Terrestrial molluscs (Mollusca: Gastropoda) are important economic pests worldwide, causing extensive damage to a variety of crop types, and posing a health risk to both humans and wildlife. In South Africa, the climate is favourable for invasive European molluscs, especially in the Western Cape province, where there are mild, damp winters. One crop that is particularly targeted by the pests concerned is canola (Brassica napus), which is a winter arable crop that is commercially produced for its use in cooking, food processing, fertilisers, fuels, pet food, plastics, and animal feed. Molluscs on canola in the Western Cape province are currently controlled using chemical molluscicide pellets. These chemicals have the potential to adversely affect the environment and non-target organisms. The use of mollusc-parasitic nematodes is a possible environmentally-friendly alternative.
Current knowledge indicates that there are eight nematode families that associate with molluscs, including Agfidae, Alaninematidae, Alloionematidae, Angiostomatidae, Cosmocercidae, Diplogastridae, Mermithidae, and Rhabditidae. To date, Phasmarhabditis hermaphrodita is the only nematode that has been developed as a biological molluscicide. The nematode, which was commercially released in 1994 by MicroBio Ltd, Littlehampton, UK (formally Becker Underwood, now BASF) under the trade name Nemaslug®, is now sold in fifteen different European countries. Due to current legislation, Nemaslug® cannot be sold or used in South Africa. A survey was therefore conducted in the Western Cape province of South Africa to locate a local nematode isolate capable of causing mortality in invasive mollusc pests.
A total of 1944 slugs were collected from 12 different study sites. On the identification of slugs, they were dissected alive, and examined for internal nematodes. Nematodes were identified using morphological and molecular techniques (18S rRNA). Seven of the 12 sites had nematodes present, with 8% of the slugs being found to be infected with nematodes. Six
V
nematode species were identified, including Angiostoma margaretae, Angiostoma sp., Caenorhabditis elegans, a mermitid sp., and Phasmarhabditis spp. (SA3 and SA4). Of the six species mentioned, four were previously undescribed. The isolation of new Phasmarhabditis spp. indicates the importance of conducting further surveys of mollusc-parasitic nematodes in South Africa.
Nematodes isolated in the survey were tested for their ability to reproduce on decaying organic matter (consisting of dead frozen slugs), with results demonstrating that one of the nematodes, Phasmarhabditis sp. SA4, could complete its life cycle under such conditions. In addition, pathogenicity tests illustrated that Phasmarhabditis sp. SA4 caused significant mortality of the slug D. panormitanum.
Phasmarhabditis sp. SA4 was then fully described and characterised by the shape and length of the female tail, and by the presence of males. Phylogenetic analysis demonstrated that Phasmarhabditis sp. SA4 was placed in a monophyletic clade along with Phasmarhabditis sp. SA2, Phasmarhabditis papillosa, and the mollusc-parasitic nematode, Angiostoma dentiferum. The new species brings the total complement of the genus to seven species.
Phasmarhabditis sp. SA4 was then established in monoxenic cultures. Five bacterial isolates were isolated from the intestine of slug hosts, identified using 16S rRNA gene sequences, and their pathogenicity tested by means of injecting directly into the haemocoel of D. reticulatum, and monitoring the mortality over time. Kluyvera sp., which was found to cause the highest mortality rate among the slugs concerned, was chosen for monoxenic culturing. Cultures containing Phasmarhabditis sp. SA4 and Kluyvera sp. were optimised using temperatures ranging from 15°C to 25°C, with results showing that 15°C was the optimum growth temperature.