtheirpartners’education,Ithenconstructedapredictor
of edu ca tional homog amy, sin gling out pairs in which the two part ners had the same
levelofeducation.Furthermore,Iusedinformationoncountryoforiginforbothpart
nerstocomputeanindicatorofhomogamyonorigin(i.e.,borninthesamecountry).
Ialsoconsideredanindicatorofhomogamybasedonmothers’countryoforigin(and
analysesincludingthismeasurerevealedidenticalresults);givenagreateramountof
missingness in these data, how ever, the for mer was pre ferred. Information on reli gion
and paren tal social back ground for both part ners was unavail able in the data.
Downloaded from http://read.dukeupress.edu/demography/article-pdf/58/5/1977/1204808/1977potarca.pdf by UNIVERSITE DE GENEVE user on 02 November 2021
1987Online Dating and Educational Inequalities in Marriage Formation
Tomeasurepartnermatchingonfamilyvaluesandtominimizetheriskofendog
eneityandconvergencein valuesovertime,Iusedtherstrecordedmeasurement
ofbothpartners’valueorientations,similartoNitscheandGrunow(2016).Because
familyvaluesweremeasuredeveryotheryear startingwithWaveI,Iusedcouple
informationfromWaveVII,forinstance,iftherelationship was rstobservedin
WaveVI.Whendataonvaluesweremissing,toavoidtrimmingthesampleevenfur
ther(giventhatnotallrespondentsgaveconsenttotheirpartners’participation,and
not all part ners agreed to par tic i pate them selves), I instead used infor ma tion from the
nearestwavewhenfamilyvalueswererecorded.
To measure marriage value orientation, I rst computed a scale of tra di tional
mar riage ori en ta tion,constructedbysummingscoresforthefollowingitems:“You
shouldget marriedif youpermanentlylivewithyourpartner,”“Marriageisalife
longunionthatshouldnotbebroken,”and“Couplesshouldmarryatthelatestafter
achildis born.”Thesestatementsweremeasured ona5point scaleranging from
(1) “disagree completely” to (5) “agree completely.” Cronbach’s alpha was .673
among respon dents and .679 among part ners. To cap ture atti tudes toward women’s
labormarketparticipation—specically,towardthereconciliationbetweenmaternal
employmentandchildcare—Iusedanitemmeasuringagreementwiththestatement,
“Achildunder6willsufferfromhavingaworkingmother.”Eventhoughpairfam
includedanadditionalitemrequestingagreementonwomen’spaidwork(“Women
shouldbemoreconcernedabouttheirfamilythanabouttheircareer”),theformerwas
pre ferred given its greater var i a tion in responses.
Finally,togaugeattitudesregardingmen’sinvolvementinthedomesticsphere,I
reliedonanitemmeasuringagreementwiththestatement,“Menshouldparticipate
inhousework tothesameextent aswomen.”Comparableto Nitsche andGrunow
(2016),Icombinedtheanswersprovidedbybothpartnersforallthreetypesofval
uesandconstructedfourcategories:(1)themaleandthefemalepartnersharemodern
viewsonfamily,(2)botharetraditionallyoriented,(3)onlythewomanhasmodern
attitudes(mismatch1),and(4)onlythemanisprogressivelyoriented(mismatch2).
Nevertheless,becausecouplesinwhichthefemalepartnerendorsestraditionalviews
onfamilylifeandthemalepartnerismoreprogressivewereveryfew,Icombined
categories(2)and(4)tojointlyrefertocouplesinwhichthefemalepartnerhascon
ser va tive beliefs, irrespective of her part ner’s value ori en ta tion.
Givenahighproportion of data missingforpartners’ familyvalues(e.g.,only
44.3% provided data on attitudes toward maternal employment), I investigated
whethercertainfactorspredictedtheabsenceofsuchinformation.Resultsreported
inTableB1intheonlineappendix(sectionB)revealthatthelowereducated,those
withamigrationbackground,andrespondentsinmorerecentlyformedunionswere
morelikelyto have missingdataonpartners’values. Forwomenonly, thosewho
mettheirmatchofinealsoseemedtobeoverrepresented.Oneimplicationofthese
patterns—particularly the overrepresentation of the lowereducated—for analyses
assessingtheroleofvaluecompatibilityonthelikelihoodofmarriageisthatthemag
nitudeofeducationalgapsmaydifferfromthoseseenintherstsetofanalyses.To
checkwhethermainorinteractiveeffectsofmeetingcontextandeducationchange
comparedwithresultsobtainedforthefullanalyticalsample,Ireranthemainmodel
onthisrestrictedsample,withfairlycomparableresults(seeTable 3).
Theanalyses alsoincludedthefollowingcontrolmeasures: whetheremployed,
migrationbackground,residenceinEastGermany,andtheage(linearandsquared)
Downloaded from http://read.dukeupress.edu/demography/article-pdf/58/5/1977/1204808/1977potarca.pdf by UNIVERSITE DE GENEVE user on 02 November 2021
1988 G. Potarca
andyearwhen therelationship began.Thelatterwasrecodedinto twocategories,
distinguishingbetweencouplesformedbefore(1989–2011)andafter2012.Thesec
ondcategorycoversunionsinitiatedonlineinthepost–datingappperiod(e.g.,Tinder
waslaunchedin2012).Indicatorsofwhetherrespondentswerepreviouslymarried
orhadchildrenwhentheyrstgottogetherwereomittedgiventheirhigh correla
tionwithageattherelationshipstart.Theywereneverthelessincludedindescriptive
analyses.
Foradditionalanalysesexploringtheroleofselectionintoonlinedating,Iconsid
eredtheinclusionoftwoothervariables:thesocial sta tus value of a part ner ship,cap
turedviaaquestionasking,“Howstronglydoyouexpecttoexperienceanincreased
socialstatus becauseofyourpartner?,” with answercategoriesfrom(1) “notatall”
to(5)“absolutely”;andtheveconstructsofper son al ity(neuroticism,extraversion,
agreeableness,conscientiousness,andopenness),measuredonavalidated21itemver
sionoftheBigFiveInventory(RammstedtandJohn2005).Foreachitem,respondents
ratedtheiragreement usinga5pointLikerttype scale rangingfrom(1)“absolutely
incorrect”to(5)“absolutelycorrect.”Personalitywasmeasuredthreetimesthroughout
thepanel(i.e.,inWavesII,VI,andX).Forrespondentswhoremainedinthepanellong
enoughtobesurveyedmorethanonce,Iconsideredonlytherstmeasurement.
Methods
Toassesseducationalgapsinhowmeetingonlineinuencesthetransitiontomar
riage, I relied on Fine-Gray com pet ing risks mod els(FineandGray 1999), which
focusedonthe subhazard ofexperiencinganeventof interest(i.e.,marriage) asa
functionof timespentinarelationship.MorerealisticallythanaCoxproportional
hazardmodel,italsoaccountedfortwopossiblealternativerisks(i.e.,cohabitation
anddissolution).Thesubhazardofmarriagewasdenedasfollows:
(1)
hmarriage (t)
is theinstantaneousprobabilityofmarriageoccurringattimet, pro vided
that no event occurred before t(Clevesetal.2011).Themodelforthesubhazardof
marriagethentookthefollowingform:
hmarriage (t|x)=hmarriage,0(t)exp(xβ).
(2)
hmarriage,0
(t
)
representsanonparametricestimationofthebaselinesubdistributionhaz
ard for mar riage, whereas βsareregressioncoefcientsinlogsubhazardratioform.
The cumulative incidence function dening the incidence of marriage occurring
whileaccountingforalternativeriskswaslatercalculatedasfollows:
C
IFmarriage (t)=1−exp −
0
t
∫hmarriage (t)dt
{ }
, (3)
where
0
t
∫hmarriage (t)dt is the cumulative marriagespecic subhazard function. As
hmarriage (t)=lim
Δt→0
Pr (t≤T<t+Δt, event =marriage|T>t or (T≤t and event ≠marriage)
Δt
⎛
⎝
⎜⎞
⎠
⎟.
Downloaded from http://read.dukeupress.edu/demography/article-pdf/58/5/1977/1204808/1977potarca.pdf by UNIVERSITE DE GENEVE user on 02 November 2021
1989Online Dating and Educational Inequalities in Marriage Formation
opposedtotheCox regression variantfordealing with competingrisks,the Fine
Grayapproachretainsparticipantswhoexperienceanalternativepartnershiptransi
tionintheriskset.Anadditionaladvantage,relevanttothisstudy’sgoalofassessing
the effect of meet ing online and edu ca tion on the cumu la tive inci dence func tion, is
themorestraightforward handlingofcovariateeffects. Becausesomerespondents
reportedseveralpartnerships,Iusedrobuststandarderrorstocorrectforthenoninde
pendenceofpartneringepisodesclusteredwithinindividuals.Theanalysiswastted
usingStata’sstcrreg com mand.
Results
Table 1providesdescriptive statisticsbymeetingsetting.Of4,043 observedpartner
ships formed between 1989 and 2018, 13.7% consisted of couples that met online.
Additionalexplorations(notshown)revealedthatinthelastveyears,oneinve(i.e.,
20.5%)unionsbeganonline.Table 1 fur ther more shows that com pared with individuals
incouplesformedofine,thosewhomettheirpartneronlinewerelessoftenhighlyedu
cated.Formenwithnontertiaryeducation,homogamywassignicantlymorecommon
forrelationshipsinitiatedonlinethanelsewhere.Highlyeducatedmen(butnotwomen)
were less homogamous and more likely to partner down on education online than
ofine(formoredetailedinformationoneducationalpairingsacrossmeetingsettings
thatalsodistinguishesrespondentswithprimary,secondary,andtertiaryeducation,see
TableC1intheonlineappendix,sectionC).Furthermore,menincouplesthatformed
onlinewerelesslikelytohaveapartnerofthesameorigin(i.e.,countryofbirth)but
attachedmoresocialstatusvaluetotheirunionthantheonesincouplesformedofine.
