ArticlePDF Available

Giysi Endüstrisinde Üretim Performansının Tahmininde Yapay Sinir Ağlarının Kullanılması

Authors:



Araştırma Makalesi
www.ejosat.com ISSN:2148-2683



Research Article
 



*








 

              
          

 




             





In the age of digitalization, businesses want to adapt themselves to new technologies. In order to adapt to these new technologies and
increase efficiency and profitability, there is a need for data processing and analysis of the situation with intelligent decision-making
systems. Especially in the garment industry, which has a large production volume, both the continuation of traditional processes and
the direct dependence of work flows on human performance affect productivity significantly. Thus, there are serious differences between
the expected performance values and the actual outputs.
In this study, data mining techniques were applied and analyzes were made on the data of a business in a garment industry. In this
enterprise, an artificial neural network model was created to predict the real production performance by examining the working
conditions of the workers. When the results were examined, an accuracy value of 85% was reached. It has been shown that the model
will contribute to increasing the production performance and efficiency of the enterprises with the necessary corrections and at the same
time reducing the losses to the minimum level.

*


 

     
      
      
      
    

       
       
     

     
      
       
      
      
       
       

     
     
       

   


       
     
      
   

        

     

       


        


      
      
       





       
      
     
     
      

     
       
        

      

   
    
     
      
     
    


        
        
      
       

       

      


      

 



     
      
        
     
      
     

































 



































     
     

     


       
       
       
      
     
       
       

     
      
      
      
       




     

































     
     
       
 
     



 
 

       



    
      
        
     

    
      

  

     

󰇛󰇜 󰇛󰇜󰇛󰇜
󰇛󰇜󰇛󰇜

 
󰇛󰇜

        































      
     



      
     
   


        

      

       



     
      

     
        

       
      
     
      
     
      
       
     


     


      

     
      
     

 󰇛󰇜  


       

     
      

   󰇛 󰇜 
       
       
       

     
     
         


󰇛󰇜 


      


󰇛 󰇗󰇜
 
󰇗
  

      


 

      

       

 

     
   


 
       


      

󰇛
󰇜 
        
      
      


      
     
      



        
       

        
      
     
     

     
     


      





     
  


     
     


       
     

  
    
      


          
         


      
     
     


 


      
      

           
 
     
     


      

 
     


      
     
   

        
       



      
       


     
      
       


      
     





        



      

        
 

  
       
      

     
        

