ArticlePDF Available

Effect of Increasing Running Cadence on Peak Impact Force in an Outdoor Environment

Authors:

Abstract and Figures

Background An estimated 56% of recreational runners sustain a running-related injury related to the high impact forces in running. Increasing step frequency (cadence) while maintaining a consistent speed has been shown to be an effective way to lower impact forces which may reduce injury risk. Purpose To examine effects of increased cadence on peak impact force during running in an outdoor setting. It was hypothesized that as cadence increases, peak force would decrease. Study Design Repeated measures, quasi-experimental Methods Peak force and cadence measurements were collected from 15 recreational runners (8 females, 7 males) during two 2.4-mile outdoor runs. Peak force was measured using an insole-based load measuring device. Baseline session run was completed at participant’s naturally preferred cadence and cadence session run was completed at a cadence targeted to be 10% greater than baseline. Pace was monitored with a GPS watch. Cadence was cued by an auditory metronome and measured with both GPS watch and insoles. Repeated-measures ANOVA’s examined the differences in average peak force, GPS-reported cadence, and insole-reported cadence between mile 1 and mile 2, and across the two cadence conditions. Results Cadence differences of 7.3% were observed between baseline and cadence sessions (p<0.001). A concurrent decrease in average peak force of 5.6% was demonstrated during the cadence run (p<0.05). Average cadences measured by GPS watch and insoles were found to be the same at both baseline (p=0.096) and during cadence (p=0.352) sessions. Conclusion Increasing cadence by an average of 7% in an outdoor setting resulted in a decrease in peak force at two different time points during a 2.4-mile run. Furthermore, using a metronome for in-field cadence manipulation led to a change in cadence. This suggests that a metronome may be an effective tool to manipulate cadence for the purpose of decreasing peak impact force in an outdoor setting. Level of evidence 3b
Content may be subject to copyright.
'E<:<A4?*8F84E6;
Effect of Increasing Running Cadence on Peak Impact Force in an
Outdoor Environment
Taylor Musgjerd, DPT
1
, Jacob Anason, DPT
1
, Drew Rutherford, MS
1
, Thomas W Kernozek, PhD, FACSM
1 a
1 Department of Health Professions, University of Wisconsin-La Crosse
Keywords: step rate, feedback, injury, kinetics, auditory cueing
https://doi.org/10.26603/001c.25166
!AG8EA4G<BA4?"BHEA4?B9+CBEGF(;LF<64?,;8E4CL
.B?!FFH8
Background
A8FG<@4G87B9E86E84G<BA4?EHAA8EFFHFG4<A4EHAA<A:E8?4G87<A=HELE8?4G87GBG;8
;<:;<@C46G9BE68F<AEHAA<A:!A6E84F<A:FG8C9E8DH8A6L6478A68J;<?8@4<AG4<A<A:4
6BAF<FG8AGFC887;4F588AF;BJAGB584A89986G<I8J4LGB?BJ8E<@C46G9BE68FJ;<6;@4L
E87H68<A=HELE<F>
Purpose
,B8K4@<A889986GFB9<A6E84F876478A68BAC84><@C46G9BE687HE<A:EHAA<A:<A4A
BHG7BBEF8GG<A:!GJ4F;LCBG;8F<M87G;4G4F6478A68<A6E84F8FC84>9BE68JBH?7
786E84F8
Study Design
*8C84G87@84FHE8FDH4F<8KC8E<@8AG4?
Methods
(84>9BE684A76478A68@84FHE8@8AGFJ8E86B??86G879EB@E86E84G<BA4?EHAA8EF
98@4?8F@4?8F7HE<A:GJB@<?8BHG7BBEEHAF(84>9BE68J4F@84FHE87HF<A:4A
<AFB?854F87?B47@84FHE<A:78I<684F8?<A8F8FF<BAEHAJ4F6B@C?8G874GC4EG<6<C4AGRF
A4GHE4??LCE898EE876478A684A76478A68F8FF<BAEHAJ4F6B@C?8G874G46478A68G4E:8G87
GB58:E84G8EG;4A54F8?<A8(468J4F@BA<GBE87J<G;4(+J4G6;478A68J4F6H87
5L4A4H7<GBEL@8GEBAB@84A7@84FHE87J<G;5BG;(+J4G6;4A7<AFB?8F
*8C84G87@84FHE8F&'.RF8K4@<A87G;87<998E8A68F<A4I8E4:8C84>9BE68
(+E8CBEG876478A684A7<AFB?8E8CBEG876478A6858GJ88A@<?84A7@<?84A7
46EBFFG;8GJB6478A686BA7<G<BAF
Results
478A687<998E8A68FB9J8E8B5F8EI8758GJ88A54F8?<A84A76478A68F8FF<BAF
C6BA6HEE8AG786E84F8<A4I8E4:8C84>9BE68B9J4F78@BAFGE4G877HE<A:
G;86478A68EHACI8E4:86478A68F@84FHE875L(+J4G6;4A7<AFB?8FJ8E8
9BHA7GB58G;8F4@84G5BG;54F8?<A8C4A77HE<A:6478A68CF8FF<BAF
Conclusion
!A6E84F<A:6478A685L4A4I8E4:8B9<A4ABHG7BBEF8GG<A:E8FH?G87<A4786E84F8<A
C84>9BE684GGJB7<998E8AGG<@8CB<AGF7HE<A:4@<?8EHAHEG;8E@BE8HF<A:4
@8GEBAB@89BE<AU8?76478A68@4A<CH?4G<BA?87GB46;4A:8<A6478A68,;<FFH::8FGF
G;4G4@8GEBAB@8@4L584A89986G<I8GBB?GB@4A<CH?4G86478A689BEG;8CHECBF8B9
786E84F<A:C84><@C46G9BE68<A4ABHG7BBEF8GG<A:
Corresponding author:
,;B@4F/#8EABM8>(;+%
-A<I8EF<GLB9/<F6BAF<A$4
EBFF88C4EG@8AGB9 84?G;(EB98FF<BAF(;LF<64?,;8E4CL(EB:E4@
$4EBFF8/!
>8EABM8>G;B@HJ?4K87H
a
Musgjerd T, Anason J, Rutherford D, Kernozek TW. E<ect of Increasing Running
Cadence on Peak Impact Force in an Outdoor Environment. IJSPT.
2021;16(4):1076-1083. doi:10.26603/001c.25166
Level of evidence
5
!&,*'-,!'&
/<G;<AG;8-+G;8AH@58EB9C8BC?8EHAA<A:9BE8K8E6<F8
;4F7E4@4G<64??L<A6E84F87BI8EG;8C4FG6BHC?8B9786478F
!AUI8@<??<BAC8BC?84AAH4??LJ8E8E8CBEG87GB6B@
C?8G8 4 EB47 E468 &84E?L  L84EF ?4G8E G;4G AH@58E ;4F
E8CBEG87GB 58 @<??<BA/;<?8G;<F <A6E84F8 <A E86E8
4G<BA4?EHAA<A:;4FB5I<BHF;84?G;4A7J8??A8FF58A8UGF9BE
G;8:8A8E4?CBCH?4G<BAG;8E8?4G<I8E<F>B9FHFG4<A<A:4EHA
A<A:E8?4G87<A=HEL **! F;BH?7 586BAF<78E87$BJ8E8K
GE8@<GL**!FB66HE<A4A8FG<@4G87B9E86E84G<BA4?EHA
A8EFJ<G;FB@8FH::8FG<A:G;<FGB584F;<:;4F
+<A68**!F4E8FBCE8I4?8AG<G<F <@CBEG4AG GB 6BAF<78E
J;<6;946GBEF@4L<AVH8A68 E<F> /;<?8 G;8E8;4I8588A4
I4E<8GLB9CEBCBF87@86;4A<F@F9BE**!F;<:;<@C46G?B47
<A: <F B9G8A 6BAF<78E87 GB 58 4 946GBE 4I<F BJF8E 4A7
%H??<A84HK8K4@<A87 EHAA8EFBI8E4 GJBL84EC8E<B7
4A7E8CBEG87G;4G<@C46G ?B47F J8E8 :E84G8E <A G;BF8EHA
A8EFJ;B8KC8E<8A6874A**!6B@C4E87GBABA<A=HE87EHA
A8EF ,;8L FH5F8DH8AG?L E86B@@8A787 G;4G <AG8EI8AG<BAF
4<@874G 786E84F<A: G;8 <@C46G ?B47F @4L 58 4A 89986G<I8
FGE4G8:L9BEE87H6<A:<A=HEL!A4FLFG8@4G<6E8I<8J5LI4A
78E/BEC.E<8?<A>4A7E878J8:FGH7<8FJ8E8E8I<8J87
4A7 F;BJ87 G;4G EHAA8EF J<G; ;<:;8E ?B47<A: E4G8F J8E8
@BE8?<>8?LGB;4I8<A=HE<8FG;4AG;BF8J<G;?BJ8EE4G8F
!@C46G?B47F@4LC?4L4?4E:8EB?8<A@4AL**!FG;8E8
9BE8@4AL6?<A<6<4AF4A7E8F84E6;8EF;4I8F;<9G87G;8<E9B
6HFGBE8@87<8F9BEE87H6<A:<@C46G4A7?B47<A:E4G84F4
9BE@B9 <A=HEL CE8I8AG<BABEGB4FF<FG<A E8GHEA GB EHAA<A:
9B??BJ<A:<A=HEL'A8@8G;B7GB4?G8EFH6;<@C46G9BE68F<F
GB<A6E84F86478A68!A6E84F<A:6478A68J;<?8@4<AG4<A<A:
46BAF<FG8AG C468;4F 588AE8CBEG87GB58 4A89986G<I8J4L
GB<@@87<4G8?L?BJ8E<@C46GG;HFE87H6<A:<A=HELE<F>Q
%4ALFGH7<8FGB74G8;4I8CE<@4E<?L588A6BA7H6G87<A
4 6BAGEB??87 ?45BE4GBEL F8GG<A: HG<?<M<A: @BGBE<M87 GE847
@<??F /;<?8 GE847@<??F ;4I8 588A F;BJA GB CEB7H68 5<B
@86;4A<64??L F<@<?4E EHAA<A: C4GG8EAF G;8L ;4I8 G;8 CB
G8AG<4?9BE6;4A:<A:FC4G<BG8@CBE4?C4GG8EAF,4B8G 4?
E8CBEG87 4A <A6E84F87 6478A68 4A7 786E84F87 FG4A68 4A7
FJ<A: G<@8 7HE4G<BA J;8A EHAA<A: BA 4 ?8I8? BE <A6?<A87
GE847@<??6B@C4E87GB EHAA<A:BHG7BBEF!A477<G<BA BHG