Forwomen,sociodemographichomogamy didnotvaryacrossmeetingcontext.Fur
thermore,respondentswhomet their partneronlineweremore frequently employed
(especiallymen),older,andmoreoftenpreviouslymarriedandwithchildrenatthestart
oftherelationshipthanthosewhomettheirpartnerofine.Thetwogroups,however,
didnotdifferintermsofpersonality.
Table 1alsoindicatesthatamongmen,unionsformedonlineweresignicantly
more likely to include partners who share traditional marriage views. Additional
crosstabulations across genderandeducational level(seeTableC2intheonline
appendix,sectionC)revealthatthiswasalsothecaseamongwomenbutonlyamong
thehighlyeducated.Morespecically,TableC2showsthatwhereaslowereducated
womenwerelesslikelytomatchwiththeirpartnerintermsofconservativemarriage
valuesiftheymetthemonline(13.3%)thanofine(25.2%),compatibilityregarding
traditionalmarriageviewsforthehighlyeducatedwasmorelikelytooccurifthey
metonline(29.3%)thanofine(19.1%).Furthermore,amonghighlyeducatedmen
andespeciallywomen,bothpartnersholdingprogressiveviewsregardingmothers’
participationinpaidworkwasmorecommonamongonlineinitiatedcouples.Among
respondentswithnontertiaryeducation,however,coupleswerelessfrequentlypro
gressiveandmoreofteninunionswhereonlythefemalepartnerheldmodernviews
onmaternalemployment.Whenitcomestovaluespertainingtomen’sinvolvement
inthedomesticsphere,particularlyamonglowereducatedmenandhighereducated
women, there is a greater chance of both part ners shar ing mod ern val ues and a lower
chanceofmismatchesamongcouplesformedonlinethanofine.
Downloaded from http://read.dukeupress.edu/demography/article-pdf/58/5/1977/1204808/1977potarca.pdf by UNIVERSITE DE GENEVE user on 02 November 2021
1990 G. Potarca
Table 1 Sampledescriptivestatistics,bymeetingcontext:pairfamWavesI–XI(2008–2019)
MaleSample FemaleSample
Ofine Online Sig. Ofine Online Sig.
TypeofTransition(%)
Notransition 16.6 11.5 15.5 13.6
Marriage 31.4 35.8 29.7 28.2
Cohabitation 34.1 36.6 38.5 45.0
Breakup 17.9 16.0 16.3 13.3
Respondent’sEducation(%)
Tertiary 42.9 38.3 42.8 37.2 †
EducationalHomogamy(%)
Nontertiary×homogamy 63.7 73.3 * 62.0 63.4
Tertiary×homogamy 56.4 50.5 58.7 60.0
OriginHomogamy(%) 91.0 86.4 * 88.6 88.6
MarriageValues’Match(%) **
Bothmodern 55.4 45.2 60.2 59.4
Bothoronlythewomantraditional 28.4 43.3 22.4 20.3
Onlythewomanmodern 16.2 11.5 17.4 20.3
GenderValues’Match:Women’sPaid
Work(%)
Bothmodern 26.5 24.8 28.7 31.8
Bothoronlythewomantraditional 45.5 49.5 46.4 41.7
Onlythewomanmodern 28.0 25.7 24.9 26.5
GenderValues’Match:Men’sDomestic
Work(%)
Bothmodern 71.3 77.1 70.7 75.2
Bothoronlythewomantraditional 14.1 10.5 12.0 9.8
Onlyshemodern 14.6 12.4 17.3 15.0
Employed(%) 77.5 83.1 * 63.8 64.7
MigrationBackground(%) 15.8 12.3 16.7 14.9
PreviouslyMarried(%) 6.6 12.3 ** 12.5 23.6 ***
Childrenatt1(%) 9.1 14.8 ** 22.9 32.0 ***
LivinginEasternGermany(%) 28.6 29.6 30.2 31.4
Yearatt1:After2012(%) 29.2 46.1 *** 31.7 43.0 ***
PartnershipDurationatMarriage:
Range0.5–283(mean) 71.97
(45.95)
39.68
(26.60)
*** 74.96
(46.57)
47.33
(29.75)
***
Ageatt1:Range18–46(mean) 25.69
(6.34)
28.61
(7.31)
*** 25.51
(6.76)
29.09
(7.35)
***
Neuroticism:Range1–5(mean) 2.52
(0.74)
2.39
(0.76)
2.92
(0.83)
3.01
(0.82)
Extraversion:Range1–5(mean) 3.50
(0.79)
3.42
(0.78)
3.65
(0.79)
3.67
(0.77)
Agreeableness:Range1–5(mean) 3.20
(0.68)
3.22
(0.55)
3.26
(0.75)
3.20
(0.71)
Conscientiousness:Range1.5–5(mean) 3.75
(0.64)
3.73
(0.58)
3.92
(0.61)
3.82
(0.67)
Openness:Range1.4–5(mean) 3.62
(0.69)
3.56
(0.61)
3.66
(0.73)
3.74
(0.72)
SocialStatusValueofUnion:Range
1–5(mean) 2.07
(1.03)
2.26
(1.06) **
1.87
(0.97)
1.86
(0.98)
Downloaded from http://read.dukeupress.edu/demography/article-pdf/58/5/1977/1204808/1977potarca.pdf by UNIVERSITE DE GENEVE user on 02 November 2021
1991Online Dating and Educational Inequalities in Marriage Formation
MaleSample FemaleSample
Ofine Online Sig. Ofine Online Sig.
NumberofObservations 1,675 243 1,816 309
NumberofIndividuals 1,512 236 1,610 293
Notes:t1 =therstyearofpartnership.Standarddeviationsareshowninparentheses.
†p <.10;*p <.05;**p <.01;***p < .001
Table 1 (continued)
Fine-Gray Competing Risks Models
I now present the results of a competingrisks analysis predicting transitions into
marriage(subhazardsreportedinTable 2). Figure1 also pro vi des men’s and women’s
predictedcumulativeincidence curvesofentryintomarriagebasedonthisestima
tion,acrosseducationalgroupandbymeetingsetting.Forthegraph,Irestrictedthe
rela tion ship dura tion to 180 months because the occur rence of events among cou ples
whometonlinerarelyextendedbeyondthiswindow.Aspreviouslynoted,themodel
treatstransitioningintoacohabitingunionanddissolvingthepartnershipasalterna
tiveriskstomarrying.Resultsinconnectiontoeventsotherthanmarriagearesecond
arytothisstudy,andIthereforedonotexpandonthem.Nevertheless,resultsinTable
2showthatmeetingcontextandeducationwerenotassociatedwiththetransitionto
cohabitationforeithergender andthathigheducatedwomenhadamarginallysig
nicantlowerriskofuniondissolutioniftheymettheirpartneronlineversusofine.
Focusingontheeventof interest,Figure1rstindicatesthatfor menwhomet
theirpartnerofine,there wasnopronouncedgapbetweenthosewithtertiaryand
nontertiaryeducation.Amongwomenwhofoundtheirpartnerofine,however,there
wasasignicanteducationalgap,withthelowereducatedmorelikelytotransition
intomarriage thanthehighereducated.Thegraphthen showsthatmeeting online
wasassociatedwithgreaterchancesofmarryingformen,irrespectiveofeducation;
forwomen,thehighlyeducatedwhomettheirpartneronlineweresignicantlymore
pronetotransitiontomarriagethanthelesseducated.Becauseofsmalldifferences
intheincidenceofmarriageacrossmeetingcontextforthosewithnontertiaryedu
cation,thereversaloftheoriginalpatternwasduetothesignicantincreaseexperi
encedbywomenwithtertiaryeducation.
The esti ma tes reported in Table 2provideamorepreciseindicationofthemagni
tude of this increase. Given that the mod els include both main and inter ac tive effects
ofeducation and meeting context,thesubhazardformeeting online, for instance,
representstheestimatedeffectforthereferencecategoryofeducation(i.e.,tertiary
education).Therefore,thesubhazardratioof1.859shows thatwithtime andmul
ti ple sociodemographic covariates con trolled for and with com pet ing events also
allowedtooccur,themarriagesubhazardforhighlyeducatedwomenwhomettheir
partneronlinewas85.9%ofthatforhighlyeducatedwomenwhomettheirpartner
ofine.Theestimatedeffectof meetingonlineforwomen withnontertiaryeduca
Downloaded from http://read.dukeupress.edu/demography/article-pdf/58/5/1977/1204808/1977potarca.pdf by UNIVERSITE DE GENEVE user on 02 November 2021
1992 G. Potarca
Table 2 SubhazardratiosfromFineGraycompetingrisksmodelsof(1)marriage,(2)cohabitation,and
(3)breakup:pairfamWavesI–XI(2008–2019)
MaleSample FemaleSample
Marriage Cohabitation Breakup Marriage Cohabitation Breakup
Meeting Online 1.553* 0.949 0.660 1.859*** 0.971 0.604†
(0.278) (0.187) (0.222) (0.290) (0.168) (0.174)
Nontertiary 1.065 0.904 0.978 1.216* 0.845 0.862
(0.087) (0.090) (0.117) (0.095) (0.091) (0.102)
Meeting Online ×
Nontertiary 1.011 0.718 1.526 0.617* 1.103 1.548
(0.248) (0.198) (0.598) (0.141) (0.258) (0.544)
Employed 1.943*** 1.228 0.653*** 0.975 1.568*** 0.849
(0.263) (0.170) (0.081) (0.076) (0.160) (0.095)
Migration
Background
1.422*** 0.484*** 1.125 1.153 0.750* 1.063
(0.152) (0.079) (0.163) (0.120) (0.105) (0.151)
LivinginEastern
Germany 0.798** 1.163 0.959 0.927 1.323** 0.907
(0.067) (0.120) (0.133) (0.071) (0.126) (0.113)
Yearatt1After
2012 0.686** 1.154 0.763* 0.810 1.137 0.656**
(0.095) (0.112) (0.097) (0.113) (0.110) (0.086)
Ageatt11.412*** 1.087 0.628*** 1.496*** 1.012 0.687***
(0.083) (0.064) (0.040) (0.090) (0.049) (0.042)
Ageatt1,Squared 0.995*** 0.998 1.007*** 0.993*** 1.000 1.006***
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)
Partnership
Duration 1.062*** 0.835*** 1.057*** 1.066*** 0.727*** 1.088***
(0.006) (0.022) (0.016) (0.005) (0.023) (0.019)
Partnership
Duration,
Squared
0.9995*** 1.002*** 0.999*** 0.9996*** 1.005*** 0.998***
(0.000) (0.001) (0.000) (0.000) (0.001) (0.000)
Partnership
Duration,Cubed 1.000001*** 0.99999* 1.000003*** 1.000001*** 0.99997*** 1.000004***
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
LogPseudo
Likelihood −4,100.8 −4,298.6 −2,354.2 −4,267.3 −5,337.2 −2,402.8
Wald χ2(df)502(12) 525(12) 172(12) 478(12) 611(12) 87(12)
Prob> χ20.000 0.000 0.000 0.000 0.000 0.000
Numberof
Observations 1,918 2,125
NumberofEvents 613 660 339 627 838 337
Numberof
Competing
Events 999 952 1,273 1,175 964 1,465
NumberofCensored
Cases 306 323
Numberof
Individuals 1,697 1,855
Notes:Robuststandarderrorsareshowninparentheses.t1 =therstyearofpartnership.