... Bu durum, aynı zamanda hem sarf miktarının artmasına hem de önemli ölçüde ekonomik kayıpların yükselmesine neden olmaktadır. Tekstil sektöründe üretim süreçlerinin çoğunlukla geleneksel yöntemlerle yürütülmesi ve çalışanların performansına bağlı olması, verimliliği olumsuz etkileyen en önemli etkenlerden biridir [6]. ...
Article
Full-text available
İşletmelerdeki dikiş ürünleri, ticaret yapan kuruluşların taleplerine uygun olarak üretilmekte ve ürün verileri modelin asorti raporu (MAR) olarak düzenlenmektedir. Manuel olarak yapılan asorti hesaplamaları çoğu zaman büyük sapmalara, dolayısıyla kumaş israfının artmasına neden olmaktadır. Bu çalışmada, MAR hesaplamalarını pratik bir şekilde yapabilecek bir yazılım geliştirilerek kumaş israfının azaltılması amaçlanmıştır. Yazılım, kalıp yerleştirme işlemini verilen beden-ürün sayısına göre minimum pastal dağılım ve serim sayısına ulaşmasına olanak sağlayacak şekilde geliştirilmiştir. Daha sonra yazılımın verimliliğini test etmek amacıyla, manuel olarak MAR yapılmış ve üretimi tamamlanmış ürünler için kullanılan kumaş miktarı yazılımdan elde edilen MAR ile hesaplanan değerlerle karşılaştırılmıştır. Bu işlem sonucunda, geliştirilen yazılım sayesinde serimi gerçekleştirilmiş olan kumaş katlarının sayısının yaklaşık olarak %35 oranında düşürülebileceği ve %3,8 oranında kumaş tasarrufu sağlanabileceği görülmüştür. Sonuç olarak, manuel hesaplamalar yerine geliştirilen yazılımın kullanılmasının hem MAR’ın daha hızlı hesaplanmasına hem de işletmelerin sarftan kaynaklı ekonomik kayıplarının azalmasına neden olacağı görülmüştür. Ayrıca bu iyileştirmelere paralel olarak kumaş serimi için gerekli zaman ve iş gücünün azalmasından dolayı üretim verimliliğinin de artacağı öngörülmektedir.
... The dependence of the average scattering angles in terms of the number of crossed cells can be used to determine the particle momentum with the help of the well-known MCS formula. This study aims to improve the energy resolutions of muon beams, which could be obtained with the fit method, by using the deep neural network structures which have received rising interest from scientists in recent years [14][15][16][17][18][19][20][21][22]. This work can also be evaluated as a study of how effective artificial neural networks can be in measuring the energies of charged particles through the geometries described in this paper. ...
Article
Full-text available
This study is based on the determination of muon beam energies using multiple Coulomb scattering data in artificial neural networks. Muon particles were scattered off a 50-layer lead object by using the G4beamline simulation program which is based on Geant4. Before working with deep neural networks, average scattering angle distributions in terms of the number of crossed layers were analyzed with the fitting method using the well-known formula for multiple Coulomb scattering to estimate muon beam energies. Subsequently, average scattering angles over the number of crossed layers from 1 to 10 were used in deep neural network structures to estimate the muon beam energy. It has been observed that deep neural networks significantly improve the resolutions compared to the ones obtained with the fitting method.
Article
Full-text available
Backpropagation Neural Network (BPNN) is an artificial intelligence technique that has seen several applications in many fields of science and engineering. It is well-known that, the critical task in developing an effective and accurate BPNN model depends on an appropriate training algorithm, transfer function, number of hidden layers and number of hidden neurons. Despite the numerous contributing factors for the development of a BPNN model, training algorithm is key in achieving optimum BPNN model performance. This study is focused on evaluating and comparing the performance of 13 training algorithms in BPNN for the prediction of blast-induced ground vibration. The training algorithms considered include: Levenberg-Marquardt, Bayesian Regularisation, Broyden–Fletcher–Goldfarb–Shanno (BFGS) Quasi-Newton, Resilient Backpropagation, Scaled Conjugate Gradient, Conjugate Gradient with Powell/Beale Restarts, Fletcher-Powell Conjugate Gradient, Polak-Ribiére Conjugate Gradient, One Step Secant, Gradient Descent with Adaptive Learning Rate, Gradient Descent with Momentum, Gradient Descent, and Gradient Descent with Momentum and Adaptive Learning Rate. Using ranking values for the performance indicators of Mean Squared Error (MSE), correlation coefficient (R), number of training epoch (iteration) and the duration for convergence, the performance of the various training algorithms used to build the BPNN models were evaluated. The obtained overall ranking results showed that the BFGS Quasi-Newton algorithm outperformed the other training algorithms even though the Levenberg Marquardt algorithm was found to have the best computational speed and utilised the smallest number of epochs. Keywords: Artificial Intelligence, Blast-induced Ground Vibration, Backpropagation Training Algorithms
Article
Full-text available