7BBEEHAA<A: @4L CEB7H68 ABG45?8 I4E<4G<BAF <A C468 64
78A684A7BEFGE<78?8A:G;7HE<A:7<FG4A68EHAA<A:8I8AGF
4F BCCBF87 GB G;8 6BAFG4AG C468 <@CBF87 5L G;8 HF8 B9 4
GE847@<??,;8E89BE8GB8K4@<A8G;889U646LB96478A68
@4A<CH?4G<BAHF879BEE86E84G<BA4?EHAA<A:<A 4A 8G<B?B:<
64??LI4?<7F68A4E<B;BJ6478A68 <AVH8A68F <@C46G 9BE68F
F;BH?7588I4?H4G87J<G;<A4A4GHE4?BHG7BBEEHAA<A:8AI<
EBA@8AG
,BCEB7H6846;4A:8<AFC4G<BG8@CBE4?:4<GC4E4@8G8EF
4EHAA8EJ<??E8DH<E8 4 9887546>FGE4G8:LGBCEB@CG4A <A
6E84F8 <A 6478A68 ,;8 @8G;B7F 9BE 47@<A<FG8E<A: FH6;
9887546><A6?H78G;8 HF8 B9 6BA6HEE8AG CEBI<787 during 4
G4F> 4A7 G8E@<A4? CEBI<787 4G conclusion B9 G4F> 9887
546> 66BE7<A:GB EB>8E 8G 4? 6BA6HEE8AG 9887546>
<F@BFG 89986G<I89BE6L6?<64?46G<I<G<8F FH6;4FEHAA<A:4A7
6L6?<A:+H6;9887546>J;8ACEBI<787<A4A4H7<GBEL@4A
A8E CEB7H68F G;8 @BFG 78F<E45?8 6;4A:8 <A C8E9BE@4A68
J;8ACEBI<787<@@87<4G8?L49G8EG;8F4@88I8AG<A846;6L
6?8B9@BI8@8AG!ABG;8EJBE7FGBCEB@BG8<@@87<
4G8 6;4A:8 <A EHAA<A: C8E9BE@4A68 4A 4H7<GBEL FG<@H?HF
F;BH?758:<I8A 9BE846;FG8C G4>8A77<G<BA4??L4?G8EA4
G<I8 9BE@F B9 6BA6HEE8AG 9887546> FH6; 4F 4 I<FH4? FG<@
H?HF 4E8 ABG 984F<5?8 GB CEBI<78 GB 4 EHAA8E <A 4A BC8A
BHG7BBE 8AI<EBA@8AG (E8I<BHF FGH7<8F HG<?<M<A: 4A 4H7<B
@8GEBAB@8 <A 4 ?45BE4GBEL 8AI<EBA@8AG ;4I8 78@BA
FGE4G876;4A:8FGB6478A68<AEHAA8EFJ<G;G;8HF8B94A8K
G8EA4?4H7<GBEL 6H8 ,;<F F<@C?8 9887546>6H8JBH?758
6B@C4G<5?89BE78?<I8EL5L 4J84E45?8CBEG45?8 78I<68FH6;
4F4J4G6;BEF@4EGC;BA8HF87BHG7BBEF
,;8CHECBF8 B9G;<FFGH7LJ4F GB8K4@<A8G;889986GFB9
<A6E84F876478A68BAC84> <@C46G9BE68<A4ABHG7BBEF8G
G<A:!G J4F;LCBG;8F<M87G;4G 4A<A6E84F876478A68JBH?7
786E84F8 C84> :EBHA7 E846G<BA 9BE68  F86BA74EL 4<@ B9
G;<FFGH7LJ4FGB8KC?BE8G;8984F<5<?<GLB9HF<A:4A4H7<GBEL
@8GEBAB@84F4FG<@H?HF6H8GB<A6E84F86478A687HE<A:4A
BHG7BBEEHA
%, '+
+,-1+!&
,;<FFGH7L HG<?<M874E8C84G87 @84FHE8F78F<:A6BA7H6G87
BAE86E84G<BA4? EHAA8EF 4G4J8E86B??86G87 BI8E4C8
E<B7B9UI8J88>F,;8FGH7LCEBGB6B?J4F4CCEBI875LG;8
-A<I8EF<GL B9 /<F6BAF<A$4 EBFF8 !AFG<GHG<BA4? *8I<8J
B4E74A74??C4EG<6<C4AGFCEBI<787<A9BE@876BAF8AGCE<BE
GBC4EG<6<C4G<BA
(*,!!(&,+
<9G88A@4?84A798@4?847H?GE86E84G<BA4?EHAA8EFJ8E8E8
6EH<G879BEG;8FGH7LHF<A:6BAI8A<8A68F4@C?<A:B9HA<I8E
F<GL FGH78AGF (4EG<6<C4AGF J8E8 E86E84G<BA4? EHAA8EF G;4G
E4A4A4I8E4:8B9P@<?8FJ88>,;8FGH7L8K6?H787
C4EG<6<C4AGF J;B E8CBEG87 4 ?BJ8E 8KGE8@<GL <A=HEL <A G;8
CE<BE G;E88 @BAG;F 4 ;<FGBEL B9 ?BJ8E 8KGE8@<GL FHE:8EL
6HEE8AG?BJ8E8KGE8@<GLC4<A7HE<A:EHAA<A:BECE8F8A68B9
4@87<64?C4G;B?B:LG;4GJBH?764HF87<9U6H?GLEHAA<A:9BE
HCGBBA8;BHE
!&+,*-%&,+
$B47FB? <AFB?8 F8AFBEF ABI8? :@5; %HA<6; 8E@4AL
J8E8C?4687<AF<78846;C4EG<6<C4AGRFGLC<64?EHAA<A:F;B8F
5<?4G8E4??L GB @84FHE8 C84> 9BE68 <A &8JGBAF & (84>
9BE6874G4J8E86B??86G874G M4A7GE4AF@<GG87G;EBH:;
?H8GBBG;6BAA86G<BA GB 4G;:8A8E4G<BA<(B7,BH6;C
C?84?<9BEA<4-+HF<A:G;8C87BC87$B47FB?4CC?<64G<BA
.8EF<BAABI8?:@5;%HA<6;8E@4AL,;8$B47
FB?<AFB?8F;4I8588AF;BJAGBL<8?76B@C4E45?8C84>9BE68
74G4 6B@C4E87 GB 4A <AFGEH@8AG87 GE847@<?? 9BE EHAA<A:
!F  4A7 E8?<45?8 58GJ88A F8FF<BAF !F
HEAF8G4?F;BJ878DH4??L6B@C8??<A:74G4
<AFHCCBEGB9$B47FB?HF8GB@84FHE8:EBHA7E846G<BA9BE68F
9986GB9!A6E84F<A:*HAA<A:478A68BA(84>!@C46GBE68<A4A'HG7BBEAI<EBA@8AG
International Journal of Sports Physical Therapy
5L6B@C4E<FBAFGB;BCC<A:J4?><A:4A7EHAA<A:BA49BE68
C?4G9BE@4A74A<AFGEH@8AG87GE847@<??
 4E@<A BE8EHAA8E  (+ J4G6; J<G; 4E@<A BA
A86G4CC.8EF<BA4E@<A!AG8EA4G<BA4?!A6'?4G;8
#+J4FHF87GB78G8E@<A8EHAA<A:C4684A76478A68+<@<
?4EGLC8FB94E@<AJ4G6;8FJ<G;(+G86;AB?B:LJ8E8I4?
<74G87 4F 4 @84FHE8 B9 7<FG4A68 45FB?HG8 C8E68AG 8EEBE
4A74F4E8?<45?8@84FHE8B96478A68!
,;8 %8GEB,<@8E 4CC .8EF<BA  '&10 CCF -A<G87
+G4G8FJ4FHF87BAG;8<(B7,BH6;GBCEBI<784H7<GBEL64
78A686H8<A:B7L@4FF@84FHE8@8AGFJ8E8G4>8AHF<A:4
7<:<G4?F64?8
(*'-*
(4EG<6<C4AGF6B@C?8G874DH8FG<BAA4<E8GB 6B??86GGE4<A<A:
<A=HEL ;<FGBEL 4A7 J8E8 G;8A J8<:;87 (4EG<6<C4AGF J8E8
:<I8AHCGB@<AHG8FGBC8E9BE@G;8<EF8?9F8?86G87J4E@
HCEBHG<A86BAF<FG<A:B9FGE8G6;<A:4A74F;BEGEHAAB@BE8
G;4A@<?8B??BJ<A:G;<FJ4E@HC$B47FB?F8AFBE<A
FB?8F(+J4G6; 4A7 EHAA<A: 58?G 6BAG4<A<A:<(B7,BH6;
J8E8UGG879BEG;8C4EG<6<C4AG$B47FB?F8AFBE<AFB?8FJ8E8
C?4687 5<?4G8E4??L <A 846; C4EG<6<C4AGRF GLC<64? EHAA<A:
F;B8F 4A7 G;8A 64?<5E4G87 9B??BJ<A: G;8 @4AH946GHE8ERF
:H<78?<A8FHF<A:G;8$B47FB?4CC?<64G<BABAG;8<(B7GBH6;
4?<5E4G<BA J4F 6B@C?8G87 9B??BJ<A: G;8 CEB687HE8CE8I<
BHF?L BHG?<A87 5L (885?8F 8G 4?  DH4EG8E @<?8 J4E@
HC =B: J4F G;8A 6BA7H6G87 GB CEBI<78 466?<@4G<BA GB G;<F
8DH<C@8AG
(4EG<6<C4AGF 6B@C?8G87 GJB F8C4E4G8 @<?8 7<FG4A68
EHAFS54F8?<A8T4A7S6478A68TF8FF<BAF4CCEBK<@4G8?LBA8
J88>4C4EG,;8F8?86G87EB476BHEF8J4F4FGE4<:;GFGE8G6;
IB<7B9GHEAFJ<G;@<A<@4?8?8I4G<BA6;4A:8988G4A7
@<A<@4? GE49U6 HE<A: 4 F<A:?8 EHA C4EG<6<C4AGF E4A 
@<?8FBHG<@@87<4G8?LGHEA874EBHA74A76B@C?8G87G;8
F4@8 7<FG4A68 546> GB G;8 FG4EG<A: CB<AG ,;<F @<A<@<M87
G;84@BHAGB9GHEAFBAG;8FGE4<:;GV4GEB474I4<?45?8,;8
@<?87<FG4A68J4F6;BF8A9BEG;8EHAGB4??BJ9BE46B@
C4E<FBAB9@<?8F4A7BI8EG<@84A7GB466B@@B74G8G;8
4668?8E4G<BAHCGB4FG847LC4684A7466?<@4G<BAGBG;84H
7<GBEL@8GEBAB@86H8F
BEG;854F8?<A8F8FF<BAC4EG<6<C4AGFJ8E8<AFGEH6G87GB
EHA4G46BAF<FG8AGF8?9F8?86G876B@9BEG45?8C468G;4GG;8L
6BH?7 @4<AG4<A 9BE HC GB 4A ;BHE ,;8 @8GEBAB@8 J4F
GHEA87B999BEG;<FEHA4A7AB@8AG<BAB9EHAA<A:6478A68
J4F:<I8AGB8AFHE8G;4GG;8EHAJ4F6B@C?8G874GG;8<EGLC
<64?6478A68(4EG<6<C4AGFJ8E8:<I8A4(+J4G6;GB@BA
<GBE C468 7HE<A: G;<F EHA 9G8E G;8 54F8?<A8 F8FF<BA 6B@
C?8G<BA6478A684A7C46874G4J8E8:4G;8E879EB@G;8(+
J4G6; GB 58 HG<?<M87 9BE F8GG<A: HC C4E4@8G8EF 9BE G;8 64
78A68F8FF<BAF68A4E<BBA47<998E8AG74L478A684A7C84>
9BE68 74G4 J8E8 6B??86G879EB@ <AFB?8F 4F87 BA CE8I<BHF
GE847@<??6478A68E8F84E6;4<A6E84F8<A6478A68BI8E
<A7<I<7H4?54F8?<A8FJ4FHF874FG;8 G4E:8G9BEG;86478A68
F8FF<BAF68A4E<B
,;8 6478A68 F8FF<BA J4F 6BA7H6G87 J<G;<A G8A 74LF B9
G;854F8?<A8F8FF<BAGB786E84F8G;8CBG8AG<4?9BEGE4<A<A:BE
94G<:H889986GF(4EG<6<C4AGFJ8E8GB?7GB6BAG<AH8G;8<EABE
@4?GE4<A<A:E8:<@8A58GJ88AG;8F8F8FF<BAF+;B8FJ4E@
HC G<@8 4A7 64?<5E4G<BA CEB687HE8F J8E8 6BAF<FG8AG J<G;
G;8<E54F8?<A8F8FF<BA,;8<A6E84F8<A6478A68J4F<@
C?8@8AG87HF<A:G;8%8GEB,<@8E@8GEBAB@84CCBA<(B7
,BH6;9BE G;8 7HE4G<BAB9 G;8 6478A68 F8FF<BA J<G;BHG4A
84E5H7 BE ;847C;BA8 BA 4 DH<8G EHAA<A: 6BHEF8 (4EG<6<
C4AGFJ8E8E8@<A787 B9G;8<E54F8?<A8C468 4A7<AFGEH6G87
GB @4<AG4<A G;4G C468 J<G; HF8 B9 (+ J4G6; J;<?8 4?FB
@4<AG4<A<A:G4E:8G6478A6854F87BAG;8@8GEBAB@84H7<B
6H8F DH4EG8E@<?8=B:J4F4:4<ACEBI<787GB4??BJ466?<
@4G<BAGBG;8EHAA<A:C4684A7@8GEBAB@86478A68589BE8
58:<AA<A:G;8F8FF<BA478A68J4F@84FHE87I<45BG;(+
J4G6;4A7$B47FB?<AFB?8F4A78K4@<A874G4?4G8E74G8
,%&%&,&&$1+!+
(84>9BE6874G4J8E88KGE46G879EB@E<:;G9BBGFG8CFFHE
EBHA7<A:846; DH4EG8E@<?8 <A6E8@8AG 4A7 4I8E4:87 CEB
7H6<A:4 GBG4?B98<:;G9BE68G<@8F8E<8F6HEI8FB9G;8E<:;G
FG4A68 C;4F8 7HE<A: 846; EHA 478A68 J4F 78G8E@<A87