†p <.10;*p <.05;**p <.01;***p < .001
Downloaded from http://read.dukeupress.edu/demography/article-pdf/58/5/1977/1204808/1977potarca.pdf by UNIVERSITE DE GENEVE user on 02 November 2021
1993Online Dating and Educational Inequalities in Marriage Formation
Fig. 1 Men’sandwomen’spredictedcumulative incidenceof marriage,bymeeting contextandeduca
tionallevel.ThegureisbasedonestimatesreportedinTable 2.
Downloaded from http://read.dukeupress.edu/demography/article-pdf/58/5/1977/1204808/1977potarca.pdf by UNIVERSITE DE GENEVE user on 02 November 2021
1994 G. Potarca
tionisgivenby1.859× 0.617 = 1.147. This means that for those with less edu ca tion,
meetingtheirpartnerthroughtheinternetwasassociatedwithasignicantlysmaller
increase(14.7%)intheincidenceofmarriage.TheseresultsconrmHypothesis1,
whichpredictedthatespeciallyforwomen,usingdigitaltoolsformateselectionposi
tionsthehighlyeducatedatamarriageadvantagecomparedwiththelowereducated.
Furthermore,themechanism suggested as triggeringimprovementinthemari
talchancesofhighlyeducatedwomenusinginternetdatingtondpartnerswasthe
bet ter matching on tra di tional mar riage atti tudes and pro gres sive views on gen der.
Table 3presentsmodelstestingwhethervaluecompatibilitymediatedtheassociation
between meet ing online and the tran si tion to mar riage.
Asnotedearlier,givenasignicantreductioninsamplesizewhenincludingmea
suresofpartners’ideologicalpairings,Irerantheanalysesonthisrestrictedsample
(Model1).The resultsarefairlysimilartothosepreviouslypresented,witha few
exceptionsobservedamongwomen.1Regardingthemodelbuildingstrategy,Model
2addsmeasuresofeducationalandoriginhomogamy;Model3includestheeffectof
matchingonmarriagevalueorientation;andModels4and5addtheeffectofmatch
ingongendervalues intermsof mothers’paidworkand men’sdomesticinvolve
ment,respectively.
To assess their indi vid ual mediating con tri bu tion, I esti mated the two mea sures
ofgendervaluematchinginseparatemodels.Furthermore,toalignwiththeoretical
arguments,Iusedadifferentbaselinecategoryforthetwotypesoffamilyvalueide
ology,suchthatresultspresenttheeffectofcouplessharingtraditional(vs.modern)
marriagevaluesandtheeffectofcouplessharingmodern(vs.traditional)genderval
uesalongsidetheeffectofcouplesinwhichonlythefemalepartnerheldprogressive
familyvalues.Giventhateducationaldifferencesinwomen’sonlinedatingadvan
tageweredrivenbythelargeincreaseintheincidenceofmarriageamongthehighly
educated(withlittle variationinthemarital chancesofthelowereducated across
meeting context), I mainly inspected changes in the subhazard of meeting online
(i.e.,theeffectcorrespondingtouniversityeducatedwomen).Nevertheless,tovisu
alizehowtheadditionofeachcovariateinuencestheonlineeducationalgradientin
marrying,FiguresD1(formen)andD2(forwomen)intheonlineappendix(section
D)presentthepredictedcumulativeincidenceofmarriagebyeducationandmeeting
contextfromthesemodels.
Asexpected,resultsshowthatsociodemographichomogamydidnothaveasignif
icanteffectinitself,nordiditsinclusionsubstantivelyaltertheassociationbetween
meetingonlineandentryintomarriage.Addingameasureofmatchingonmarriage
valuesinModel3,however,reducedtheeffectofmeetingonlineforbothhighlyedu
catedmen(from58%inModel2to42.1%)andwomen(from54.7%to48%).Forthe
former,theeffectofmeetingonlinewasalsonolongerstatisticallysignicant.For
thelatter,accountingforhowcouplespairupintermsofmarriageattitudesslightly
diminishedtheofineadvantageofwomenwithnontertiaryeducation(from26.5%
to22.4%).ResultsinconnectiontoModel3furthermorerevealthatforwomen,cou
1 Themaineffectofmeetingonlinedecreasedinsizebutremainedsignicant.Theinteractiveterm“meet
ing online ×nontertiary”loststatisticalsignicance—potentiallybecause thelowereducatedwere more
likelytohavemissinginformationonpartners’values—butretaineditssize.
Downloaded from http://read.dukeupress.edu/demography/article-pdf/58/5/1977/1204808/1977potarca.pdf by UNIVERSITE DE GENEVE user on 02 November 2021
1995Online Dating and Educational Inequalities in Marriage Formation
Table 3 SubhazardratiosfromFineGraycompetingrisksmodelsofmarriage(cohabitationandbreakupasalternaterisks):pairfamWavesI–XI(2008–2019)
MaleSample FemaleSample
Model 1
(restricted
sam ple 1) Model 2 Model 3 Model 4 Model 5
Model 1
(restricted
sam ple 1) Model 2 Model 3 Model 4 Model 5
Meeting Online 1.610* 1.580* 1.421 1.457†1.429 1.510* 1.547* 1.480* 1.460†1.475†
(0.336) (0.327) (0.310) (0.319) (0.310) (0.287) (0.296) (0.292) (0.287) (0.293)
Nontertiary 1.133 1.122 1.102 1.128 1.108 1.265* 1.265* 1.224* 1.277* 1.231*
(0.113) (0.114) (0.113) (0.119) (0.113) (0.124) (0.124) (0.119) (0.129) (0.123)
Meeting Online ×Nontertiary 0.986 1.006 1.134 1.105 1.095 0.679 0.679 0.719 0.746 0.731
(0.314) (0.320) (0.365) (0.355) (0.357) (0.212) (0.209) (0.230) (0.241) (0.233)
EducationalHomogamy 1.070 1.070 1.072 1.061 1.122 1.155 1.141 1.156
(0.106) (0.105) (0.107) (0.104) (0.112) (0.117) (0.115) (0.116)
CountryOriginHomogamy 0.775 0.775 0.774 0.791 1.174 1.241 1.229 1.224
(0.177) (0.189) (0.189) (0.196) (0.281) (0.310) (0.306) (0.298)
MarriageValues’Match
(ref.= both mod ern)
Bothtraditional 1.421** 1.461*** 1.431*** 1.556*** 1.627*** 1.549***
(0.156) (0.166) (0.154) (0.185) (0.195) (0.184)
Onlythewomanmodern 1.196 1.230 1.201 1.558*** 1.608*** 1.591***
(0.174) (0.177) (0.174) (0.194) (0.200) (0.195)
GenderValues’Match:
Women’sPaidWork
(ref.= both tra di tional)
Bothmodern 1.223†1.277*
(0.143) (0.146)
Onlythewomanmodern 1.003 1.072
(0.123) (0.133)
Downloaded from http://read.dukeupress.edu/demography/article-pdf/58/5/1977/1204808/1977potarca.pdf by UNIVERSITE DE GENEVE user on 02 November 2021
1996 G. Potarca
MaleSample FemaleSample
Model 1
(restricted
sam ple 1) Model 2 Model 3 Model 4 Model 5
Model 1
(restricted
sam ple 1) Model 2 Model 3 Model 4 Model 5
GenderValues’Match:Men’s
DomesticWork(ref.= both
tra di tional)
Bothmodern 0.913 0.844
(0.110) (0.123)
Onlythewomanmodern 0.728†0.695*
(0.132) (0.126)
LogPseudoLikelihood −2,484.4 −2,483.4 −2,478.8 −2,477.3 −2,477.2 −2,369.5 −2,368.7 −2,360.2 −2,358.3 −2,358.4
Wald χ2(df)292(12) 293(14) 308(16) 306(18) 332(18) 231(12) 234(14) 255(16) 260(18) 257(18)
Prob> χ20.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
NumberofIndividuals 866 866 866 866 866 830 830 830 830 830
NumberofObservations 910 910 910 910 910 871 871 871 871 871
NumberofEvents 415 415 415 415 415 396 396 396 396 396
NumberofCompetingEvents 417 417 417 417 417 410 410 410 410 410
N(censored) 78 78 78 78 78 65 65 65 65 65
Note:Robuststandarderrorsareshowninparentheses.