The aim of the article is to propose a concept for controlling the loading and haulage process and copper ore in a mine with a pillar-chamber system. An appropriate method of control should ensure the production level assumed in the production plan at the lowest costs of the process. It is important to properly select the cost account showing the impact of cost factors (variable parameters) on the total costs of the process. In the presented concept, it is proposed to build an SSN model which will allow for such control of the rigs and haulage process, so that the process remains stable in the assumed period and the economic result is as large as possible. The process will remain stable if the extraction volume is consistent with the volume planned in the production plan. In addition, process control will be aimed at ensuring the lowest total costs of rigs and hauling off the output. The decision model proposed in the article will enable quick decisions to be made, allowing for the implementation of production plans while ensuring the criterion of production efficiency. Optimization of processes often leads to problems where there is a need to resolve the issues of process evaluation based on more than one objective function. The proposed solutions have been adapted to mining systems operating under the conditions of a given enterprise.
Article
Full-text available
In this study, it was aimed to compare different normalization methods employed in model developing process via artificial neural networks with different sample sizes. As part of comparison of normalization methods, input variables were set as: work discipline, environmental awareness, instrumental motivation, science self-efficacy, and weekly science learning time that have been covered in PISA 2015, whereas students' Science Literacy level was defined as the output variable. The amount of explained variance and the statistics about the correct classification ratios were used in the comparison of the normalization methods discussed in the study. The dataset was analyzed in Matlab2017b software and both prediction and classification algorithms were used in the study. According to the findings of the study, adjusted min-max normalization method yielded better results in terms of the amount of explained variance in different sample sizes compared to other normalization methods; no significant difference was found in correct classification rates according to the normalization method of the data, which lacked normal distribution and the possibility of overfitting should be taken into consideration when working with small samples in the modelling process of artificial neural network. In addition, it was also found that sample size had a significant effect on both classification and prediction analyzes performed with artificial neural network methods. As a result of the study, it was concluded that with a sample size over 1000, more consistent results can be obtained in the studies performed with artificial neural networks in the field of education.
Article
Full-text available
Correlation analysis is an extensively used technique that identifies interesting relationships in data. These relationships help us realize the relevance of attributes with respect to the target class to be predicted. This study has exploited correlation analysis and machine learning-based approaches to identify relevant attributes in the dataset which have a significant impact on classifying a patient’s mental health status. For mental health situations, correlation analysis has been performed in Weka, which involves a dataset of depressive disorder symptoms and situations based on weather conditions, as well as emotion classification based on physiological sensor readings. Pearson’s product moment correlation and other different classification algorithms have been utilized for this analysis. The results show interesting correlations in weather attributes for bipolar patients, as well as in features extracted from physiological data for emotional states.
Article
Full-text available
The ready-made garments (RMG) sector of Bangladesh has got a greater facet than any other sector in terms of growth and foreign exchange earnings. It makes a significant contribution to the national economy by creating generous employment opportunities and reducing poverty through socioeconomic development. Despite unquestionable success story, this sector has got a number of formidable challenges for the future growth. The present study has made a search on different dimensions of contribution and challenges of RMG industry in Bangladesh. To accomplish the task, a descriptive research based on study of available records is conducted. The study reveals that since its inception, especially during the last three decades, the RMG industry contributed significantly through creation of physical infrastructure which is demonstrated by 4222 RMG units along with the development of human capital as around 4 million workforce are directly involved in this industry. It has also contributed tremendously through empowering women as almost 90 percent of its labor force is female which ranked the highest in SouthEast Asia. In terms of core economic consideration RMG holds almost 14.07 percent of the GDP of Bangladesh as well as the 81 percent of the total export earnings. The study however, identifies some challenges towards its future development including unskilled workers, improper infrastructure, energy crisis, bank loan and high rate of interest, high tax rate, intricate social compliance, political crisis, lack of market and product diversification, compliance pressure of accord and alliance and lack of integration. Therefore, collaborative and coordinated steps from both public and private sectors need to be initiated to overcome these challenges.
Article
Full-text available