9EB@<AFB?874G45LB5G4<A<A:E<:;G<AFB?8G;8C84>GBC84>
G<@<A:B9G;8I* BI8EG;8FG8CF9BE846;DH4EG8E@<?8
<A6E8@8AG4A7 J4F E8CBEG87 4F FG8CF@<AHG8 +(% +<A68
6478A68<F54F87GLC<64??LBAE<:;G4A7?89G9BBG6BAG46GF4A7
BA?LG;8 E<:;G 9BBG 74G4 J8E8 8KGE46G87 9BE 4A4?LF<F G;8F8
G<@8F J8E8 7<I<787 5L  +<@<?4E?L C84> 9BE68F J8E8 8K
CE8FF87<A5B7LJ8<:;G/9BEBA?LG;8F8E<:;GFG8CF(84>
9BE68 4A7 <AFB?8 6478A68 74G4 J8E8 6B??4CF87 GB 4A 4I8E
4:8BI8E@<?84A7@<?8F8C4E4G8?L9BE5BG;54F8?<A84A7
6478A68 F8FF<BAF ,;8F8 74G4 J8E8 4A4?LM87 <A !% +(++
+G4G<FG<6F I8EF<BA  E@BA> &1 -+ ,B 8K4@<A8 7<9
98E8A68F <A 4I8E4:8 C84> 9BE68 4 E8C84G87 @84FHE8F K
&'. J4F C8E9BE@87 BA F8FF<BA 54F8?<A8 6478A68F8F
F<BAF4A77<FG4A68@<?8@<?84?C;4J4FF8GGB
A477<G<BA4?K&'.J4FC8E9BE@87BAF8FF<BA54F8
?<A8 6478A68 F8FF<BAF 4A7 7<FG4A68 @<?8  @<?8  I4E<
45?8FGB 8K4@<A87<998E8A68F<A<AFB?8E8CBEG87 6478A68
G;<E7E8C84G87@84FHE8F&'.J4FC8E9BE@87BAF8FF<BA
54F8?<A86478A68F8FF<BAF4A778I<68!AFB?8F(+J4G6;
GB <78AG<9L 4AL 7<998E8A68F 58GJ88A G;8 GJB 78I<68F (BFG
;B6G8FG<A:J4FC8E9BE@87HF<A:BA98EEBA<6BEE86G<BA
*+-$,+
<9G88AC4EG<6<C4AGF  98@4?8F  @4?8F J<G;4 @84A 4:8
B9L84EFE4A:86B@C?8G875BG;54F8?<A84A764
78A68 F8FF<BAF ,;8 E8CBEG87 4I8E4:8 J88>?L @<?84:8 J4F
 @<?8F  E8C84G87 @84FHE8F &'. E8I84?87 4 
786E84F8<A 4I8E4:8C84>9BE6849G8E6478A68 @4A<CH?4G<BA
J;8A6B@C4E87GB 54F8?<A8 C <:HE8(84>9BE68
786E84F8FJ8E89BHA7GB;4I8@87<H@ 89986GF<M8B;8ARF
7 ,45?8  HE<A: 5BG; G;8 54F8?<A8 4A7 6478A68
F8FF<BA EHAF G;8E8 J4F AB 7<998E8A68 <A C84> 9BE687HE<A:
G;8 UEFG @<?8 6B@C4E87 GB G;8 F86BA7 @<?8 C 4A7
AB <AG8E46G<BA 89986G 9BHA7 58GJ88A F8FF<BA 4A7 7<FG4A68
C
%84A4A7BAU78A68!AG8EI4?F9BE4I8E4:86478A68
8KCE8FF87<AFG8CFC8E@<AHG8+(%BABA8?BJ8E8KGE8@<GL
G;EBH:;BHG%<?84A7%<?89BE5BG;4F8?<A84A7478A68
,8FGF7HE<A:BHG7BBEEHAA<A:
*8FH?GF9EB@G;8GJBJ4L&'.78@BAFGE4G87<AFB?8
@84FHE876478A68<A6E84F879EB@54F8?<A8GB6478A68
F8FF<BAFC<:HE8,;889986GF<M89BEG;86478A68
<A6E84F8 J4F ;<:; B;8ARF7 ,45?8  I8E4:8 64
9986GB9!A6E84F<A:*HAA<A:478A68BA(84>!@C46GBE68<A4A'HG7BBEAI<EBA@8AG
International Journal of Sports Physical Therapy
Table 1. Descriptive Statistics and ANOVA results for Insole-measured Cadence
Mean (SPM) SD (SPM) p-value Effect Size (Cohen's d)
Time Baseline test 82.94 4.4 0.000 1.24
Cadence test 89.03 4.33
Distance
Mile 1 86.27 4.26
0.032 0.13
Mile 2 85.71 4.34
+(%HA<?4G8E4?FG8CFC8E@<AHG8
78A68J4F9BHA7GB 786E84F89EB@@<?8 GB@<?8 5L
FG8CFC8E@<AHG8C BJ8I8EG;8E8J4FAB<AG8E46
G<BA89986G9BHA758GJ88AF8FF<BA4A77<FG4A68C
%84A 4A7  BAU78A68 !AG8EI4?F 9BE C84> I8EG<64?
:EBHA7 E846G<BA 9BE68 I* 8KCE8FF87 <A @H?G<C?8F B9
5B7LJ8<:;G / 58GJ88A %<?8  4A7 %<?8  9BE 4F8?<A8
4A7478A68,8FGF7HE<A:BHG7BBEEHAA<A:
/;8A6B@C4E<A:G;84I8E4:86478A68@84FHE875LG;8
<AFB?8F4:4<AFGG;86478A68@84FHE875LG;8(+J4G6;G;8
GJBJ4L&'.E8FH?GFE8I84?87AB7<998E8A68<A@84FHE8
@8AG58GJ88AG;878I<68FCL8G4ABI8E4??<A6E84F8
<A 4I8E4:8 6478A68 E8@4<A87 58GJ88A F8FF<BAF C
6BAUE@<A:G;4G5BG;78I<68FJ8E8 45?8 GB 78G86G 4 F<@<?4E
C8E68AG 6;4A:8 <A 6478A68 9EB@ 54F8?<A8 GB 6478A68 F8F
F<BAF<:HE8 ,45?8&B <AG8E46G<BA 89986GJ4F78G8E
@<A8758GJ88AF8FF<BA4A77<FG4A68C
%84A4A7BAU78A68!AG8EI4?F9BE4I8E4:86478A68
8KCE8FF87<AFG8CFC8E@<AHG8+(%BABA8?BJ8E8KGE8@<GL
G;EBH:;BHG4F8?<A84A7478A68,8FGF4G46B@C4E8764
78A68 @84FHE87 58GJ88A 4E@<A (+ J4G6; /4G6; 4A7
$B47FB?<AFB?8F8AFBEF!AFB?87HE<A:BHG7BBEEHAA<A:
!+-++!'&
,;8CHECBF8B9G;<FFGH7LJ4FGJB9B?7GB78G8E@<A8G;8
89986GB96478A68@B7<U64G<BABAC84><@C46G9BE687HE<A:
4ABHG7BBEEHA4A7GB8K4@<A8G;8<@@87<4G8E8FCBAF8
4A7@4:A<GH78B96478A68@B7<U64G<BAG;EBH:;G;8HF8B9
4@8GEBAB@84F4A 4H7<GBELFG<@H?HF7HE<A:4F86BA7F8F
F<BA!G J4F ;LCBG;8F<M87 G;4G 4F 6478A68<A6E84F87 C84>
<@C46G9BE68FJBH?7786E84F8!GJ4F 477<G<BA4??L;LCBG;8
F<M87G;4GHF8B94@8GEBAB@8JBH?7CEB7H684;<:;8E64
78A687HE<A:G;8EHA
!A FHCCBEG B9 G;8F8 ;LCBG;8F8F C4EG<6<C4AGF 78@BA
FGE4G87 4 FH5FG4AG<4? <A6E84F8 <A 6478A68 5L  HF<A: 4
@8GEBAB@89BEBHG7BBEEHAA<A:J<G;46BA6HEE8AG786E84F8
<A4I8E4:8C84> <@C46G9BE685L 'A8CBFF<5?88KC?4
A4G<BA9BEG;<F6;4A:8<A?BJ8E8KGE8@<GL <@C46G 6BH?7 58
7H8GB 46;4A:8<A9BBGFGE<>8C4GG8EAG;4G @4LB66HE9EB@
G;8@4A<CH?4G<BAB9G;8FC4G<BG8@CBE4?946GBEF4FFB6<4G87
J<G;:4<G;BJ8I8EG;<FJ4FABG7<E86G?L@84FHE87BEDH4A
G<U87 !A6E84F<A: 6478A68 ;4F 588A F;BJA GB CEB@BG8 4
6;4A:89EB@ 4E84E9BBGFGE<>8C4GG8EAGB 4@<7BE 9BE89BBG
FGE<>8 J;<6; @4L E8FH?G <A 786E84F87 I8EG<64? ?B47<A: 58
GJ88A5B7LJ8<:;GF/6;4A:89EB@E84E
9BBGGB9BE89BBGFGE<>8@4L;4I8BG;8E58A8U6<4? 89986GF<A
6?H7<A:786E84F<A: >A88 =B<AG6BAG46G9BE68F5L4A 4I8E4:8
B9/4A7786E84F<A:C4G8??B98@BE4?=B<AGFGE8FF5L4A
Figure 1. Mean and 95% Con6dence Intervals for
average cadence expressed in steps per minute
(SPM) on one lower extremity throughout Mile 1
and Mile 2 for both Baseline and Cadence Tests
during outdoor running
Figure 2. Mean and 95% Con6dence Intervals for
peak vertical ground reaction force (vGRF)
expressed in multiples of bodyweight (BW) between
Mile 1 and Mile 2 for Baseline and Cadence Tests
during outdoor running
4I8E4:8B9 BJ8I8E 4 9BE89BBGFGE<>8@4L<A6E84F8
FGE8FF4A7?B47<A:4GG;86;<??8FG8A7BA4A>?84A7C?4AG4E
9986GB9!A6E84F<A:*HAA<A:478A68BA(84>!@C46GBE68<A4A'HG7BBEAI<EBA@8AG
International Journal of Sports Physical Therapy
Table 2. Descriptive Statistics and ANOVA results for Peak GRF
Mean (BW) SD (BW) p-value Effect Size (Cohen's d)
Time Baseline test 2.539 0.267 0.029 0.56
Cadence test 2.396 0.214
Distance
Mile 1 2.484 0.222
0.202 0.146
Mile 2 2.451 0.229
*:EBHA7E846G<BA9BE68/C84>9BE68ABE@4?<M875L@H?G<C?8FB9<A7<I<7H4?5B7LJ8<:;G
Table 3. Descriptive Statistics and ANOVA results for Cadence between GPS and Insole
Mean (SPM) SD (SPM) p-value Effect Size (Cohen's d)
Time Baseline test 82.75 4.35 0.000 1.43
Cadence test 88.81 4.11
Device
Insole 85.99 4.28
0.067 0.08
Watch 85.57 4.12
/4G6;4E@<A(+J4G6;!AFB?8$B47FB?<AFB?8F8AFBE+(%HA<?4G8E4?FG8CFC8E@<AHG8
FHE9468B9G;89BBGQ,;8E89BE8G;858A8UGFB96;4A:<A:
9BBGFGE<>8C4GG8EA@4LA887GB586BAF<78E874?BA:F<78G;8
CBG8AG<4?A8:4G<I889986GFJ;8A<@C?8@8AG<A:4:4<G@B7<
U64G<BAG86;A<DH8
864HF8B9 G;8@4<AG4<A87EHAA<A:FC88758GJ88A6BA
7<G<BAF G;8F8 UA7<A:F @4L 4?FB 58 C4EG<4??L 8KC?4<A87 5L
G;8E8?4G<BAF;<C58GJ88A6478A684A7FGE<78?8A:G;<AEHA
A<A:+<A68EHAA<A:FC887<F4CEB7H6GB96478A684A7FGE<78
?8A:G;4A4CCE86<45?86;4A:8<A6478A684G46BAFG4AGEHA
A<A: FC887 F;BH?7 E8FH?G <A 4 CEBCBEG<BA4? E87H6G<BA <A
FGE<78?8A:G;4F4GLC<64?6;4A:8 +C86<U64??L786E84F<A:
4EHAA8ERFFGE<78 ?8A:G;5L;4F 588A E8CBEG87GB;4I8
58A8U6<4?89986GFBA>A88><A8G<6F<A6?H7<A:786E84F876BA
G46G 9BE68F 4G G;8 C4G8??B98@BE4? =B<AG 5L 4A 4I8E4:8 B9
 786E84F87 ?B47<A: E4G8 5L  4A7 786E84F87 <@
CH?F8C8E><?B@8G8E5L
(4EG<6<C4AGF<AG;<FFGH7LJ8E84F>87GB<A6E84F86478A68
5L4A7BA4I8E4:8J8E845?8GB46;<8I84CCEBK<@4G8?L