†p <.10;*p <.05;**p <.01;***p < .001
Table 3 (continued)
Downloaded from http://read.dukeupress.edu/demography/article-pdf/58/5/1977/1204808/1977potarca.pdf by UNIVERSITE DE GENEVE user on 02 November 2021
1997Online Dating and Educational Inequalities in Marriage Formation
ples in which the man had con ser va tive mar riage val ues, irrespective of woman’s
ideology,hadahigherchanceofmarryingthancouplesinwhichbothpartnerswere
moremodern. Formen,it wasmainlycouples wherebothpartners hadtraditional
marriagevaluesthatweresignicantlymorepronetomarriage.
ResultsfromModel4furthermoreindicatethatinthecaseofwomen,whenpart
ners’relativeideologyregardingmaternalemploymentwascontrolledfor,themar
riagesubhazardforthehighlyeducateddecreasedtwoadditionalpercentagepoints.
Althoughaddingameasureofcompatibilityinmarriagevalueorientationprompteda
greaterdecreaseintheeffectsizeofmeetingcontext,itwasaccountingformatching
onbothmarriageattitudesandgenderideologythatrenderedtheeffectstatistically
insignicant(atthep <0.05level).Resultsalsorevealthatfemalerespondentswhose
partnerssharedmodernviewsonwomen’spaidworkweresignicantlymorelikely
to marry compared with women in more traditional couples. For men, this effect
wassmallerinbothsizeandsignicance,anditsinclusiondidnotreducebutrather
slightlyincreasedtheeffectofmeetingonline.
Finally,resultsfromModel5showthatwhen accountingforvaluematchingin
termsofmen’sinvolvementindomestictasks,theassociationbetweenmeetingcon
textandriskofmarriagedecreasedagain forwomen,albeittoa lesserextentthan
inModel4.FigureD2(onlineappendix)alsovisuallyindicatesthattheinclusionof
withincouplegenderideologyconcerning maternalemploymenthadagreateroff
setting effect on the edu ca tional gra di ent of women who met their part ner online than
the inclu sion of value matching concerning men’s par tic i pa tion in domes tic tasks.
The results in Table 3alsorevealthatwomenincouplesinwhichonlytheyhadpro
gressiveviewsonmen’scontributiontofamilywork(butnotwomenincouplesin
whichbothpartnersheldmodernviews)weresignicantlylesslikelytomarrythan
womeninmoretraditional couples.Formen,theeffectofthis mediatorwasmore
mod est, and its inclu sion did not dimin ish the effect of meet ing online. The results
thereforelargelyconrmHypothesis2,whichsuggestedthatespeciallyforwomen,
partners’combinedideologyintermsofbothmarriagevalueorientationandgender
rolespartiallyexplainstheonlinedatingmarriageadvantageofthehighlyeducated
comparedwiththelowereducated.
Supplementary Analyses
First,toaccountfor the potentialselectivity of respondentswhomettheir partner
online, I esti mated mod els with addi tional covariates that had the poten tial to shape
boththecontextofpartnerselectionandtheprobabilityofmarriage,suchasperson
alitytraitsorthesocialstatusvalueofapartnership.Givenalargeamountofnon
overlappingmissingvalues,whichwouldhaveexcessivelytrimmedthesubsample
of respon dents who met their part ner online, I opted for mod els testing the effect of
eachsetofcovariatesseparately(TableE1,onlineappendix,sectionE).Becauseof
asignicantreductioninsamplesizewhenaddingpersonalitymeasures,Irstrepli
cated Model 1 on the sub set of respon dents who pro vided infor ma tion on these items.
Theresultsformenshowthatthecoefcientformeetingonlinewasstillsubstantial
butstatisticallysignicantatthep <.10levelonly.Forwomen,meetingonlinewas
stillstronglyandsignicantlyassociated withthesubhazard ofmarriage.Forboth
Downloaded from http://read.dukeupress.edu/demography/article-pdf/58/5/1977/1204808/1977potarca.pdf by UNIVERSITE DE GENEVE user on 02 November 2021
1998 G. Potarca
groups,the inclusionofpersonality factors slightly reduced the effect of meeting
contextbutdid not entirelyoffset itseffect.Furthermore,these analysesindicated
the robust ness of pre vi ous results to includ ing a mea sure of social value ascribed
toromanticunions.Lesseducatedwomenwhoserelationshipsformedinnondigital
settingsstillhadahigherprobabilityofmarriage,andmen(irrespectiveofeducation)
andhigheducatedwomenwhoserelationshipsstartedonlinehadincreasedoddsof
mar riage.
Second,toseewhetherhighlyeducatedwomenusingonlinedatingwerenotjust
morepronetoconverttheirunionintomarriagebutalsohadgreaterchancesofnding
apartnertobeginwith,Ifocusedontheprepartneringstageandinvestigatedentry
into a roman tic part ner ship among sin gles searching for a part ner online ver sus those
searchingonlyelsewhereinadiscretetimesurvivalanalysis(Allison2014).Begin
ning with Wave III, pairfamaskssingle respondentswhetherthey usetheinternet
tondapartneriftheyrespondedtoapriorquestionassessingiftheywouldliketo
haveapartner,usinga5pointscalerangingfrom(1)“notatall”to(5)“absolutely.”
Ifrespondentsselectedthemiddlevalue(3)orhigher,thenthefollowupquestionon
whethertheyusetheinternettondapartnerwasaddressed.Theadvantageofthis
lteringdesignisthattheresultingsampleincludesonlythoseindividualswhoare
seekingarelationship,minimizingthepossibilitythatonlinedatershaveselectively
stronger(orweaker)partneringintentionsthanofinedaters.Italsohelpsdisentangle
twomechanismsthatpotentiallyleadtolesspartnering:namely,thechoiceofstaying
singleordifcultyndingasuitablepartner.Theobservationalwindowrangesfrom
thestart ofsinglehood(sincethedissolutionofthepreviouspartnership,ifany)or
age18(ifnopreviousrelationshipswererecorded)untiltheyearofenteringaunion,
withrightcensoringoccurringiftheeventofinterestwasnotexperienceduntiltheir
lastyearofpanelparticipation.
Additionalinformation about measuresandmethodis provided insectionFof
theonlineappendix.Theresultsofthisanalysis(reportedinFigureF1,whichplots
predicted prob a bil i ties of starting a part ner ship across gen der, edu ca tion, and search
context)revealthat theuseof theinternetledto anegative shiftinthepartnering
chancesofallgroupsbutlesssoforhighlyeducatedwomen.Thisndingalignswith
previousworkshowingthatusingdigitaltoolsfordatingwasnotnecessarilylinked
tomorepartnerships(Rosenfeld2018). It is pos si ble that online, too much choice and
diversityofoptionsoverwhelms(Schwartz2005), slowing the pro cess of selecting
andinvestinginasingleconnection.Maledatersexperiencedgreaterdelaysinpart
nershipformationthanfemaledaters,conrmingthatmentakemoretimetosearch
and per haps engage in more casual encoun ters when presented with a mul ti tude of
options(YuandKuo2016).
Amongmen,thedataalsoexposeapositiveeducationalgradientirrespectiveof
searchcontext.Amongwomen,whenonlyseekingapartnerofine,thehighlytrained
werelesssuccessfulthanthosewith lowereducation; indigital markets,however,
theydisplayedsubstantiallygreaterpartneringchances,and a positiveeducational
gradientemerged.Additionalanalyses,includingxedeffectsmodels(notshown),
dismissconcernsregarding(un)observedheterogeneity,eitherxedortimevarying,
affecting the relation between online search strategy and partnering events across
edu ca tion and gen der. In short, results reveal that seek ing a part ner in the vir tual
worldperpetuatedpartneringinequality(Schmitz2017) among men while reverting
Downloaded from http://read.dukeupress.edu/demography/article-pdf/58/5/1977/1204808/1977potarca.pdf by UNIVERSITE DE GENEVE user on 02 November 2021
1999Online Dating and Educational Inequalities in Marriage Formation
theeducationalhierarchy amongwomen.Withinthegroup ofsingles usingonline
dating,higheducatedwomenexperiencedthehighestchanceofndingamate.This,
alongsidepreviousresults,conrmsthatwelleducatedwomenarethemostskilled
at tap ping into the abun dant and diverse pool of can di dates pro vided online to part ner
andultimatelymarry.
Finally,inadditionalanalysesbasedonthesamesampleofsinglerespondents,I
soughttoestablishwhetherhighlytrainedwomenwithamoreliberalmindsetregard
inggenderroleswere selectivelydrawn toonlinedating.ResultsreportedinTable
F1intheonlineappendixindicatethatasexpectedgiveneducationaldifferencesin
familyvalues(Kulik2016;MyersandBooth2002),lowereducatedmenandwomen
weregenerallymoretraditionallyorientedintermsofmarriagevaluesandlesspro
gressivewithregardtothedistributionofgenderroles.Online,despiteanoverrep
resentationofhighlyeducatedwomenwithtraditionalmarriageviews,therewasno
oversupplyofhighlyeducated women with progressivegendervalues. Moreover,
thereseemedtobeasmallincreaseinlowereducatedwomenvaluingmen’sinvolve
ment in domes tic tasks among those searching for part ners online. Therefore, the
greater probability of universityeducated women being part of couples with pro
gressiveviewsongenderrolesiftheunionstartedonlinethanofineismorelikelya
consequenceofthematchingmechanismsoccurringonlinethanaresultofselectivity
on val ues.