This paper addresses the issues and technique for textile industry using data mining techniques. Data mining has been applied to the stitching of garments products that were obtained from a textile company. Data mining techniques were applied to the data obtained from the CHAID algorithm, CART algorithm, Regression Analysis and, Artificial Neural Networks. Classification technique based analyses were used while data mining and decision model about the production per person and variables affecting about production were found by this method. In the study, the results show that as the daily working time increases, the production per person also decreases. In addition, the relationship between total daily working and production per person shows a negative result and the production per person show the highest and negative relationship.
Article
Full-text available
Data mining and analytics have played an important role in knowledge discovery and decision making/supports in the process industry over the past several decades. As a computa-tional engine to data mining and analytics, machine learning serves as basic tools for information extraction, data pattern recognition and predictions. From the perspective of machine learning, this paper provides a review on existing data mining and analytics applications in the process industry over the past several decades. The state-of-the-art of data mining and analytics are reviewed through eight unsupervised learning and ten supervised learning algorithms, as well as the application status of semi-supervised learning algorithms. Several perspectives are highlighted and discussed for future researches on data mining and analytics in the process industry.
Article
The garment industry one of the key examples of the industrial globalisation of this modern era. It is a highly labour-intensive industry with lots of manual processes. Satisfying the huge global demand for garment products is mostly dependent on the production and delivery performance of the employees in the garment manufacturing companies. So, it is highly desirable among the decision makers in the garments industry to track, analyse and predict the productivity performance of the working teams in their factories. This study explores the application of state-of-the-art data mining techniques for analysing industrial data, revealing meaningful insights and predicting the productivity performance of the working teams in a garment company. As part of our exploration, we have applied eight different data mining techniques with six evaluation metrics. Our experimental results show that the tree ensemble model and gradient boosted tree model are the best performing models in the application scenario.
Conference Paper
The garment industry is one of the most dominating industries in this era of industrial globalization. It is a highly labor-intensive industry that requires a large number of human resources to produce its goods and fill up the global demand for garment products. Because of the dependency on human labor, the production of a garment company comprehensively relies on the productivity of the employees who are working in different departments of the company. A common problem in this industry is that the actual productivity of the garment employees sometimes does not meet the targeted productivity that was set for them by the authorities to meet the production goals in due time. When the productivity gap occurs, the company faces a huge loss in production. This study aims to solve this problem by predicting the actual productivity of the employees. To achieve this aim, a Deep Neural Network (DNN) model has been proposed to predict the actual productivity of the employees. The experimental results of this study have shown that the proposed model yields a promising prediction performance with a minimal Mean Absolute Error (=0.086) which is less than the baseline performance error (=0.15). Such prediction performance can indisputably help the manufacturers to set an accurate target, minimize the production loss and maximize the profit.
Article
Due to the error-prone nature of garment manufacturing operations, it is challenging to guarantee the quality of garments. Previous research has been done to apply fuzzy association rule mining to determine process settings for improving the garment quality. The relationship between process parameters and the finished quality is represented in terms of rules. This paper enhances the application by encoding the rules into variable-length chromosomes for optimization with the use of a novel genetic algorithm (GA), namely the slippery genetic algorithm (sGA). Inspired by the biological slippage phenomenon in DNA replication, sGA allows changes to the chromosome lengths by insertion and deletion. During rule optimization, different parameters can be inserted to or removed from a rule, increasing the diversity of the solutions. In this paper, a slippery genetic algorithm-based process mining system (sGAPMS) is developed to optimize fuzzy rules with the aim of facilitating a comprehensive quality assurance scheme in the garment industry. The significance of this paper includes the development of a novel variable-length GA mechanism and the hybridization of fuzzy association rule mining and variable-length GAs. Though the capability of conventional GA in rule optimization has been proven, the diversity in the population is inherently limited by the fixed chromosome length. Motivated by this phenomenon, the sGA suggested in this paper allows various parameters to be considered in a rule, improving the diversity of the solutions. A case study is conducted in a garment manufacturing company to evaluate the sGAPMS. The results illustrate that better quality assurance can be achieved after rule optimization.