45BI8G;8<ECE898EE8718GG;<F6;4A:8J4FFH9U6<8AGGB
CEB7H684786E84F8<A C84> <@C46G 9BE6858GJ88A6478A68
6BA7<G<BAF,;8E8FH?GFB9 G;<FFGH7LFHCCBEG 74G4E8CBEG87
5L 8<78EF6;8<G8G4?J;8E85BG;4A7<A6E84F8F<A
6478A68786E84F87 8A8E:L 45FBECG<BA E8DH<E87 4G G;8 >A88
5L4CCEBK<@4G8?L4A7E8FC86G<I8?L4FJ8??4F78
6E84F878A8E:L45FBE5874GG;8;<C5LNJ<G;<A
6E84F8<A6478A68'G;8EFGH7<8FFH::8FG6B@C4E45?858A8
UGF4GG;8C4G8??B98@BE4?=B<AGJ<G;4A4I8E4:8B9?BJ8E
6BAG46G 9BE68F 4A7 4G G;8 9BBG J<G; 4 786E84F8 <A BI8E
4??C?4AG4E ?B47<A:58GJ88A +<@<?4E?L/<??L8G
4?78F6E<5876;4A:8F<A@H?G<C?8?BJ8E8KGE8@<GL?B47<A:
I4E<45?8F 4G =HFG  <A6E84F8 <A 6478A68 ,;8F8 6;4A:8F
<A6?H7874786E84F8<A4I8E4:8I8EG<64??B47<A:E4G85L
4F J8?? 4F <AFG4AG4A8BHF I8EG<64? ?B47<A: E4G8 5L 
!A 6BAGE4FG B54E4 8G 4? E8CBEG87 4 @<A<@H@ B9 
<A6E84F8<A 6478A68GB CEB7H686;4A:8F<A?BJ8E8KGE8@<GL
?B47<A:I4E<45?8FFH6; 4F I8EG<64? ?B47<A:E4G84A7I8EG<64?
Figure 3. Mean and 95% Con6dence Intervals for
average cadence expressed in steps per minute
(SPM) on one lower extremity throughout Baseline
and Cadence Tests. Data compared cadence
measured between Garmin GPS watch (Watch) and
Loadsol insole sensors (Insole) during outdoor
running
<@C46G C84> BJ8I8E FB@8 ;4I8 FH::8FG87 <A6E84F8F
45BI8  @4L ABG 58 A868FF4EL GB CEB7H68 G;8 78F<E87
?BJ8E8KGE8@<GL 58A8UGF 4A7 @4L A8:4G<I8?L<A6E84F8C8E
68<I878K8EG<BA4A7@8G45B?<66BFG7HE<A:EHAA<A:
,;8E8FH?GF78@BAFGE4G87<AG;86HEE8AGFGH7L@4L;4I8
<@C?<64G<BAF9BEHF<A:6478A68@B7<U64G<BAFGBE87H68C84>
<@C46G9BE684F J8??4FCEB@BG8G;8FH::8FG8758A8UGF BA
BG;8E?BJ8E8KGE8@<GL?B47<A:I4E<45?8F7HE<A:4ABHG7BBE
EHA(E8I<BHFFGH7<8F;47FH::8FG87;<:;<@C46G9BE68F4E8
4FFB6<4G87J<G;78I8?BC@8AGB96B@@BA**!FFH6;4F@8
9986GB9!A6E84F<A:*HAA<A:478A68BA(84>!@C46GBE68<A4A'HG7BBEAI<EBA@8AG
International Journal of Sports Physical Therapy
7<4?G<5<4?FGE8FFFLA7EB@86;<??8FG8A7<ABC4G;L
C?4AG4E 94F6<<G<F 4A7 C4G8??B98@BE4? C4<A FLA
7EB@8 BJ8I8E4CEBFC86G<I8FGH7L5L +ML@4A8> 8G
4?7<F6BI8E87AB4FFB6<4G<BA58GJ88A4EHAA8ERFCE898EE87
6478A68 4A7 78I8?BC@8AG B9 ?BJ8E 8KGE8@<GL BI8EHF8 <A
=HE<8F77<G<BA4??L4E868AG@8G44A4?LF<F5L.4AA4GG48G
4?E8CBEG8746BAV<6G<A:4FFB6<4G<BA58GJ88AC84><@C46G
9BE684A7**!F!AG;8F4@8FGH7LG;8LE8CBEG87?<@<G878I
<78A68E8?4G<A:786E84F87FG8CE4G8GB<A6E84F87E<F>B9F;<A
E8?4G87<A=HE<8F HEG;8E<AI8FG<:4G<BA<AGBG;8HF8B964
78A68@B7<U64G<BA9BEG;8GE84G@8AGBECE8I8AG<BAB9C4<A
4A7**!F4CC84EFGB58J4EE4AG874FJ4FFH::8FG87<AG;8<E
E8I<8J
?G8E<A: C4G<8AG 6478A68 J<G; G;8 :B4? B9 E87H6<A: <@
C46G9BE68F@4L 58 984F<5?L466B@C?<F;87<A 4 6?<A<64? F8G
G<A:HF<A:4GE847@<??Q ,;8 E8FH?GF B9 G;8CE8F8AGFGH7L
78@BAFGE4G8G;4GF<@<?4E6478A68@B7<U64G<BAF64A58984
F<5?L<@C?8@8AG87J<G;<A4ABHG7BBEF8GG<A:J<G;G;8HF8
B9J84E45?8G86;AB?B:L4A7@8GEBAB@89887546>478A68
@84FHE87G;EBH:;G;8(+J4G6;78I<68J4FF<@<?4EGBG;8
<AFB?8@84FHE87 6478A68 <A7<64G<A: G;<F 6B@@8E6<4??L
4I4<?45?8 G86;AB?B:L @4L CEBI<78 4A 89986G<I8@8G;B7 9BE
@84FHE<A:EHAA<A:6478A687HE<A: <A7BBE BE BHG7BBE :4<G
E8GE4<A<A:,;<F@4LBC8ABCCBEGHA<G<8FGBCEBI<78EHAA<A:
J<G; 6478A68 GE4<A<A: CEBGB6B?F GB 58 HF87 <A 4A BHG7BBE
EHAA<A:8AI<EBA@8AG,;<F@4L4?FB58458A8U6<4?47=HA6G
GB GE4<A<A: 9BE @<?<G4EL C8EFBAA8? J;8E8 <G ;4F 588A E8
CBEG87G;4GB9@4?84A7B998@4?8@<?<G4ELE86EH<GF
FH998E 4A <A=HEL E8?4G87 GB G;8<E GE4<A<A: J<G;  B9
G;BF8<A=HE<8F58<A:6BAF<78E874ABI8EHF8?BJ8E8KGE8@<GL
<A=HEL+<A68@H6;B9@<?<G4ELGE4<A<A:<F6B@C?8G87<A4A
BHG7BBE F8GG<A: HF8 B9 4 @8GEBAB@8 4A7 (+ J4G6; @4L
CEBI<784984F<5?84?G8EA4G<I89BE<AU8?79887546>4A76H8
<A:B96478A68
$!%!,,!'&+
,;<F FGH7L ;47 F8I8E4? ?<@<G4G<BAF G;4G @4L 49986GG;8 <A
G8ECE8G4G<BAB9G;8UA7<A:FCE8F8AG87;8E8<EFGG;8FGH7L
J4FC8E9BE@87BA BA?L ;84?G;L EHAA8EF J;B7<7 ABG ;4I8
4 ;<FGBEL B9 ?BJ8E 8KGE8@<GL <A=HE<8F ,;8E89BE8 G;8F8 E8
FH?GFF;BH?7ABG586BAF<78E87GB58E8CE8F8AG4G<I8B94A<A
=HE87EHAA<A:CBCH?4G<BAHEG;8EFGH7<8FF;BH?78K4@<A8
<9<A=HE87EHAA8EF58;4I8<A4F<@<?4E@4AA8E 9BE6478A68
GE4<A<A:<A4ABHG7BBEF8GG<A:+86BA7 4?G;BH:; 8I8EL4G
G8@CG J4F @478 GB 6BAGEB? @4AL B9 G;8 8?8@8AGF <A BHE
BHG7BBEF8GG<A:68EG4<A8AI<EBA@8AG4?I4E<45?8FJ8E8FH5
=86GGB6;4A:858GJ88A54F8?<A84A76478A68F8FF<BACEB
687HE8F FH6; 4F J<A7 FC887 G8@C8E4GHE8 4A7 4@BHAG B9
I8;<6?8GE49U6,;8F8I4E<45?8F8I8AJ;8A@<A<@<M87@4L
;4I84A89986GBAG;8J<G;<AFH5=86G6;4A:8FG;4G J8E8E8
CBEG87;8E8,;<E7G;8FGH7L6BAF<FG87B94A<AG8EI8AG<BA
C8E9BE@87J<G;4F@4??F4@C?8F<M8B9BA?LC4EG<6<C4AGF
J;<6;@4L?<@<GG;8CBJ8EB9FG4G<FG<64?<A98E8A68FHEG;8E
FGH7<8FF;BH?7<A6?H78 4:E84G8EAH@58EB9 C4EG<6<C4AGF GB
E8C?<64G8 G;8F8 UA7<A:F <A4??L J;<?8 ABG4 7<E86G 4<@ B9
G;<FFGH7LG;8E8 J4F AB ?BA:G8E@ 4FF8FF@8AG B9 6478A68
E8G8AG<BA J<G;BHG (+ J4G6; 4A7 @8GEBAB@8 HF8 ,;8E8
9BE8<G<FHA>ABJAJ;8G;8EG;8F846HG86;4A:8F<A6478A68
F;BJA;8E8G;EBH:;HF8B94@8GEBAB@8JBH?758E8G4<A87
BJ8I8E/<??L8G4?FH::8FG87@4<AG8A4A68B9<A6E84F87
FG8C9E8DH8A6L @4L5889986G<I89BE474L7HE4G<BA 8
FC<G8G;<F9HGHE8 E8F84E6; F;BH?78K4@<A89BE E8G8AG<BAB9
6478A68@B7<U64G<BAFBI8E4A 8KG8A787 C8E<B7 4F J8??4F
G;8CBG8AG<4?9BEHF8B94947<A:9887546>F6;87H?8GBCEB
@BG8 ?BA:G8E@ 6;4A:8F J<G;BHG E8?<4A68 BA 6BA6HEE8AG
9887546>
'&$-+!'&
-F<A:4@8GEBAB@8GB <A6E84F86478A68<A4A BHG7BBEF8G
G<A:@4L584A89986G<I8J4LGBE87H68<@C46G9BE68F7HE<A:
EHAA<A:<A4ABHG7BBEF8GG<A:HEG;8E@BE8HF<A:J84E45?8
G86;AB?B:LG;4G64ACEBI<786478A689887546>I<44H7<GBEL
6H8F @4L CEB7H68 6;4A:8F GB 6478A68 BHGF<78 B9 G;8 ?45
(4EG<6<C4AGFJ8E8<@@87<4G8?L 45?8 GB @4>8 4  4I8E4:8
<A6E84F8<A6478A68J<G;<ABA8F8FF<BAHF<A:4@8GEBAB@8
FH::8FG<A:G;4GG;<F@4L584A89986G<I8GBB?9BE@4A<CH?4G
<A:6478A687HE<A:BHG7BBEEHAA<A:/;<?89HEG;8EE8F84E6;
<F <A7<64G87 GB 8K4@<A8 G;8 6478A68 89986GF BA **! <A6<
78A684A79BES<AG;8U8?7TGE4<A<A:G;8F8UA7<A:F78@BA
FGE4G84 CBFF<5<?<GL9BE6478A684?G8E4G<BAF GB58984F<5?8<A
BHG7BBEF8GG<A:F
'&$!,+'!&,*+,
?? 4HG;BEF E8CBEG AB 6BAV<6G B9 <AG8E8FG 4FFB6<4G87 J<G;
G;<FCEB=86G
+H5@<GG87&BI8@58E,668CG8785EH4EL
,
This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International License
(CCBY-NC-ND-4.0). View this license’s legal deed at https://creativecommons.org/licenses/by-nc-nd/4.0 and legal code at
https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode for more information.
9986GB9!A6E84F<A:*HAA<A:478A68BA(84>!@C46GBE68<A4A'HG7BBEAI<EBA@8AG
International Journal of Sports Physical Therapy
**&+
*HAA<A:-+*8?84F8F$4G8FG-+*HAA<A:,E8A7F
*8CBEG;GGCFJJJEHAA<A:HF4BE:*-+*8F84E6;
*868AG3*8CBEGF*B473*4683,E8A7F*-+&8JF
-+3*B473*4683(4EG<6<C4G<BA3&H@58EF3 B?73+G847
L39BE34FCK;>8L79668964846956
79668FF87CE<?
I4A8AG*&+<8@I4A%<778?>BBC%I4A'F
<8E@428<AFGE4+%#B8F/!A6<78A684A7
78G8E@<A4AGFB9?BJ8E8KGE8@<GLEHAA<A:<A=HE<8F<A
?BA:7<FG4A68EHAA8EF4FLFG8@4G<6E8I<8JBr J Sports
Med7<F6HFF<BA7B<
5=F@
"46B5F+"8EFBA$!A=HE<8FGBEHAA8EF4FGH7LB9
8AGE4AGFGB4@8G8EE468Am J Sports Med
7B<