Discussion
With the wide spread use and accep tance of online instru ments for connecting with
potentialpartners(Smith2016),investigatingpartnermatchingandmaritalunionfor
mationintoday’sdigitaleraishighlywarranted.Identifyingtheimpactthattheinter
nethashadonmarriageisalsoanimportantstepinprovidingscienticevidencethat
responds to grow ing con cerns regard ing the gen eral impact of new tech nol o gies on
sociallife(Chesley2005, 2006).Withindemographicresearchonfamilyformation
andinequalityinparticular,welackinvestigationsintohowonlinedatingtoolsare
shapingcurrenteducationalgradientsinmarriage(CarboneandCahn2014;Kalmijn
2013).Tollthisknowledgegap,Iinvestigatedentryintomarriageamongcouples
whometonlinecomparedwiththosewhometofineviaFineGraycompetingrisks
modelsoftimeuntilmarriage (vs.cohabitationorbreakup).Toprobe whetherthe
internet’s effects on mar i tal pros pects across edu ca tion is related to bet ter matching in
terms of mar riage val ues and gen der role atti tudes, over and above sociodemographic
similarity,Ialsoassessedpartners’ideologicalpairingsasakeyexplanatorymecha
nisminadirectempiricaltest.Finally,theanalysesaddressedconcernsofselection
intoonlinedating either by accountingforabroadset of potentially confounding
observedfactorsorbyexaminingprepartneringpatternsinadditionalanalyses.
Basedon uptodatepaneldataprovidingdistinctivelyrichmultiactorinforma
tiononthepartnering choices ofGermanadultsover time, the investigations rst
foundthatincontrastwiththepositivemarriagegapcurrentlyobservedinmostWest
erncountries(VanBaveletal.2018),butinlinewithearlierndings(Mulderetal.
2006),universityeducatedGermanwomenwhomettheirpartnerintraditionalways
werelesspronetomarrythanthosewithnontertiaryeducation.Formen,thediffer
Downloaded from http://read.dukeupress.edu/demography/article-pdf/58/5/1977/1204808/1977potarca.pdf by UNIVERSITE DE GENEVE user on 02 November 2021
2000 G. Potarca
encebetweenthelowerandhighereducatedwasminimalirrespectiveofwherethey
mettheirpartner.Furthermore,men ofbothtertiary andnontertiaryeducationhad
signicantly higher chances of marryingiftheirunionstartedonlinethanofine.
Bothlowerandhighereducatedmendisplayinggreaterpartnerresemblanceontra
ditionalmarriagevaluesiftheirrelationshipstartedonlineversusofine(TableC2,
onlineappendix)mayexplainwhyonlinedatinguniformlyincreasedmaritalchances
amongmen.Forwomenincoupleswhometonline,thegradientwasinverted.Poten
tiallymoredigitallyskilledatmakingbetterchoiceswhenfacedwithamultitudeof
diverseoptions(OllierMalaterreetal.2019),highlyeducatedwomenwhomettheir
matchonlineweresignicantlymorepronetotransitionintoamorecommitted(i.e.,
marital)unionthanlowereducatedwomen.
Accounting for partners’ matching on family values partly offset the marital
advantage of universityeducated German women who met their partner online.
Whereasstatuscompatibilityintermsofeducationorplaceoforiginplayedamini
malrole(KerckhoffandDavis1962), matching in terms of mar riage and gen der role
beliefsmatteredinpartiallyexplainingthehigherchanceofmarryingamonghighly
educatedwomen.First,ndingsspeakofthepivotalrolethatmarriagestillplaysin
Germany(KlärnerandKnabe2017)andamonguniversityeducatedwomeningen
eral(Cherlin2020).Second,inviewofsupplementaryresultsindicatingthathighly
educatedwomen withtraditional marriageattitudesselfselectintodigitalpartner
search(TableF1,onlineappendix),internetdatingseemstobepositionedasalong
termdatingcontext(Lietal.2013),selectivelyappealingtoindividualswithastron
ger focus on lifelong unions and intimacy goals (Sanderson et al. 2007). Rather
thanbeingaspacewherepeoplemakedecisionsbasedonlyonimpulseormarket
like rationalizations, digital partner markets—particularly dating websites—may
infactbe hyperromanticized spaces where traditionalideals of longlasting love
still dominate (Bergström 2011; Dröge and Voirol 2011) but where con ser va tive
genderviews cansimultaneously bechallenged.Asexpected, onlinedating asan
unrestrictedspaceformateselectionincentivizedthehighlyeducated—particularly
womenwithanegalitarianvisionofdoingfamily—toselectpartnerswithasimilar
mindset(Press2004).
Nevertheless, the nding that couples’ alignment on modern views regarding
maternalemploymentimpactedprogresstowardmarriageyetmatchingonprogres
sive atti tudes regard ing men’s con tri bu tion to house hold chores car ried less weight
(andevenhinderedentryintomarriage,althoughtheeffectwasnonsignicant)sug
gests that for marriage to ensue, people cannot exceedingly depart from what is
sociallyascribedasfamily.Despitetheslightoverrepresentationoflowereducated
womenwhobelievedintheequalsharingofdomesticworkamongthoseusingdigi
taltoolsfordating(TableF1intheonlineappendix),prepartneringpreferencesdid
nottranslateintoaparticularlygreaternumberofvaluecompatibleunions.Giventhe
possibilitythatinitialpartnerpreferencesandattitudeschangebasedonthestructural
accessibility ofpartners whosharecompatiblefeatures—that is,theease ofmatch
(Houtsetal.1996)—futureresearchshouldidentifypotentialadaptationsinpartner
pref er ences occur ring through out the whole selec tion pro cess.
Inlinewithearlierevidenceindicatingthatsimilarityingenderroleattitudesis
moreconsequential for women’srelationship outcomes(Ogolskyetal.2014), the
resultspresentedhereadditionallyshowthatmatchingongendervalueshadaweaker
Downloaded from http://read.dukeupress.edu/demography/article-pdf/58/5/1977/1204808/1977potarca.pdf by UNIVERSITE DE GENEVE user on 02 November 2021
2001Online Dating and Educational Inequalities in Marriage Formation
mediating effect on men’s subhazard of marriage and that accounting for it (as
opposedtoaccountingformatchingonmarriagevalues)didnotplayaroleinoff
settingmen’soverallonlinedatingmarriageadvantage.Furthermore,thedatareveal
thatmen—andnotwomen—withtertiaryeducationcrossededucationalboundaries
morefrequentlyindigitalthannondigitalsettings(TableC1,onlineappendix)and,
insodoing,perpetuatedstereotypicallygenderedpairingsof highereducatedmen
datinglowereducatedwomen,asseeninpreviousstudies(e.g.,Skopeketal.2011).
Ratherthansignalanincreaseinopenness,heightenedonlineeducationalexogamy
found in previous studies (Thomas 2020) may in fact hide a return to traditional
pairingsamongcertain highlyeducated men.TableC2alsoreveals thatcompared
withthosewhomet theirpartnerofine,higheducated menwhomettheirmatch
onlinewerelesslikelytobepartofcoupleswithliberalviewsonmen’scontribution
tofamilywork,especiallywhenthesemenpartnereddown(asrevealedinadditional
analyses,notshown).
Whetheronecouldgeneralizethesendingstoothernationalcontextsisanopen
question. On the one hand, in more egalitarian contexts, with a generally greater
supplyofegalitarianmen,onlinedatingislesslikelytoestablishitselfasasingular
spacewherehighearningwomengoinsearchofmenwhoarewillingtomarryand
sharehouseholdlabor.Inthesecontexts,wemaythereforeobservefewerdifferences
betweenonlineandofinematchingpatterns.Ontheotherhand,incountriessuch
astheUnitedStates,withawideningpositiveeducationalmarriagegap(Parkerand
Stepler2017)andgrowingeconomicclass divides(Schneider andHastings2017),
digitaldating technologiesmay assisthighstatus individualsinselectingsimilarly
educatedpartnersmoreefciently,exacerbatingratherthaninvertingcurrenteduca
tionalgradients.Therangeofdatingwebsitesoperatingineachcountrymayplayan
additionalrole,withplatformsexclusivelyaimedatprofessionalsoracademics(e.g.,
EliteSinglesintheUnitedStates)potentiallyacceleratingthemaritalsuccessofthe
highlyeducated.Finally,incontextswheremarriageislessnormativelyandinstitu
tionallyendorsed,attachmenttomarriageastheultimatefamilyformmaybelower.
Nevertheless,virtualspacesofpartnerselectionmightstillemergeasthelastoutpost
for peo ple in search of mar riage.
Other directions of inquiry could also be explored. It is worth investigating
whether internet dat ing shifts the tim ing and occur rence of union for ma tion for
membersofsexualminorities, whohavebeen showntobenetmorefromonline
matching(RosenfeldandThomas2012), but for whom the sam ple was too small to
beexaminedinthisanalysis.Moreover,theroleofonlinedatingmatchingonother
characteristics(e.g.,economicresources,religion,personality,leisureinterests,good
looks,orsociability)shouldalsobescrutinized.Tofurthertestwhetherinternetdat
ing facilitates relationships with greater betweenpartner compatibility,the actual
distributionofdomestictaskswithinonlineinitiatedcoupleswillbeexaminedina
followupstudy.Furthermore,thecurrentstudydidnotpresumetograspthecom
plexitiesofconstantlyevolvingoptionsofmeetingonline(EllisonandBoyd2013)
andtherelationshipsformedwithintheirbounds.Futurewavesofthedatausedin
thisanalysisneverthelesspromisetoenableamoredetailedlookatspecicmodesof
onlinesocialinteraction.Finally,eventhoughtheanalysisaccountedforanextended
setofpotentiallyconfoundingfactors,theassociationbetweeneducationandmar
riagemaystillbesubjecttoundetecteddifferencesandthusofanoncausalnature.