4I<F!+BJF8E"%H??<A84HK*E84G8E
I8EG<64?<@C46G?B47<A:<A98@4?8EHAA8EFJ<G;
@87<64??L7<4:ABF87<A=HE<8F4CEBFC86G<I8
<AI8FG<:4G<BABr J Sports Med7
B<5=FCBEGF
I4A78E/BEC .E<8?<A>"/E878J8:+/B
EHAA8EFJ;BFH998E<A=HE<8F;4I8;<:;8EI8EG<64?
:EBHA7E846G<BA9BE68FG;4AG;BF8J;BE8@4<A<A=HEL
9E88FLFG8@4G<6E8I<8J4A7@8G44A4?LF<FBr J
Sports Med7B<5=FCBEG
F
 8<78EF6;8<G;H@4ABI+%<6;4?F><%(
/<??8%*L4A%9986GFB9FG8CE4G8@4A<CH?4G<BA
BA=B<AG@86;4A<6F7HE<A:EHAA<A:Med Sci Sports
Exerc7B<%++58
85879
$8A;4EG*$,;8?8A/<??8%;H@4ABI+
8<78EF6;8<G!A6E84F<A:EHAA<A:FG8CE4G8E87H68F
C4G8??B98@BE4?=B<AG9BE68FMed Sci Sports Exerc
7B<%++584
64
+6;H58EG#8@C9" 8<78EF6;8<G!AVH8A68
B9FGE<789E8DH8A6L4A7?8A:G;BAEHAA<A:@86;4A<6F
FLFG8@4G<6E8I<8JSports Health
7B<
.4A BBE8AH??8E",H6>?8L"8G4?!F
@BGBE<M87GE847@<??EHAA<A:5<B@86;4A<64??L
6B@C4E45?8GBBI8E:EBHA7EHAA<A:FLFG8@4G<6
E8I<8J4A7@8G44A4?LF<FB96EBFFBI8EFGH7<8FSports
Med7B<F
M
,4B "BL68$#BM4>$H<>8A"/8A7G&
+C4G<BG8@CBE4?6B@C4E<FBAB9BI8E:EBHA74A7
GE847@<??EHAA<A:J<G;CE8FFHE8F8AFBE<AFB?8F<A
7<I<F<BA!6B??8:<4G8EHAA8EFInt J Sports Phys Ther

 4A?8L%B;4A#;4A:8F<A:4<G7HE<A:
6BAFG4AGC468GE847@<??EHAA<A:J Strength Cond Res
7B<"+584

+4?@BA</+6;@<7G*/4?G8E#ABJ?87:8
B9E8FH?GF4A7@BGBE?84EA<A:4E8I<8J4A76E<G<64?
E84CCE4<F4?Psychol Bull
EB>8E"(E8:BE*"+6;@<7G*KGE<AF<6
9887546>4A7G;8?84EA<A:B9><A8G<6C4GG8EAF<A
6L6?<A:J Appl Biomech7B<
=45
4H7EL$$8EBL,;BHI4E86D*;B??8E
H7<GBEL6BA6HEE8AG9887546>58A8UGFBAG;86<E6?8
C8E9BE@87<A:L@A4FG<6FJ Sports Sci
7B<
 <??% B8A4#<?<4A/'78AJ4?7+/84E45?8
@B7H?4E4A7<AG8??<:8AGF8AFBE?45BE4GBELProcedia
Eng7B<=CEB8A:

*8AA8E#/<??<4@F+)H88A*%,;8
E8?<45<?<GL4A7I4?<7<GLB9G;8?B47FB?OHA78EI4E<BHF
J4?><A:4A7EHAA<A:6BA7<G<BAFSensors
7B<F
HEAF,8A8J8G;28A7?8E"28EA<6>8*
.4?<74G<BAB94J<E8?8FFF;B8<AFB?89BE:EBHA7
E846G<BA9BE68@84FHE8@8AGJ Sports Sci
7B<