Downloaded from http://read.dukeupress.edu/demography/article-pdf/58/5/1977/1204808/1977potarca.pdf by UNIVERSITE DE GENEVE user on 02 November 2021
2002 G. Potarca
Despiteitslimitations,thisresearchconrmsthatinternetdatingfostersanuneven
distribution ofopportunitiesforpartneringandmarriage(Schmitz 2017),reafrm
ingthe importanceof socialcontextsofmeetingandmating(Blau1978;Blauand
Schwartz1997;Kalmijn andFlap2001)—particularlythecontinuouslyexpanding
digitalenvironment—forthesocialdemographyofunionformation.■
Acknowledgments This arti cle beneted from the sup port of an Ambizione grant from the Swiss National
Science Foundation (grant num ber: PZ00P1_174197). This research was also supported by the Swiss
National Centre of Competence in Research LIVES – Overcoming Vulnerability: Life Course Perspectives,
nanced by the Swiss National Science Foundation (grant num ber: 51NF40-160590). Earlier ver sions of
this arti cle were presented at the annual meet ing of the Amer i can Sociological Association (New York,
August 2019), the Euro pean Population Conference (Brussels, June 2018), and the ISA RC06-41 Conference
(Singapore, May 2018). This paper uses data from the Ger man Family Panel pairfam, coor di nated by Josef
Brüderl, Sonja Drobnič, Karsten Hank, Franz Neyer, and Sabine Walper. pairfam is funded as a long-term
pro ject by the Ger man Research Foundation (DFG). The author acknowl edges sup port from Josef Brüderl,
Nina Schumann, Rüdiger Lenke, and the entire pairfam team. This paper has grown thanks to every one
who pro vided feed back at var i ous stages of writ ing, includ ing anon y mous review ers, Clémentine Rossier,
Michael Rosenfeld, Wilfred Uunk, and Josh Vidich. My deepest grat i tude goes to Dorian Kessler for his
gen er os ity, con stant encour age ment, and always excel lent advice.
References
Alexandersson,A.(2015).Florida annual can cer report: 2015 inci dence and mor tal ity.Tallahassee:Flor
idaDepartmentofHealth.Retrievedfromhttps://fcds.med.miami.edu/inc/publications.shtml
Allison,P.D.(2014).Event his tory and sur vival anal y sis(2nded.).LosAngeles,CA:SAGEPublications,
Inc.
Axinn,W.G.,&Barber,J.S.(1997).Livingarrangementsandfamilyformationattitudesinearlyadult
hood. Journal of Marriage and the Family, 59, 595–611.
Baizán,P.,Aassve,A.,&Billari,F.C.(2003).Theinterrelationsbetweencohabitation,marriageandrst
birthinGermanyandSweden.Population and Environment, 25, 531–561.
Barg, K., & Beblo, M. (2012). Does “sorting into specialization” explain the differences in time use
betweenmarriedandcohabitingcouples?AnempiricalapplicationforGermany.Annals of Economics
and Statistics, 2012(105/106),127–152.
Becker,G.S.(1993).A trea tise on the fam ily: Enlarged edi tion(2nded.).Cambridge,MA:HarvardUni
versityPress.
Bellani,D.,EspingAndersen,G.,& Nedoluzhko,L.(2017). Neverpartnered:A multilevel analysisof
life long singlehood. Demographic Research, 37, 53–100. https://doi.org/10.4054/DemRes.2017.37.4
Bellani,D.,EspingAndersen,G.,&Pessin,L.(2017).Whenequitymattersformaritalstability:Compar
ingGermanandU.S.couples.Journal of Social and Personal Relationships, 35, 1273–1298.
Bellou,A.(2014).Theimpactofinternetdiffusiononmarriagerates:Evidencefromthebroadbandmar
ket. Journal of Population Economics, 28, 265–297.
Bergdall,A.R.,Kraft,J.M.,Andes,K.,Carter,M.,HateldTimajchy,K.,&HockLong,L.(2012).Love
andhookingupinthe newmillennium:Communication technologyandrelationshipsamongurban
AfricanAmericanandPuertoRicanyoungadults.Journal of Sex Research, 49, 570–582.
Bergström,M.(2011).Casualdatingonline: Sexualnormsandpractices onFrench heterosexualdating
sites. Zeitschrift für Familienforschung, 23, 319–336.
BitkomResearch.(2017).Jederzweiteonlinerglaubtandiegroßeliebeviainternet[Everysecondonline
person believes in the great love via the internet]. Retrieved from https://www.bitkom.org/Presse/
Presseinformation/JederzweiteOnlinerglaubtandiegrosseLiebeviaInternet.html
Blackhart,G. C.,Fitzpatrick,J.,&Williamson,J.(2014).Dispositionalfactorspredictinguseofonline
dat ing sites and behav iors related to online dat ing. Computers in Human Behavior, 33, 113–118.
Downloaded from http://read.dukeupress.edu/demography/article-pdf/58/5/1977/1204808/1977potarca.pdf by UNIVERSITE DE GENEVE user on 02 November 2021
2003Online Dating and Educational Inequalities in Marriage Formation
Blau,P.M.(1978).Amer i can occu pa tional struc ture(1sted.).NewYork,NY:FreePress.
Blau,P.M.,Beeker,C.,& Fitzpatrick,K.M. (1984).Intersectingsocial afliationsandintermarriage.
Social Forces, 62, 585–606.
Blau,P.M.,&Schwartz,J.(1997).Crosscutting social cir cles: Testing a mac ro struc tural the ory of inter-
group rela tions.NewBrunswick,NJ:Routledge.
Blossfeld,H.P.(2009).Educationalassortativemarriagein comparativeperspective.Annual Review of
Sociology, 35, 513–530.
Blossfeld,H.P.,&Jaenichen,U.(1992).Educationalexpansionandchangesinwomen’sentryintomar
riageandmotherhoodintheFederalRepublicofGermany.Journal of Marriage and the Family, 54,
302–315.
BouchetValat,M.,&Dutreuilh,C.(2015).Fewersinglesamonghighlyeducatedwomen.Agenderrever
salofhypergamyacrosscohortsinFrance.Population, 70, 665–688.
Bourdieu,P.(1989).Socialspaceandsymbolicpower.Sociological Theory, 7, 14–25.
Bourdieu,P.(1998).Practical rea son: On the the ory of action(1sted.)(R.Johnson,Trans.).Stanford,CA:
StanfordUniversityPress.
Bourdieu,P.(2008).The bach e lors’ ball: The cri sis of peas ant soci ety in Béarn(R.Nice,Trans.).Chicago,
IL:UniversityofChicagoPress.
Bourdieu,P.(2013).Distinction: A social cri tique of the judge ment of taste.Oxford,UK:Routledge.
Brüderl,J.,&Diekmann,A.(1994).Bildung,geburtskohorteundheiratsalter:Einevergleichendeuntersu
chungdesheiratsverhaltensinWestdeutschland,OstdeutschlandunddenVereinigtenStaaten[Educa
tion,birthcohort,andmarriageage:AcomparativestudyofmarriagebehaviorinWestGermany,East
Germany,andtheUnitedStates].Zeitschrift für Soziologie, 23, 56–73.
Brüderl,J.,Drobnič,S.,Hank, K.,Neyer,F.J.,Walper,S.,Alt,P.,...Wilhelm,B.(2020). The Ger man
Family Panel (pairfam), ZA5678 data le ver sion 11.0.0[Dataset].Cologne,Germany:GESISData
Archive.https://doi.org/10.4232/pairfam.5678.11.0.0
Brüderl,J.,Schmiedeberg,C.,Castiglioni,L.,Becker,O.A.,Buhr,P.,Fuß,D.,...Schumann,N.(2019).
The Ger man Family Panel: Study design and cumu lated eld report (Waves 1 to 10)(Release10.0).
Retrieved from https://www.pairfam.de/leadmin/user_upload/uploads/Neu_10/TP01%20Cumulat
ed%20Field%20Report%2C%20pairfam%202019.pdf
Buschner,A.,Adam,U.,&Schulz,F.(2018).Relativeeducation,parenthood,andcouples’divisionofpaid
work.EvidencefromGermancensusdata.Journal of Family Research, 30, 96–119.
Carbone,J.,&Cahn,N.(2014).Marriage mar kets: How inequal ity is remak ing the Amer i can fam ily(1st
ed.).Oxford,UK:OxfordUniversityPress.
Cesare,N.,Lee,H.,McCormick,T.,Spiro,E.,&Zagheni,E.(2018).Promisesandpitfallsofusingdigital
traces for demo graphic research. Demography, 55, 1979–1999.
Cherlin,A.J.(2020).Degreesofchange:Anassessmentofthedeinstitutionalizationofmarriagethesis.
Journal of Marriage and Family, 82, 62–80.
Chesley,N.(2005).Blurringboundaries?Linkingtechnologyuse,spillover,individualdistress,andfamily
sat is fac tion. Journal of Marriage and Family, 67, 1237–1248.
Chesley,N.(2006).Familiesinahightechagetechnologyusagepatterns,workandfamilycorrelates,and
gen der. Journal of Family Issues, 27, 587–608.
Chi,P.,Wu,Q.,Cao,H.,Zhou,N.,& Lin,X. (2020).Relationshiporientedvalues andmaritalandlife
satisfactionamongChinesecouples.Journal of Social and Personal Relationships, 37, 2578–2596.
Cleves,M.,Gutierrez,R.,Gould,W.,&Marchenko,Y.(2011).An intro duc tion to sur vival anal y sis using
Stata(3rded.).CollegeStation,TX:StataCorpLP.
Croft,A.,Schmader,T.,Beall,A.,&Schaller,M.(2020).Breadwinnerseeksbottlewarmer:Howwomen’s
futureaspirationsandexpectationspredicttheircurrentmatepreferences.Sex Roles, 82, 633–643.
Davis,S. N.,&Greenstein,T.N.(2009).Genderideology:Components,predictors,andconsequences.
Annual Review of Sociology, 35, 87–105.
Dieckhoff,M.(2008).Skillsandoccupationalattainment:AcomparativestudyofGermany,Denmarkand
theUK.Work, Employment and Society, 22, 89–108.
Drobnic,S.,Blossfeld, H.P.,& Rohwer,G.(1999). Dynamics ofwomen’s employment patterns over
thefamilylifecourse:AcomparisonoftheUnitedStatesandGermany.Journal of Marriage and the
Family, 61, 133–146.
Dröge,K.,&Voirol,O.(2011).Onlinedating:Thetensionsbetweenromanticloveandeconomicrational
ization.Zeitschrift für Familienforschung, 23, 337–357.
Downloaded from http://read.dukeupress.edu/demography/article-pdf/58/5/1977/1204808/1977potarca.pdf by UNIVERSITE DE GENEVE user on 02 November 2021
2004 G. Potarca
Eckhard,J.,&Stauder,J.(2019).Partnermarketopportunitiesandunionformationoverthelifecourse—A
com par i son of dif fer ent mea sures. Population, Space and Place, 25, e2178. https://doi.org/10.1002/
psp .2178
Ellison,N.B.,&Boyd,D.M.(2013).Socialitythroughsocialnetworksites.InW.H.Dutton(Ed.),Oxford
hand book of internet stud ies(pp.151–172).Oxford,UK:OxfordUniversityPress.https://doi.org/10
.1093/oxfordhb/9780199589074.013.0008
England,P.,Levine,A., &Mishel, E.(2020). Progresstoward genderequalityintheUnitedStateshas
slowed or stalled. Proceedings of the National Academy of Sciences, 117, 6990–6997.
Feld,S.L.(1984).Thestructureduseofpersonalassociates.Social Forces, 62, 640–652.
Feliciano,C.,Robnett,B.,&Komaie,G.(2009).GenderedracialexclusionamongWhiteinternetdaters.
Social Science Research, 38, 39–54.
Fine,J.P.,&Gray,R.J.(1999).Aproportionalhazardsmodelforthesubdistributionofacompetingrisk.
Journal of the Amer i can Statistical Association, 94, 496–509.
Finkel,E.J.,Eastwick,P.W.,Karney,B.R.,Reis,H.T.,&Sprecher,S.(2012).Onlinedating:Acritical
analysisfromtheperspectiveofpsychologicalscience.Psychological Science in the Public Interest,
13, 3–66.
Geser,H.(2007).Online search for ofine part ners: Matching plat forms as tools of indi vid ual empow er
ment and social retraditionalization(Workingpaper).Zürich,Switzerland:UniversitätZürich,Philos
ophischeFakultät,SoziologischesInstitut.Retrievedfromhttps://nbnresolving.org/urn:nbn:de:0168
ssoar323827
Grow,A.,Schnor,C., &VanBavel,J.(2017).The reversalofthegendergap ineducationand relative
divorcerisks:Amatterofalternativesinpartnerchoice?Population Studies, 71(Supp1.),15–34.
Gudelunas,D.(2012).There’sanappforthat:Theusesandgraticationsofonlinesocialnetworksforgay
men. Sexuality & Culture, 16, 347–365.
Gui,T. (2020).“Leftoverwomen” or single by choice:Genderrole negotiation of single professional
womenincontemporaryChina.Journal of Family Issues, 41, 1956–1978.
Hakim, C. (2003).A new approach to explaining fertility patterns: Preference theory. Population and
Development Review, 29, 349–374.
Hardey,M.(2002).Lifebeyondthescreen:Embodimentandidentitythroughtheinternet.Sociological
Review, 50, 570–585.
Helsper,E.J.,&vanDeursen,A.J.A.M.(2015).Thethirdleveldigitaldivide:Whobenetsmostfrom
beingonline?InL.Robinson,S.R.Cotton,J.Schulz,T.M.Hale,&A.Williams(Eds.),Communication
and infor ma tion tech nol o gies annual(Vol.10,pp.29–52).Bingley,UK:EmeraldGroupPublishing
Limited.https://doi.org/10.1108/S2050206020150000010002
Hiekel,N.,Liefbroer,A. C.,&Poortman,A.R.(2015). Marriageand separationrisksamong German
cohabiters:Differencesbetweentypesofcohabiter.Population Studies, 69, 237–251.
Hitsch,G.J.,Hortaçsu,A.,&Ariely,D.(2010).Matchingandsortinginonlinedating.Amer i can Economic
Review, 100, 130–163.
Houts,R.M.,Robins,E.,&Huston,T.L.(1996).Compatibilityandthedevelopmentofpremaritalrela
tion ships. Journal of Marriage and the Family, 58, 7–20.
Hudde,A.(2020). Homogamyin genderroleattitudesamongyoungcouples:EvidencefromGermany.
KZfSS Kölner Zeitschrift für Soziologie und Sozialpsychologie, 72, 403–428.
Hudde,A.,&Engelhardt,H.(2020).Intracouple(dis)similarityingenderroleattitudesandthetransition
toparenthoodinGermany.Euro pean Sociological Review, 36, 852–867.
Huinink,J.,Brüderl,J.,Nauck,B.,Walper,S.,Castiglioni,L.,&Feldhaus,M.(2011).PanelAnalysisof
IntimateRelationshipsandFamilyDynamics(pairfam):Conceptualframeworkanddesign.Zeitschrift
für Familienforschung, 23, 77–101.
Jalovaara,M.(2012).SocioeconomicresourcesandrstunionformationinFinland,cohortsborn1969–
81. Population Studies, 66, 69–85.
Kalmijn, M. (2013). The educational gradient in marriage: A comparison of 25 European countries.
Demography, 50, 1499–1520.
Kalmijn,M.,&Flap,H.(2001).Assortativemeetingandmating:Unintendedconsequencesoforganized
set tings for part ner choices. Social Forces, 79, 1289–1312.
Kelly,E.L.,&Conley,J.J.(1987).Personalityandcompatibility:Aprospectiveanalysisofmaritalstabil
ityandmaritalsatisfaction.Journal of Personality and Social Psychology, 52, 27–40.
Kerckhoff,A.C.,&Davis,K.E.(1962).Valueconsensusandneedcomplementarityinmateselection.
Amer i can Sociological Review, 27, 295–303.
Downloaded from http://read.dukeupress.edu/demography/article-pdf/58/5/1977/1204808/1977potarca.pdf by UNIVERSITE DE GENEVE user on 02 November 2021
2005Online Dating and Educational Inequalities in Marriage Formation
Kim, M., Kwon, K.N., & Lee, M. (2009). Psychological characteristics of internet dating service
users:Theeffectofselfesteem, involvement,and sociability ontheuseofinternet datingservices.
CyberPsychology & Behavior, 12, 445–449.
Klärner,A.,&Knabe,A.(2017).Onthenormativefoundationsofmarriageandcohabitation:Resultsfrom
groupdiscussionsinEasternandWesternGermany.Demographic Research, 36, 1637–1666. https://
doi.org/10.4054/DemRes.2017.36.53
Klein,M.(2015).TheincreasingunemploymentgapbetweenthelowandhigheducatedinWestGermany.
Structuralorcyclicalcrowdingout?Social Science Research, 50, 110–125.
Klesment,M.,& Van Bavel, J.(2017).The reversal ofthegendergapin education,motherhood, and
womenasmainearnersinEurope.Euro pean Sociological Review, 33, 465–481.
Kreyenfeld,M.,Huinink,J.,Trappe,H.,&Walke,R.(2012).DemoDiff:Adatasetforthestudyoffamily
changeinEastern(andWestern)Germany.Schmollers Jahrbuch, 132, 653–660.
Kulik,L.(2016).Theimpactofsocialbackgroundongenderroleideology:Parents’versuschildren’satti
tudes. Journal of Family Issues, 23, 53–73.
Li,N.P.,Yong,J.C.,Tov,W.,Sng,O.,Fletcher,G.J.O.,Valentine,K.A.,...Balliet,D.(2013).Matepref
erencesdopredictattractionandchoicesintheearlystagesofmateselection.Journal of Personality
and Social Psychology, 105, 757–776.
Lipps,O.,&Oesch,D.(2018).Theworkingclassleftbehind?TheclassgapinlifesatisfactioninGermany
andSwitzerlandoverthelastdecades.Euro pean Societies, 20, 549–571.
Lück,D.,&Ruckdeschel,K.(2018).Clearinitscore,blurredintheoutercontours:Culturallynormative
conceptionsofthefamilyinGermany.Euro pean Societies, 20, 715–742.
Marcińczak,S.,Musterd,S.,vanHam,M.,&Tammaru,T.(2016).Inequality and ris ing lev els of socio-
eco nomic seg re ga tion: Lessons from a pan-Euro pean com par a tive study. In T. Tammaru,S. Mar
cińczak,M.VanHam,&S.Musterd(Eds.), Socio-eco nomic seg re ga tion in Euro pean cap i tal cit ies:
East meets West( pp.358–382).Abingdon,UK:Routledge.
Marsden,P.V.(1990).Networkdataandmeasurement.Annual Review of Sociology, 16, 435–463.
McClendon,D.(2018).Crossingboundaries:“Somecollege,”schools,andeducationalassortativemating.
Journal of Marriage and Family, 80, 812–825.
McClendon,D.,Kuo,J.C.L.,&Raley,R.K.(2014).Opportunitiestomeet:Occupationaleducationand
marriageformationinyoungadulthood.Demography, 51, 1319–1344.
McKenna,K.Y.A., Green,A. S.,&Gleason, M.E.J. (2002).Relationship formationon theinternet:
What’sthebigattraction?Journal of Social Issues, 58, 9–31.
Meeussen,L.,VanLaar,C.,&Verbruggen,M.(2019).Lookingforafamilyman?Normsformenaretop
plinginheterosexualrelationships.Sex Roles, 80, 429–442.
Mulder,C.H.,Clark,W.A.V.,&Wagner,M.(2006).Resources,livingarrangementsandrstunionfor
mationintheUnited States,theNetherlandsandWestGermany.Euro pean Journal of Population /
Revue Européenne de Démographie, 22, 3–35.
Müller, N., & Dräger,J. (2019). Economic roles and marriage timing: Acohort comparison between
womenandmeninEastandWestGermany.Longitudinal and Life Course Studies, 10, 347–374.
Myers, S. M., & Booth, A. (2002). Forerunners of change in nontraditional gender ideology. Social
Psychology Quarterly, 65, 18–37.
Nitsche, N., & Grunow, D. (2016). Housework over the course of relationships: Gender ideology,
resources, and the divi sion of house work from a growth curve per spec tive. Advances in Life Course
Research, 29, 80–94.