74@4><F%B@C4E<A:G;8I4?<7<GLB94(+
@BA<GBE4A74F@4EGC;BA84CC?<64G<BAGB@84FHE8
C;LF<64?46G<I<GLJ Mob Technol Med
74@F(BMM<4EEB??*B@546;28A<"
.4?<7<GL4A7E8?<45<?<GLB946B@@8E6<4?UGA8FFJ4G6;
9BE@84FHE<A:EHAA<A:7LA4@<6FJ Orthop Sports Phys
Ther7B<=BFCG

(885?8F,%4:H<E8$*8AA8E#)H88A*%
.4?<7<GL4A7E8C84G45<?<GLB9F<A:?8F8AFBE?B47FB?
<AFB?8F7HE<A:?4A7<A:Sensors7B
<F
9986GB9!A6E84F<A:*HAA<A:478A68BA(84>!@C46GBE68<A4A'HG7BBEAI<EBA@8AG
International Journal of Sports Physical Therapy
?@8<74%'4I<F!+$BC8F<B@86;4A<64?
7<998E8A68FB99BBGFGE<>8C4GG8EAF7HE<A:EHAA<A:
FLFG8@4G<6E8I<8JJ<G;@8G44A4?LF<FJ Orthop Sports
Phys Ther7B<=BFCG

$<858E@4A/4EE8A8E/4A:"4FG<??B*
9986GFB9FGE<789E8DH8A6L4A79BBGCBF<G<BA4G
?4A7<A:BA5E4><A:9BE68;<CGBEDH8<@C46GC84>
9BE684A7G;8@8G45B?<66BFGB9EHAA<A:<A;H@4AFJ
Exp Biol(G7B<=8
5
#H?@4?4"(I8?4"(4F4A8A#(4E>>4E<"
BE89BBGFGE<>8EF8K;<5<G?BJ8EEHAA<A:<A7H687>A88
?B47<A:G;4AE84E9BBGFGE<>8EFMed Sci Sports Exerc
7B<%++58
8969
.4AA4GG4&#8EABM8>,/(4G8??B98@BE4?=B<AG
FGE8FF7HE<A:EHAA<A:J<G;4?G8E4G<BAF<A9BBGFGE<>8
C4GG8EAMed Sci Sports Exerc7
B<%++
$L:;G%&B6>8EGF%#8EABM8>,/*4:4A*
9986GFB99BBGFGE<>84A7FG8C9E8DH8A6LBA46;<??8F
G8A7BAFGE8FF7HE<A:EHAA<A:J Appl Biomech
7B<=45
/8??8A>BGG8E"#8EABM8>,/%84E7BA+
+H6;B@8?,,;889986GFB9EHAA<A:6478A68
@4A<CH?4G<BABAC?4AG4E?B47<A:<A;84?G;LEHAA8EF
Int J Sports Med7B<F

*BBA8L8EE<6>,*"B<AG6BAG46G?B47<A:<A
9BE89BBG4A7E84E9BBGFGE<>8C4GG8EAF7HE<A:EHAA<A:J
Biomech7B<==5<B@
86;
BJ8EFB6>/<??L*/8.<G4(/<??FBA"
!A78C8A78AG89986GFB9FG8C?8A:G;4A79BBGFGE<>8
C4GG8EABAG<5<B98@BE4?=B<AG9BE68F7HE<A:EHAA<A:J
Sports Sci7B<

BL8E*8EE<6>,*$BJ8E8KGE8@<GL=B<AG?B47F
<A;45<GH4?E84E9BBG4A7@<79BE89BBGFGE<>8EHAA8EF
J<G;ABE@4?4A7F;BEG8A87FGE<78?8A:G;FJ Sports Sci
7B<

/<??L*/H6;8A<6$*B:46><#6>8E@4A"
+6;@<7G/<??FBA"!AU8?7:4<GE8GE4<A<A:4A7
@B5<?8@BA<GBE<A:GB477E8FFEHAA<A:5<B@86;4A<6F
4FFB6<4G87J<G;G<5<4?FGE8FF9E46GHE8Scand J Med Sci
Sports7B<F@F
 B54E4 +4GB,+4>4:H6;<%+4GB,&4>4M4J4
#+G8C9E8DH8A6L4A7?BJ8E8KGE8@<GL?B47<A:7HE<A:
EHAA<A:Int J Sports Med7B<
F
(BCC#$%68E@BGG/ H:;8F"%4KG8E+
+GBI<GM+(8G<G%BA8FGE8A:G;8FG<@4G8FE8?4G<I8
GBI8EG<64?:EBHA7E846G<BA9BE687<F6E<@<A4G8F
JB@8AEHAA8EFJ<G;FGE8FF9E46GHE8;<FGBELBone
7B<=5BA8
$BC8F 8FC4A;B?$18HA:++BFG4$'(
/;4G4E8G;8@4<AEHAA<A:E8?4G87@HF6H?BF>8?8G4?
<A=HE<8FSports Med Auckl Nz7
B<
$BE<@8E. H@8(6;<??8FG8A7BA<A=HELE<F>
946GBEF4FFB6<4G87J<G;EHAA<A:Sports Med Auckl NZ
7B<F

(B;?% 4@<??"4I<F!+<B@86;4A<64?4A7
4A4GB@<6946GBEF4FFB6<4G87J<G;4;<FGBELB9C?4AG4E
94F6<<G<F<A98@4?8EHAA8EFClin J Sport Med
7B<"+%5856

,;<=F18?8E6D*BBF8A(/<GIEBHJ4<G
E8?4G87<AGE<AF<6E<F>946GBEF9BEC4G8??B98@BE4?C4<A<A
ABI<68E86E84G<BA4?EHAA8EFBr J Sports Med
7B<5=F@
+ML@4A8>%<??8E%/84EG&%BEE<F"
BFF$!FFG8CE4G84FFB6<4G87J<G;EHAA<A:<A=HEL
<A6<78A68Int J Sports Phys Ther
.4AA4GG4& 8<A8EG$#8EABM8>,/
<B@86;4A<64?E<F>946GBEF9BEEHAA<A:E8?4G87<A=HEL
7<998E5LF4@C?8CBCH?4G<BAFLFG8@4G<6E8I<8J4A7
@8G44A4?LF<FClin Biomech7B<
=6?<A5<B@86;
H??B6>+ "BA8F <?6;E<FG"%4EF;4??+/
(E8I8AG<BAB9C;LF<64?GE4<A<A:E8?4G87<A=HE<8F
E86B@@8A74G<BAF9BEG;8@<?<G4EL4A7BG;8E46G<I8
CBCH?4G<BAF54F87BA8KC87<G87FLFG8@4G<6E8I<8JF
Am J Prev Med+HCC?+7B<
=4@8CE8
9986GB9!A6E84F<A:*HAA<A:478A68BA(84>!@C46GBE68<A4A'HG7BBEAI<EBA@8AG
International Journal of Sports Physical Therapy
... A low cadence or pronounced rearfoot strike has been associated with increased knee and hip loading, contributing to PFPS and ITBS [21,22]. Consequently, running retraining has emerged as a promising strategy for reducing injury risk by optimizing biomechanical parameters and redistributing forces away from vulnerable structures [23,24]. ...
... A 10% increase in cadence (C1) generally reduces ground contact time, decreases peak force, and can slightly shorten stride length, improving efficiency and reducing the risk of injury [24]. Increasing cadence by 5-10% significantly reduces impact forces and loading rates, particularly at the knee joint [38]. ...
Article
Full-text available
Background: Running is a popular physical activity known for its health benefits but also for a high incidence of lower-limb injuries. This study examined the effects of three biomechanical interventions—cadence adjustments, footwear modifications, and foot orthoses—on plantar pressure distribution and spatiotemporal running parameters. Methods: A quasi-experimental, repeated-measures design was conducted with 23 healthy recreational runners (mean age 25, mean BMI 22.5) who ran at least twice per week. Five conditions were tested: baseline (C0), increased cadence (C1), orthoses (C2), low-drop footwear (C3), and a combination of these (C4). Data were collected on a Zebris treadmill, focusing on rearfoot contact time, peak forces, and stride length. Results: Increasing cadence (C1) reduced rearfoot impact forces (−81.36 N) and led to a shorter stride (−17 cm). Low-drop footwear (C3) decreased rearfoot contact time (−1.89 ms) and peak force (−72.13 N), while shifting pressure toward the midfoot. Orthoses (C2) effectively redistributed plantar pressures reducing rearfoot peak force (−41.31 N) without changing stride length. The combined intervention (C4) yielded the most pronounced reductions in peak forces across the rearfoot (−183.18 N) and forefoot (−139.09 N) and increased midfoot contact time (+5.07 ms). Conclusions: Increasing cadence and low-drop footwear significantly reduced impact forces, improving running efficiency. Orthoses effectively redistributed plantar pressures, supporting individualized injury prevention strategies. These findings suggest that combining cadence adjustments, footwear modifications, and orthoses could enhance injury prevention and running efficiency for recreational runners.
... Gait retraining often aims to reduce loads on musculoskeletal structures by modifying biomechanics. Increasing cadence has been successful for modifying running biomechanics for adult runners that are prospectively associated with RRIs (Becker et al., 2018;Noehren et al., 2007Noehren et al., , 2013 including reducing peak contralateral pelvic drop (Boyer & Derrick, 2015), peak hip adduction (Boyer & Derrick, 2015;Heiderscheit et al., 2011), peak hip, knee, and ankle moments and powers (Boyer & Derrick, 2015;Heiderscheit et al., 2011;Lenhart et al., 2014;Willson et al., 2015), and GRFs (Adams et al., 2018;Heiderscheit et al., 2011;Musgjerd et al., 2021). These biomechanical modifications from acute cadence manipulation theoretically reduce the loads applied to musculoskeletal structures and have been proposed to lower the risk of developing an RRI (Anderson et al., 2022). ...
... High-school runners (13-19 years) who participated on their school's cross-country team were recruited for the study. Participants were excluded if they self-reported an RRI within the last 3 months (Musgjerd et al., 2021). We defined an RRI as runningrelated musculoskeletal pain in the lower limbs that caused a restriction or stoppage in running (distance, speed, duration, or training) for at least 7 days or three consecutive training sessions, or required the runner to visit a healthcare professional (Yamato et al., 2015). ...
Article
Increasing cadence is an intervention to reduce injury risk for adolescent long-distance runners. It is unknown how adolescents respond biomechanically when running with a higher than preferred cadence. We examined the influence of increasing cadence on peak joint angles, moments and powers, and ground reaction forces in long-distance runners. We collected three-dimensional kinematics and kinetics for 31 high school cross-country runners during overground running at their preferred cadence (baseline), +5%, and +10% baseline cadence. We performed repeated-measures ANOVAs to compare peak joint angles, moments and powers, and ground reactions forces among cadence conditions. Increasing cadence reduced peak pelvis, hip, knee, and ankle joint angles (p ≤ .01), peak knee moment and powers (p < .001), peak ankle power (p ≤ .01), and peak ground reaction forces (p ≤ .01) but increased peak hip moment and powers (p < .001). Increasing cadence by 10% elicited greater magnitude changes compared to increasing cadence by 5%. Increasing cadence may be a beneficial intervention to reduce lower extremity peak joint angles and knee kinetics for adolescent long-distance runners. The increase in hip kinetics when running at a higher than preferred cadence indicates this intervention increases the loads applied to the hip for adolescent long-distance runners.
... In the present study, applying bilateral mastoid vibrations might have generated the aforementioned vestibular illusion, causing the body to continuously move forward during treadmill walking and further increase the cadence (Dakin et al., 2013;Sun et al., 2023). Increased cadence resulted in reduced GRF peaks (Musgjerd et al., 2021). Thus, this might be why the reductions in GRFs with MV than without MV in V ( It was noted that greater negative values indicated greater GRF in the AP. ...
Article
Full-text available
Background The Sensory Organization Test condition 5 (SOT5) assesses an astronaut’s vestibular function pre-/post-spaceflight but has a ceiling effect and mainly evaluates standing balance, neglecting the challenges of walking during space missions. A Locomotor Sensory Organization Test (LSOT) has been developed, mirroring the SOT concept but tailored to assess vestibular function during walking. This study aims to advance current knowledge by examining changes in ground reaction force (GRF) during normal walking (LSOT1) and walking in LSOT5 (vision blocked and treadmill speed varied), both with and without mastoid vibrations. Methods Sixty healthy adults were recruited and divided into two groups: one with mastoid vibration and one without. GRF peaks and respective variabilities were analyzed in the vertical (V), anterior-posterior (AP), and medial-lateral (ML) directions during stance cycles. The effects of LSOTs and mastoid vibration on each dependent variable were assessed using Friedman’s two-way analysis of variance by ranks. Results The findings revealed that:1) Walking in LSOT5 increased the variabilities of GRFs regardless of the administration of mastoid vibration; 2) the application of mastoid vibration reduced the amplitude of GRF peaks; and 3) walking in LSOT5 while receiving mastoid vibration was the most challenging task compared to all other tasks in this study. Conclusion The results indicated that analyzing GRF can detect changes in the strategy of balance control across different sensory-conflicted conditions. The findings could be beneficial for assessing the vestibular function pre- and post-space missions and planning for future sensorimotor training programs aimed at enhancing astronauts’ abilities to navigate unpredictable sensory-conflicted conditions.
... A second possible explanation of our findings is a mechanism of increasing cadence while maintaining a consistent pace to lower impact forces [36,37]. The asymmetrical load carried in the hands alters pelvis stability and increases the activity of hip abductors contralateral to the load [38]. ...
Article
Full-text available
Incline walking with an external load is a common activity in everyday life. Asymmetrical load carriage can lead to abnormal posture and back pain. Thus, this study aimed to examine the effect of walking uphill with an asymmetrical load in two positions on the spatiotemporal parameters of gait in young adults. Forty-one asymptomatic human volunteers were enrolled in this study. They were asked to walk at a self-selected pace on level and uphill (+5° incline) surfaces carrying a backpack in two asymmetrical positions (hand and shoulder). Spatiotemporal gait parameters were recorded using a photocell device. We observed a significant effect of incline and load position on gait parameters (p < 0.05). Although adaptation to walking on inclines was similar with and without a backpack, adaptation to load position was different when the load was hand-held and shoulder-held. Asymmetric loading with different load locations should be considered an important factor influencing daily gait patterns. In the future, this relationship should be further investigated in terms of pain disorders and postural abnormalities.
... The optimal stride frequency (Cavanagh & Kram, 1989) of an elite long distance runner is around 4800 strides per hour (Musgjerd et al., 2021;Oeveren et al., 2017). During strides, the foot-ground reaction forces exhibit repeated compressive loadings (Nigg et al., 2012). ...
... A study found that increasing step cadence by just 5% significantly reduced peak braking force by 5.7% [37] and 11.4% [38] in long-distance runners. Increasing step cadence with a proportional reduction in the stride length at a constant speed has reduced foot inclination angles and impact forces by 5.6% [39] which decreases the number of initial contacts by hindfoot [40]. Besides, altering step width has reduced foot pronation [41,42]. ...
Article
Full-text available
Foot pronation is a prevalent condition known to contribute to a range of lower extremity injuries. Numerous interventions have been employed to address this issue, many of which are expensive and necessitate specific facilities. Gait retraining has been suggested as a promising intervention for modifying foot pronation, offering the advantage of being accessible and independent of additional materials or specific time. We aimed to systematically review the literature on the effect of gait retraining on foot pronation. We searched four databases including PubMed, Web of Science, Scopus and Embase from their inception through 20 June 2023. The Downs and Black appraisal scale was applied to assess quality of included studies. Two reviewers screened studies to identify studies reporting the effect of different methods of gait-retraining on foot pronation. Outcomes of interest were rearfoot eversion, foot pronation, and foot arch. Two authors separately extracted data from included studies. Data of interest were study design, intervention, variable, sample size and sex, tools, age, height, weight, body mass index, running experience, and weekly distance of running. Mean differences and 95% confidence intervals (CI) were calculated with random effects model in RevMan version 5.4. Fifteen studies with a total of 295 participants were included. The results of the meta-analysis showed that changing step width does not have a significant effect on peak rearfoot eversion. The results of the meta-analysis showed that changing step width does not have a significant effect on peak rearfoot eversion. Results of single studies indicated that reducing foot progression angle (MD 2.1, 95% CI 0.62, 3.58), lateralizing COP (MD -3.3, 95% CI -4.88, -1.72) can effectively reduce foot pronation. Overall, this study suggests that gait retraining may be a promising intervention for reducing foot pronation; Most of the included studies demonstrated significant improvements in foot pronation following gait retraining. Changing center of pressure, foot progression angle and forefoot strike training appeared to yield more favorable outcomes. However, further research is needed to fully understand its effectiveness and long-term benefits.
Article
Background: Running-related injuries are often associated with biomechanical inefficiencies, particularly in the sagittal and frontal planes. This study evaluates the effects of three interventions—reduced heel-to-toe drop (HTD) shoes, increased cadence, and inversion foot orthoses—on key kinematic parameters: ankle dorsiflexion, knee flexion, and hip adduction (measured at foot strike and at their respective peak joint angles during the stance phase). Methods: Nineteen recreational runners (ten males and nine females; mean ± SD: age 26.4 ± 4.3 years; height 174.2 ± 7.8 cm; weight 68.3 ± 9.6 kg; BMI 22.5 ± 2.1 kg/m2) participated in a 3D motion capture study under five experimental conditions: baseline (10 mm HTD, no cadence adjustment, no foot orthoses), full intervention (5 mm HTD, +10% cadence, orthoses), and three partial interventions: HTD combined with orthoses, HTD combined with increased cadence, and cadence increase alone. Kinematic changes were analyzed for statistical significance. Results: The full intervention significantly increased ankle dorsiflexion at foot strike (from 8.11° to 10.44°; p = 0.005) and reduced peak knee flexion (from 45.43° to 43.07°; p = 0.003). Cadence adjustments consistently produced improvements, while orthoses and HTD alone showed effects on ankle flexion only. Conclusions: Combining structural (HTD and orthoses) and dynamic (cadence) modifications optimizes running biomechanics, providing evidence-based strategies for injury prevention and performance enhancement.
Article
Full-text available
Running cadence is crucial in running biomechanics and physiology, impacting performance and injury risk. The relationship between running cadence, height, weight, and gender is explored using data from 29 participants (14 males, 15 females) with varying attributes. Taller individuals tend to have a lower cadence due to longer stride length, while fewer steps are required by heavier individuals at the same pace. A higher cadence is observed in males, possibly due to differences in leg length and muscle fiber composition, although considerable variability exists among individuals of both genders. Linear regression analysis revealed robust models for both genders, with negative correlations between cadence and height, indicating that increased cadence correlates with decreased height for males and females. Females typically have higher BMI than males, with BMI variability in the population. Weight influences running cadence by affecting ground force. Heavier individuals may take fewer steps, but risk increased strain on joints and muscles, raising injury risk. Furthermore, the connection between running cadence and injury risk is investigated. It is found that adjusting cadence significantly reduces stress on weight-bearing joints and prevents common overuse running injuries. It is demonstrated by several reputable studies in the field that even minor cadence increases greatly reduce stress on knee and hip joints during running, making it a commendable method for injury prevention. In conclusion, while height and weight impact running cadence, each person's cadence is unique and influenced by various factors beyond gender alone. Understanding the relationship between running cadence and its impact on injury prevention is crucial for runners seeking to improve performance and avoid injuries.
Article
Full-text available
Background: Several strategies have been proposed to reduce loading of the lower extremity while running including step rate manipulation. It is unclear however, whether step rate influences the incidence of lower extremity injuries. Purpose: To examine the association between step rate and risk of injury in an adult recreational runner population. Study design: Prospective Cohort. Methods: A total of 381 runners were prospectively followed for an average of nine months. Two-dimensional video was used to assess preferred step rate during a timed two-mile run or a 5K race. Injury surveillance to record sub-clinical injuries (those for which medical treatment was not sought) was performed via semi-monthly email surveys over the course of one year. Injury surveillance for clinical injuries (those for which medical treatment was sought) was performed via a full medical record review using the Armed Forces Health Longitudinal Technology Application. Clinical, sub-clinical and combined clinical and sub-clinical injury incidence were assessed in separate analyses. Injury was operationally defined as seven or more days of reduced activity due to pain. To assess the predictive validity of running step rate, the step rate of participants who did not develop a musculoskeletal injury during the observation period were compared with the running step rate of participants who did develop an injury during the observation period. Results: Out of 381 runners, 16 sustained a clinical overuse injury for which medical treatment was sought. Mean step rate for clinically un-injured runners was 172 steps/min and mean step rate for clinically injured runners was 173 steps/min which was not statistically significantly different (p = 0.77.) Out of 381 runners, 95 completed all four sub-clinical injury surveys (95/381 = 25%). Out of those 95 runners, 19 sustained a clinical (n=4) or sub-clinical injury (n=15). The step rate of sub-clinically injured and non-injured runners in this sub-sample was also not statistically significantly different (p = 0.08), with a mean of 174 steps/min for the uninjured group and a mean step rate of 170 steps/min for those in the sub-clinical injured group. Conclusion: Preferred step rate was not associated with lower extremity injury rates in this sample of DoD runners. Additional research is needed to justify preferred step rate manipulation as a means to reduce lower extremity injury risk. Level of evidence: Level 3.
Article
Full-text available
Background Treadmills are often used in research, clinical practice, and training. Biomechanical investigations comparing treadmill and overground running report inconsistent findings. Objective This study aimed at comparing biomechanical outcomes between motorized treadmill and overground running. Methods Four databases were searched until June 2019. Crossover design studies comparing lower limb biomechanics during non-inclined, non-cushioned, quasi-constant-velocity motorized treadmill running with overground running in healthy humans (18–65 years) and written in English were included. Meta-analyses and meta-regressions were performed where possible. Results 33 studies (n = 494 participants) were included. Most outcomes did not differ between running conditions. However, during treadmill running, sagittal foot–ground angle at footstrike (mean difference (MD) − 9.8° [95% confidence interval: − 13.1 to − 6.6]; low GRADE evidence), knee flexion range of motion from footstrike to peak during stance (MD 6.3° [4.5 to 8.2]; low), vertical displacement center of mass/pelvis (MD − 1.5 cm [− 2.7 to − 0.8]; low), and peak propulsive force (MD − 0.04 body weights [− 0.06 to − 0.02]; very low) were lower, while contact time (MD 5.0 ms [0.5 to 9.5]; low), knee flexion at footstrike (MD − 2.3° [− 3.6 to − 1.1]; low), and ankle sagittal plane internal joint moment (MD − 0.4 Nm/kg [− 0.7 to − 0.2]; low) were longer/higher, when pooled across overground surfaces. Conflicting findings were reported for amplitude of muscle activity. Conclusions Spatiotemporal, kinematic, kinetic, muscle activity, and muscle–tendon outcome measures are largely comparable between motorized treadmill and overground running. Considerations should, however, particularly be given to sagittal plane kinematic differences at footstrike when extrapolating treadmill running biomechanics to overground running. Protocol registration CRD42018083906 (PROSPERO International Prospective Register of Systematic Reviews).
Article
Full-text available
The assessment of loading during walking and running has historically been limited to data collection in laboratory settings or with devices that require a computer connection. This study aims to determine if the loadsol®—a single sensor wireless insole—is a valid and reliable method of assessing force. Thirty (17 male and 13 female) recreationally active individuals were recruited for a two visit study where they walked (1.3 m/s) and ran (3.0 and 3.5 m/s) at a 0%, 10% incline, and 10% decline, with the visits approximately one week apart. Ground reaction force data was collected on an instrumented treadmill (1440 Hz) and with the loadsol® (100 Hz). Ten individuals completed the day 1 protocol with a newer 200 Hz loadsol®. Intraclass correlation coefficients (ICC3,k) were used to assess validity and reliability and Bland–Altman plots were generated to better understand loadsol® validity. Across conditions, the peak force ICCs ranged from 0.78 to 0.97, which increased to 0.84–0.99 with the 200 Hz insoles. Similarly, the loading rate ICCs improved from 0.61 to 0.97 to 0.80–0.96 and impulse improved from 0.61 to 0.97 to 0.90–0.97. The 200 Hz insoles may be needed for loading rate and impulse in running. For both walking and running, the loadsol® has excellent between-day reliability (>0.76).
Article
Full-text available
Clinically feasible methods for quantifying landing kinetics could help identify patients at risk for secondary anterior cruciate ligament injuries. The purpose of this study was to evaluate the validity and between-day repeatability of the loadsol insole during a single-hop and bilateral stop-jump. Thirty healthy recreational athletes completed seven single-hops and seven stop-jumps while simultaneous loadsol (100 Hz) and force plate (1920 Hz) measurements were recorded. Peak impact force, loading rate, and impulse were computed for the dominant limb, and limb symmetry was calculated between limbs for each measure. All outcomes were compared between the loadsol and force plate using intraclass correlation coefficients (ICC) and Bland–Altman plots. Fifteen participants completed a second day of testing to assess between-day repeatability of the loadsol. Finally, an additional 14 participants completed the first day of testing only to assess the validity of the newest generation loadsol, which sampled at 200 Hz. At 100 Hz, validity ICC results were moderate to excellent (0.686–0.982), and repeatability ICC results were moderate to excellent (0.616–0.928). The 200 Hz loadsol demonstrated improved validity ICC (0.765–0.987). Bland–Altman plots revealed that the loadsol underestimated load measures. However, this bias was not observed for symmetry outcomes. The loadsol device is a valid and repeatable tool for evaluating kinetics during landing.
Article
Full-text available
Ground reaction force measurements are a fundamental element of kinetic analyses of locomotion, yet they are traditionally constrained to laboratory settings or stationary frames. This study assessed the validity and reliability of a new wireless in-shoe system (Novel Loadsol/Pedoped) for field-based ground reaction force measurement in hopping, walking, and running. Twenty participants bilaterally hopped on a force plate and walked (5 km/hr) and ran (10 km/hr) on an instrumented treadmill on two separate days while wearing the insoles. GRFs were recorded simultaneously on each respective system. Peak GRF in hopping and peak GRF, contact time (CT), and impulse (IMP) in walking and running were compared on a per-hop and step-by-step basis. In hopping, the insoles demonstrated excellent agreement with the force plate (ICC: 0.96). In walking and running, the insoles demonstrated good-to-excellent agreement with the treadmill across all measures (ICCs: 0.88–0.96) and were reliable across sessions (ICCs within 0.00–0.03). A separate verification study with ten participants was conducted to assess a correction algorithm for further agreement improvement but demonstrated little meaningful change in systemic agreements. These results indicated that the Novel Loadsol system is a valid and reliable tool for wireless ground reaction force measurement in hopping, walking, and running.
Article
Full-text available
Background: A recent approach to increasing physical activity levels, managing weight and improving health has been via technological advances, such as the Web 2.0 technologies, wearable activity trackers and smartphones. These approaches might be effective due to reduced cost, userfriendly environment and real-time feedback provided. Many of these monitors and smartphone applications are marketed to provide personal information on the level of physical activity, however little or no information is available regarding their validity. Aims: The purpose of this study was to compare the criterion validity for distance travelled and total energy expenditure (TEE) between a commercially available GPS monitor, Garmin Forerunner 310XT, and a freeware GPS application for Android smartphones, Runkeeper, under semistructured activity settings. Methods: Asingle, healthy and physically active participant took part in all trials. The same protocolwas repeated on 40 occasions (20walking and 20 running sessions).The participantwore theGarminGPS on the left wrist and a smartphone with the Runkeeper application activated on the left arm. Distance was compared against an objectivelymeasured distance with three differentmethods and energy expenditure estimates for each monitor was evaluated relative to criterion values concurrently obtained from the portablemetabolic system CosmedK4b2. Differences fromcriterionmeasureswere expressed as a mean absolute percent error and were evaluated using repeated measures ANOVA and Bland-Altman plots. Results: For overall group comparisons, the mean absolute percent error values for distance were 0.30% and 0.74% for Garmin (walking and running), while higher values were calculated for Runkeeper (3.28% during running and 4.43% during walking), which significantly overestimated distance in both conditions. For energy expenditure estimation, significant differences were observed for both monitors (pB0.001). Garmin significantly underestimated energy expenditure compared to the criterion method in both conditions by 17%, while Runkeeper significantly overestimated it by 6.29% during running and 35.52% during walking. Conclusions: The present study offers initial evidence for the validity of GPS technology of wearable activity monitors and smartphone applications for measuring distance travelled. However, estimates of energy expenditure were poor, except for Runkeeper during running which provided acceptable error.
Article
Background: The role of biomechanical variables of running gait in the development of running related injury has not been clearly elucidated. Several systematic reviews have examined running biomechanics and its association with particular running related injuries. However, due to retrospective designs, inferences into the cause of these injuries are limited. Although prospective studies have been completed, no quantitative analysis pooling these results has been completed. Methods: A systematic review of MEDLINE, CINAHL, and PubMed was completed. Articles included used prospective study designs, human subjects currently completing a regular running program, and a minimum 12-week follow-up period. Excluded articles had no biomechanical data reported, participants who were beginning runners or military recruits, or had an intervention provided. Findings: Thirteen studies met these criteria. Pooled analyses were completed if two or more studies were available with samples that investigated the same sex and competition level. A qualitative synthesis was completed when pooled analysis was not possible. Five unique running samples were identified and allowed for pooled analyses of variables in mixed-sex collegiate runners and female recreational runners. Moderate evidence exists for increased hip adduction and reduced peak rearfoot eversion as risk factors for running related injury in female recreational runners. Variables differed in other samples of runners. Interpretation: A runner's sex and competition level may affect the relationship between biomechanical factors and the development of running related injury. Hip adduction and rearfoot eversion may be important factors related to running related injury in female recreational runners. Further investigation of biomechanical factors in running injury is warranted.
Article
Study design: Repeated measures. Background: Both clinicians and researchers often utilize treadmills to analyze spatiotemporal and biomechanical factors during running. However, there is question of whether or not treadmill running mimics overground running. The development of new wearable technology, such as pressure sensor insoles, presents an opportunity to compare the two running conditions. Purpose: To compare the spatiotemporal factors between overground and treadmill running in collegiate runners, using pressure sensor insoles. Methods: Twenty-one collegiate runners (age 20.1 ± 1.5 years, 81% female) were recruited from a Division I Cross Country team. Subjects participated in two 15-minute testing sessions. During the first session, subjects ran at their "easy run pace" for 200 meters, while wearing pressure sensor insoles. During the second session, subjects ran at a speed-matched pace on a treadmill for one minute at a level grade, and one minute at a 1% incline. Cadence, stance duration and swing duration were processed using Moticon Science Pro + software (Munich, DE). Data between overground and treadmill running was compared using repeated measures analysis of variance with α = 0.05. Results: Compared to overground running, level and incline treadmill running was associated with increased cadence (mean difference [MD] = 3.55-3.22 strides per minute; p < 0.01), decreased stance duration (MD = 14-16 ms; p < 0.01), and decreased swing duration (MD = 11-12 ms; p < 0.05). Conclusion: In collegiate runners, overground and treadmill running differ in spatiotemporal comparisons. Levels of evidence: 3.
Article
Our purpose was to compare joint loads between habitual rearfoot (hRF) and habitual mid/forefoot strikers (hFF), rearfoot (RFS) and mid/forefoot strike (FFS) patterns, and shorter stride lengths (SLs). Thirty-eight hRF and hFF ran at their normal SL, 5% and 10% shorter, as well as with the opposite foot strike. Three-dimensional ankle, knee, patellofemoral (PF) and hip contact forces were calculated. Nearly all contact forces decreased with a shorter SL (1.2-14.9% relative to preferred SL). In general, hRF had higher PF (hRF-RFS: 10.8 ± 1.4, hFF-FFS: 9.9 ± 2.0 BWs) and hip loads (axial hRF-RFS: -9.9 ± 0.9, hFF-FFS: -9.6 ± 1.0 BWs) than hFF. Many loads were similar between foot strike styles for the two groups, including axial and lateral hip, PF, posterior knee and shear ankle contact forces. Lateral knee and posterior hip contact forces were greater for RFS, and axial ankle and knee contact forces were greater for FFS. The tibia may be under greater loading with a FFS because of these greater axial forces. Summarising, a particular foot strike style does not universally decrease joint contact forces. However, shortening one's SL 10% decreased nearly all lower extremity contact forces, so it may hold potential to decrease overuse injuries associated with excessive joint loads.