Nitsche,N.,&Grunow,D.(2018).Doeconomicresourcesplayaroleinbargainingchildcareincouples?
ParentalinvestmentincasesofmatchingandmismatchinggenderideologiesinGermany.Euro pean
Societies, 20, 785–815.
Ogolsky,B.G.,Dennison,R.P.,&Monk,J.K.(2014).Theroleofcouplediscrepanciesincognitiveand
behavioralegalitarianisminmaritalquality.Sex Roles, 70, 329–342.
OllierMalaterre,A.,Jacobs,J.A.,&Rothbard,N.P.(2019).Technology,work,andfamily:Digitalcul
turalcapitalandboundarymanagement.Annual Review of Sociology, 45, 425–447.
Oppenheimer,V.K.(1988).Atheoryofmarriagetiming.Amer i can Journal of Sociology, 94, 563–591.
Oppenheimer,V.K.(1994).Women’srisingemploymentandthefutureofthefamilyinindustrialsocie
ties. Population and Development Review, 20, 293–342.
Orosz,G.,Benyó, M.,Berkes,B., Nikoletti,E., Gál,É.,TóthKirály,I., & Bőthe,B. (2018).Theper
sonality,motivational,andneedbasedbackgroundofproblematicTinderuse.Journal of Behavioral
Addictions, 7, 301–316.
Downloaded from http://read.dukeupress.edu/demography/article-pdf/58/5/1977/1204808/1977potarca.pdf by UNIVERSITE DE GENEVE user on 02 November 2021
2006 G. Potarca
Parker,K.,&Stepler,R.(2017).As U.S. mar riage rate hov ers at 50%, edu ca tion gap in mar i tal sta tus
wid ens (FactTank:NewsintheNumbersreport).Washington,DC:PewResearchCenter.Retrieved
from http://www.pewresearch.org/facttank/2017/09/14/asusmarriageratehoversat50education
gapinmaritalstatuswidens/
Potarca,G.(2017). Doestheinternet affectassortative mating? Evidencefromthe U.S.and Germany.
Social Science Research, 61, 278–297.
Press,J.E. (2004). Cutebuttsand housework: Agynocentric theory of assortativemating.Journal of
Marriage and Family, 66, 1029–1033.
Psacharopoulos,G.,&Patrinos,H.A.(2018).Returnstoinvestmentineducation:Adecennialreviewof
the global lit er a ture. Education Economics, 26, 445–458.
Qian,Y.(2018).Educationalassortative matingand incomedynamics incouples:Alongitudinaldyadic
per spec tive. Journal of Marriage and Family, 80, 607–621.
Rammstedt,B.,& John, O.P.(2005).Kurzversion des BigFiveInventory (BFIK): Entwicklungund
validierungeines ökonomischeninventarszurerfassungderfünffaktoren derpersönlichkeit [Short
versionoftheBigFiveInventory(BFIK):Developmentandvalidationofaneconomicinventoryfor
assessmentofthevefactorsofpersonality].Diagnostica, 51, 195–206.
Rindfuss, R. R. (1991). The young adult years: Diversity,structural change, and fertility—Population
AssociationofAmerica1991presidentialaddress.Demography, 28, 493–512.
Rosenfeld,M.J.(2017).Marriage,choice,andcouplehoodintheageoftheinternet.Sociological Science,
4, 490–510.
Rosenfeld,M.J.(2018).AreTinderand datingapps changingdatingandmatingintheUSA?InJ.Van
Hook,S.M.McHale,&V.King(Eds.),Families and tech nol ogy(pp.103–117).Cham,Switzerland:
SpringerInternationalPublishing.https://doi.org/10.1007/9783319955407_6
Rosenfeld,M.J.,&Thomas,R.J.(2012).Searchingforamate:Theriseoftheinternetasasocialinter
mediary.Amer i can Sociological Review, 77, 523–547.
Rosenfeld,M. J.,Thomas,R.J.,& Hausen,S.(2019).Disintermediatingyour friends:Howonlinedat
ingin theUnitedStatesdisplacesotherwaysofmeeting.Proceedings of the National Academy of
Sciences, 116, 17753–17758.
Sanderson,C.A.,Keiter,E.J.,Miles,M.G.,&Yopyk,D.J.A.(2007).Theassociationbetweenintimacy
goals and plans for ini ti at ing dat ing rela tion ships. Personal Relationships, 14, 225–243.
Sassler,S.,&Schoen,R.(1999).Theeffectof attitudesandeconomic activityonmarriage. Journal of
Marriage and the Family, 61, 147–159.
Schmitz,A.(2017).The struc ture of dig i tal part ner choice: A Bourdieusian per spec tive.Cham,Switzer
land:SpringerInternationalPublishing.
Schneider, D., & Hastings, O. P. (2017). Income inequality and household labor. Social Forces, 96,
481–506.
Schulz,F.,Skopek,J.,Klein,D.,&Schmitz,A.(2008).WernutztinternetkontaktbörseninDeutschland?
[WhousesinternetcontactexchangesinGermany?].Zeitschrift für Familienforschung, 20, 271–292.
Schwartz,B.(2005).The par a dox of choice: Why more is less.NewYork,NY:HarperPerennial.
Schwartz,C.R.,&Han,H.(2014).Thereversalofthegendergapineducationandtrendsinmaritaldis
so lu tion. Amer i can Sociological Review, 79, 605–629.
Skopek,J.,Schulz,F.,&Blossfeld,H.P.(2011).Whocontactswhom?Educationalhomophilyinonline
mate selec tion. Euro pean Sociological Review, 27, 180–195.
Smith,A.(2016).15% of Amer i can adults have used online dat ing sites or mobile dat ing apps(Internet&
Technologyreport).Washington,DC:PewResearchCenter.Retrievedfromhttp://www.pewinternet
.org/2016/02/11/15percentofAmericanadultshaveusedonlinedatingsitesormobiledatingapps/
Sobotka,T.(2011).Fertilityin Austria,GermanyandSwitzerland:Isthereacommonpattern?Comparative
Population Studies, 36, 263–304.
Spannagel, D. (2016). Soziale mobilität nimmt weiter ab [Social mobility continues to decline]. WSI
Mitteilungen, 2016, 613–620.
Sprecher,S.,Econie,A.,&Treger,S.(2019).Matepreferencesinemergingadulthoodandbeyond:Age
var i a tions in mate pref er ences and beliefs about change in mate pref er ences. Journal of Social and
Personal Relationships, 36, 3139–3158.
Suhr,F.(2020,August24).Infograk: Datingbörsengenerierenimmer mehrnutzer[Infographic: Dat
ing sites gen er ate more and more users]. Statista Infograken.Retrievedfromhttps://de.statista.com/
infograk/22641/prognosezuranzahldernutzervondatingportalen/
Downloaded from http://read.dukeupress.edu/demography/article-pdf/58/5/1977/1204808/1977potarca.pdf by UNIVERSITE DE GENEVE user on 02 November 2021
2007Online Dating and Educational Inequalities in Marriage Formation
Sumter,S.R.,Vandenbosch,L.,&Ligtenberg,L.(2017).LovemeTinder:Untanglingemergingadults’
moti va tions for using the dat ing appli ca tion Tinder. Telematics and Informatics, 34, 67–78.
Thomae,M.,&Houston,D.M.(2016).Theimpactofgenderideologiesonmen’sandwomen’sdesirefor
atraditionalornontraditionalpartner.Personality and Individual Differences, 95, 152–158.
Thomas,R.J.(2020).Onlineexogamyreconsidered:Estimatingtheinternet’seffectsonracial,educa
tional, reli gious, polit i cal and age assortative mat ing. Social Forces, 98, 1257–1286.
Timmermans,E.,&DeCaluwé,E.(2017).ToTinderornottoTinder,that’sthequestion:Anindividual
dif fer ences per spec tive to Tinder use and motives. Personality and Individual Differences, 110, 74–79.
Valkenburg,P.M.,&Peter,J.(2007).Whovisitsonline datingsites? Exploringsomecharacteristicsof
online dat ers. CyberPsychology & Behavior, 10, 849–852.
VanBavel,J.,&Klesment,M.(2017).Educationalpairings,motherhood,andwomen’srelativeearnings
inEurope.Demography, 54, 2331–2349.
VanBavel,J.,Schwartz,C.R.,&Esteve,A.(2018).Thereversalofthegendergapineducationandits
consequencesforfamilylife.Annual Review of Sociology, 44, 341–360.
Waller,M.R.,&McLanahan,S.S.(2005).“His”and“her”marriageexpectations:Determinantsandcon
se quences. Journal of Marriage and Family, 67, 53–67.
Whitty,M.T.,&Carr,A.N.(2006).Cyberspace romance: The psy chol ogy of online rela tion ships.New
York,NY:PalgraveMacmillan.
Whitty,M.T.,&Young,G.(2016).Cyberpsychology: The study of indi vid u als, soci ety and dig i tal tech-
nol o gies.Hoboken,NJ:JohnWiley&Sons.
Yu,W.,&Kuo,J.C.L.(2016).Explainingtheeffectofparentchildcoresidenceonmarriageformation:
ThecaseofJapan.Demography, 53, 1283–1318.
Zagel, H., & Breen, R. (2018). Family demography and income inequality in WestGermany and the
UnitedStates:Acta Sociologica, 62, 174–192.
Zentner,M.,&Eagly,A.H.(2015).Asocioculturalframeworkforunderstandingpartnerpreferencesof
womenandmen:Integrationofconceptsandevidence.Euro pean Review of Social Psychology, 26,
328–373.
GinaPotarca
gina .potarca@unige .ch
NCCRLIVES/InstituteofDemographyandSocioeconomics,UniversityofGeneva,Geneva,Switzerland;
https://orcid.org/0000000212863781
Downloaded from http://read.dukeupress.edu/demography/article-pdf/58/5/1977/1204808/1977potarca.pdf by UNIVERSITE DE GENEVE user on 02 November 2021